
5 February 2014

Individual Pursuit Race!
Introduction
A bicycle “individual pursuit” race is held in a velodrome. Two cyclists start simultaneously at
opposite sides of the track. The objective is to catch up to the other cyclist before he catches up
with you. Here’s a photo of an individual pursuit race in progress:

We are going to have pursuit races between pairs of robots! This will be a tournament with one
team being the winner. The “track” is an oval barrier that reflects ultrasonic pings. You will
have your Ping))) units facing the port side (left side) of your robots to detect the distance to this
barrier. You will program your robots to keep a constant distance from the barrier as you circle it
counter-clockwise. Here’s a diagram:

Construction
Assemble the Ping))) unit and bracket as shown. Let Phil check everything before powering up.

Bracket behind
metal; fasten
with two screws.

Ping))) in front;
fasten with two
screws.

White wire
on left.

White wire
in front. Plug
into P17.

Programming
You will pretty much be on your own with the programming details. But here’s a skeleton
program to get you started, and it’s okay to ask for help.

#include "simpletools.h" // Include simpletools header
#include "ping.h" // Include ping header
#include "abdrive.h" // Include abdrive header.

int distance; // Declare distance variable.

int ping_mm(int pin);

int main() { // Main function
 drive_setRampStep(12); // Max step 12 ticks/s every 20 ms
 while(1) { // Repeat indefinitely
 distance = ping_mm(17); // Get mm distance from Ping)))

Your stuff goes here. // This code will determine the winner!
 pause(?); // How many milliseconds to pause?
 }
}

int ping_mm(int pin) { // Return Ping))) distance in mm
 return ping(pin) * 10 / 58;
}

Use the drive_ramp(left_speed, right_speed) function to set the left and right wheel speeds.
These will vary, depending upon how far you are from the wall.

Race Rules
Each pair of racers will start on opposite sides of the course, as determined by the clips that hold
the two wall segments together. Teams may place their bots as close to, or as far from, the wall
as they wish. Each team will power up its bot and hold its reset button down until the starter
says, “Go!” The race will continue until one of the following occurs:

1. A robot commits a disqualifying infraction before both bots have made one circuit around
the course. In this case, the race will be restarted after both teams have a chance to
reprogram their bots.

2. One robot catches up to the other, either touching its opponent or passing it. In this case
the faster robot wins the race and proceeds to the next heat or is declared the overall
winner in the last heat.

3. A robot commits a disqualifying infraction after both bots have made at least one circuit
around the course. In this case, the infracting robot loses, and the winner proceeds to the
next heat or is declared the overall winner in the last heat.

These are the disqualifying infractions:

1. A robot touches the barrier.

2. A robot wanders away from the course.

3. A robot spins two revolutions or more without forward progress.

Initial team pairings will be drawn at random. Each team will get as many chances as it
needs to test its program on the course and to modify it before committing to its next race.

Strategy
Obviously, the closer to the wall you can stay, the less distance you have to travel; but this also
increases your chances of hitting the wall and being disqualified. Also, the faster you go, the
better chance you have of catching up to your opponent. This also carries the risk of losing
“sight” of the wall entirely and wandering off the course.

Race Heats

1.

2.

3.

4.

5.

Give your robots names! I will make nameplates for them for the race next week.

