
AN603: Operating ICON H-Bridges in Parallel 1

Overview:
There may be instances where the 12A continuous current handling capability of the ICON H-
Bridge is not adequate for a specific application. For higher current applications there are at least
two options that can be implemented to allow the ICON H-Bridge to meet the needs of the design.

The first option is to increase the power dissipating capability of your system. This can most
easily be accomplished by increasing the forced airflow over the ICON H-Bridge with a high-
speed, high-volume, fan. But even with increased airflow the ICON H-Bridge will probably not be
capable of continuously handling more than 20A of continuous current due to the size of the
ICON H-Bridge PCB.

The second option is to operate multiple ICON H-Bridges in parallel. The N-channel MOSFETs
that make up the H-bridges can efficiently share current, thus increasing the overall current
handling capability of your system. In addition, the number of control lines required to interface to
each of the MOSFETs is not increased since these control lines may also be paralleled. In this
application note a single PIC16F873 (Microchip) microcontroller was used to control four ICON H-
Bridge modules.

An analog-to-digital converter (ADC, internal to the PIC16F873) was used to establish a pulse-
width-modulation duty-cycle (PWM, also internal to the PIC16F873) to control four ICON H-Bridge
modules connected in parallel. The system was configured for unidirectional speed control and
was tested at 24V with a resistive load of 0.389Ω. A custom PCB was designed to carry the four
ICON H-Bridge modules and the control circuitry. In testing, this design was able to deliver 48A
of continuous current to the load at a 98% duty cycle (roughly 900W) for several hours.

H-Bridge Configuration:
The ICON H-Bridge modules were configured to operate in “direct drive” mode for this application
note. All other settings in the ICON H-Bridges were left in their default state (as described in
ICON H-Bridge datasheet). A single ICON Interface Module was used to program the ICON H-
Bridges for direct drive mode using the ICON Interface Module control software available at the
www.solutions-cubed.com web site.

In direct drive mode the serial DIN line of each H-bridge becomes the /ENABLE line. Driving this
line to 0V turns on the H-bridge, and enables the H-bridge control lines (HI-A, LO-B, HI-B, and
LO-A) to actively control the MOSFETs on all four H-Bridges. Additionally, direct drive mode
converts the DOUT line from a serial output to a STATUS line. When this line is at a logic high
(+5V) the H-bridge is disabled. A logic low indicates that the H-bridge is enabled.

Figure 1: Direct Drive Mode Control Signals
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

HI-B

HI-A

LO-B

LO-A

DIN

DOUT

PWM

PWM

enable high side

enable high side

OFF ON

FAULT

OFF ON

FORWARD

REVERSE

DIN controls H-bridge

DOUT mirrors H-bridge state except for fault condition

DIRECT DRIVE MODE CONTROL SIGNALS

http://www.solutions-cubed.com/

AN603: Operating ICON H-Bridges in Parallel 2

It would be feasible to configure the PIC16F873 to test the ICON H-Bridges for direct drive mode
of operation on power-up by toggling the DIN line and checking to see if the DOUT line follows
the input. If the devices were not configured for direct drive mode they could be programmed to
operate in direct drive mode via the DIN and DOUT connections of each H-bridge and the ICON
H-Bridge communication protocol. This would eliminate the need for the ICON Interface Module
used during the programming phase of this application note. There is also no reason that this
application note could not be modified to implement the full serial communication protocol.

Hardware:
The custom PCB was designed to mount all four ICON H-Bridges in close proximity to each
other. Mounting holes were included for the ICON Active Cooling fans. ¼” bolts were used as
the connection points for both the load and the load supply, and were responsible for carrying the
high currents required for this application note. As mentioned earlier the load supply was 24V
and rated for 60A. The 12V supply required to power each ICON H-Bridge and the four cooling
fans was provided by a separate 12V power supply. The 5V necessary to power the PIC16F873
was generated with a linear regulator connected to the 12V power supply.

Connector J2 (the 20 pin 0.1” shrouded header) was included and mirrors many of the
connections of the ICON Interface Module. This allows the design to work with the ICON Adapter
Board. The ICON Adapter Board was used to provide the analog input signal for PWM
generation and TTL to RS232 conversion for the serial interface built into the application.

Figure 2: PIC16F873 and Support Circuitry

VCC_5V
VCC_5V

VCC_5V

VCC_12V

VCC_5V VCC_5V
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

LO_B

J2
2520-6002UB

1

2

3

4

5
6
7

8

9
10

11

12

13
14

15
16
17
18
19

20

VCC_EXT

_RESET

VPP

VDD

PGD
PGC

GROUND

ANALOG_IN

+5VDC
+5VDC

GROUND

_BRAKE

RX
TX

N/C
N/C
N/C
N/C
N/C

GROUND

R3
1.0K

D7
Red

R16 10K

R6
1.0K

VCC_5V

R14 120 Ohm

DIN3

SW1
2 pos switch

1
2

4
3

DIN1

D4
Green

R5
1.0KC4

0.01 uF
+ C1

330uF 35V

R11 120 Ohm

D14
LM4040BIM3-4.1

2
3

U5
MCP809T

1
23

GND
/resetVcc

C8
27 pF

VCC_5V

D11
5.6V

2
1

D13
5.6V

2
1

HI_A

DOUT2

R17 120 Ohm

VCC_5V

DOUT3

VCC_5V

DIN2

U1
MC7805B-D2T

1
2

3Vin
GND

Vout R8
1.0K

VCC_5V

R18
10K

R7
1.0K

DOUT4

+ C2
330uF 35V

C6
0.01 uF

U3
PIC16F873-20I/SP

20

2

21

3

4

11
12
13

56
7

14

8
19

1

18
17

22

23
24

25

27
28

16
15

9
10

26VDD

RA0/AN0

RB0/DOUT3

RA1

RA2/AN2/VREF-

RC0/HI_A
RC1/LO_A
RC2/LO_B

RA3/AN3/VREF+RA4
RA5

RC3/HI_B

VSS1
VSS2

MCLR/VPP/THV

RC7/RX/DT
RC6/TX/CK

RB1/DIN3

RB2/DOUT2
RB3/DIN2

RB4/DOUT1

RB6/PGC
RB7/PGD

RC5/DIN4
RC4/DOUT4

OSC1/CLKIN
OSC2/CLKOUT

RB5/DIN1

D9
Red

R4
1.0K

R20
10K

D2
Green

D8
Green

R21
10K

D5
Red

J1

CONN TRBLK 2

1
2

LO_A

C9
27 pF

DOUT1

R12 120 Ohm

R10 10K

D6
Green

D12
5.6V

2
1

HI_B

R9
1.0K

DIN4

R13 1.0K

R15 10K

D3
Red

C7
0.01 uF

C3
0.01 uF D1

Green

D10
5.6V

2
1

R19
10K

X1

19.66MHz

1 4

32

C5
2.2 uF

R2
1.0K

R1 1.0K

AN603: Operating ICON H-Bridges in Parallel 3

Figure 3: ICON H-Bridge Connections

ICON1
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

The custom PCB used in this design was a 4” x 7.1” 2-layer board with components on the top-
side only. The copper cladding was a standard ½ ounce thickness, and the high current carrying
traces measured roughly 1” wide. This board was not designed to continuously carry a high load
current, but was designed to allow for testing of the ICON H-Bridges for several hours at their
maximum current rating (48A continuous).

Boards designed for continuous loads of this magnitude should use copper cladding of 1-2 ounce
thickness and should provide for some means of cooling the carrier board PCB as well as the
ICON H-Bridge modules.

HI_B

HI_B

DOUT3

MH6
250 mil

1

ICON4

GND

VCC_12V

ICON3

LOAD-

VCC_12V

VMOTOR

GND

LOAD+HI_A

ICON H-BRIDGEJ3 J2
1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16VCC_12V

DIN
DOUT
HI_A
LO_A
LO_B
GROUND
HI_B LOAD-

LOAD-
RETURN
RETURN

LOAD+
LOAD+

VMOTOR
VMOTOR

MH8

250 mil

1

LOAD-

VMOTOR

LO_B

ICON H-BRIDGEJ3 J2
1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16VCC_12V

DIN
DOUT
HI_A
LO_A
LO_B
GROUND
HI_B LOAD-

LOAD-
RETURN
RETURN

LOAD+
LOAD+

VMOTOR
VMOTOR

LOAD-

VMOTOR

VCC_12V VMOTOR

LO_A

HI_A

DIN4

ICON H-BRIDGEJ3 J2
1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16VCC_12V

DIN
DOUT
HI_A
LO_A
LO_B
GROUND
HI_B LOAD-

LOAD-
RETURN
RETURN

LOAD+
LOAD+

VMOTOR
VMOTOR

LOAD+

HI_A

DOUT1

LOAD-

MH7
250 mil

1

HI_A

ICON H-BRIDGEJ3 J2
1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16VCC_12V

DIN
DOUT
HI_A
LO_A
LO_B
GROUND
HI_B LOAD-

LOAD-
RETURN
RETURN

LOAD+
LOAD+

VMOTOR
VMOTOR

VMOTOR

VMOTOR

LO_B

VMOTOR

VMOTOR

GND

LO_A

DIN1

DOUT4

GND

DIN2

LO_A
LOAD+

ICON2

MH5

250 mil

1

VCC_12V

LO_B

VCC_12V

LO_B

VCC_12V

HI_B

DOUT2

DIN3

HI_B

LOAD+

LO_A

VCC_12V

VCC_12V

VMOTOR

AN603: Operating ICON H-Bridges in Parallel 4

Figure 4: AN603 PCB Layout

Figure 5: AN603 Bill of Materials
Item
Number

Quantity Part Reference Description Manufacturer Manufacturer Part
Number

1 2 C1 C2 330UF 35V RADIAL 1050MA RIP Panasonic EEU-FC1V331
2 4 C3 C4 C6 C7 .01UF 50V CERAMIC CAP 0805 SMD Panasonic ECU-V1H103KBG
3 1 C5 CAP 2.2UF 16V CERAMIC Y5V 1206 Murata GRM42-6Y5V225Z016AK
4 2 C8 C9 27PF 50V CERAMIC CAP 0805 SMD Panasonic ECU-V1H270JCG
5 5 D1 D2 D4 D6 D8 SMT 1206 GREEN LED LiteOn LTST-C150GKT

6 4 D3 D5 D7 D9 SMT 1206 RED LED LiteOn LTST-C150EKT
7 4 D10 D11 D12

D13
DIODE 5.6V ZENER TO236/SOT23 Diodes Inc. BZX84C5V6

8 1 D14 4.096V 0.2% REFERENCE National LM4040BIM3-4.1
9 1 J1 CONN TERM BLOCK 2POS 5.08MM Phoenix Contact 1715721
10 1 J2 DUAL HEADER 20 VERT. 0.1" 3M 2520-6002UB
11 10 R1 R2 R3 R4 R5

R6 R7 R8 R9
R13

RES 1.0K OHM 1/10W 5% 0805 SMD Panasonic ERJ-6GEYJ102

12 7 R10 R15 R16
R18 R19 R20
R21

RES 10K OHM 1/10W 5% 0805 SMD Panasonic ERJ-6GEYJ103

13 4 R11 R12 R14
R17

RES 120 OHM 1/10W 5% 0805 SMD Panasonic ERJ-6GEYJ121

14 1 SW1 SWITCH 2 POS DIP TAPE SEAL SMD CTS
Corporation

219-2LPST

15 1 U1 5V LINEAR REG. D2PAK On Semi MC7805B-D2T
16 4 U2 U4 U6 U7 ICON H-BRIDGE REV3 Solutions Cubed ICON_HBREV3
17 1 U3 MICROCONTROLLER Microchip PIC16F873-20I/SP
18 1 U5 RESET CIRCUIT Microchip MCP809T-300I/TT
19 1 X1 CRYSTAL 19.66MHZ SMD Epson MA-306-19.660M-CQ
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

AN603: Operating ICON H-Bridges in Parallel 5

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

Additional Hardware Information:
DIP Switch – This component (labeled SW1 on the PCB and schematic) is used to set some
operating parameters in this application. This part is a dual surface mount DIP switch. Switch
one on the dual DIP switch selects between single or quad H-bridge operation. Switch two can
be used to disable or enable the H-bridges that are selected with switch one.

Figure 6: Dual DIP Switch (SW1) Settings
Switch ON OFF
Switch 1 Only H-bridge 1 is operational H-bridges 1, 2, 3, and 4 are

operational
Switch 2 H-bridge operation enabled H-bridge operation disabled

If a fault condition occurs when operating in direct drive mode the only way to clear the fault is by
disabling the H-bridge with a fault and then re-enabling it. This can be done with switch 2. When
an H-bridge is enabled the green indicator LED associated with it will be lit. When the H-bridge is
disabled the red status LED is lit. If a fault condition has occurred both LEDs will be lit.

Serial Communication Link - A serial communication link was used in this application note to send
speed and H-bridge status data to an ASCII terminal. The hardware is connected for bi-
directional communication but this application note only supports sending data. The serial data is
configured for 38.4KBPS, 8N1, TTL level, true data. An ICON Adapter Board is connected to
component J2 via a ribbon cable and is used to provide the analog control signal and to convert
the TTL serial data to RS232 levels.

LED Indicators – As previously mentioned each ICON H-Bridge module has a set of indicator
LEDs associated with it. When an H-bridge is enabled the green indicator LED will be lit. When
disabled the red LED is lit. If an over-current or over-temperature fault occurs then both LEDs will
be lit. There is one hardware consideration associated with the red status LEDs. The ICON H-
Bridge modules have a pseudo open-collector output. When the ICON H-Bridge outputs 5V it is
actually configuring its output pin as an input, and the line is pulled to 5V with a 2.2KΩ resistor.
This has the effect of creating a voltage divider between the 2.2KΩ resistor on the H-bridge, the
status LED, and the 1.0KΩ resistor associated with the LED. The output voltage due to this
relationship is closer to 3V than 5V. In systems where this could have an adverse effect the
status LED and 1.0KΩ resistor should be omitted.

Firmware:
The firmware used in this application note was generated using the CCS, Inc. PIC C compiler.
The code is pretty straightforward and provides analog control of a unidirectional DC motor.

Essentially the PIC16F873 regularly checks a DIP switch with two switches. These switch
settings determine first if any ICON H-Bridge modules should be enabled. Secondly, they are
used to determine whether all H-bridges (1,2,3 and 4) should be enabled or whether only H-
bridge1 should be enabled. The function that checks the state of the switches is also responsible
for reading the status inputs from each H-bridge to determine if a fault has occurred. If a fault has
occurred a flag is set for the H-bridge experiencing the fault condition.

After the status of the H-bridges are determined the program will read the 10 bit ADC and move
that value to the PWM register used to drive the low side MOSFET (LO-B). If the ADC reads 0
then the high side MOSFET (HI-A) is turned off. The analog input should range from 0-4.096V.

Finally, a serial data interface (38.4KBPS, 8N1, TTL level) sends the H-bridge status information
and the PWM settings (as a percentage). This information can be read with a terminal program
once the TTL level data is converted to RS232 levels.

AN603: Operating ICON H-Bridges in Parallel 6

Figure 7: AN603.C Flow Chart
ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

main()

establish default
settings and configure

registers

check_reset()

check_number_bridge()

enable all H-bridges

enable h-bridge1

 Yes

 Yes

 No

 No

disable all H-bridges

update_pwm()

read ADC

is switch1 closed?

is switch2 closed?

is ADC = 0?

check fault status
and set fault flags

turn on high side
MOSFET

turn off high side
MOSFET

 Yes No

move ADC value to
PWM registers

send_serial()

is timer1
interrupt flag set?

is one_second
counter = 10?

send serial status
data

 Yes

 Yes

 No

 No

AN603: Operating ICON H-Bridges in Parallel 7

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

Figure 8: AN603 Code Listing

//
//
// Application Note 603 (AN603)
// Parallel ICON H-Bridges
// Date 04-02-02
// Description: This application note allows a single
// PIC16F873 to control up to 4 ICON H-Bridge modules.
// These modules are connected in parallel and have
// been pre-programmed to operate in direct drive mode
// with an ICON Interface Module before being placed
// into this system.
//
// The firmware was generated with the CCS C compiler
// (www.ccsinfo.com) designed for use with Microchip's
// (www.microchip.com) line of PIC microcontrollers.
//
// An ICON Adapter Board was used to introduce a control
// voltage and to translate TTL level data to RS232
// levels for the serial output.

//Pin definitions, include files, and compiler directives
#include <16F873.h>
#use delay(clock=19660000)
#fuses HS,NOWDT
#define PIN_ADC_IN 40
#define PIN_BRAKE 41
#define PIN_VREFN 42
#define PIN_VREFP 43
#define PIN_SW1 44
#define PIN_SW2 45
#define PIN_DO3 48
#define PIN_DI3 49
#define PIN_DO2 50
#define PIN_DI2 51
#define PIN_DO1 52
#define PIN_DI1 53
#define PIN_HIA 56
#define PIN_LOA 57
#define PIN_LOB 58
#define PIN_HIB 59
#define PIN_DO4 60
#define PIN_DI4 61

#use rs232(baud=38400,parity=N,xmit=PIN_C6,rcv=PIN_C7)
#zero_ram //clear ram
#use fast_io(A) //Ensure port direction is not changed
#use fast_io(B) // unless specified by code
#use fast_io(C)

AN603: Operating ICON H-Bridges in Parallel 8

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

//PIC RAM register and bit definitions
#byte PortA = 0x05
#byte PortB = 0x06
#byte PortC = 0x07
#byte adresh = 0x1E
#byte adresl = 0x9E
#byte status = 0x03
#byte indf = 0x00
#bit T1if = 0x0C.0 //Define timer 1 interrupt flag

//variable definitions
float speed;
long pwmvalue; //define global pwm value
int HB_State;
int one_second;

#bit HB1_Enable = HB_State.0 //define flags detailing which H-bridges
#bit HB2_Enable = HB_State.1 // should be enabled
#bit HB3_Enable = HB_State.2
#bit HB4_Enable = HB_State.3

#bit HB1_Fault = HB_State.4 //define flags detailing which H-bridges
#bit HB2_Fault = HB_State.5 // have a fault
#bit HB3_Fault = HB_State.6
#bit HB4_Fault = HB_State.7

//
//
// Functions
//
//
// check_number_bridges: This function reads the
// dual DIP switch connected to port A and
// determines whether the system should be
// configured for 1 or 4 ICON H-Bridge
// Modules.
//
void check_number_bridges()
 {
 byte dip_value; //define variable for dip switch value
 dip_value = PortA & 0b00010000; //capture port A dip switch settings
 dip_value = dip_value >> 4; //rotate value so it equals 0 or 1

 switch(dip_value) //determine case based on dip switch
{
case 0:
 HB1_Enable = True; //case 0 only one H-bridge in use

 HB2_Enable = False;
 HB3_Enable = False;
 HB4_Enable = False;

 break;

AN603: Operating ICON H-Bridges in Parallel 9

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

case 1:
 HB1_Enable = True; //case 1 enables all 4 H-bridges
 HB2_Enable = True;
 HB3_Enable = True;
 HB4_Enable = True;
 break;
}

 }

///
// check_reset: This function checks the DIP
// switch connected to port A to see if the
// ICON H-Bridges can be enabled or if they
// should be turned off. If the H-bridges
// can be turned on then the check_number_bridges
// function is called. This routine will also
// update the status fault flag associated
// with each H-bridge.
///
void check_reset()
 {
 byte dip_value; //define variable for dip switch value
 dip_value = PortA & 0b00100000; //capture port A,5 dip switch setting
 dip_value = dip_value >> 5; //rotate value so it equals 0 or 1

 switch(dip_value) //determine case based on dip switch
{
case 0:
 check_number_bridges(); //case 0 turn on the H-bridges
 break;
case 1:

 HB1_Enable = False; //disable H-bridges is off
 HB2_Enable = False;
 HB3_Enable = False;
 HB4_Enable = False;

 break;
}

 if (input(PIN_DO1) == True) //Test each H-bridge status flag to see if a
 HB1_Fault = True; // fault condition is present

 else
 HB1_Fault = False;

 if (input(PIN_DO2) == True)
 HB2_Fault = True;

 else
 HB2_Fault = False;

 if (input(PIN_DO3) == True)
 HB3_Fault = True;

 else
 HB3_Fault = False;

AN603: Operating ICON H-Bridges in Parallel 10

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

if (input(PIN_DO4) == True)
 HB4_Fault = True;

 else
 HB4_Fault = False;

 }

///
// enable_HB: This function checks the HBx_Enable
// flag. If the flag is true then the H-bridge
// is enabled.
///
void enable_HB()
 {

if (HB1_Enable == True) //test H-bridge enable flag
 output_low(PIN_DI1); // if true then enable H-bridge
else
 output_high(PIN_DI1); // otherwise diable H-bridge

if (HB2_Enable == True) //repeat for all four H-bridges
 output_low(PIN_DI2);
else
 output_high(PIN_DI2);

if (HB3_Enable == True)
 output_low(PIN_DI3);
else
 output_high(PIN_DI3);

if (HB4_Enable == True)
 output_low(PIN_DI4);
else
 output_high(PIN_DI4);

 }

///
// update_pwm: This function reads the 10-bit analog
// value present at RA0. The ADC is set up for
// 0-4.096VDC input (4mV per bit). The C compiler
// used in this application note should have
// returned a 10 bit value for direct movement
// to the PWM register associated with the PIC's
// PWM generation hardware. This was not the
// case and may be due to a coding error on our
// part or an error in the version of the C
// compiler used. In either case the ADC registers
// were manipulated in this routine to provide
// 10-bit resolution.
///
void update_PWM()
 {

AN603: Operating ICON H-Bridges in Parallel 11

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

 pwmvalue = read_adc(); //read ADC at RA0
 pwmvalue = pwmvalue << 2; //rotate adresh value for 2 LSBs in adresl
 bit_set(status,5); //select bank 1 RAM
 indf = adresl >> 6; //move LSBs to and store in indf register
 bit_clear(status,5); //select bank 0 RAM
 pwmvalue = pwmvalue + indf; //add indf to pwm storage to get 10 bit result
 if (pwmvalue == 0) //if value is equal to 0 then turn off high side

output_low(PIN_HIA); // driver via control pin
 else

output_high(PIN_HIA); //if ADC not equal zero turn on high side
// driver via control pin

 set_pwm1_duty(pwmvalue); //use ADC to set CCP1 PWM value
 }

///
// send_serial: This function sends the PWM value
// as a percentage (0-100%) and is labeled
// "Speed". A message associated with each
// H-bridge is sent detailing the state of
// each H-bridge (enabled or disabled) and if
// the H-bridge is enabled its status is also
// sent (OK or FAULT). Data is sent in ASCII
// format at 38.4KBPS, 8N1. This data can be
// displayed on any ASCII terminal if the data
// is converted to RS232 format.
///
void send_serial() //this routine sends the duty cycle value
 { // and the status of each H-bridge
 if (T1if == True) //test for timer overflow which occurs

// every 100ms
 {

SET_TIMER1(0); //clear timer 1
T1if = False; //clear timer 1 overflow flag
if (one_second == 10) //test 1 second timer counter
 {
 one_second = 0; //reset 1 second timer counter

 speed = pwmvalue //store PWM in 32 bit variable
//send speed value as XXX.X% setting

 printf("\n\rSpeed = %3.1f%%\n\r",(speed*100/1023));

 if (HB1_Enable == True) //determine state of H-bridge
{
printf("H-Bridge1 Enabled"); //display H-bridge enabled message
if (HB1_Fault == True)

 printf(" FAULT\n\r"); //display fault message
else

 printf(" OK\n\r"); //display OK message
}

 else //display disabled message
printf("H-Bridge1 Disabled\n\r");

AN603: Operating ICON H-Bridges in Parallel 12

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

 if (HB2_Enable == True) //repeat for all H-bridges
{
printf("H-Bridge2 Enabled");
if (HB2_Fault == True)

 printf(" FAULT\n\r");
 else
 printf(" OK\n\r");

}
 else

printf("H-Bridge2 Disabled\n\r");

 if (HB3_Enable == True)
{
printf("H-Bridge3 Enabled");
if (HB3_Fault == True)

 printf(" FAULT\n\r");
else

 printf(" OK\n\r");
}

 else
printf("H-Bridge3 Disabled\n\r");

 if (HB4_Enable == True)
{
printf("H-Bridge4 Enabled");
if (HB4_Fault == True)

 printf(" FAULT\n\r");
else

 printf(" OK\n\r");
}

 else
printf("H-Bridge4 Disabled\n\r");

 }
 else

 one_second = one_second + 1;
 }
 }

///
// main: The main function sets up many of the
// registers used by this application note
// and calls four functions.
///
void main()
{
 setup_adc_ports(RA0_ANALOG_RA3_RA2_REF); //configure ADC for RA0 vref at RA2,3
 setup_adc(ADC_CLOCK_DIV_32); //ADC clock setting
 setup_spi(FALSE); //disable SPI port
 setup_counters(RTCC_INTERNAL,RTCC_DIV_2); //timer0 is Fosc/2
 setup_timer_1(T1_DIV_BY_8|T1_INTERNAL); //timer1 divide by 8
 setup_timer_2(T2_DIV_BY_1,255,1); //update PWM every period
 setup_ccp1(CCP_PWM); //CCP1 set for PWM function
 setup_ccp2(CCP_PWM); //CCP2 set for PWM function
 set_uart_speed(38400); //set serial data speed to 38400
 set_tris_a(0xFF); //establish I/O settings for ports
 set_tris_b(0xD5);

AN603: Operating ICON H-Bridges in Parallel 13

ICON DC Motor Control System - Solutions Cubed
www.solutions-cubed.com

 set_tris_c(0x90);

 set_adc_channel(0); //select RA0 for ADC input
 delay_us(10); //delay 10us for ADC setting

 output_low(PIN_LOA); //initialize H-Bridge control lines to
 output_low(PIN_HIB); // a disabled state
 output_low(PIN_LOB);
 output_low(PIN_HIA);
 output_high(PIN_DI1);
 output_high(PIN_DI2);
 output_high(PIN_DI3);
 output_high(PIN_DI4);
 set_pwm2_duty(0); //initialize PWM output to 0
 set_pwm1_duty(0);
 delay_ms(1000); //wait a second before running main loop

while(True) //This is the main program loop
 {
 check_reset(); //check dip switch for user reset
 enable_HB(); //enable h-bridges based on HBx_Enable flags
 update_PWM(); //read ADC at RA0 and use value for PWM setting
 send_serial(); //send program data to PC serial port
 }
}

Summary:
This application note provides one method that may be implemented to allow a single device to
control multiple ICON H-Bridge modules. The hardware and components used in this design are
flexible enough to be used for a much more complex control system. The modular nature of the
ICON H-Bridge and its simplified “direct-drive” mode of control were exploited in this design to
provide the components of a medium current motor controller. Additionally, the fault protections
built into the ICON H-Bridge provided excellent protection for both the H-bridges and the load
connected to them. The status output flags were also useful in ensuring that the controlling
device was aware of fault conditions.

In this application note the ICON H-Bridge was easily designed into a system that otherwise
would require significant time to engineer. For low or medium volume production runs a design
utilizing parallel ICON H-Bridge modules is a superior solution.

	Figure 1: Direct Drive Mode Control Signals

