Programming the Parallax Propeller using Machine Language

An intermediate level tutorial by deSilva © 2007
Version 1.21 2007-08-21

Preface

There are continuous requests for guidance to the Propeller
Machi ne Language. O course everything is well explained in the
excel | ent Paral | ax docunentation, however the didactical accent of
Paral |l ax seens to be on howto use SPIN with the hardware features
of the Propeller.

The advanced programmer soon recognizes (it takes from? hour to a
fortnight) that he has to nake his way to machi ne | anguage
progranmm ng when he wants to acconplish anything nore than

bl i nking LEDs or applying prefabricated “objects”.

This tutorial was not witten for the beginner: You need already a
good understanding of the Propeller’s architecture and sone
background i n successful SPIN progranm ng. O course you should
al so know how to use the PropellerTool (the IDE) and naybe Ariba's
nost useful PropTerm nal

My intention is not to “start at the very beginning”, but to help
you over the first frustrations caused by the machi ne | anguage
peculiarities of the Prop.

| only recently discovered that for over a year, Phil Pilgrimhas
mai nt ai ned his "Propeller Tricks and Traps"
http://foruns. paral |l ax. com foruns/ attach. aspx?a=14933 i n a quasi
conpl enentary way to this tutorial. You will greatly profit from
his work after you have nade it through the first three or four
chapters of this tutorial! Sone of his "tricks" will surely find
their way into ny still unwitten "Best Practices" Chapter!

As | programred nmy first mcro processor 30 years ago — and that

was not the first machine code | got into contact with — | may
seem bi ased and unsynpathetic fromtine to tinme. Please excuse
that! I amopen to all suggestions on how | can inprove this

tutorial: Just add a post or send a PM
And now. Have Fun!

Hanmbur g, in August 2007
deSi | va
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Versions
1.11 Issues wt layout fixed; starting an Appendix for SPIN
1. 20 Maj or m sunderstanding wt MJX-instruction fixed
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Chapter 1: How to start

As the architecture of the propeller differs considerably from

ot her controllers, | shall briefly repeat its main features and
conponents. This is of course well laid down in the Propeller Data
Sheet and Manual, and — please do not | ook too di sappointed! -
Throughout this tutorial | shall present you with little nore than
what you will find in the excellent official docunentation. But |
shall present it in a different way.

Sidetrack A: What the Propeller is made of
There is 32k ROM, with little interest to us during the first chapters. Plus:
- 32 KB RAM
- 8 processors (“COGs*) each running at 20 MIPS
- a 32 Bit I/O Port (“INA, OUTA, DIRA”)
- a system clock (“CNT*)
- 8 semaphores (“LOCKSs”)
And in each of the 8 COGs:
- 2 KB (512 x 32-bit cells) ultra fast static RAM
- 2 timers/counters (“CFGx”, “PHSx”, “FRQx”, where x = A or B)
- a video processor (“VCFG”, “VSCL”, connected to Timer A)

Note what this adds up to:
160 x 32-bit MIPS - 48 kB static RAM - 16 x 32-bit timers/counters - 8-fold video logic

When you belong to the 75% more visually oriented persons in the world, you may feel more
comfortable with the “architectural diagram” of the chip in this Diagram 1

I Parpllax Propesller Rev A = Pamlax, lnc 556 Wenlo Drive, Riockln, CA 86765 (016} 824-8203 = 7-25-08 ]

If you haven’t done already, take your time to study ALL DETAILS!. (Note: The diagram is web-
linked to a_hires pdf. Or simply visit the Parallax page!)
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When programm ng i n nmachi ne | anguage you nust generally be very
clear with all hardware concepts: the COGHUB interface, exact
timngs, working of tinmers/counters and the “bootstrap”. | shal
I ncl ude sections expl ai ning sonme of those concepts fromtine to
time as “sidetracks”

Sidetrack B: What happens at RESET/Power On?

O A part of the ROM is copied into “COG” #0: This is the Bootstrap Loader. It looks at pins 30+31
and tries to serially communicate with the propeller IDE or someone else using the same protocol.
(Note: This protocol is openly available, but its use is nevertheless a little bit tricky) The data
received from the IDE is then stored into HUB-RAM. Optionally it can also be moved into an
EEPROM connected at pins 28+29.

However this connection may “fail”!
In that case:

® The lower 32 kB of a serial EEPROM, connected to pins 28+29 are moved into RAM.

If this also fails the Propeller goes idle until the next reset or a new Power-On. Otherwise we now
have some defined data in the HUB RAM — copied from the EEPROM or received through the
serial connection - that is assumed to be a PROGRAM! Alas, the Propeller cannot execute
programs from the HUB-RAM!

© During the next bootstrap step, another part of the ROM - the SPIN-Interpreter (Size: 2 KB!) - is
copied into processor (="COG*) #0, and — finally! - this program begins — from HUB memory
address 16 onwards - to interpret what it assumes is translated SPIN code!

Uff!

Let’s tal k about processors — called “COGs” in Propeller |ingo.
What do they do? There is an ever correct answer: They execute
instructions! A standard processor gets these instructions froma
gl obal Iy addressed nenory (in a so called *von-Neumann-
architecture”) or froma dedicated instruction nenory (in a so
call ed “Harvard-architecture” — this is the way PICs and AVRs are
organi zed!). Having two nenories allows one to “tune” them
according to specific needs (e.g. non-volatile, read-only or fast
access tine), and also to access themin parallel!

A Propeller processor gets its instructions fromits internal COG
menory, space limted to 496 instructions! Now, please don’t rush
to give your Prop to your nephew to play with! Renmenber, you have
8 of those COGs and the COG nenory is RAM so it can be rel oaded!
Furthernore, we have 32-bit instructions, giving them nmuch nore
power than a common 8-bit instruction has.

So it seens we have a flaw ess von- Neumann architecture, where
instructions and data lay m xed in one nenory. Each instruction is
32 bits long and the data — is also 32 bits long. Nowthis is
funny! Does nmenory not consist of bytes??
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No, it does not! It consists of tiny electrical charges caught in
sem conductor structures © and it is SOVETI MES packaged in sizes
of eight. COG nenory is packaged in sizes of 32. Period!

We best call those packages “cells” to avoid m sunderstandi ngs! So
we have 496 multi-purpose cells, sone will contain our program
sone data — there are additional 16 cells used as I/O registers;
we cone to that later.

I know you are now absolutely crazy to have your first instruction
executed, but be patient! You have to first |earn how your
instruction will make its way into a cell of one of the COGs.

Sidetrack C: Loading COGS

We left our last sidetrack with the SPIN interpreter running in COG #0, starting to read things
from the HUB-memory. This has to be SPIN byte code, generated by the Propeller IDE, nothing
else! So what we need is a SPIN-instruction that will load our bespoken MACHINE-instruction
into the “machine”, i.e. into an internal cell of a COG. Luckily we already know something like
that: It is called COGNEW and it starts a new version of the SPIN Interpreter in a new COG, to
interpret a specific SPIN Routine.

Heh, but this is not what we want to do!? Right! But for reasons known only to the inventors
loading our own machine code into a COG is also called COGNEW. The first parameter is a HUB
address, the second parameter is an arbitrary value that can be used as you wish.

COGNEW (@myCode, 0)

This SPIN instruction initiates the copying of nearly 2000 bytes, beginning at @myCode into the
cells of the next available COG. This is a basic hardware feature of the Propeller (Otherwise,
how would it start the bootstrap routine in the first place!), needing no supervision of any kind.
One consequence of it being such and elementary component is that it will always load a COG
completely, unaware of the meaning or use of the bits it copies...

Note that this will thus always take 500*16/80_000_000 = 100 micro seconds, but the SPIN
interpreter will continue his task simultaneously in parallel, performing up to 20 SPIN instructions.

Note also that both parameters of COGNEW must be multiples of 4. | know you will forget that
immediately, but you have been warned!

| can hear you crying in despair: “BUT WHAT ABOUT MY CODE?” Please! Be patient, we come
to that very soon.

The Propeller IDE knows of two different | anguages: SPIN and
Propel | er Assenbly (or “machi ne code”). Machine code is
encapsul ated in the DAT sections, where no SPIN code is all owed.
For reasons explained later, we will ALWAYS start our machi ne code
sections wth

ORG 0
and end themw th

FIT 496
Both are NOT nmachine instructions. They are called assenbly
directives, and there are very few of them in fact there are no
ot hers except RES.
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W nost
notably can use the names of all 1/O “features” aka I/O registers:
I NA, OQUTA, DIRA, VCFG VSCL, PHSA, PHSB, FRQA, FRQB, CFGA, CFGB

So let’s start!

PUB ex01
cognew(@ex01A, 0)

DAT
ORG O

ex01A
MOV DIRA, #$FF "(cell 0) Output to I/0 0 to 7

. MOV pattern, #0 "(Cell 1) Clear a “registers”

oop
MOV OUTA, pattern '(Cell 2) output the pattern to PO..P7
ADD pattern, #1 '(Cell 3) Increment the ,register"
JMP #loop '(Cell 4) repeat loop

pattern LONG $AAAAAAAA "(Cell 5)
FIT 496

Before you run this program make sure you have nothi ng expensive
connected to pins O to 7! The Hydra has an LED at pin 0 which w |
light up and an audio jack at pin 7, which is very convenient.

Before we “look” at the pins using a 'scope or a frequency
counter, we do sone quick calculations: The (default) RCFAST cl ock
is 12 MHz. Wth a few notabl e exceptions each nmachine instruction
takes 4 clocks (Keep this in mnd!), so we have 333
ns/instruction: MO, ADD, JMP. Thus the |oop takes exactly 1 us.
We shoul d now get the foll ow ng readings:

PO : 500 kHz
PlL : 250 kHz
P7 © 3.9 kHz

Devi ati ons around 3% will be nornmal with the RC-cl ock.

This is fast! And imagi ne, we can run the Prop even 7 tines
faster!

Now, let’s "dissect” our progran

W see sone “nove-instructions” called MOV, it has two
“paraneters” (or operands). W call the left hand one “dest” and
the right hand one “source”. So obviously things are noved from
right to left: This is exactly as you wite your assignnents in
SPIN (or in nost other |anguages).

When you have al ready got experience with a machi ne | anguage of a
comon mcro processor (8051, 68000, AVR, PIC,..) you will now
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expect to |l earn sonething about “addressing nodes” , “registers”
etc. etc. You will indeed!

There are two schools of thinking: One (that’s ne and the Data
Sheet!) says: there are 512 registers in a COG The other school
(that’s the rest of the world) says: There are no registers at al
in a COG except 16 I/Oregisters nenory mapped to addresses 496
till 511.

It is not a problemif you do not follow ny way of thinking, you
can easily translate it into your own view of the world.

So let’s ook at the MOV-instruction in Cell 2: It copies the
content of register 5 aka pattern into register $1F4 aka OUTA. The
MOV-instruction in Cell O copies the nunber O into register 5.
These are the two addressing nodes available in the Prop machi ne

| anguage: register addressing and inmedi ate addressing. (But you
will see soon that this is only 97% of the truth: There are sone

I nstructions that can nove data to and from HUB nenory!)

Each and every instruction is able to performthis “imediate
addressing” on its right hand operand. You indicate this with a
"#" synmbol in front of this operand, although it is logically a
part of the operation code.

What el se do we have? Ah, there is also an ADD-i nstructi on!
Qobvious what it does: It adds a 1 to register 5.

And not hi ng nore obvious than JMP, however ...\Wy do we have this
funny "#" here, too?? A typo?

No - think straightforward! Wien we used pattern in the MOV and
ADD instruction, we wanted the processor to LOOK I NTO t hat
register to load or store that value. Wen we wite #1 (in ADD),
we want the processor to use this very val ue!

So what do we want the processor to do when junping? NOT | ook up
some register, but just junp to this very cell nunber we stated:
#| oop.

But! W also could ask the processor to junp to sonme “conputed”

destination we stored into a register. This is generally called

indirect junping, is a very inportant concept, and essential for
all subroutine calls.

It is very easy for the beginner to forget the "#", and as this is
correct code it will not be detected automatically. If your
programtermnates in a funny way, first look at all your JMPs for
this m st ake!

The last line in the program|ooks famliar: This is just the way
we used the DAT section before. Defining and presetting vari abl es.
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But note that after this DAT section has been copied into a COG
(via the COGNEW i nstruction) the processor |looks at it in a
different way than the SPIN interpreter does at the “archetype” in
the HUB! For the COG it is “register 5"; |ook for yourself what it
can be in HUB: just press F8 and study the nenory map. | set
pattern to $AAAAAAAA so that you can find it nore easily.

To finish this first chapter — and before going on to explain nore
i nstructions and progranmm ng techniques — we shall nenorize the
structure of the 32 bits of an instruction:

Bits: instruction or operation code (OPCODE)
Bits: setting flags (z, C) and result

Bit: 1immediate addressing

Bits: execution condition

Bits: destination-register

Bits: source register or immediate value

OCOR~RLRWO

You should by no neans learn this by heart! It shall rather give
you an inpression of all that’'s inside a tiny instruction — and
what’s not, so you can al so understand sone constraints...

You see that the range of an inmediate value is restricted
(between 0 and 511). This is no limtation for JUWS, as this is
exactly the size of the whole COG But if you want to set or add
ot her val ues you have to preset theminto a dedicated cell, as we
did in the exanpl e (LONG $AAAAAAAA). Funnily, this takes no
additional time! You may be accustomed from ot her processors, that
I medi ate addressing is FAR nore efficient than direct addressing.
This is not so with the Prop, as direct addressing is just —

regi ster addressing!

And don’t worry about the things you do not yet understand,
enl i ghtennent cones in the next chapters.

Interlude 1: the Syntax of the Propeller Assembly Language

You have swallowed the first machine language program ex01 — have you already digested it? You
should have questions, when you had never seen such code before.

The way you write machine language in the form of an assembly program is very similar through all
computers, but not equal. There even exists a standard how to write assembly code, that few are
aware of and nobody cares for.

The basic principle is to write one instruction per line, elements of this instruction as: labels,
opcode, operands, pre and post-fixes are separated either by blanks, tabs or commas. A comma is
generally used when the element “left of it” can contain blanks in a natural way, e.g. when writing a
constant formula you should like to have this freedom...
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You can also define and preset data cells. Generally such presets can be “chained” — separated by
commas for the reason stated above. SPIN programmers should be at ease here as everything is
exactly as in SPIN.

The same holds for comments.
There are generally some things called “directives”, which do not lead to code or data but rather tell
the assembler to “arrange” things. A typical “directive” would be a constant definition, but this is

independently done in the CON section.

“Macro-Assemblers” can have up to a hundred directives; but there are just three directives for the
Propeller:

ORG O ‘ start over “counting cells” at 0
FIT n “ rise alarm when the recent cell count surpasses n
RES n ‘ increment the cell count by n without allocating HUB memory

Some important rules:
- Use ORG with 0 only
- Don't try to allocate instructions or data after you used RES
- Always finish with FIT 496

If you are one of those single minded technocratic bean counters like me, you might be interested
in what is called “syntax” of the assembly language. There is a fine system for 50 years now for
such things, called BNF (“Backus-Naur Formalism”).

directive = ORG O | FIT constant | resDirective
resDirective = [label] RES constant
Tabel = localLabel | globalLabel
TocalLabel = ":"identifier
globalLabel = identifier
humber = decimal | hexadecimal | binary | quaterny
constant = constantName | number | constantFormula
constantName = label | nameFromCON
instruction = [ label ]
[ prefix ] opcode [ dest "," ] source [postfix]*
prefix = IF_C
opcode = MOV |
dest = constant
source = [ "#" ]Jconstant
postfix = WZ | WC | NR
dataItem = [ label ] size constant [ "["constant"]" ]
[ ","constant [ "["constant"]" ] 1*
size = LONG | WORD | BYTE
program =

[ orRG 0 ]

[ Tabel | instruction | dataItem ]*
[ resbirective ]*

[ FIT constant ]
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Chapter 2

Sidetrack D: Who is afraid of OUTA?
Reconsidering our first code example ex01: If we understand this COG concept of parallel
processors as displayed in Diagram 1 correctly, there is more going on in the chip than just the
8-bit counter in our COG. All right we have made sure that we can play with pins 0 to 7 but the
incrementing also sets higher bits in OUTA......
The rules are:
- A physical pin is enabled for output, when the corresponding DIRA bit

in at least one COG is set to 1.
- A physical pin, enabled for output, is set to high when the corresponding OUTA bit

in at least one COG is setto 1.

Well, nearly...

The correct second part should read:

- A physical pin, enabled for output, is set to “high” when the corresponding OUTA bit
in at least one of the COGS where it is enabled for output is set to 1.

Which just means everything is as expected. When still in doubt consult the hi-res of Diagram 1;
the relevant AND- and OR-gates are drawn in great detail!

So we now can conmuni cate with “outer space” via ear-offending
square waves, but how can we get into contact with the “inner
space”, the fat 32kB HUB nenory? How can we execute instructions
fromthat nenory or access data?

Did you listen carefully? The COG Processors fetches its

i nstructions from COG nenory. No exceptions! That neans, |IF we
want to have | arger prograns than fit, we shall have to rel oad
them This is tricky and howto do it efficiently will be part of
the "Master Level Tutorial" © You mght find sone cryptic renarks
in the Parallax Forum Look for "LMV Large Menory Mbdel ".

But reading or witing data to and fromHUB is a snap. There is a
set of 6 specific instructions for it (BTW This is |abelled a
"| oad-store-architecture” in Conputer Science |ingo):
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- VWRBYTE und RDBYTE
- VRWORD und RDWORD
- VIRLONG und RDLONG

to be used quite straightforwardly:
RDBYTE cellInCOG, hubAddress

But how do we know of any appropriate HUB address? There are two
possibilities:

- 1) You can provide a paraneter with COGNEW which
conventionally is a pointer to sonme HUB nenory, perfect to be used
with e.g. RDBYTE. This paranmeter is “autonatically” copied into
the cell 496 of the | oaded COG and can be synbolically referenced
by the nane PAR (Renenber: It has to be a multiple of 4!)

_ But in any case we can set sone of

the DAT variables before we load it into its COG

Confused? Here is the deconfusing exanple 2:

VAR
LONG aCount er

PUB ex02
patternaddr := @aCounter
COGNEW(@ex02A, 0)
COGNEW(@ex02B, @aCounter)

REPEAT
acounter++
DAT
ORG 0
ex02A
MOV DIRA, #$FF ' 0..7 for output
: Toop
RDLONG OUTA, patternAddr
JMP #:Toop
patternAddr
LONG O ' address of a communication variable
' must be stored here before loading COG
ORG 0
ex02B
MOV DIRA, altpPins ' 8..15 for output
: Toop

RDLONG rl, PAR
SHL rl, #8
MOV OUTA, rl
JMP #:1oop
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altPins LONG $FF<<8
ri LONG O

| thought this was as good as any place to introduce sone new
concepts. Methods (1) and (2) to establish conmunication should be
cl ear as daylight now O course the second COG we activate has to
avoid the pins O to 7, so we shift its activity area 8 pins up
Maki ng such small changes can have unforeseen consequences to
machi ne code: It is now no | onger possible to nove the out put
pattern directly into QUTA, we have to “shift” it and we neet a
new instruction for this. In fact there is a conplete famly of
simlar instructions, consisting of:

SHL : left shift, filling zeroes

SHR : right shift, filling zeroes

SAR : arithnetic right shift, filling bit 31

ROR : rotate right (i.e. bit O connected to bit 31)
RCL : rotate left (i.e. bit 0 connected to bit 31)
RCL : rotate with carry left

RCR : rotate with carry right

We al so have to introduce a new internediate cell “rl1” — this is
the typical use of a “register”, just needed between two or three
instructions and then to be forgotten. It is best to use a “nane
convention” for such kinds of cells, especially when your prograns
becone larger. “r1” ...”r99” or “A’.."Z" - but you should stay
consi stent through all your prograns.

Have you noticed the “:” before |oop? Surely, but what does it
mean? In fact “nothing at all”. It just hel ps the | abel to be
forgotten after its use, so it can be re-used in another context.
This is very handy for the | ess inmaginative who tends to call his
| abel s “lab”, “loop”, “rep” or such. The scope of these “local”
nanmes is froma “global” |label to the next “gl obal” | abel

Sonmet hing you will not have noticed iMmediately is that the RDLONG
takes nuch nore tinme than 4 clocks.

Sidetrack E: Why the HUB is called the HUB

Trivial as it sounds: Nearly every aspect of the Propeller is displayed in its basic "architectural
diagram 1". You see the HUB and the 8 COGs: The HUB turns and meets a COG each 2 clock
cycles, adding up to a cycle time of 16 clock ticks until it returns to the same COG.

The science of parallel processing - older than 30 years — has devised a lot of communication
schemes between parallel devices: busses, cross bars,... The COG mechanism of synchronized
time slots is the most basic (and stable!) one. It resembles a “bus token protocol” in general
communication theory. And it is a waste of bandwidth...

But we do not want to criticize, we want to understand. So every 16™ clock cycle a COG is able
to read or write to the “main memory”. Whenever it tries to do this “out of sync”, it has to wait.
This is why the timing of the RD.., WR.., and other HUB-instructions is so imprecise: they take 7
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to 22 clock ticks, depending on where the COG-wheel is, at the time this instruction has been
issued inside a COG.

Once you succeed in a memory transfer, you are “synchronized”, i.e. you know you will be
connected exactly 16 ticks later. That leaves you 2 intermediate instructions only (= 8 ticks plus
7+ ticks) to again read or write to HUB memory...

Well, get out your ‘scope again or connect the | oudspeakers to pin
7! What has becone of our fine 500 kHz? Oh dear! You understand
why?

O course we can wite back into the HUB nenory as well, the
instruction is WRLONG (or WRWORD, WRBYTE respectively)

WRLONG cogCell, hubAddress

Note that the operands are in the sane order as with RDLONG Wi ch
means the dataflowis nowfromleft to right! This is the only
exception in the systemand for that reason, a conmmobn source of
conf usi on.

When in doubt | nenorize this: It is possible to wite to and read
fromthe first 512 bytes in HUB-nenory using "imedi ate
addressing"! Though this is rarely used, it is part of the genera
"systent. And "inmmedi ate" values are only allowed for the right
hand operand...

Now, back to | ess arcane stuff! Subroutines are the building

bl ocks of conplex prograns and nearly as inportant as JMPs. O
course they are kind of "junped to", but allow "returning control
to the sender”.

If you are an experienced assenbly programmer | see sparkles in
your eyes: PUSH ng paraneters to the STACK, CALLing routines
recursively, POPing all unneeded garbage!

Ch, dear - | amso sorry! None of that — really, nothing at all

No, the propeller is a true RI SC nachine: One clock per
instruction (well, four to be honest - but that will soon change
with Prop Il)! And that holds even for CALLs. Do you know how many
clock cycles a CALL instruction needs on an AVR nega8? Look it up!

But this is worth thinking about for a nonment: How can you realize
a subroutine call w thout a stack?

Here cones the answer:

" ex03A
DAT
ORG 0
ex03A
MOV mlOpar, #30 " this number 30
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JMPRET timeslO_ret, #timeslO0 ' ... to be multiplied by 10

more code of the main program

here starts the subroutine
times10

MOV mlOpar2, mlOpar
SHL mlOpar2, #2

ADD mlOpar, mlOpar?2
ADD mlOpar, mlOpar
JMP timeslO_ret

make a copy
this yields x 4
plus 1 =5
times 2 = 10
indirect jump

- - - - -

timeslO_ret
LONG 0

mlOpar LONG O
mlOpar2 LONG O

The subroutine perfornms an optimsed nmultiplication by 10; this is
straightforward. Note that we need a |lot of internedi ate registers
(mLlOpar, nilOpar2) as we cannot PUSH or POP anyt hi ng...

Again we neet a new instruction

JMPRET ret, subr
It stores the return address into the lower 9 bits of cell ret and
junps to sone place called subr - if this is a label (which it
generally is), don't forget the "#"!

Returning is quite sinple; it’s just
JMP ret
Note that this is an indirect junp, wthout any "#"!

There are subroutines which have nultiple exits, but nost have
only one. In this situation we can use a clever trick: Instead of
exi ting by:

JMP timeslO_ret
timeslO_ret LONG O

we sinply code:
timeslO_ret JIMP# O
Uf f!

Now | ets sl ow down !
How di d everything start in the first place?

JMPRET timeslO_ret , #timeslO
Ok: it junps to tinmesl0 AFTER it stored the return address into

cell tinmesl0 ret ...Not quite: into THE LONER 9 BITS of cel
tinmeslO ret.
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You see: This is the magic of self nodifying code! And you al so
understand that we need the "#" here because we now want no
indirection, as the very return address has been already stored
into the instruction.

And if you think that is terribly conplicated, you are probably
right...

You shall have your break now, but before you spend a sl eepless
night, | have sone nedicine for you. There is a shortcut for
JMPRET subr_ret, #subr - which is: CALL #subr

And — hurrah! — there is also a shortcut for
IJMP# 0 - which is: RET

And if you think this is not mnedicine but a placebo, you could
again be right ©
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Chapter 3: Flags and Conditions

What we need nowis a list of instructions so that we can program
useful stuff (FFT, 3D graphics, speech recognition, np3
decoding, ...)

After processors becane equi pped with nore than 8 instructions
sone years ago, there is only one answer to this request: RTFM
What we can do in this tutorial is just point to the nost

i nportant ones and shed |ight on sone too cloudy things.

The nost useful one is arguable the “decrenent-and-junp-if-not-
zero” (DINZ) instruction. Mst things work nore or |ess
differently on the Propeller than on other controllers but the
DINZ is a remarkabl e exceptions: It works EXACTLY as on ot her
processors having this instruction.

- DNJZ is a ,conditional junp“, used for counting |oops.

“I F-deci sions” are inplenmented by two other “conditional junps”
- TJZ “Test and Junp if Zero”

- TINZ “Test and Junp if not Zero”

[1]TBD: W' || see an exanple soon.[/1]

Those three instruction check a register to find out whether it is
“enpty” or not. Al other conditional instructions depend on so
call ed flags, which have to be eval uated by sonme previous

I nstruction.

"Conditional Instructions?" This will be new to many experienced
programmers! There are a few processors that sport a "skip"-

i nstruction. This can be considered as an "instruction prefix",
determ ni ng whether the instruction in question is to be executed.
However this kind of programm ng technique is generally not taught
in courses and the (conpound) instructions beconme quite |ong.

The Propeller however has included the concept of "conditiona
execution"” into his basic system 4 bits of each instruction are
dedi cated to this purpose!

So that we get all the figures right, we should have nentioned
that there are in fact two flags only in each processor, called C
(“Carry”) and Z (“Zero”). Theses nanmes have historic roots, as
arithnetic overflow ( C) and “enptiness” ( Z ) are two inportant
applications for these flags. Mst processors have nore (sonme MJCH
nore) flags, but the Prop has just 2. Wiich neans that there are

16 states (= 2"?)) to be possibly considered as a “condition”:

No Carry
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No Carry and Not Zero
No Carry and Zero

No Carry or Zero

No Carry or Not Zero
Carry

Carry and Not Zero
Carry and Zero

Carry or Zero

Carry or Not Zero
Not Zero

Zero

Carry == Zero

Carry <> Zero

Never

Al ways

There exi st even nore mmenoni cs, as after certain instructions as

"conpare” (CWP) flags are set to reflect the nunerical relations
<, >, =, 6 =<, == <>

whi ch are strai ghtforward conbi nati ons of the “basic flags”, but
have addi ti onal mmenoni cs. The reader should consult table 5-2 (p.

369) in the Manual for further details.

Let’s repeat: each and every instruction can be executed dependi ng
on any conbination of the two Flags C and Z; this takes neither
addi ti onal space nor additional tinme. You can al so execute DINZ or
TJZ as a conditional instruction. | have never seen this but it
coul d be useful for VERY tricky prograns ©

Bef ore we can make some instructive exanpl es we have to understand
how t hese two flags are set, reset, or |left unchanged. Every
experienced assenbly progranmer knows that this can be a
nightmare! A small instruction inserted for sone reason in a chain
of instructions can destroy a clever and efficient algorithmbuild
on a flag. 8080 instructions are extrenely clever, in that 8-bit

i nstructions generally influence flags and 16-bit instructions
don't — with exceptions...

Now t here is good news! You can forget all past problens, as a
Propeller instruction wll only influence a flag, if you tell it
so! This is indicated by sonme “postfix” notation: you wite WC
(“with carry flag”) or WZ (“with zero flag”) at the end of the

i nstruction.

Now you only have to nmenorize in what situation an instruction CAN
set any flag (if it is allowed to do this). Sone basic rules are:

- Moves, arithnetic, and | ogical instructions change Z whether the
result is zero or not.

- Arithnetic instructions change C according to an “overfl ow

- Logical instructions set Cto forman even parity of all bits.
For the rest of instructions this is nore conplex :-)
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After all these pages of theory we do need an exanple: W want to
count all set bits in a word (Inagine it’s the result of shifting-
in 32 sanpl es of some signal and we want to estinmate its duty
cycl e)

'ex04A

theword Tong $XXXXXXXXXX

counter long O

result Tong O
MOV result, #0 " will accumulate the number of bits
MOV counter, #32 ' we check so many bits

i]gop ROL theword, #1 wC ' carry reflects Bit 31, and rotate

eTt

IF_C ADD result, #1
DINZ counter, #:1loop

Thi s program has many benefits: theWrd remai ns unchanged after
the algorithm has conpleted; it takes a defined and constant tine,
and the action (ADD #1) can easily be exchanged agai nst sonethi ng
el se.

Here is an alternative:

'ex04B
theword Tong $XXXXXXXXXX
result Tong O
] MOV result, #0 'will accumulate the number of bits
: Toop

SHR theword, #1 wC wz 'Carry reflects bit0O, and right shift
'Z indicates empty register

ADDX result, #O0

IF_NzZ JIMP #:loop

Thi s program destroys theWrd, but works generally faster; we
could also get rid of the counter (6 cells against 8 cells in
ex04A)

Note there is not really a difference between
ADDX result, #0

and
IF_C ADD result, #1

You know “Perl”? Right! “There is nore than one way to do it” ©
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Chapter 4. Common and not so common instructions

When | earning a new processor, an often heard question is: "Wat
can he do ny old processor can’t?" (Note: ships are female |,
conmputers mal e.)

(a) “Nunber crunching” is out. In fact the floating point
sinmulation is not at all bad, but rather bel ow 100 kFLOPS whi ch
| eaves a broad gap to mat hematical co-processors, not to nention
SIMD units sported in PC processors since the P3.

(b) Mssing also is a fixed point nultiplication and division
i nstruction, anbitious signal processing is also out, though sone
audi o applications are feasible.

Don't cry! There is a wonderful set of 32 bit instructions for
| ess anbi ti ous but neverthel ess high performance conputing:

(c) There is 32-bit addition (ADD), subtraction (SUB) und conpare
(CWP) signed (...S) as well as unsigned, even supporting nulti
precision arithnmetic (...X)

(d)y MV, MOVI, MOVS, MOVD, NEG ABS and ABSNEG renenber we have
2-address instructions throughout, thus NEG and ABS can al so nake
copi es in another register; an exanple:

NEG regA, #1 ' we just set regA to -1; very handy!

(e) Logical/bitw se operations (AND, ANDN, OR, XOR, TEST)

(f) A conplete set of shift instructions, with an arbitrary shift
value (0..31), given directly (“imediate”) or froma register —
this is really a high end feature! (RCL RCR ROL ROR SHR SHL SAR)

(g) W discussed the junp-instructions already in chapter 3:

TJZ r, junpdest

TINZ r, junpdest
Junps, if r is enpty, or not enpty respectively; note that no
"flags" are used or changed

DINZ r, dest
Simlar to TINZ, but register r is decrenented before the test.
These three instructions take 4 clocks only, IF they junp. If they
“fall through”, the instruction pipeline has to start over which
needs 4 additional clocks to get in “phase” again.

(h) But the Prop also sports a set of instructions rarely found in
ot her processors. Witing your first machine prograns you better
avoid them as m sunderstandi ngs mght fool you into errors that
are difficult to identify. However there are good reasons to have
these instructions, as they speed up certain classes of algorithns
consi der abl y!
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MAX a, cli pval
The main problemw th this instruction is that it is the
mat hemati cal M Nl MUM operation. The best description of what is
does is: “upper clipping”: it clips “a” to “clipval” if necessary.
This is a heavily used operation in all kinds of graphics
progranm ng.

M N a, clipval
This is “lower clipping”, pronoting “a” to “clipval”, had it been
| ess before (i.e. the mathematical MAXI MUM operation). So be
careful for the funny name it has been given!

Both instructions are also available as a signed variant (MNS,
MAXS)

CVMPSUB a, b
Subtracts “b” from®“a”, but only if this should | eave a non-
negative value in “a”. This wll| support division; here a nost
trivial application:

" ex07A

' compute c := a divided by b; c and b assumed to be positive
MOV c, #0

: Toop
CMPSUB a, b wC wz 'Carry is set, if operation performed
IF_C ADD c, #1

IF_C_AND_NZ  JMP #:1loop
the division remainder is in "a" now

W al so could have coded (w thout any further advantage):

' ex07B

' compute c := a divided by b; a and b assumed to be positive
NEG c, #1

: Toop

ADD c, #1 _ _ _
CMPSUB a, b wC wz ' Carry is set, if operation performed
IF_C_AND_NZ JIMP #:loop

n 11

the division remainder is in "a“ now

W shall see an advanced version of division later! Can you
already imagine how it will differ? H nt: Think what you have
| earnt in school ©

(i) A very peculiar instruction:

REV a, n
Clears upper n Bits and reverses the sequence of the (32-n) | ower
bits of register “a”.

Reverse? That is: bitO <-> bit 32-n, bitl <-> bit 32-n-1, etc.

(j) And there also is a sonewhat isolated very special subtraction
i nstruction
SUBABS a,b doing a :=a - |Db|
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(k) The next instructions cone in groups of 4, as their results
depends on the setting of one of the flags, either C, NC, Z, or NZ

Four “mul tiplex” instructions

MUX* r, mask
Set all bits inregister r with a corresponding ONE in mask to ONE
or ZERO, depending on the follow ng table. Sorry, | tried to
explain in other ways but it either did not work or had been w ong
© Bits inr where the corresponding bit in mask is ZERO are not
affected at all.

|C INC|Zz [Nz <- *

W have also 4 simlar conditional “negate” instructions

NEG* dest, source
depending on the flags C, NC, Z or NZ either a MW or a NEGis
execut ed. Equi val ent code woul d be:

IF_* NEG dest, source
IF_N* MOV dest, source

Last and | east we have 4 “account bal ancing” instructions

SUMF sum source
depending on the flags C, NC, Z or NZ either an ADDS or a SUBS is
execut ed.

(1) The last group of instructions is well known from SPI N
progranmm ng:

CLKSET

Cod D CO@ NIT COGSTOP

LOCKNEW LOCKRET LOCKCLR LOCKSET

WAl TCNT

They work simlar as their SPIN-equivalents, so there is no need
to el aborate on them further (You do know SPIN, don't you?)

Interlude 2: Some arithmetic examples

| think it is now time to present you some professional code you should be able to understand by
now, taken from the Parallax libraries: multiplication, division, and square roots. | left the original
comments.
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" Multiply x[15..0] by y[15..0] (y[31..16] must be 0)
' on exit, product in y[31..0]

mult shl X,#16 'get multiplicand into x[31..16]
mov  t,#16 'ready for 16 multiplier bits
] shr y,#1 wc 'get initial multiplier bit into c
: Toop
if_c add y,x wc 'conditionally add multiplicand into product
rcr y,#1 wc 'get next multiplier bit into c.

while shift product
djnz t,#:1oop 'loop until done

mult_ret _
ret "return with product in y[31..0]

This is shorter than you thought, isn't it? Just 7 instructions! But time consuming! And it's not a
32x32 multiplication but 16x16. This is very common; the hardware multiplication in the Prop Il will
most likely also be a 16x16 multiplication only. But you can easily build up on it to 32x32. How?
Well, remember “binoms” from shool? No?

It's: (a+b)? = a2 + 2*a*b + b?
The rest is simple coding...

The algorithm should be clear to you: It is “standard” multiplication in the same way you do it in the
decimal system. However it has one great advantage: The multiplication table is just 1x1=1 ©

When you do not understand a program you must “trace” it, step by step: Make a list with columns
for all relevant variables, and write down - line for line - how they change!

" Divide x[31..0] by y[15..0] (y[16] must be 0)
: on exit, quotient is in x[15..0] and remainder 1is in x[31..16]
divide shl y,#15 'get divisor 1into y[30..15]
mov t,#16 'ready for 16 quotient bits
: Toop cmpsub x,y wc 'if y =< x then subtract it, set C
rcl x,#1 'rotate c into quotient, shift dividend
djnz t,#:1oop 'loop until done
divide_ret
ret 'quotient in x[15..0], rem. in x[31..16]

This should be also much shorter than you expected! ( 6 instructions). Note the clever use of
CMPSUB! As we are dealing in the binary system, there is no need to “loop” CMPSUB as we did in
our preliminary example ex07 above! The algorithm is “school division” - in the binary system.
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: Compute square-root of y[31..0] into x[15..0]

root mov a, #0 'reset accumulator
mov x, #0 'reset root
mov t, #16 'ready for 16 root bits
: Toop shl y, #1 wc 'rotate top two bits of y ..
rcl a, #1 ' .. into accumulator
shl y, #1 wcC
rcl a, #1
shi X, #2 'determine next bit of root
or x, #1
cmpsub a, X wcC
shr X, #2
rcl x, #1
djnz t, #:1oop "Toop until done
root_ret ret 'square root in x[15..0]

This is left for your own ingenuity ©
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Chapter 5: Indirect and indexed addressing

| ndexed addressing i s needed when we want to extract sonme el enent
froma “vector”: XI] . (lLndirect addressing is a special case
with I == 0.) Oher processors use different concepts to
acconplish this need, sonetinmes limting either “index” or “base
address” to eight or sixteen bits...Post- and pre-increnmenting the
I ndex is also a common option. To close this discussion, there is
nothing at all of this kind within the Prop ©

O course we have learnt to access the HUB nenory usi ng RDLONG or
VWRLONG with a pre-conputed address in a cog register. It m ght
| ook like this:

'ex07A
MOV r, I
SHL r, #2 ' X 4 = byte address in HUB
ADD r, X

RDLONG r, r

To becone familiar with this kind of nmenory access let’s just
conpute the sum of 20 nunbers allocated in HUB nmenory:

'ex07B
MOV addr, X
MOV sum, #0
MOV count, #20
: Toop

RDLONG r, addr

ADDS sum, r

ADD addr, #4 ' the next long
DINZ count, #:1loop

But how do we nmanage things when this 20-nunber-vector is
al | ocated i nside our own COG?

Enter self nodifying code!

'ex07C
' we assume X to X+19 contain 20 longs to be added up
MOVS :access, #X ' this instruction modifies a COG cell (*)

MOV sum, #O0
MOV count, #20
: Toop
:access
ADDS sum, 0-0 ' the Tower 9 bits of this instruction..
. will be modified by (*)
ADD :access, #1 ' modify a cell to point to the next number

DINZ count, #:loop
X: RES 20

The al ert reader has spotted a new instruction : MWS ! Wat’s
that? Well, there are three specific MOW-instruction taking into
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account the need for nodifying instructions; MWS (“source”) wl
only store to bits 0 to 8 ; MOWD (“dest”) will only store to bits
9 to 17, and MOWI (“instruction”) will only store to bits 23 to
31. Forget to use these instructions for clever byte manipul ation;
they are nmeant for 9-bit manipulation :- ) But sonme I/O registered
are organi zed in a way you can utilize these instructions.

And note: There is a strict rule: NEVER nodify the next
instruction to be executed! W shall elaborate on this in
Si detrack F!

| said: ".not neant for byte manipulation.!!, but with alittle
help from Fred Hawkins | devised this little gem

'ex08A

'"How to pack 4 bytes into a COG cell and write it to the HUB
MOVI x, byte0 ' store to the upper 9 bits..

' .. leaving bit 31 a "don't care"

SHR x, #8 shift right so upper 9 bits become free again
MOVI x, bytel repeat..

SHR x, #8

MOVI x, byte2

SHR Xx, #7 ' Attention! Don’t shift out the LSB ..

SHR x, #1 wC ' .. but keep it in the carry flag

MOVI x, byte3

RCL x, #1 ' shift LSB back: bit 31 was a don’t care ..

but now no longer is
WRLONG x, huba

It can be done nuch sinpler by this code:

'"How to pack 4 bytes into a COG cell and write it to the HUB
'ex08B

WRBYTE X, byte0

ADD X, #1

WRBYTE x, bytel

ADD X, #1

WRBYTE X, byte2

ADD X, #1

WRBYTE X, byte3

But how nmuch tinme will ex08B take? Conpare it to ex08Al
Now, but wait! Wat about the "order of the bytes"? In exanple A
byte0 was the LSB and now ...1t" s the MSB!

Wll, not really! This has to do with sonmething already Capt’'n

@il liver had his issues with: Little Endians! A LONG in the
Propeller HUB is stored in a way that its LSB cones first, and the
MSB | ast. No further coment, except you will never notice this

i nside the COG as you cannot break-up its internal cel

structure.

Can we "inprove" ex08B further?
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Yes, we can! Assune byteO to byte3 are contained in consecutive
regi sters as foll ows:

byteO | ong “a”
bytel |l ong “b”
byte2 long “c”
byte3 long “d”

'"How to pack 4 bytes into a COG cell and write it to the HUB
'ex08cC
MOVD wrpatch:, #byteO ' “implant” byteO's addr into instruction

MOV count, #4 ' prepare to store 4 bytes in the Tloop
:wrloop
:wrpatch

WRBYTE 0-0, byteO ' the 9 dest-bits 0-0 will be patched

ADD :wrpatch, aOneInDestPosition
DINZ count, #:wrloop

a very clever patch

aoneInDestPosition LONG %1_0_0000_0000
count LONG O

Doesn’t this | ook nuch nore fancy! And — listen — it wll not take
much nore tinme than ex08B, as we had sonme "tinme to spend" between
the WRs...

Not e how we cl everly avoi ded breaking the basic rule of Propeller
Code Pat ching: “Never change the NEXT instruction!”

And it does not even need nore cells (=7) than ex08B ©

Sidetrack F: How the instruction pipeline works

So you have learnt that most Propeller instructions take 4 ticks (which is 50 ns @ 80 MHz); even |
told you so. Well, | am sorry: That was a lie!

A “standard” instruction takes 6 ticks:

T=0: Fetch Instruction

T=1: Decode instruction

T=2: Fetch “dest” operand

T=3: Fetch “source” operand

T=4: Perform operation

T=5: Store result back into “dest”

You can see that most of the time passes in accessing the COG memory (T=0,2,3,5). One could
think, it should be nice to skip some of those time slots, if there is no source operand to fetch,
because we have an “immediate” instruction (T=3); or T=5, if we do not store back anything.

But the Propeller — like most other advanced processors — uses a completely different approach to
speed things up: it “interleaves” memory accesses for the NEXT instruction in the gaps (T=1 and
4), where the memory is not used for the CURRENT instruction. This will look like this:
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CURRENT i nstruction LAST/ NEXT i nstruction

=-1: Fetch "source" for LAST operation
T=0: Fetch Instruction Perf orm LAST operati on
T=1: Decode instruction Store result back into "dest"
T=2: Fetch ,dest“ operand
T=3: Fetch ,source“ operand
T=4: Perform operation Fetch NEXT instruction
T=5: Store result into "dest" Decode NEXT instruction
T=6: Fetch "dest"” for NEXT instruction

There is no way to do it better! The memory is now used in every cycle; and a new instruction is
fetched every 4th cycle.

You can now understand, why it will not work to patch the NEXT instruction, as this is fetched at
T=4, whereas the patch only happens at T=5!

And it is important to uphold this inter-locking!

However there are two kinds of instructions that cannot be “locked-in”, as they will take an
unknown amount of time. One is the WAIT-family, the timing of which is something like this:

Fetch WAIT instruction
Decode i nstruction

Fetch "dest" operand

: Fetch "source" operand

+N: Wit zero to N ticks

+N. Store result back into "dest"

e R e I o I

Without any wait, this will take 5 ticks. There is no interleave of the NEXT instruction; the fetch of
the NEXT instruction will be performed only at T=5+N

Now wait! A “standard" instruction takes 6 ticks, a "waitless wait" just 5; shouldn't it then take just 3
ticks in the context of the pipe flow?

Very clever! But being so "variable” WAIT (and a HUB instruction) is not locked in the pipeline!
The fetch of the next instruction — which happens at T = 4 for a standard instruction - does not
happen at T =3+N butat T =5+N only — or so it seems...

The other exception is the HUB-family. The timing of an RDLONG is something like this:

T=0: Fetch HUB-i nstruction

T=1: Decode i nstruction

T=2: Fetch "dest" operand

T=3: Fetch "source" operand

T=3+N. WAit zero to 15 ticks for HUB to sync
T=4+N:. Address HUB

T=5+N. LOAD/ STORE t o/ from HUB

T=6+N: Store result back into “dest”

We can now also try to understand the timing of a conditional jump instructions; the processor
always "predicts" a jump will be taken and fetches the NEXT instruction from this address at T = 4.
If the instruction "falls through", this was a bad prediction, and the fetch has to be repeated at T =
6. However T = 6 is not meant to be a "fetch" phase, as the jumps are locked into the pipe, in
contrast to the WAIT and HUB instructions. And the next "scheduled fetch" is T=8 ...
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Note: The mechanism presented here is not well described in official Parallax documents and
depends mostly on my own “educated guesses”.

BTW Have you al so spotted “RES’? I n ex07C? This is the | ast
“assenbly directive”! It “reserves” nenory without allocating it,
which will say: There is no HUB nenory for these cells! Wen you
think about this for a while you will conme to the concl usion, that
this is either not possible, or only at the end of the program
With no presets or instructions following. And right you are!

Chapter 6 Locks and Semaphores

There is much uneasi ness about this: Do | really need “locks”? O
“flags”? But Why? | never needed them before!

Fact is that every parallel system- be it true hardware or faked
software — mandatorily needs them [GHEBERE not for all
applications. Thus (binary) semaphores have to exist in the Prop
har dware, called “locks”.

Consi der the follow ng scenari o:
A department store has one entrance and one exit only, to better control the stream
of daily customers. Now the management wants to learn how many customers (or
employees) are in the building at a given time of the day. They think they can
optimise staff assignment and close the store more confidently in the evening...
High reliable photoelectric relays are installed at the exit and the entrance...

Cenerally there are two kinds of answer to the question: “How many
persons are inside the store?”

ex09A

(- at the entrance-) IF signal THEN inCount += 1

(- at the exit -) IF signal THEN outCount += 1

(- at the office -) personsInStore := inCount - outCount

Thi s approach has sone di sadvant ages:

- both counts can overfl ow

- The result nust always be “cal culated”, thus it is not
avail able “truly” online.

But they are not an issue you should always prefer that solution!

ex09B
(- at he entrance-) IF signal THEN personsInStore += 1
(- at the exit -) IF signal THEN personsInStore -= 1

(- at the office -) display (personssInStore)
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This is probably the sinple solution that comes to mnd first, but
there is a pitfall here!

If the code — as given — is NOT serially executed, but we have
I ndependent processing units near both gates, it can happen that
bot h access the “accunul ator” personsinStore

O course there is no such thing as contenporaneousness, but you
never know and this is in fact the basic phil osophical issue of
digitising signals...

Now assume the departnment store technician is a Propeller fan ©

and runs “exit-supervision” in COGA and “entrance-supervision” in
COoGB

department store ex09C

CON
entPin = 2
exPin = 3
VAR
LONG personsInStore
PUB main
PersonsInStore := 0

cognew(@entrance, @ personsInStore)
cognew(@exit, @ personsInStore)

DAT
ORG O
entrance
WAITPEQ :null, #entPin
WAITPNE :null, #entPin
RDLONG :e, PAR
ADD :e, #1
WRLONG :e, PAR
JMP #entrance

:null LONG O
e RES 1

ORG 0 'note that this ORG is most important!
exit

WAITPEQ :null, #exPin
WAITPNE :null, #exPin
RDLONG :a, PAR

SUB :a, #1

WRLONG :a, PAR

IJMP #exit

:null LONG O
:a RES 1
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It is obvious that you will get into trouble if we encounter the
foll owi ng scenari o:

RDLONG a, .
ADD a, #1
RDLONG e, .
ADD e, #1
WRLONG a, .
WRLONG e, .

One entering custoner will not be counted. The probability for
this is unknown...

But can we fix this bug principally?

Well, we just have to chain the three instructions: RDLONG - ADD -
VWRLONG to an unbreakable (“un-interruptible”) unit!

St andard processors generally give you one or the other (or both)
of the follow ng solutions::

“Disable Interrupts”
- A special "ReadAndModi fy" instruction

Havi ng separate hardware, only the second solution is applicable;
t he “ReadAndModi fy” instruction on the Propeller is called LOCKSET
or LOCKCLEAR respectively.

However it cannot use an arbitrary HUB-cell but one of eight
specific bits (called LOCKs) only.

So we can secure our code in the follow ng way:

'ex09D

2

we enter here when relay issued signal

LOCKSET sema WC_ _ _ o

IF_C JMP #:1 'wait for our partner leaving his "critical area"
' now WE enter our “critical area”
RDLONG :a, PAR

SUB :a, #1
WRLONG :a, PAR o
LOCKCLEAR sema ' we Tleave our "critical area"

The conpl ete changed program now | ooks this way; we al so
“Inmproved” it alittle bit in sone details the interested reader
m ght profit from understanding...
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' department store ex09E
VAR
LONG personsInStore

PUB main

PersonsInStore := 0

semaNumber := LOCKNEW ' rserves a new semaphore

' (Good code would check for < 0)

countAddress := @ personsInStore

pin := 2

delta := 1

COGNEw(@guard, 0) ' Entrance
WAITCNT(cnt+512*%16) ' it takes time to load a COG
pin := 3

delta := -1 _

COGNEw(@guard, 0) " Exit

DAT

guard

WAITPEQ :null, pin
WAITPNE :null, pin
W

LOCKSET semaNumber WC
IF_C JMP :w

RDLONG a, countAddress
ADD a, delta

WRLONG a, countAddress
LOCKCLR semaNummer

' debounce switch
MOV a, :debounceTime

ADD a, CNT
WAITCNT a, #0
JMP #guard
:null long O
:debounceTime LONG 80_000_000/1000 * 10 ' 10 ms
pin LONG O
delta LONG O
semaNumber LONG O
countAddress LONG O
a RES 1
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Chapter 7: Video without Video

Anot her fascinating feature of the Prop is the easiness wth which
it can generate video signals. There is a little bit of magic in

t he NTSC col our generation, but not nuch. W shall understand
everything after we have worked oursel ves through the foll ow ng
three chapters. Alittle bit lengthy — nay be — but not really
conpl ex.

There is some specific hardware we shall call video logic in each
COG, which is also handy for

- general 8-bit out put

- especially if connected to a DA converter of the R2R ki nd

This should be no surprise, as video is just an anal ogue signal as
any other (or even three in the case of VGA: R G B)

A COG uses one of his tinmers ("A") to produce a certain clock to
drive this video logic. This timer can be programred in a w de
range, thus allowing a wide range of applications! Howto do this
Is explained in Parallax’s excellent Application Note ANOO1.

have no intention to repeat the contents of it here. | do it for
the German readers, but it would be folly to retranslate this!

Just BTW - you English readers have no idea how privileged you are
to understand the excellent Parallax docunentation witten in your
not her | anguage. Do use this privilege!

But we will see the tiner working later in the exanples of course.

Back to the “video logic”: it has three nodes of operation
- Conposite Video (Baseband)

- Br oadband Video (“TV')

- VGA

There are a few peculiarities in the fornmer two that m ght confuse
us in the beginning, so we start with the VGA node. In this

chapter we shall not yet wonder why it is called VGA — it’s just a
name!
So we set this node — “Vnode = 01” - in VCFG (“Video

configuration”) - one of the two visible video registers; the
other is called VSCL- “video scale”. You will nost likely have to
| ook at the tables in the Propeller Datasheet (or manual) from
time to tinme to find your way through the different fields in the
32-bit configuration register. It makes no sense to copy these

t abl es here.

What ever node we have selected, there is not nuch difference for
the rest of the handling.

There are also two hidden registers, | like to call PIXELS and
COLORS (as | know of no official names): they nust exist sonmewhere
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in the COG though they cannot be read but just be set using the
WAI TVID instruction. This instruction in fact is the thene and
centre of this chapter

Let’ s i magi ne we have sonehow connected the bespoken clock to the
Pl XELS register. PIXELS is a (arithnmetic) “right-shift-register”,
and we are now shifting-out pixels, starting at the LSB end,
either bit by bit, or bit-pairs by bit-pairs. These are two

di fferent sub-nodes called “2-col or-node” and “4-col or-node” for
reasons that will becone obvious |ater.

Now, what happens to these 32 out-shifted bits (or 16 out-shifted
bit-pairs)? Wiere are they shifted to? Good question! To our great
surprise, they are NOT shifted out of any I/O pin!

Rat her, they are used to address one of two bytes A or B (or one
of four bytes A, B, C, or D) of the COLORS-register! Have a | ook

at this Diagram 2:

PIXELS (4-color mode) PIXELS (2-color mode)
-
GO+31 ... 2+3 | 0+1 FLISE s J|l2(1]|0
COLORS J' COLORS
b -3 w b b
D|C B | A LS B|A

Now, exactly one of these bytes A, B, C, or Dis output at sone
configurable 8 pin group (1/00..7, 8..15, 16..23) Be careful with
group 24..31 the use of which is al so possible.

Well, this is nearly all to be said about Propeller video, except
sone mnor details.

Did | already explain howto set PIXELS and COLORS? It is done by
the WAITVID instruction. So if you want to output a specific bit
pattern, just do:

VWAl TVID (eightbitPattern, 0)
N N

I I
COLORS Pl XELS

Now 32 “times” (the nost right eight bits of) eightbitPattern is
out put. Wen you have sel ected the 4-color node this happens only
16 “tinmes”; but it will be difficult to spot the difference...
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We call this sequence of output patterns a “register frame” (being
of length 32 or 16)

Now we want to do sonething nore adventurous: output a sequence of
bytes |ike $FF, $1F, $07, $00; when we connect a R2R network to
the eight pins it would | ook |ike a saw tooth at the end.

Usi ng “4-col or node” this can be acconplished by:
WAITVID ( $FF_1F_07_00, %%0123 )

This is just ONE saw tooth followed by zero val ues; but we can
easily generate 4 “saw teeth”:

WAITVID ( $FF_1F_07_00, %%0123012301230123 )

But there is a further configuration paranmeter (“frame clock”, in
the second video register VSCL), allow ng the reduction of the
nunber of output patterns. Setting “frame clock” to 4 nmeans that
only the right nost 4 (or 8) bits fromthe PIXELS are processed
before the WAITVID instruction rel eases the video | ogic again; the
“register frame” has now a length of 4 rather than 16.

This all sounds a little bit conplicated .. What is the advantage
when conpared to sone sinple OUTA instructions?

Very little: It can work faster, and you do not have to take
special care for timngs and wait tines. WAITVID has got its nane
for a very good reason. Before it starts shifting out the operands
It waits for the end of a previous video operation! The next
instruction is fetched as soon as the new shifting has been
started. This is handy!

' ex10A
VSCLpreset LONG $1_004
VCFGpreset LONG %0_01_1_00_000_00000000000_0xx_0_11111111

'please do Took up the meaning of all those parameters!!

colors LONG $FF1F0700
MOV VSCL, VSCLpreset
MOV VCFG, VCFGpreset
LOOP
WAITVID colors, #%%0123
JMP #loop

This 4-byte saw tooth is output at pins XX*8 to XX*8+7 at nost(!)
every 8 clocks = 100 ns/4 bytes = 40 MB/s. This is not bad! Note
that the limt is NOT the — still unknown — cl ocking of the video
| ogic, but our ability to control this logic with instructions!

When we want to output nore anbitious signals, we either have to
conpute themor load themfromHUB; this slows things down
further!
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'ex10B

Toop
RDLONG colors, address
WAITVID colors, #%%0123
ADD address, #4
DINZ period, #loop

Though sl owed down, this still yields 10 MB/s

But a “hand made” | oop is not necessarily MJCH sl ower:

'ex10C

LOOP
RDBYTE val, address
SHL val , #ioPinPos

MOV OUTA, val
ADD address, #1
DINZ period, #loop

This is around 3 MB/s.

When we want |ater to generate video (4- 6 MHz) or true VGA (25-30
WMHz), we already see that we are working at the frontier. Using a
“register frame” of just 4 will not do; we shall need a frane

| ength of 8, 16 or even 32 (in “2-col or-node”)

But why do | sound like this could be an issue? Wiy don't we use a
"register frame" of 32 all the time in the first place?

Thi nk! When shifting 32 bits in 2-color-node the only option is to
ei ther output byte A or B fromthe COLOURS register: "Black" or
"White" (or whatever you have stored there). The choice w dens
when using 4-col or node, but you are restricted to those patterns
in the COLORS register for the whole register frane. This is
severe constraint as soon as you use a frane size above 4!

Here is anot her extrene exanple, we use just one I/O pin rather
than all 8

'ex10E

VSCL_preset LONG $1_020

VCFG_preset LONG %0_01_0_00_000_00000000000_0xx_0_00000001
colors LONG $01_00

MOV VSCL, VSCL_preset

MOV VCFG, VCFG_preset
Toop

RDLONG data32, address

WAITVID colors, data32

ADD address, #4

DINZ Tength, #loop
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We can output this bit streamwth 32 bit per 400 ns, i.e. 80
Moit/s per channel (or 40 Moit/s per two channels in “4-color-
node”) .

Sonmeone may still wonder how to use the clock to drive the video

| ogic. As seen above we can use the systemclock for 80 MHz. It
generally nakes no sense to use a nuch higher clock rate, as we
can no |onger feed the video logic without disruptions; this would
|l ead to unwanted “bursts” and “jitter”...\W have to al ways adj ust
the video clock so that there will be a snall wait left for a new
WAI TVI D!

Sidetrack G: How to program Timer A
Programming timer A is done setting CTRA and FRQA, e.g.:

MOVI FRQA, #56 '56*%*80/512 = about 8,75 MHz
MOVI  CTRA, #%00001_101 ‘'internal, PLL = *16/4 = *4 = 35 MHz

Need an explanation? All right: We use the internal timer mode, so the timer signal (bit 31 of
PHSA) is NOT output to any I/O pin but rather connected to shift bits out of the PIXELS register.
This frequency is determined by the value of FRQA, which is added each system clock tick onto
PHSA.

Logically this derived clock is always a fraction of the system clock, but this derived clock is used
to control a PLL circuit multiplying the clock by 16! In addition to this boost, the PLL will
compensate for any jitter if the fraction programmed for the timer is an “odd” number. PLLs work
only within certain ranges: the datasheet says: 4 to 8 MHz (which means the clock at PLL output
is 64 to 128 MHz).

However we will generally not use THAT clock, but a derived clock by dividing this frequency by
2 (32 - 64 MHz), 4, 8, 16, 32, 64, or 128 (500-1000 kHz).

To program a timer (i.e. the FRQA register) we often use the MOVI instruction, when the value
can beg- (1% off). Note that we have to calibrate the crystal and consider temperature
anyway when we want to do much better! A ONE in bit 23 results in an Timer overflow after 512
steps =80 MHz/512 = 156 kHz. This is not good for the PLL (at least according to the datasheet
— in practice it will do fine); 25 is the minimum value. The given value in ex10 (=56) will yield
8,75 MHz before we enter the PLL.

The next Diagram 3 will show these relations (tinmer and video
logic) in a sinple sketch; please ignore the 4 boxes in the | ower
right corner; they are needed in the next chapter only.
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Timer-A FIXELS (4-color mode) PIXELS (2-color mode)

—
31|3':"25'|2‘3| |3|2|l|n| Pn+31| |2+3|n+1| |31|3n| |3|2|1|n‘
PLL-A
51
. 52
16 COLORE COLORS
S L L - ¥ - L
t 16 |3|2‘1‘n| |x|x|1‘n|
5128

COLORS in%ideo mode Lo Luma" 2.8

C:,Chroma’ enatle
|P‘P|P|P|E|L|L|L| P: Chroma Phase 0..15

COLORS in %GA mode HS: Hor Swnc
PTPEFPSF4P3F2 P11 PO W Wert. Swnc

|R‘R|G|G|B|B|HS|HS| R,G B depends on DAC

| have to apol ogi ze that there had been no conplete exanples up to
now. The reason is that they would have nmade no sense. If you want
to just copy code to see sonething happen you can as well use one
of the many video drivers. But now you shoul d have devel oped
enough under st andi ng of what is going on!

The nanme of this chapter was: “Video w thout Video”. No kidding:
W will NOT have video now Rather we will “count up” a set of 8
/O pins (0..7), as slow as possible using the “video logic”. And
don’'t be surprised: as we are not interested in speed we can
easily use SPIN for the next exanples. (You know SPIN, don’t
you??)

"ex11A

CON
_clkmode = xtall + pl118x
_xinfreq = 10_000_000

_pinGroup = 0
_pinMask = $FF<<(_pinGroup*8)

PUB Main | n
DIRA := _pinMask

CTRA := %00001_000 << 23 ' internal, PLL % 128

FRQA := POSX/CLKFREQ*4_000_000

VSCL := $1_004 ' register frame = FOUR elements

VCFG := %0_01_0_00_000_00000000000_000_0_11111111 +
(_pinGroup << 9) ' VGA, 2-color-mode
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REPEAT
WAITVID (n++ ,0)

A cheap frequency counter will show us 240 Hz at pin 7 (MSB). My
i ntention was to output just ONE el enent per frame (VSCL : =

$1 001), but the signal |ooked not very stable in that case. |
think I have just spotted the reason: Just ONE el enent per frane
has driven WAITVID to 240 Hz *4 *128 = 128 kHz corresponding to 8
us which is below the execution tinme of the SPIN | oop!

As | just got crazy about the new ViewPort tool, | have to include
a screenshot (Di agram 4):

20Mhz WAITYID Channel: ina

1 msecidiv

T LWL A AL AL L AT LA L A L ULy FoA0KVA 12 sps
1 Center=-5,00 ms
ML UL UL LU UL U U UUUUUUUUUUUTT , Gyrsarmos

3 ina=.10_1101_1011

But we can do much sl ower!
'edx11B
VSCL := $ff_O0ff 'now just 1 element/frame but stretched by 255

The frequency counter at pin 7 (MSB) now shows 4Hz (= 240/ 255*4)

In ex11lA we shifted out 4 (equal) elenents per register frane,
whi ch took the four-fold tinme. We could also shift out all 32
(equal ) elenents of PIXELS, but the field sizes in VSCL woul d not
allow this (only 12 bits for "frame clock”); so we have to
restrict ourselves to 16 el enents.
"ex11C

VSCL := $ff_ff0 '16 elements (frame length), 255-fold stretched

As expected the MSB (pin 7) now outputs at a quarter Hz

Last and | east we shall challenge the sl owest frequency of the

timer the PLL will work with. | still succeeded at 65 kHz (the
data sheet said: 4 MHz!)
'ex11D

FRQA := POSX/CLKFREQ*65_000

There are few frequency counters showi ng anything at pin 7 now.
But an LED connected to pin O virtuously blinks in a two second
rhythm (16*255*16/65_000 = 1 s)
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Interlude 3: What Video is all about: A very gentle approach

Among recent high-tech devices a TV set is most likely the stupidest thing you can imagine. You
have to tell it EVERYTHING in most detail! Not once, not twice, no, thirty times — each and every
second! European TV sets are somewhat smarter; they only need to be reminded 25 times per
second of their task.

This is no coincidence: TV technology was invented somewhere between Morse's Telegraph and
Bell's Telephone. The first TV standards where already established around 1928 (30 lines, 12.5 Hz
screen refresh)

| can only think of one device stupider than a TV set: A (non multi-sync) VGA monitor.

But how do they work at all? Well in early times a beam of electrons was focussed on the other -
more or less plane and transparent - end of a large radio tube. This end had been coated with
some phosphorescent material that transmuted the electronic power into photonic light (Poetic —
isn’t it?) People were magically attracted by this effect as many are still today.

This beam took its way from the upper left corner to the lower right corner, covering the whole
"screen" in exactly the way we read or write in most European languages.

During this path (which according to today’s standards takes exactly 16.683 ms) its “luminosity” is
changed, so a differentiated image can be displayed. The signal you will need to control the beam
looks like the next Diagram 5:

(It is only a small part of the 16 ms — just one “line” of very few pixels and of just a few us. And
thanks to Andy, who prepared it!)

Such kind of signal was originally directly applied to one of the grids of the tube.
In contrast to a popular prejudice, electrons rarely move with light speed. So when the beam

returns from right to left its “beam power” had to be reduced as much as possible, down to “super
black” so to speak; this phase is called “horizontal sync”, followed by a “porch” until the beam has
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reached its new starting position at the left hand side. There has to be a similar gap in the signal
when the beam is moving from bottom right to top left every 1/60 second.

When you want the Prop to produce “video” you have to generate exactly that kind of signal —
nothing else at all, no feed back, no input, no test, no check, no if: It will be the most
straightforward task in your career as a programmer. Of course you have to know the rules 3]

There was no such thing as a “pixel” at that time. The size of the spots of light emitted from the
screen depended on the tubes capability to “focus” the beam. In Y-direction the TV set had to care
for the “spacing” of the line, so the number of lines had to be “implemented” in the devices and
thus to be standardized early; in X-direction the bandwidth of the video amplifiers set a limit. The
levels of the luminosity however stayed “analogue”.

The modern NTSC-M standard defines 720 horizontal and 486 vertical visible pixels.

With the advent of Colour TV “pixels” became more obvious to the public: for each of those
formerly somewhat theoretical pixels three coloured dots had to be etched onto the tube. (Needed
a lot of busy Chinese, | think!) Of course they couldn’t use fewer pixels than in the black and white
standard for such an expensive device!

And the new Colour TV had to be “compatible” in both directions; that meant: a "monochrome" TV
should not be disturbed by “colour signals”, and a Colour TV should be able to live happily without
colour.

The solution for this can be considered as one of the magic moments of mankind!

When you look at the 'Diagram 3 you have little hints of colours (I shall try to find some more
instructive images, alas my equipment does not allow me to catch those fantastic oscillograms
myself at the moment). What you see is the “levels of grey”, the "luma"-signal. The ingenious idea
now was to just add a small digital (!) signal — on the Prop adding one "level". However this signal
was not locked in the framework of the “luma pixels”, but time shifted (also called: “phase” shifted)
a little bit. The amount of this “jitter” or “displacement” was (and is!) used to define a “colour”: No
displacement means “blue”, etc. Obviously the basic clock of this "chroma signal" has to be very
precise, the value is: 3.579.545,00 Hz - and that's not kidding! Note the ",00"!

This specific feature made me say TV sets are somewhat more intelligent than VGA monitors are

To generate this displacement of the "chroma signal" is a little bit tricky to accomplish, and this is
the “little magic” going on in the COG’s video logic: You just say: “Blue”, and that’s is!

A black and white TV wouldn’t care, even wouldn’t notice this at all! A colour TV will have to make
aware that those displaced signals have to be spotted for. But displaced to what reference? For
this reason at the beginning of each line - in the midst of the “back porch” - an “awareness signal”
is generated, called “colour burst”. The TV set will sync to it (using a PLL in the old days) to detect
the displacements.

This “colour burst” however is NOT part of the “magic” — you have to generate it yourself in your
home made driver...

There are more standards all over the world but NTSC-M: PAL and (the very similar) SECAM are
most notable. As most small TV sets or car monitors are produced in countries using NTSC (No, |
do NOT refer to the United States :-) ), they understand this as their “mother language”. PAL is
often an “add on”. It is different with the living-room TV. For the Propeller this (and “other formats”
as 16:9) is most annoying. Much of the simplicity of video generation gets lost when you try to
consider and care for multiple formats.
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We also have to understand another more technical detail called “interlacing”. The alert reader has
long noticed that deSilva has flopped again: "16 ms? That's not 1/30 second!"

Oh, dear! But you shall find enlightenment soon: The standard requires one to transmit the screen
contents 30 times per second (29.97 times to be very precise). Doesn’t that flicker? You bet it
does! One could choose special screen coating for high afterglow (="persistence”), as you most
likely have seen on RADAR screens. But this is no real solution for fast changing images. A better
solution was to split the screen lines (the "frame") into two groups — odd ("upper field") and even
("bottom field") lines — and transmit (and display) them one after another, each 243 double spaced
lines taking 1/60 seconds. This uses afterglow “a little bit”, and most people now notice flicker only
from the corner of their eye.

This had consequences for the producers of small and cheap monitors. They could successfully
develop the attitude that only 243 lines matter and reduced the (expensive) TFT cells to 234 lines
(it is unclear why exactly 234, maybe it started with a typo?). As this would result in very “un-
square” pixels, they boldly also cut the 720 horizontal pixels in halves; 320 is used in most of
those devices today, adapting to 16:9 formats increased this again, to 480 horizontal pixels.

This is what your Propeller displays to in many cases: 320x 234 or 480x 234.

Pictures look best when exactly adapting to this format. Be extremely careful with “interlacing”. It
will reduce quality considerably on those monitors. Interlacing can improve quality on large living-
room TV sets and some high end car monitors (> $100) sporting true 640x480 pixels. PC monitors
will rarely have a video input. Frame catcher cards or USB frame catchers are tricky — you have to
consult their manual, but not always with success...
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The End

No, this is NOT the end!

DeSi | va has many ideas how to conti nue:
- Best Practices

- Efficient Use of multiple COGs

- Time vs. Space

- Debugging with Ariba's PASD

Al so there are still three half-bred sections mssing, "The end of
vi deo", sone remarks wt the NR post-fix, and a sidetrack "Tricks
with OQUTB"

But he will have two evening classes about Propeller Progranm ng
in the next nonths, having to be prepared - and the material used
there will not be in English...

When tinme is left, deSilva will re-activate his Milti-Prop project
agai n: A "stackable" |ow cost system for "nunber crunching”.
Phot ographs will follow...
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Appendix: Pitfalls of SPIN

Real Programmers don’t use SPIN? Ch yes, they do! SPINis
extrenely handy for slow applications. However it has its
drawbacks and pitfalls as well (and especially!) a machine
programer nust be aware of:

‘Scope

-1) The rules are relatively sinple: NO OVERLOADI NG NO SHADOW NG

-2) There is no other way to access variables of other objects
than using CGETters and SETters, however they spend considerabl e
time, in contrast to nodern OOP design, where you find a tendency
to offer them"for free" (i.e. conpilers generate inline code).

-3) CETting an address is fine and in the spirit of SPIN as being
a "structured assenbly |anguage" @

Thi s pointer needs not necessarily address an "array", but can
point to any place in VAR or DAT space (but see the next section
for further pitfalls)

\ Memory Allocation

-4) VAR variables are resorted by the conpiler: LONGS first,
foll ow WORDs, follow BYTES;, unawareness of this can | ead to deep
frustration @

-5) In contrast DAT variables are padded if appropriate!

-6) Never forget: VAR is "object space"; only DAT is "gl obal™

\ Tree of Objects

-7) Each tinme you define a nane in the OBJ section a new object is
"instantiated". That neans a new set of VAR nmenory is (statically)
al | ocated. DAT and CODE al ways stays the sane.

This is extrenely frustrating when you have "library objects"” used
fromnmultiple spots of your program Take Float32. You may need it
fromthe main object and sone "sub-object"” (nmaybe FloatString).
Float String normally uses the i ndependent and sl ow Fl oat Mat h; so
you are inclined to change that to Math32 as well. This is where
your problens start © But after you understand their root, you can
easily fix Math32 (2 variables in VAR -> DAT)

-8) There is a bug — at | east according to ny opinion — in COGNEW
as it does not deliver the object context to the SPIN Interpreter
in the new COG which neans you can only use procedures from your
own obj ect.

'"Example
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OBJ
Subl : "subl"
PUB main
COGNEW (subl.go(0),@stack)

'Does not work, and there is no warning
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