| APPLICATION | | REVISIONS | | | |
| :---: | :---: | :---: | :--- | :--- | :---: | :---: |
| NEXT ASSY | FINAL ASSY | LTR | DESCRIPTION | DATE | APPROVED |
| | | - | PRODUCTION RELEASE/E.O. 26435 | $4-24-91$ | L.F. |
| | A | E.O. 28139 | $10-23-92$ | L.F. | |

VACUUM FLUORESCENT DISPLAY
 2×20 CHARACTER
 S03601-95B-40

REV	A	A	A	A	-	A	-	-	A	A	A	A	A	-										
SHEET	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

REVISION STATUS

TABLE OF CONTENTS

PARAGRAPH NUMBER \& TITLE

1.0 GENERAL DESCRIPTION
1.1 Introduction
1.2 Application
1.3 Special Features
1.4 Description
2.0 BLOCK DIAGRAM
3.0 THEORY OF OPERATION
4.0 OPERATION
4.1 Loading ASCII Character Data
4.2 Control Codes
4.3 Reading Data and Status Information
4.4 Character Chart
4.5 Alternate Character Codes
4.6 User Defined Character Loading
4.7 Execution Times
4.8 Dedicated Hardware Lines
4.9 Self-test
4.10 Connector Pin Assignments
5.0 ELECTRICAL CHARACTERISTICS
5.1 Power ON / OFF Sequence
5.2 Interface Signals
5.3 Absolute Maximum Ratings
5.4 Supply Voltage And Current Consumption
5.5 Timing Characteristics and Timing Diagrams
6.0 OPTICAL CHARACTERISTICS
7.0 ENVIRONMENTAL CHARACTERISTICS
8.0 ACCESSORIES
9.0 OUTLINE \& INSTALLATION DRAWING

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	2 of 14

1.1 Introduction

This specification describes the interface requirements and features of a two-line Vacuum Fluorescent Display, 20 characters wide. The characters are formed using a 5×7 dot matrix.
1.2 Application

This unit may be used as a console display which provides alphanumeric information that is easily readable in high ambient light. It is ideal for point-of-sale terminals, office computers, and a wide range of business and industrial equipment.
1.3 Special Features
"Minimum depth" Hardware reset
Low cost Software dimming
Hardware interrupt Extended/European character set
10 User defined characters Superset of 03601-951
1.4 Description

This Vacuum Fluorescent Display is a self-contained multiplexed unit which provides a simple interface to a microprocessor system.

This unit consists of a vacuum fluorescent display tube and a minimal amount of electronic hardware. All display characters and standard control codes are in a 8 -bit format. All inputs are TTL compatible. Primary complexity is contained within the microprocessor software, which controls all display functions.

Timing is not critical for data communication except which is shown in Section 5.5. Data is entered in parallel at rates determined by execution times.

A single +5 VDC power supply (approximately 370 mA typical for brightest setting) is required for operation. Total power is about 1.8 watts.

A wide spectrum of color filters is available to fit all applications. The characters are bright, but soft, providing comfortable short or long-term viewing.

An ASCII-coded English font employs a 96 character set with an extended European character set and 10 user defined characters.

Figure 3 depicts the character sets as displayed by the 03601-95B-40 module.

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	3 of 14

FIGURE 1

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	4 of 14

The Vacuum Fluorescent Display array consists of three basic electrodes which are enclosed in an evacuated glass chamber. The first electrode is the filament, which spans the entire length of the display, and is made from a small diameter oxide coated tungsten wire. This element is common to all characters and supplies the electron emission needed for operation. Individual grid electrodes are provided, one for each character, to control current passing to the anodes. Each grid is a fine mesh metal screen which provides digit-select electrical control with no visual interference. When the grid is positive with respect to the filament, electrons are allowed to pass on to the third electrode, the anode dots, causing the fluorescent phosphor coating on each positively charged dot to glow. Selectively energizing these fluorescent dots causes the desired character to be displayed.

FIGURE 2

Industrial Electronic Engineers, Inc.	SIZE A	CODE IDENT NO. 05464	S03601-95B-40				
	Van Nuys, California	SCALE	N/A	REV	A		SHEET

4.1 Loading ASCII Character Data

All printing characters are in locations from 20 (HEX) to 7F (HEX), and from A0 (HEX) to FF (HEX). Control character assignments are as follows.

Control Codes
NOTE: CARE SHOULD BE TAKEN NOT TO SEND UNDEFINED CONTROL OR COMMAND CODES TO THE FLIP DISPLAY MODULE AS THIS MAY CAUSE A SOFTWARE MALFUNCTION OF THE MODULE.

DATA (HEX) DESCRIPTION

08 BACK SPACE CURSOR LOCATION ONE POSITION
09 ADVANCE CURSOR LOCATION ONE POSITION
OA LINE FEED (vertical scroll from bottom line; cursor positions to the left-most grid).
OD CARRIAGE RETURN (returns cursor to left-most character position of the same line; does not clear display)

OE $\quad+\quad$ MAKE CURSOR INDICATOR INVISIBLE (the cursor location counter continues to function but there is no visible indicator of next location)

OF MAKE CURSOR INDICATOR VISIBLE (Flashing "reverse rubout character")
$<11>\quad+\quad$ NORMAL DATA ENTRY WITH WRAPAROUND TO HOME POSITION (data enters beginning at the home position)
<12> OVERWRITE OF RIGHT-MOST CHARACTER ON THE BOTTOM LINE ONLY/ AUTOMATIC CARRIAGE RETURN OFF
<13> HORIZONTAL SCROLL MODE (from right to left on bottom line only, after line has been filled)

14

15
16
18

19

RESET

+ DISPLAY CLEAR (returns cursor to upper left-most position of multi-line displays)
$+\quad$ CURSOR HOME (returns cursor to upper left-most position)
BEGIN USER DEFINED CHARACTER LOADING (Para. 4.6)
BIT 7 HIGH FOR NEXT BYTE ONLY

Industrial Electronic Engineers, Inc.	SIZE \mathbf{A}	CODE IDENT NO. 05464	S03601-95B-40			
	Van Nuys, California	SCALE	N/A	REV	A	
SHEET	6 of 14					

4.2 Control Codes (Continued)

DATA (HEX)

1C
DIMMEST (12\%)
1D
DIM LEVEL (25\%)
1E
BRIGHT LEVEL (50\%)
+1F BRIGHTEST LEVEL (100\%)

+ Display automatically defaults to these conditions after power-up.

4.2.1 Cursor Positioning Instruction

DATA ($\mathrm{b}_{7}-\mathrm{b}_{0}$)
1B HEX MOVE CURSOR TO FOLLOWING POSITION (0001 1011)

XXLL LLLL

DESCRIPTION

(2 byte instruction to locate cursor)

* SECOND BYTE
(LLLL location in binary - upper left-most location is zero, 000000 moves cursor to home position)
* For numbers greater than 27 Hex cursor location will remain unchanged.

4.3 Reading Data and Status Information

Busy status is available on J1-1. This signal may be used as a hardware interrupt for the host processor when the display is busy. High busy signal indicates that the display is busy.

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	7 of 14

FIGURE 3
US ASCII \& EUROPEAN CHARACTER SET
(default)
Note: 30 H \& AFH are the same character.
N/A = Non-Applicable
UDC = User defined character

Industrial Electronic Engineers, Inc.	SIZE A	CODE IDENT NO. 05464	S03601-95B-40			
	Van Nuys, California	SCALE	N/A	REV	A	SHEET 8 of 14

4.5 Alternate Character Codes

Not available at this time.

4.6 External Font Loading (5×7 Dot Matrix)

One or more characters may be replaced temporarily (until power-off or reset) by user-defined down-loaded character patterns. To do so, enter the following sequence of commands and data:

BYTE DESCRIPTION

,	Start load 18 (HEX)
2	Location
3-7	Character dot data
8	Last byte with end bit
End bit E:	0 = end of external font load
End bit E:	1 = continue to next ASCII character position

Location byte: $\quad 00 \rightarrow \mathrm{~F} 6$ (Hex) location $\quad 05 \rightarrow \mathrm{FB}(\mathrm{Hex})$ location
$01 \rightarrow \mathrm{~F} 7$ (Hex) location $\quad 06 \rightarrow \mathrm{FC}$ (Hex) location
$02 \rightarrow$ F8 (Hex) location $\quad 07 \rightarrow \mathrm{FD}(\mathrm{Hex})$ location
$03 \rightarrow \mathrm{F9}(\mathrm{Hex})$ location $\quad 08 \rightarrow \mathrm{FE}(\mathrm{Hex})$ location
$04 \rightarrow \mathrm{FA}(\mathrm{Hex})$ location $\quad 09 \rightarrow \mathrm{FF}(\mathrm{Hex})$ location

CHARACTER DOT DATA

DATA BIT

7	6	5	4	3	2	1	0
X	03	17	34	X	X	X	X
X	07	13	30	23	04	14	33
X	11	09	26	27	08	10	29
X	15	05	22	31	12	06	25
X	19	01	18	35	16	02	21
X	E	X	X	32	28	24	20

CHARACTER MATRIX

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35

NOTE 1: ADDRESSING EVERY DOT FOR EVERY GRID IS NOT RECOMMENDED.
4.7 Execution Times (Maximum)

Character rate:	$220 \mu \mathrm{~S}$
Line feed:	$230 \mu \mathrm{~S}$
Control codes:	$230 \mu \mathrm{~S}$
Display clear:	$350 \mu \mathrm{~S}$
Horizontal scroll:	$530 \mu \mathrm{~S}$
Software (Reset):	$710 \mu \mathrm{~S}$
Hardware (Reset):	500 mS

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE N/A		REV A		SHEET	9 of 14

4.8 Dedicated Hardware Lines

4.8.1 RESET

Hardware $\overline{\text { RESET }}$ is available on J1-14. Setting $\overline{\text { RESET }}$ low for greater than $50 \mu \mathrm{~S}$ will clear the display and set the cursor to the upper left character (power-up condition). Sinking current must be able to discharge a $1 \mu \mathrm{~F}$ capacitor connected internally.
4.8. $\overline{\text { INTERRUPT (BUSY) }}$

A busy signal is available on $\mathrm{J} 1-1$ and may be used to interrupt the host signaling a READY condition.

4.9 Self-Test

The display will go into self-test mode, if E 2 is connected to the ground. In the self-test mode, the display will display every printable character from 20 (HEX) to FF (HEX) until E2 is disconnected from ground.
4.10 Connector Pin Assignments

J1 (POWER/DATA)

PIN NO.	FUNCTION
J1-1	BUSY
J1-2	WRITE STROBE
J1-3	D7 (MSB)
J1-4	D6
J1-5	D5
J1-6	D4
J1-7	D3
J1-8	D2
J1-9	D1
J1-10	D0 (LSB)
J1-11	+5V @ 370mA (TYP) *
J1-12	GROUND (COMMON)
J1-13	NOT USED
J1-14	RESET

* For brightest software setting.

CMOS Note: Care must be taken to insure that input signals do not exceed the supply voltage or ground levels. Data cables must be as short as possible to reduce signal overshoots.

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	10 of 14

5.1 Power ON / OFF Sequence

There are no deleterious effects associated with power ON and OFF of this display; however, rapid ON/OFF sequencing is not recommended. The power/data connector should not be connected/disconnected while power is applied.

CAUTION: Do not apply data or strobe signals unless logic power is also applied; otherwise, the input circuits may be damaged.

Because of the power-up cycle within the microprocessor, rise time of the power supply should be less than 100 mS . The display module is not ready to accept data for 500 mS .

5.2 Interface Signals

All logic signals abide by the following convention: logic "1" is a high, logic " 0 " is a low.
Input Levels:
Logic $1>2.4 \mathrm{VDC} @ 1 \mu \mathrm{~A}$.
Logic $0<0.5 \mathrm{VDC} @ 1.6 \mathrm{~mA}$.

Output Levels:

Logic $1>3.5 \mathrm{VDC} @ 150 \mu \mathrm{~A}$.
Logic $0<0.5 V D C @ 4 m A$.
All parallel interface lines are internally pulled up using 10 K resistors connected to the +5 V supply.

5.3 Absolute Maximum Ratings

Primary voltage: +5.5 VDC
Logic range: $\quad-0.5 \mathrm{VDC}$ thru +5.5 VDC

5.4 Normal Operating Ratings

Primary voltage: $\quad+5.0 \pm 0.25 \mathrm{VDC}$

PRODUCTION

Dimmest

260mA Min. 290mA Typ. Brightest
280mA Min. 370mA Typ. 460mA Max.
(Screen clear at 5.0V)
(Screen filled with "A" character at 5.0 V)
(Screen clear at 5.0V)
(Screen filled with "A" character at 5.0 V)
(Screen filled with "A" character at 5.25 V)

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	11 of 14

DATA WRITE TIMING

6.0 OPTICAL CHARACTERISTICS

Format: $\quad 2$ line of 20 characters
Character height:
Character width:
Character spacing:
Character design:
Type of cursor indicator:
Character set:
0.20 in. (5.05 mm)
0.14 in. (3.55 mm)
0.19 in . (4.75 mm) center-to-center
5×7 dot matrix
Block
96-character U.S. ASCII-7
Extended European character set and 10 user defined characters
Color:
Viewing angle:
Blue-green, peak at 5000 Angstroms
150 degrees
Brightness: $\left(22^{\circ} \mathrm{C}\right)$
Projected life at rated operating conditions:

40,000 to 100,000 hours*
*Note: End of useful life is defined as the point when the display tube light output has decreased to half its initial minimum rated brightness. This life rating is based on use with random text messages. To obtain maximum life, users are encouraged to avoid fixed messages and to blank or clear the display when it is not in use.

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{aligned} & \text { CODE IDENT NO. } \\ & 05464 \end{aligned}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	12 of 14

Operating temperature:
Storage temperature:
Relative humidity:
Vibration:
Shock:
Weight:

0 to $+55\left({ }^{\circ} \mathrm{C}\right)+32$ to $131\left({ }^{\circ} \mathrm{F}\right)$
-20 to $+70\left({ }^{\circ} \mathrm{C}\right)-4$ to $+158\left({ }^{\circ} \mathrm{F}\right)$
0 to 95% (non-condensing)
10 to 50 Hz 2 mm peak-to-peak (3 axis, random)
20 G (3 axis)
6.3 ounces (177 grams)
8.0 ACCESSORIES

Cables	Part Number		Qty Required
Data and Power	33375-XX*	Single-ended	1
	33374-XX*	Double-ended	1
Serial Converter	31785-22/-23		1
*XX = Length in inches: -99 omits cables			
Filters	31110-XX		
Gray	-01		
Blue	-02		
Aqua	-04		
Neon Yellow-Orange	-05		
Green	-07		
Neutral Gray CP	-09		
Yellow CP	-10		
Connectors	Mates With: Molex 6373-14		
Data \& Power	Molex 2695-14 (Crimp)		

Industrial Electronic Engineers, Inc. Van Nuys, California	$\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \hline \text { CODE IDENT NO. } \\ 05464 \end{gathered}$			S03601-95B-40	
	SCALE	N/A	REV	A	SHEET	13 of 14

FIGURE 5

TOLERANCE:
$. X X= \pm .03$ (0.8)
$. X X X= \pm .010(0.25)$
Dim. in inches (mm)

Industrial Electronic Engineers, Inc.	SIZE \mathbf{A}	CODE IDENT NO. 05464	S03601-95B-40				
	Van Nuys, California	SCALE	N/A	REV	A		SHEET

