

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 1 of 50

Objects
PROPELLER EDUCATION KIT LAB SERIES

Introduction
In the first three labs (Setup and Testing, I/O and Timing, and Methods and Cogs), all the application
code examples were individual objects. However, applications are typically organized as collections
of objects. Every application has a top level object, which is the object where the code execution
starts. Top level objects can declare and call methods in one or more other objects. Those objects
might in turn declare and call methods in other objects, and so on…

A lot of objects that get incorporated into an application are designed to simplify development. Some
of these objects are collections of useful methods that have been published so that common coding
tasks don’t have to be done “from scratch.” Other objects manage processes that get launched into
cogs. They usually cover the tasks introduced in the Methods and Cogs lab, including declaring stack
space and tracking which cog the process gets launched into. These objects that manage cogs also
have methods for starting and stopping the processes.

Useful objects that can be incorporated into your application are available from a number of sources,
including the Propeller Tool software’s Propeller Library, the Propeller Object Exchange at
obex.parallax.com, and the Propeller Chip forum at forums.parallax.com. Each object typically has
documentation that explains how to incorporate it into your application along with one or more
example top files that demonstrate how to declare the object and call its methods. In addition to using
pre-written objects, you may find yourself wanting to modify an existing object to suit your
application’s needs, or even write a custom object. If you write an object that solves problems or
performs tasks that are not yet available elsewhere, consider posting it to the Propeller Object
Exchange.

This lab guides you through writing a variety of objects and incorporating them into your
applications. Some of the objects are just collections of useful methods, while others manage
processes that get launched into cogs. Some of the objects will be written from scratch, and others
from the Propeller Library will be used as resources. The example applications will guide you
through how to:

• Call methods in other objects
• Use objects that launch processes into cogs
• Write code that calls an object’s methods based on its documentation
• Write object documentation and schematics
• Use objects from the Propeller Object library
• Access values and variables by their memory addresses
• Use objects to launch cogs that read and/or update the parent object’s variables.

Prerequisites
Please complete the Setup and Testing, I/O and Timing, and Methods and Cogs labs before
continuing here.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 2 of 50

Equipment, Parts, Schematic
Although the circuit is the same one used in the previous two labs, there are a few twists. First, the
schematic shown in Figure 1 was drawn using the Parallax font and the Propeller Tool software’s
character chart, which is an important component of documenting objects. Second, some of the
coding examples allow you to monitor and control elements of the circuit from your PC with software
bundled with this lab called Parallax Serial Terminal (PST.exe). The Propeller applications that
communicate serially with Parallax Serial Terminal will do so with the help of an object named
FullDuplexSerial.spin.

Figure 1: Schematic (drawn with the Propeller Tool software)

Method Call Review
The ButtonBlink object below is an example from the Methods and Cogs lab. Every time you press
and release the pushbutton connected to P23, the object measures the approximate time the button is
held down, and uses it to determine the full blink on/off period, and blinks the LED ten times.
(Button debouncing is not required with the pushbuttons included in the PE kit.) The object
accomplishes these tasks by calling other methods in the same object. Code in the Main method calls
the ButtonTime method to get the time the button is held down. When ButtonTime returns a value, the
Blink method gets called, with one of the parameters being the result of the ButtonTime measurement.

 Load ButtonBlink into the Propeller chip and test to make sure you can use the P23
pushbutton to set the P4 LED blink period.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 3 of 50

'' ButtonBlink.spin

PUB Main | time

 Repeat

 time := ButtonTime(23)
 Blink(4, time, 10)

PUB Blink(pin, rate, reps)

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

PUB ButtonTime(pin) : dt | t1, t2

 repeat until ina[pin]
 t1 := cnt
 repeat while ina[pin]
 t2 := cnt
 dt := t2 - t1

Calling Methods in Other Objects with Dot Notation
The ButtonBlink object’s ButtonTime and Blink methods provide a simple example of code that
might be useful in a number of different applications. These methods can be stored in a separate
object file, and then any object that needs to blink an LED or measure a pushbutton press can access
these methods by following two steps:

1) Declare the object in an OBJ code block, and give the object’s filename a nickname.
2) Use ObjectNickname.MethodName to call the object’s method.

 The Propeller Manual uses the term “symbolic reference” or “reference” instead of “nickname”.

Figure 2 shows an example of how this works. The ButtonTime and Blink methods have been moved
to an object named ButtonAndBlink. To get access to the ButtonAndBlink object’s public methods,
the DotNotationExample object has to start by declaring the ButtonAndBlink object and giving it a
nickname. These object declarations are done in the DotNotationExample object’s OBJ code block.
The declaration PbLed : "ButtonAndBlink" gives the nickname PbLed to the ButtonAndBlink object.

The PbLed declaration makes it possible for the DotNotationExample object to call methods in the
ButtonAndBlink object using the notation ObjectNickname.MethodName. So, DotNotationExample
uses time := PbLed.ButtonTime(23) to call ButtonAndBlink’s ButtonTime method, pass it the
parameter 23, and assign the returned result to the time variable. DotNotationExample also uses the
command PbLed.Blink(4, time, 20) to pass 4, the value stored in the time variable, and 20 to
ButtonAndBlink’s Blink method.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 4 of 50

 File Locations: An object has to either be in the same folder with the object that’s declaring it, or in the same
folder with the Propeller Tool.exe file. Objects stored with the Propeller Tool are commonly referred to as
library objects.

Figure 2: Calling Methods in Another Object with Dot Notation

 Load the DotNotationExample object into the Propeller chip. If you are hand entering this
code, make sure to save both files in the same folder. Also, the ButtonAndBlink object’s
filename must be ButtonAndBlink.spin.

 Verify that the program does the same job as the previous example object (ButtonBlink).
 Follow the steps in Figure 2, and make sure it’s clear how ButtonAndBlink gets a nickname

in the OBJ section, and how that nickname is then used by DotNotationExample to call
methods within the ButtonAndBlink object.

 Compare DotNotationExample.spin to the previous example object (ButtonBlink).

Object Organization
Objects can declare objects that can in turn declare other objects. It’s important to be able to examine
the interrelationships between parent objects, their children, grandchildren, and so on. There are a
couple of ways to examine these object family trees. First, let’s try viewing the relationships in the
Object Info window with the Propeller Tool’s Compile Current feature:

 Click the Propeller Tool’s Run menu, and select Compile Current → View Info (F8).

Notice that the object hierarchy is shown in the Object Info window’s top-left corner. In this
windowpane, you can single click each folder to see how much memory it occupies in the Propeller
Chip’s global RAM. You can also double-click each folder in the Object Info window to open the
.spin file that contains the object code. Since DotNotationExample declared ButtonAndBlink, the
ButtonAndBlink code becomes part of the DotNotationExample application, which is why it appears
to have more code than ButtonAndBlink in the Object Info window even though it has much less
actual typed code.

'' File: ButtonAndBlink.spin
'' Example object with two methods

PUB ButtonTime(pin): delta | time1, time2

 repeat until ina[pin] == 1
 time1 := cnt
 repeat until ina[pin] == 0
 time2 := cnt
 delta := time2 - time1

PUB Blink(pin, rate, reps)

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

''File: DotNotationExample.spin

OBJ

 PbLed : "ButtonAndBlink"

PUB Main | time

 repeat

 time := PbLed.ButtonTime(23)

 PbLed.Blink(4, time, 20)

Method calls with
ObjectNickname.MethodName

Object
declaration

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 5 of 50

Figure 3: Object Info Window

After closing the Object Info window, the same Object View pane will be visible in the upper-left
corner of the Propeller tool (see Figure 4). The objects in this pane can be opened with a single-click.
The file folder icons can also be right-clicked to view a given object in documentation mode. They
can then be left-clicked to return to Full Source view mode.

Figure 4: Propeller Tool with Object View (Upper-Left Windowpane)

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 6 of 50

Objects that Launch Processes into Cogs
In the Methods Lab, it took several steps to write a program that launches a method into a cog. First,
additional variables had to be declared to give the cog stack space and track which cog is running
which process before the cognew or cogstart commands could be used. Also, a variable that stored
the cog’s ID was needed to pick the right cog if the program needed to stop a given process.

Objects that launch processes into cogs can take care of all that for you. For example, here is a top
file that declares two objects, named Button and Blinker. The Blinker object has a method named
Start that takes care of launching its Blink method into a new cog and all the variable bookkeeping
that accompanies it. So, all this top level object has to do is call the Blinker object’s Start method.

{{
Top File: CogObjectExample.spin
Blinks an LED circuit for 20 repetitions. The LED
blink period is determined by how long the P23 pushbutton
is pressed and held.
}}

OBJ

 Blinker : "Blinker"
 Button : "Button"

PUB ButtonBlinkTime | time

 repeat

 time := Button.Time(23)
 Blinker.Start(4, time, 20)

Unlike the DotNotationExample object, you won’t have to wait for 20 LED blinks before pressing the
button again to change the blink rate (for the next 20 blinks). There are two reasons why. First, the
Blinker object automatically launches the LED blinking process into a new cog. This leaves Cog 0
free to monitor the pushbutton for the next press/release while Cog 1 blinks the LED. Second, the
Blinker object’s Start method automatically stops any process it’s currently running before launching
the new process. So, as soon as the button measurement gets taken with Button.Time(23), the
Blinker.Start method stops any process (cog) that it might already be running before it launches the
new process.

 If you are using the pre-written .spin files that accompany this PDF, they will already all be in
the same folder. If you are hand entering code, make sure to hand enter and save all three
objects in the same folder. The objects that will have to be saved are CogObjectExample
(above), and Blinker , and Button (both below).

 Load CogObjectExample into the Propeller Chip.
 Try pressing and releasing the P23 pushbutton so that it makes the LED blink slowly.
 Before the 20th blink, press and release the P23 pushbutton rapidly. The LED should

immediately start blinking at the faster rate.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 7 of 50

Inside the Blinker Object
Objects that launch processes into cogs are typically written to take care of most cog record-keeping.
Then, all a parent object has to do is declare the object, and then launch the process by calling the
object’s Start method, or halt it by calling the object’s Stop method. For example, the Blinker
example object below has the necessary variable array for the cog’s stack operations while executing
the Blink method. It also has another variable named cog for keeping track of which cog it launched
its Blink method into.

The Blinker object also has the Start and Stop methods for launching the now familiar Blink method
into a new cog and stopping it again. When the Start method launches the Blink method into a new
cog, it copies the cog ID into the cog variable. The value it returns in the success variable is the cog
ID + 1, which the parent object can treat as a Boolean value. So long as this value is non-zero, it
means the process launched successfully. If the value is zero, it means the cog was not successfully
launched. This typically happens when all eight of the Propeller chip’s cogs are already in use.

The object’s Stop method shuts the process down, using the cog variable, which the object uses to
store the ID of the cog it launched the Blink method into.

{{
File: Blinker.spin
Example cog manager for a blinking LED process.

SCHEMATIC
───────────────────────────────
 100 ω LED
 pin ──────────┐

 GND
───────────────────────────────
}}

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pin, rate, reps) : success
{{Start new blinking process in new cog; return True if successful.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}
 Stop
 success := (cog := cognew(Blink(pin, rate, reps), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PUB Blink(pin, rate, reps)
{{Blink an LED circuit connected to pin at a given rate for reps repetitions.

Parameters:

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 8 of 50

 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}

 dira[pin]~~
 outa[pin]~

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

The Start and Stop methods shown in this object are the recommended approach for objects that
manage cogs. They were copied verbatim from the Propeller Manual’s tutorial section, and then
updated to fit the slightly different Blink method. The Start method’s parameter list should have all
the parameters the process will need to get launched into a cog. Note that these values are passed to
the object’s Blink method via a call in the cognew command.

 Why does the Start method call the Stop method? In the event that the object had already started a
process, the Stop method call shuts that process down before launching a new process.

CogObjectExample also uses the Button object, which at this time has just one method, but it can be
expanded into a collection of useful methods. Note that this version of the Button object doesn’t
launch any new processes into cogs, so it doesn’t have a Start or Stop method.

Everything the Button object does is done in the same cog as the object that calls it. This object could
be modified in several different ways. For example, other button-related methods could be added.
The object could also be modified to work with a certain button or group of buttons. It could also
have an Init or Config method added to set the object up to automatically monitor a certain button or
group of buttons. The object could also be modified to monitor these buttons in a separate cog, but in
that case, Start and Stop methods should be added.

'' File: Button.spin
'' Beginnings of a useful object.

PUB Time(pin) : delta | time1, time2

 repeat until ina[pin] == 1
 time1 := cnt
 repeat until ina[pin] == 0
 time2 := cnt
 delta := time2 - time1

Documentation Comments
Figure 5 shows the first part of the Blinker object displayed in documentation mode. To view the
object in this mode, make sure it’s the active tab (click the tab with the Blinker filename), then click
the Documentation radio button just above the code. Remember from the I/O and Timing Lab that
single line documentation comments are preceded by two apostrophes: ''comment, and that
documentation comments occupying more than one line are started and ended with double braces:
{{comments}}. Take a look at the documentation comments in Full Source mode, and compare them
to the comments in Documentation mode.
Documentation mode automatically adds some information above and beyond what’s in the
documentation comments. First, there’s the Object Interface information which is a list of the
object’s public method declarations, including the method name, parameter list, and return variable

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 9 of 50

name, if any. This gives the programmer an “at a glance” view of the object’s methods. With this in
mind, it’s important to choose descriptive names for an object’s method and its parameters.
Documentation mode also lists how much memory the object's use would add to a program and how
much it takes in the way of variables. These, of course, are also important “at a glance” features.

Figure 5: Documentation View

The Documentation view mode also inserts each method declaration (without local variables that are
not used as parameters or return variable aliases). Notice how documentation comments below the
method declaration also appear, and how they explain what the method does, what information its
parameters should receive, and what it returns. Each public method’s documentation should have
enough information for a programmer to use it without switching back to Full Source view to reverse
engineer the method and try to figure out what it does. This is another good reason to pick your
method and parameter names carefully, because they will help make your documentation comments
more concise. Below each public method declaration, explain what the method does with
documentation comments. Then, explain each parameter, starting with its name and include any
necessary information about the values the parameter has to receive. Do the same thing for the return
parameter as well.

 Try adding a block documentation comment just below the CogObjectExample object’s
ButtonBlinkTime method, and verify that the documentation appears below the method
declaration in Documentation view mode.

Figure 6: More Documentation View

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 10 of 50

Drawing Schematics
The Parallax font has symbols built in for drawing schematics, and they should be used to document
the circuits that objects are designed for. The Character Chart tool for inserting these characters into
an object is shown in Figure 7. In addition to the symbols for drawing schematics, it has symbols for
timing diagrams , math operators ± + - × ÷ = ≈ √ ¹ ² ³,and Greek symbols for
quantities and measurements ω µ δ σ π.

 Click Help and select View Character Chart.
 Click the character chart’s symbolic Order button
 Place your cursor in a commented area of an object.
 Click various characters in the Character Chart, and verify that they appear in the object.

Figure 7: Propeller Tool Character Chart

Files that involve circuits should also have schematics so that the circuit the code is written for can be
built and tested. For example, the schematic shown in Figure 8 can be added to CogObjectExample.
The pushbutton can be a little tricky. The character chart is shown in Figure 8, displayed in the
standard order (click the Standard Order radio button). In this order, character 0 is the top left,
character 1, the next one over from top-left, and so on, all the way down to character 255 on the
bottom-right. Here is a list of characters you will need:

 Pushbutton – 19, 23, 24, 27, 144, 145, 152, 186, 188
 LED – 19, 24, 36, 144, 145, 158, 166, 168, 169, 189, 190

 Try adding the schematic shown in Figure 8 to your copy of CogObjectExample.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 11 of 50

Figure 8: Drawing Schematics with the Character Chart

Public vs. Private methods
The Blinker object is currently written so that its parent object can call either its Start or Blink
methods. For this particular object, it’s useful because there are times when the programmer might
not want to allow the 20 LED blinks to be interrupted. In that case, instead of calling the Start
method, the parent object can call the Blink method directly.

 Modify a copy of CogObjectExample so that it calls the Blinker object’s Blink method
instead of its Start method.

The modified version will not let you interrupt the LED blinking to restart at a different rate. That’s
because all the code now gets executed in the same cog; whereas the unmodified version allows you
to call the Start method at any time since the LED blinking happens in a separate cog. So while the
cog is busy blinking the LED, it does not monitor the pushbutton.

Some objects are written so that they have public (PUB) methods that other objects can call, and
private (PRI) methods, which can only be called from another method in the same object. Private
methods tend to be ones that help the object do its job, but are not intended to be called by other
objects. For example, sometimes an intricate task is separated into several methods. A public method
might receive parameters and then call the private methods in a certain sequence. Especially if
calling those methods in the wrong sequence could lead to undesirable results, those other methods
should be private.

With the Blinker object’s Blink method, there’s no actual reason to make it private aside from
examining what happens when a parent object tries to call another object’s private method.

 Change the Blinker object’s Blink method from PUB to PRI.
 Try to run the modified copy of CogObjectExample, and observe the error message. This

demonstrates that the Blink method cannot now be accessed by another object since it’s
private.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 12 of 50

 Run the unmodified copy (which only calls the public Start method, not the now private
Blink method), and verify that it still works properly. This demonstrates how the now private
Blink method can still be accessed from within the same (Blinker) object by its Start
method.

Multiple Object Instances
Spin objects that launch and manage one or more cogs for a given process are typically written for
just one copy of the process. If the application needs more than one copy of the process running
concurrently, the application can simply declare more than one copy of the object. For example, the
Propeller chip can control a television display with one cog, but each TV object only controls one
television display. If the application needs to control more than one television, it declares more than
one copy of the TV object.

Multiple object copies? No Problem!

There is no code space penalty for declaring multiple objects. The Propeller Tool’s compiler optimizes so that
only one instance of the code is executed by all the copies of the object. The only penalty for declaring more
than one copy of the same object is that there will be more than one copy of the global variables the object
declares, one set for each object. Since roughly the same number of extra variables would be required for a
given application to do the same job without objects, it’s not really a penalty.

The MultiCogObjectExample object below demonstrates how multiple copies of an object that
manages a process can be launched with an object array. Like variables, objects can be declared as
arrays. In this example, six copies of the Blinker object are declared in the OBJ block with Blinker[6]
: Blinker. The six copies of Blinker can also be indexed the same way variable arrays are, with
Blinker[0], Blinker[1], and so on, up through Blinker[5]. In MultiCogObjectExample, a repeat
loop increments an index variable, so that Blinker[index].Start… calls each successive object’s
Start method.

The MultiCogObjectExample object is functionally equivalent to the Methods and Cogs lab’s
CogStartStopWithButton object. When the program is run, each successive press/release of the P23
pushbutton launches new cogs that blink successive LEDs (connected to P4 through P9) at rates
determined by the duration of each button press. The first through sixth button presses launch new
LED blinking processes into new cogs, and the seventh through twelfth presses successively stop
each LED blinking cog in reverse order.

 Load the MultiCogObjectExample object into the Propeller chip.
 Press and hold the P23 pushbutton six successive times (each with a different duration) and

verify that six cogs were launched.
 Press and release the P23 pushbutton six more times and verify that each LED blinking

process halts in reverse order.

''Top File: MultiCogObjectExample.spin

OBJ

 Blinker[6] : "Blinker"
 Button : "Button"

PUB ButtonBlinkTime | time, index

 repeat

 repeat index from 0 to 5

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 13 of 50

 time := Button.Time(23)
 Blinker[index].Start(index + 4, time, 1_000_000)

 repeat index from 5 to 0
 Button.Time(23)
 Blinker[index].Stop

Propeller Chip – PC Terminal Communication
Exchanging characters and values with the Propeller microcontroller using PC terminal software
makes a number of applications really convenient. Some examples include computer monitored and
controlled circuits, datalogging sensor measurements, and sending and receiving diagnostic
information for system testing and debugging.

Terminal − Propeller Chip communication involves PC software and microcontroller code. For the
PC software, we’ll use the Parallax Serial Terminal, which is introduced next. For the
microcontroller code, we’ll make use of objects that take care of the electrical signaling and
conversions between binary values and their character representations so that we can focus on writing
applications.

As you develop applications that make use of the serial communication objects, consider how those
readily available objects simplify writing programs. It provides an example of how using objects
from the Propeller Library, Propeller Object Exchange, and Propeller Chip forum make it possible to
get a lot done with just a few lines of code.

Parallax Serial Terminal
The Parallax Serial Terminal software shown in Figure 9 is bundled with this lab. It’s named
PST.exe, and it’s in the Parallax Serial Terminal subfolder. This software has a transmit windowpane
that sends characters you type to the Propeller chip, and a receive windowpane that displays
characters sent by the Propeller chip. It has dropdown menus for Com Port and Baud Rate selection
and port activity indicators and checkbox controls for the various serial channels (TX, RX, etc).
There’s also an Echo On checkbox that is selected by default so that characters entered into the
transmit windowpane also appear in the receive windowpane. On the Parallax Serial Terminal
window’s lower-right, it has control buttons that:

• Display and edit preferences (Prefs)
• (Clear) the terminal windows
• (Pause) the display of incoming data
• (Disable/Enable) the Parallax Serial Terminal’s connection to the serial port

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 14 of 50

Figure 9: Parallax Serial Terminal

The Disable/Enable button in the Parallax Serial Terminal’s lower-right corner is important. (See
Figure 10.) When it displays Disable, it means the terminal is connected to the serial port. When you
click the Disable button, the Parallax Serial Terminal releases the serial port so that the Propeller Tool
can use it to load a program into the Propeller chip. While the Parallax Serial Terminal is disabled,
the button displays Enable, flashing on/off. After the program has loaded, you can click the Enable
button to resume terminal communication with the Propeller chip.

Automatic Disable/Enable Settings

In Prefs -> Serial Port Selection, the Automatically disable… and Wait for busy… checkboxes are selected by
default. With these settings, you can just click the Propeller Tool software, load a program, and immediately
click the Enable button to reconnect. There’s no need to click Disable before switching to the Propeller Tool to
load a program because the Parallax Serial Terminal will automatically disconnect from the serial port as soon
as you have clicked another window. Likewise, you don’t have to wait for the program to finish loading into the
Propeller chip before clicking the Enable button. You can just click it as soon as you have started the program
loading, and the Parallax Serial Terminal will detect that the serial port is still busy and wait until the Propeller
Tool is done loading the program before it reconnects.

Figure 10: Connected vs. Disconnected (to/from the Com Port)

You can click the Parallax Serial Terminal’s Prefs button to view the appearance and function
preference tabs shown in Figure 11. The Appearance preferences allow you to define the terminal’s
colors, fonts, and other formatting. The Function preferences allow you to select special functions for
non printable ASCII characters. Leave all of them checked for these labs since we’ll be using them to
clear the screen, display carriage returns, etc…

Connected to serial port and
communicating with the
Propeller chip.

Disconnected from the serial
port so the Propeller Tool
can load program.

Transmit
Windowpane

Receive
Windowpane

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 15 of 50

It’s also best to leave both the boxes in the Serial Port Selection category checked. The Automatically
Disable… feature makes the Parallax Serial Terminal automatically disable to free the serial port for
program loading whenever you click the Propeller Tool software. The Wait for busy port… makes
the Parallax Serial Terminal automatically wait up to 10 seconds if you click the Enable button before
the Propeller tool is finished loading the program. (Not an issue with Load RAM (F10), but Load
EEPROM (F11) can take a few seconds.) If those features were unchecked, you would have to
manually click Disable before loading a program and wait until the program is finished loading
before clicking Enable to reconnect.

When to uncheck the Automatically disable… setting:

The Automatically disable… setting is very convenient for iteratively modifying code with the Propeller Tool
software and observing the results in the Parallax Serial Terminal. The event that triggers the automatic
Disable is the fact that you clicked another window.

Let’s say you are instead switching back and forth between the Parallax Serial Terminal and some other
software such as a spreadsheet for sensor measurement analysis. With the Automatically disable… setting,
each time you click the other window, the Parallax Serial Terminal automatically disconnects from the serial
port, and any messages sent by the Propeller chip will not be buffered or displayed.

To make the Parallax Serial Terminal maintain the serial port connection while you are working with other
windows, uncheck the Automatically disable… setting. Then, the Parallax Serial Terminal will remain
connected to the serial port and continue displaying updated messages, regardless of which window you are
working in. Keep in mind that with this setting unchecked, you will have to manually click the Disable button
before loading a program and then click the Enable button after the program is done loading.

Figure 11: Appearance and Function Preferences

The Edit Ports button in Figure 11 opens the Serial Port Search List. You can drag entries in the list
up and down to change the order they appear in the Parallax Serial Terminal’s Com Port dropdown
menu. You can also right-click an entry and to include or exclude it, or even create rules for which
ports get included or excluded based on text in the Port Description column.

Parallax Serial Terminal Test Messages
Figure 12 shows the HelloFullDuplexSerial application on the left, and the repeated messages it sends
to the Parallax Serial Terminal on the right. The HelloFullDuplexSerial program declares the
FullDuplexSerial object and then uses its methods to send messages to the Parallax Serial Terminal.
It first calls the FullDuplexSerial object’s start method with Debug.Start, and then repeatedly calls
the str (string) method with Debug.str in a repeat loop. Let’s first give it a try, and then take a
closer look at the FullDuplexSerial object and its features and methods.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 16 of 50

Figure 12: Using the FullDuplexSerial object to Display Test Messages in Parallax Serial Terminal

The first time you open the Parallax Serial Terminal (PST.exe), you’ll need to set the Com Port to the
one the Propeller Tool software uses to load programs into the Propeller chip. You’ll also need to set
the Baud Rate to the one used by the Spin program. After that, just use the Propeller Tool software’s
Load EEPROM feature to load the program into the Propeller chip’s EEPROM, and then click the
Parallax Serial Terminal’s Enable button to see the messages.

 Use Windows Explorer to open the Objects lab folder – PE-Lab-Objects-v1.1.
 Open HelloFullDuplexSerial.spin with the Propeller Tool software.
 Open the Parallax Serial Terminal subfolder, and double-click PST.exe to run it.
 Connect battery power to your PE Platform and verify that it is connected to the PC with the

USB cable.
 In the Propeller Tool software, click Run, and select Identify Hardware… (F7). Make a note

of the COM port where the Propeller chip was found.
 Set the Com Port field in the bottom-left corner of the Parallax Serial Terminal to the

Propeller’s COM port you found in the previous step.
 Check the baudrate parameter in the Debug.start method call to find the baud rate. (It’s

currently 57600.)
 Set the baud rate field in the Parallax Serial Terminal to match. (Set it to 57600.)
 In the Propeller Tool software, use F11 to load HelloFullDuplexSerial.spin into the Propeller

chip’s EEPROM.
 In the Parallax Serial Terminal, click the Enable button to start displaying messages from the

Propeller chip.

''HelloFullDuplexSerial.spin
''Test message to Parallax Serial Terminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerial"

PUB TestMessages

 ''Send test messages and to Parallax Serial Terminal.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 17 of 50

 Debug.start(31, 30, 0, 57600)

 repeat
 Debug.str(string("This is a test message!", 13))
 waitcnt(clkfreq + cnt)

Changing Baud Rates
So long as the Baud rates are the same, you can select the baud rate that’s best for your application.
For example, you can change the baud rate from 57.6 to 115.2 kbps as follows:

 In the Propeller Tool, modify the HelloFullDuplexSerial object’s start method call, so that it
passes the value 115200 to the FullDuplexSerial object’s start method’s baudrate parameter,
like this:

 Debug.start(31, 30, 0, 115200)

 Load the modified version of HelloFullDuplexSerial into the Propeller chip.
 Choose 115200 in the Bits per second in the Parallax Serial Terminal’s Baud Rate dropdown

menu.
 Click Parallax Serial Terminal’s Enable Button.
 Verify that the messages still display at the new baud rate.

 Make sure to change the settings back to 57600 in both programs and test to make sure

they still work before proceeding.

FullDuplexSerial and Other Library Objects
The FullDuplexSerial object greatly simplifies exchanging data between the Propeller and peripheral
devices that communicate with asynchronous serial protocols such as RS232. Just a few examples of
serial devices that can be connected to the Propeller chip include the PC, other microcontrollers,
phone modems, the Parallax Serial LCD, and the Pink Ethernet module.

Serial Communication: For more information about asynchronous serial communication, see the Serial
Communication and RS-232 articles on Wikipedia.

Serial over USB: For more information about how the FT232 chip built into the Propeller Plug and the
PropsTick USB relays serial data to the PC over the USB connection, see the PropStick USB version of the
Setup and Testing lab.

As mentioned earlier, code in an object can declare another object, so long as either:

• The two objects are in the same folder
• The object being declared is in the same folder with the Propeller Tool software

The objects in the same folder with the Propeller Tool software are called Propeller Library objects.
To view the contents of the Propeller Library:

 Click the dropdown menu between the upper-left and middle-left Explorer windowpanes
shown in Figure 13 and select Propeller Library. The Propeller Library’s objects will appear
in the lower-left windowpane.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 18 of 50

Notice in Figure 13 that the folder icon next to FullDuplexSerial in the Propeller Tool’s upper left
Object View windowpane is blue instead of yellow. This indicates that it’s a file that resides in the
Propeller Library. You can also see these files by using Windows Explorer to look in the Propeller
Tool software’s folder. Assuming a default install, the path would be: C:\Program Files\Parallax
Inc\Propeller Tool v1.1.

Figure 13: Code That Declares a Library Object

When using a library object, the first task is to examine its object interface to find out about its
methods and what it can do.

 Double-click FullDuplexSerial in the Propeller Tool’s lower left explorer pane, which should
show the contents of the Propeller Library.

 When the Propeller Tool opens the FullDuplexSerial object, click the Documentation radio
button so that the view resembles Figure 14.

 Check the list of methods in the Object “FullDuplexSerial” Interface section.
 Scroll down and find the documentation for the start and str methods, and examine them.

They will be used in the next example object.
.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 19 of 50

Figure 14: FullDuplexSerial Object Documentation Views

The HelloFullDuplexSerial object in Figure 13 declares the FullDuplexSerial object, giving it the
nickname Debug. Then, it calls the FullDuplexSerial object’s start method with the command
Debug.start(31, 30, 0, 57600). According to the documentation, this sets the parameter's rxpin to
Propeller I/O pin 31, txpin to 30, mode to 0, and baudrate to 57600. After that, a repeat loop sends
the same text message to the Parallax Serial Terminal once every second. The Debug.str method call
is what transfers the "This is a test message!" string to the FullDuplexSerial object’s buffer. After
that, FullDuplexSerial takes care of sending each successive character in the string to the FT232 chip
which forwards it to the PC via USB.

Let’s take a closer look at Debug.str(String("This is a test message!", 13)). Debug.str calls the
FullDuplexSerial object’s str method. The method declaration for the str method indicates that the
parameter it expects to receive should be a string pointer. At compile, the string directive
string("This is a test message!") stores the values that correspond to the characters in the text
message in the Propeller chip’s program memory and appends them with a zero to make a zero-
terminated string. Although the str method’s documentation doesn’t say so (It really should!), it
expects a zero-terminated string so that it can fetch and transmit characters until it fetches a zero. At
runtime, the string directive returns the starting address of the string. Debug.str passes this
parameter to the FullDuplexSerial object’s str method. Then, the str method sends characters until
it fetches the zero terminator.

What does the 13 do? The 13 in Debug.str(String("This is a test message!", 13)) is a control character
that makes the Parallax Serial Terminal display a carriage return. That’s why each “This is a text message!”
appears on its own line, because the previous message was followed by a carriage return. See Figure 11 for
the Parallax Serial Terminal’s list of control characters.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 20 of 50

You can see where the string gets stored in the program with the Propeller Tool Software’s Object
Info window.

 While viewing the HelloFullDuplexSerial object with the Propeller Tool, click Run, then
point at Compile Current, and select View info (F8). The Object Info window shown in
Figure 15 should appear.

 Look for the text in the rightmost column’s, 3rd and 4th lines. The hexadecimal ASCII codes
occupy memory addresses 0038 through 004F with the 0 terminator at address 50.

Figure 15: Finding a Text String in Memory

Displaying Values
Take another look at the FullDuplexSerial object in documentation mode. (See Figure 14 on page
19.) Notice that it also has a dec method for displaying decimal numbers. This method takes a value
and converts it to the characters that represent the value before transmitting them serially to the
Parallax Serial Terminal. It’s especially useful for displaying sensor readings and values stored by
variables for figuring out program bugs.

 Modify the HelloFullDuplexSerial object’s test messages declaration by adding a local
variable declaration:

 PUB TestMessages | counter

 Modify the the HelloFullDuplexSerial object’s repeat loop as shown here:

 repeat
 Debug.str(String(13, "counter = "))
 Debug.dec(counter++)
 waitcnt(clkfreq/5 + cnt)

 Use the Propeller Tool software to load the modified version of HelloFullDuplexSerial into
the Propeller chip's EEPROM (F11).

 Click Parallax Serial Terminal’s Enable button, and verify that the updated value of counter is
displayed several times each second. You can press and release the PE Platform's Reset
button to start the count at 0 again.

Look
here

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 21 of 50

Sending Values from Parallax Serial Terminal to the Propeller Chip
The FullDuplexSerial object does not have a corresponding GetDec method to complement dec. So,
as written, you cannot use FullDuplexSerial to receive a value from Parallax Serial Terminal. A
modified version of FullDuplexSerial named FullDuplexSerialPlus is included with the .spin files that
accompany this lab. The FullDuplexSerialPlus object has all the same methods as FullDuplexSerial,
plus a few more, like GetDec, GetBin, and GetHex. The additional methods can be used to receive the
character representations of decimal, hexadecimal and binary numbers from Parallax Serial Terminal,
convert them to their corresponding numeric values, and store them in variables. Since
FullDuplexSerialPlus also has the same methods as FullDuplexSerial, calls like Debug.start,
Debug.str, and Debug.dec still yield the same results.

 FullDuplexSerialPlus is bundled with this lab, and a copy of the code is also in Appendix:
FullDuplexSerialPlus.spin on page 44.

Remember that an object can be declared so long as it’s either in the same folder with the object that’s
referencing it, or in the same folder as the Propeller Tool software. In this case, the
FullDuplexSerialPlus object is in the same folder with this lab’s example objects. So, it can be
declared in a parent object’s OBJ block almost same way FullDuplexSerial was. The only difference
is that the parent object has to use the slightly different filename. So, instead of using a Debug :
FullDuplexSerial declaration, use Debug : FullDuplexSerialPlus.

 Open both the FullDuplexSerial and FullDuplexSerialPlus objects in Documentation mode.
 Use the Object Interface section to see which methods have been added - there are 6, and the

method names are capitalized.
 Check the documentation for the new methods. The documentation comments for the other

methods were expanded too; look them over as well.

Test Application – EnterAndDisplayValues.spin
The EnterAndDisplayValues object below waits for you to enter a value into Parallax Serial
Terminal’s transmit windowpane. Then, it converts the characters that represent the value into a
numeric equivalent and displays them in decimal, hexadecimal and binary format in Parallax Serial
Terminal.

 shows an example of testing the
EnterAndDisplayValues object with
Parallax Serial Terminal. The object makes
the Propeller Chip send prompts that are
displayed in Parallax Serial Terminal’s
receive windowpane. After typing a
decimal value into the transmit
windowpane and pressing enter, the
Propeller chip converts the string of
characters to its corresponding value, stores
it in a variable, and then uses the
FullDuplexSerialPlus object to send back
the decimal, hexadecimal, and binary
representations of the value.

 Use the Propeller Tool to load EnterAndDisplayValues into EEPROM (F11) and immediately
click the Parallax Serial Terminal’s Enable button.

Figure 16: Testing for Input Values

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 22 of 50

 The application gives you two seconds to connect Parallax Serial Terminal by clicking the
Enable button. If no “Enter a decimal value:” prompt appears, you may not have clicked the
Enable button in time. You can restart the application by pressing and releasing the PE
Platform’s reset button. You can also reset the Propeller chip from the terminal by checking
and unchecking the DTR line.

 Follow the prompts in Parallax Serial Terminal. Start with 131071 and verify that it displays
the values shown in .

The Propeller represents negative numbers with twos complement.

 Try entering these values: 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, and discern the pattern of twos
complement.

The Propeller chip’s long variables store 32 bit signed integer values, ranging from -2,147,483,648 to
2,147,483,647.

 Try entering 2,147,483,645, 2,147,483,646, and 2,147,483,647 and examine the equivalent
hexadecimal and binary values.

 Also try it with -2,147,483,646, -2,147,483,647, and -2,147,483,648.

'' File: EnterAndDisplayValues.spin
'' Messages to/from Propeller chip with Parallax Serial Terminal.
'' Prompts you to enter a value, and displays the value in decimal,
'' binary, and hexadecimal formats.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TwoWayCom | value

 ''Test Parallax Serial Terminal number entry and display.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(16)

 repeat

 Debug.Str(String("Enter a decimal value: "))
 value := Debug.getDec
 Debug.Str(String(13, "You Entered", 13, "--------------"))
 Debug.Str(String(13, "Decimal: "))
 Debug.Dec(value)
 Debug.Str(String(13, "Hexadecimal: "))
 Debug.Hex(value, 8)
 Debug.Str(String(13, "Binary: "))
 Debug.Bin(value, 32)
 repeat 2
 Debug.Str(String(13))

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 23 of 50

Debug.dec vs. Debug.getDec
The FullDuplexSerialPlus object’s GetDec method buffers characters it receives form Parallax Serial
Terminal until the enter key is pressed. Then, it converts the characters into their corresponding
decimal value, and returns that value. The EnterAndDisplayValues object’s command value :=
Debug.GetDec copies the result of the GetDec method call to the value variable. The command
Debug.Dec(value) displays the value in decimal format. The command Debug.Hex(value, 8)
displays the value in 8 character hexadecimal format, and the command Debug.Bin(value, 32)
displays it in 32 character binary format.

Hex and Bin Character Counts
If you’re sure you’re only going to be displaying positive word or byte size variables, there’s no
reason to display all 32 bits of a binary value. Since word variables have 16 bits, and byte variables
only have 8 bits, there’s no reason to display 32 bits when examining those smaller variables.

 Make a copy of EnterAndDisplayValues and change the command Debug.Bin(value, 32) to
Debug.Bin(value, 16).

 Remove the local variable | value from the TwoWayCom method declaration (remember that
local variables are always 32 bits; whereas global variables can be declared long, word, or
byte.)

 Add a VAR block to the object, declaring value as a word variable.
 Re-run the program, entering values that range from 0 to 65535.
 What happens if you enter 65536, 65537, and 65538? Try repeating this with the unmodified

object, to see the missing bits.

Each hexadecimal digit takes 4 bits. So, it will take 4 digits to display all possible values in a word
variable (16-bits).

 Modify the copy of EnterAndDisplayValues so that it only displays 4 hexadecimal digits.

Terminal I/O Pin Input State Display
The Parallax Serial Terminal display provides a
convenient means for testing sensors to make
sure that both the program and wiring are
correct. The DisplayPushbuttons object below
displays the values stored in ina[23..21] in
binary format as shown in Figure 17. A 1 in a
particular slot indicates the pushbutton is
pressed; a 0 indicates the pushbutton is not
pressed. Figure 17 shows an example where the
P23 and P21 pushbuttons are pressed.

The DisplayPushbuttons object uses the command Debug.Bin(ina[23..21], 3) to display the
pushbutton states. Recall from the I/O and Timing lab that ina[23..21] returns the value stored in
bits 23 through 21 of the INA register. This result gets passed as a parameter to the
FullDuplexSerialPlus object’s bin method with the command Debug.bin(ina[23..21], 3). Note that
since there are only 3 bits to display, the bin method’s bits parameter is 3, which in turn makes the
method display only 3 binary digits.

Figure 17: Serial Terminal Pushbutton State
Display

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 24 of 50

Since the FullDuplexSerialPlus object is running a serial driver in another cog, it is possible to
transfer messages to it faster than the baud rate will allow it to send. The waitcnt(clkfreq/100 +
cnt) command paces the updated values every 1/100 of a second to prevent buffer overflow.

 Use the Propeller Tool to load the DisplayPushbuttons object into EEPROM (F11), and
immediately click the Parallax Serial Terminal’s Enable button. Again, if you don’t click it
with 2 seconds after the download, just press the PE Platform’s reset button to restart the
program.

 Press and hold various combinations of the P23..P21 pushbuttons and verify that the display
when they are pressed.

{{
DisplayPushbuttons.spin
Display pushbutton states with Parallax Serial Terminal.

Pushbuttons
──
 3.3 V 3.3 V 3.3 V

 │ │ │
 ┤Pushbutton ┤Pushbutton ┤Pushbutton
 │ │ │
P21 ──┫ P22 ──┫ P23 ──┫
 │ │ │
 10 kω 10 kω 10 kω
 │ │ │

 GND GND GND
──
}}

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TerminalPushbuttonDisplay

 ''Read P23 through P21 pushbutton states and display with Parallax Serial Terminal.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)
 Debug.str(String("Pushbutton States", Debug#CR))
 Debug.str(String("-----------------", Debug#CR))

 repeat
 Debug.tx(Debug#CRSRX)
 Debug.tx(0)
 Debug.Bin(ina[23..21], 3)
 waitcnt(clkfreq/100 + cnt)

Accessing Constants in Objects with ObjectNickname#OBJECT_CONSTANT
You may have noticed that the expression Debug#CR replaced the number 13 for a carriage return.
(See the left side of Figure 18.) That’s because the constants for the Parallax Serial Terminal’s
control characters are declared in the FullDuplexSerialPlus object. You can see them in the

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 25 of 50

FullDuplexSerialPlus object documentation on the right side of Figure 18. Instead of using the
numbers or declaring them a second time in the top level object, DisplayPushbuttons uses
ObjectNickname#OBJECT_CONSTANT notation to specify control characters that get sent to
Parallax Serial Terminal.

 Examine the FullDuplexSerialPlus object in both Full Source and Documentation mode.
 Make a note of how the constants are declared, and how they are documented with double-

apostrophe '' comments.

Figure 18: DisplayPushbuttons Full Source (left) and FullDuplexSerialPlus Documentation (right)

Terminal LED Output Control
Testing various actuators can also be important during prototyping. The TerminalLedControl object
demonstrates a convenient means of setting output states for testing various output circuits. (See
Figure 19.) While this example uses LED indicator lights, the I/O pin output signals could just as
easily be sent to other chips’ input pins, or inputs to circuits that control high current outputs such as
solenoids, relays, DC motors, heaters, lamps, etc.

Figure 19: Entering Binary Patterns that Control I/O Pin Output States

The command outa[9..4] := Debug.GetBin calls the FullDuplexSerialPlus object’s GetBin method.
This method returns the value that corresponds to the binary characters (ones and zeros) you enter
into the Parallax Serial Terminal’s transmit windowpane. The value the GetBin method returns is
assigned to outa[9..4], which makes the corresponding LED pattern light.

 Use the Propeller Tool to Load TerminalLedControl into EEPROM (F11), and immediately
click the Parallax Serial Terminal’s Enable button.

 Try entering the values shown in Figure 19 into the transmit windowpane, and verify that the
corresponding LED patterns light.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 26 of 50

{{
TerminalLedControl.spin

Enter LED states into Parallax Serial Terminal. Propeller chip receives the states and
lights the corresponding LEDs.

 LED SCHEMATIC
 ──────────────────────
 (all)
 100 ω LED
 P4 ──────────┐
 │
 P5 ──────────┫
 │
 P6 ──────────┫
 │
 P7 ──────────┫
 │
 P8 ──────────┫
 │
 P9 ──────────┫

 GND
 ──────────────────────
}}

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"

PUB TerminalLedControl

 ''Set/clear I/O pin output states based binary patterns
 ''entered into Parallax Serial Terminal.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)
 dira[4..9]~~

 repeat

 Debug.Str(String("Enter 6-bit binary pattern: "))
 outa[4..9] := Debug.getBin

The DAT Block and Address Passing
One of the DAT block’s uses is for storing sequences of values (including characters). Especially for
longer messages and menu designs, keeping all the messages in a DAT block can be a lot more
convenient than using string("...") in the code.

 The DAT Block can also be used to store assembly language code that gets launched into a cog. For an
example, take a look at FullDuplexSerial in Full Source view mode. Assembly language techniques will be the
subject of other labs.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 27 of 50

Below is the DAT block from the next example object, TestMessages. Notice how each line has a
label, a size, and a sequence of values (characters in this case).

 DAT

 MyString byte "This is test message number: ", 0
 MyOtherString byte ", ", Debug#CR, "and this is another line of text.", 0
 BlankLine byte Debug#CR, Debug#CR, 0

Remember that the string directive returns the starting address of a string so that the
FullDuplexSerial object’s str method can start sending characters, and then stop when it encounters
the zero termination character. With DAT blocks, the zero termination character has to be manually
added. The name of a given DAT block directive makes it possible to pass the starting address of the
sequence using the @ operator. For example, @MyString returns the address of the first character in the
MyString sequence. So, Debug.str(@myString) will start fetching and transmitting characters at the
address of the first character in MyString, and will stop when it fetches the 0 that follows the
"…number: " characters.

 Use the Propeller Tool to load the TestMessages object into EEPROM (F11), and then
immediately click the Parallax Serial Terminal’s Enable button.

 Verify that the three messages are displayed once every second.

'' TestMessages.spin
'' Send text messages stored in the DAT block to Parallax Serial Terminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"

PUB TestDatMessages | value, counter

 ''Send messates stored in the DAT block.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)

 repeat
 Debug.Str(@MyString)
 Debug.Dec(counter++)
 Debug.Str(@MyOtherString)
 Debug.Str(@BlankLine)
 waitcnt(clkfreq + cnt)

DAT

 MyString byte "This is test message number: ", 0
 MyOtherString byte ", ", Debug#CR, "and this is another line of text.", 0
 BlankLine byte Debug#CR, Debug#CR, 0

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 28 of 50

Expanding the DAT Section and Accessing its Elements
Here is a modified DAT section. The text messages have different content and different label names.
In addition, there is a ValueList with long elements instead of byte elements.

DAT

 ValTxt byte Debug#CR, "The value is: ", 0
 ElNumTxt byte ", ", Debug#CR, "and it's element #: ", 0
 ValueList long 98, 5282, 299_792_458, 254, 0
 BlankLine byte Debug#CR, 0

Individual elements in the list can be accessed with long, word, or byte. For example,
long[@ValueList] would return the value 98, the first long. There’s also an optional offset that can be
added in a second bracket for accessing successive elements in the list. For example:

value := long[@ValueList][0] ' copies 98 to the value variable
value := long[@ValueList][1] ' copies 5282 to the value variable
value := long[@ValueList][2] ' copies 299_792_458 to value

The long, word, and byte keywords have different uses in different types of blocks.

In VAR blocks, long, word and byte can be used to declare three different size variables. In DAT blocks,
long, word, and byte can be used to declare the element size of lists. In PUB and PRI methods, long,
word, and byte are used to retrieve values at certain addresses.

 Make a copy of the TestMessages object, and replace the DAT section with the one above.

Replace the PUB section with the one shown below.

PUB TestDatMessages | value, index

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)

 repeat
 repeat index from 0 to 4
 Debug.Str(@ValTxt)
 value := long[@valueList][index]
 Debug.Dec(value)
 Debug.Str(@ElNumTxt)
 Debug.Dec(index)
 Debug.Str(@BlankLine)
 waitcnt(clkfreq + cnt)

 Test the modified object with the Propeller chip and Parallax Serial Terminal. Note how an
index variable is used in long[@ValueList][index] to return successive elements in the
ValueList.

The Float and FloatString Objects
Floating-point is short for floating decimal point, and it refers to values that might contain a decimal
point, preceded and/or followed by some number of digits. The IEEE754 single precision (32-bit)
floating-point format is supported by the Propeller Tool software and by the Float and FloatString
Propeller Library objects. This format uses a certain number of bits in a 32-bit variable for a
number’s significant digits, other bits to store the exponent, and a single bit to store the value’s sign.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 29 of 50

While calculations involving two single-precision floating-point values aren’t as precise as those
involving two 32-bit variables, it’s great when you have fractional values to the right of the decimal
point, including very large and small magnitude numbers. For example, while signed long variables
can hold integers from -2,147,483,648 to 2,147,483,647, single-precision floating-point values can
represent values as large as ±3.403×1038, or as small as ±1.175×10−38.

Another lab will delve further into floating-point mechanics and applications. For this lab, it’s just
important to know that the Propeller Library has objects that can be used to process floating-point
values. TerminalFloatStringTest demonstrates some basic floating-point operations. First, a := 1.5
and b := pi are using the Propeller Tool software’s ability to recognize floating point values to pre-
assign the floating-point version of 1.5 to the variable a and pi (3.141593) to b. Then, it uses the
FloatMath object to add the floating-point values stored by the variables a and b. Finally, it uses the
FloatString object to display the result, which gets stored in c.

 Use the Propeller Tool to load the FloatStringTest object into EEPROM (F11), and then
immediately click the Parallax Serial Terminal’s Enable button.

 Verify that the Parallax Serial Terminal’s receive windowpane displays 1.5 + Pi = 4.641593.

''FloatStringTest.spin
''Solve a floating point math problem and display the result with Parallax Serial
''Terminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"
 fMath : "FloatMath"
 fString : "FloatString"

PUB TwoWayCom | a, b, c

 '' Solve a floating point math problem and display the result.

 Debug.start(31, 30, 0, 57600)
 Waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)

 a := 1.5
 b := pi

 c := fmath.FAdd(a, b)

 Debug.str(String("1.5 + Pi = "))

 debug.str(fstring.FloatToString(c))

Objects that Use Variable Addresses
Like elements in DAT blocks, variables also have addresses in RAM. Certain objects are designed to
be started with variable address parameters. They often run in separate cogs, and either update their
outputs based on a value stored in the parent object’s variable(s) or update the parent object’s
variables based on measurements or incoming data, or both.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 30 of 50

AddressBlinker is an example of an object that fetches values from its parent object’s variables. Note
that its Start method has parameters for two address values, pinAddress and rateAddress. The
parent object has to pass the AddressBlinker object’s Start method the address of a variable that
stores the I/O pin number, and another that stores the rate. The Start method relays these parameters
to the Blink method via the method call in the cognew command. So, when the Blink method gets
launched into a new cog, it also receives copies of these addresses. Each time through the Blink
method’s repeat loop, it check’s the values stored in its parent object’s variables with pin :=

long[rateAddress] and rate := long[rateAddress]. Note that since the pinAddress and
rateAddress already store addresses, the @ operator is no longer needed.

 Examine the AddressBlinker object and pay careful attention to the variable interactions just
discussed.

'' File: AddressBlinker.spin
'' Example cog manager that watches variables in its parent object

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pinAddress, rateAddress) : success
''Start new blinking process in new cog; return True if successful.
''Parameters: pinAddress - long address of the variable that stores the I/O pin
'' rateAddress - long address of the variable that stores the rate

 Stop
 success := (cog := cognew(Blink(pinAddress, rateAddress), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PRI Blink(pinAddress, rateAddress) | pin, rate, pinOld, rateOld

 pin := long[pinAddress]
 rate := long[rateAddress]
 pinOld := pin
 rateOld := rate

 repeat
 pin := long[pinAddress]
 dira[pin]~~
 if pin <> pinOld
 dira[pinOld]~
 !outa[pin]
 pinOld := pin
 rate := long[rateAddress]
 waitcnt(rate/2 + cnt)

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 31 of 50

The AddressBlinkerControl object demonstrates one way of declaring variables, assigning their
values, and passing their addresses to an object that will monitor them, the AddressBlinker object in
this case. After it passes the addresses of its pin and rateDelay variables to AddressBlinker’s Start
method, the AddressBlinker object checks these variables between each LED state change. If the
value of either pin or rateDelay has changed, AddressBlinker detects this and updates the LED’s pin
or blink rate accordingly.

 Use the Propeller Tool to load the AddressBlinkerControl object into EEPROM (F11), and
then immediately click the Parallax Serial Terminal’s Enable button.

 Enter the pin numbers and delay clock ticks shown in Figure 20 into the Parallax Serial
Terminal’s transmit windowpane, and verify that the application correctly selects the LED
and determines its blink rate.

As soon as you press enter, the AddressBlinker object will update based on the new value stored in
the AddressBlinkerControl object’s pin or rateDelay variables.

Figure 20: Entering Pin and Rate into Serial Terminal

'' AddressBlinkerControl.spin
'' Enter LED states into Parallax Serial Terminal and send to Propeller chip via
'' Parallax Serial Terminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug: "FullDuplexSerialPlus"
 AddrBlnk: "AddressBlinker"

VAR

 long pin, rateDelay

PUB UpdateVariables

 '' Update variables that get watched by AddressBlinker object.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 32 of 50

 Debug.tx(Debug#CLS)

 pin := 4
 rateDelay := 10_000_000

 AddrBlnk.start(@pin, @rateDelay)

 dira[4..9]~~

 repeat

 Debug.Str(String("Enter pin number: "))
 pin := Debug.getDec
 Debug.Str(String("Enter delay clock ticks:"))
 rateDelay := Debug.getDec
 Debug.Str(String(Debug#CR))

Displaying Addresses
In AddressBlinkerControl, the values of pin and rateDelay can be displayed with Debug.Dec(pin)
and Debug.Dec(rateDelay). The addresses of pin and rateDelay can be displayed with
Debug.Dec(@pin) and Debug.Dec(@rateDelay).

 Insert commands that display the addresses of the pin and rateDelay variables in Parallax
Serial Terminal just before the repeat loop starts, and display the value of those variables
each time they are entered. Note: The point of this exercise is to reinforce the distinction
between a variable’s contents and its address.

Passing Starting Addresses to Objects that Work with Variable Lists
Some objects monitor or update long lists of variables from another cog, in which case, they typically
have documentation that explains the order and size of each variable that the parent object needs to
declare. This kind of object’s Start method typically just expects one value, the starting address of
the list of variables in the parent object. The child object takes that one address and uses address
offsets to access the rest of the variables in the parent object’s list.

AddressBlinkerWithOffsets is an example of an object whose start method expects the starting
address of a variable list. Unlike AddressBlinker, its Start method just receives the address of the
parent object’s long variable that stores the pin value. Its documentation requires the long variable
storing the blink rate delay to be declared next, with no extra variables between.

Since the baseAddress parameter stores the address of the parent object’s variable that stores the pin
number, long[baseAddress][0] will access this value. Likewise, long[baseAddress][1] will access
the variable that stores the blink rate. That’s how this program fetches both variable values with just
one address parameter.

 Examine the AddressBlinkerWithOffsets object. Note how its start method requires a
baseAddress that it uses to find variables in its parent object that determine the pin and delay
in the blink rate.

 Consider how this could be applied to longer lists of variables using address offsets.

'' File: AddressBlinkerWithOffsets.spin
'' Example cog manager that watches variables in its parent object
'' Parent object should declare a long that stores the LED I/O pin number
'' followed by a long that stores the number of click ticks between each
'' LED state change. It should pass the address of the long that stores
'' the LED I/O pin number to the Start method.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 33 of 50

VAR
 long stack[10] 'Cog stack space
 byte cog 'Cog ID

PUB Start(baseAddress) : success
''Start new blinking process in new cog; return True if successful.
''
''baseAddress.......the address of the long variable that stores the LED pin number.
''baseAddress + 1...the address of the long variable that stores the blink rate delay.

 Stop
 success := (cog := cognew(Blink(baseAddress), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PRI Blink(baseAddress) | pin, rate, pinOld, rateOld

 pin := long[baseAddress][0]
 rate := long[baseAddress][1]
 pinOld := pin
 rateOld := rate

 repeat
 pin := long[baseAddress][0]
 dira[pin]~~
 if pin <> pinOld
 dira[pinOld]~
 !outa[pin]
 pinOld := pin
 rate := long[baseAddress][1]
 waitcnt(rate/2 + cnt)

Keep in mind that the point of this example is to demonstrate how a parent object can pass a base
address to a child object whose documentation requires a list of variables of specified sizes that hold
certain values and are declared in a certain order. The AddressBlinkerControlWithOffsets object
works with the AddressBlinkerWithOffsets object in this way to perform the same application
featured in the previous example, terminal controlled LED selection and blink rate. In keeping with
the AddressBlinkerWithOffsets object’s documentation, AddressBlinkerControlWithOffsets declares
a long variable to store pin, and the next long variable it declares is rateDelay. Then, it passes the
address of its pin variable to the AddressBlinkerControl object’s Start method.

In this object, the variable declaration long pin, rateDelay is crucial. If the order of these two
variables were swapped, the application wouldn’t work right. Again, that’s because the
AddressBlinkerWithOffsets object expects to receive the address of a long variable that stores the pin
value, and it expects the next consecutive long variable to store the rateDelay variable. Now, it’s
perfectly fine to declare long variables before and after these two. It’s just that pin and rateDelay
have to be long variables, and they have to be declared in the order specified by
AddressBlinkerWithOffsets. The starting address of the variable list also has to get passed to the
child object’s start method, in this case with AddrBlnk.start(@pin). Keep an eye open for this
approach in objects that are designed to work with long lists of variables in their parent objects.

 Test AddressBlinkerControlWtihOffsets and verify that it is functionally identical to
AddressBlinkerControl.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 34 of 50

 Examine how AddressBlinkerControlWithOffsets is designed in accordance with the
AddressBlinkerWithOffsets object’s documentation.

'' File: AddressBlinkerControlWithOffsets.spin
''
'' Another example cog manager that relies on an object that watches variables in its
'' parent object.
''
'' This one's start method only passes one variable address, but uses it as an anchor
'' for two variables that are monitored by AddressBlinkerWithOffsets.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

VAR

 long pin, rateDelay

OBJ

 Debug: "FullDuplexSerialPlus"
 AddrBlnk: "AddressBlinkerWithOffsets"

PUB TwoWayCom

 ''Send test messages and values to Parallax Serial Terminal.

 Debug.start(31, 30, 0, 57600)
 waitcnt(clkfreq*2 + cnt)
 Debug.tx(Debug#CLS)

 pin := 4
 rateDelay := 10_000_000

 AddrBlnk.start(@pin)

 dira[4..9]~~

 repeat

 Debug.Str(String("Enter pin number: "))
 pin := Debug.getDec
 Debug.Str(String("Enter delay for 'rate':"))
 rateDelay := Debug.getDec
 Debug.tx(Debug#CR)

Questions
1) What are the differences between calling a method in the same object and calling a method in

another object?
2) Does calling a method in another object affect the way parameters and return values are

passed?
3) What file location requirements have to be satisfied before one object can successfully

declare another object?
4) Where can object hierarchy in your application be viewed?
5) How are documentation comments included in an object?
6) How do you view an object's documentation comments while filtering out code?

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 35 of 50

7) By convention, what method names do objects use for launching methods into new cogs and
shutting down cogs?

8) What if an object manages one process in one new cog, but you want more than one instance
of that process launched in multiple cogs?

9) What is the net effect of an object’s Start method calling its Stop method?
10) How are custom characters for schematics, measurements, mathematical expressions and

timing diagrams entered into object comments?
11) What’s are the differences between a public and private method?
12) How do you declare multiple copies of the same object?
13) Where are Propeller Library objects stored?
14) How do you view Object Interface information
15) Where in RAM usage does the String directive cause character codes to be stored?
16) Why are zero-terminated strings important for the FullDuplexSerial object?
17) What should an object’s documentation comments explain about a method?
18) How can character strings be stored, other than with the String declaration?
19) What are the three different uses of the long, word and byte keywords in the Spin language?
20) What method does the Float object use to add two floating-point numbers?
21) What object’s methods can be used to display floating-point numbers as strings of characters?
22) Is the command a := 1.5 processed by the FloatMath object?
23) How does a variable’s address get passed to an object method’s parameter?
24) How can passing an address to an object’s method reduce the number of parameters required
25) Given a variable’s address, how does an object’s method access values stored in that variable

and variables declared after it?
26) Given an address, can an object monitor a variable value?
27) Given an address, can an object update the variable in another object using that address.

Exercises
1) Given the file MyLedObject.spin, write a declaration for another object in the same folder so

that it can use its methods. Use the nickname led.
2) Write a command that calls a method named on in an object nicknamed led. This method

requires a pin parameter (use 4).
3) List the decimal values of the Parallax Font characters required to write this expression in a

documentation comment f = T.
4) Declare a private method named calcArea that accepts parameters height and width, and

returns area.
5) Declare five copies of an object named FullDuplexSerial (which could be used for five

simultaneous serial communication bidirectional serial connections). Use the nickname uart.
6) Call the third FullDuplexSerial object’s str method, and send the string “Hello!!!”. Assume

the nickname uart.
7) Write a DAT block and include a string labeled Hi with the zero terminated string “Hello!!!”.
8) Write a command that calculates the circumference (c) of a circle given the diameter (d).

Assume the FloatMath object has been nicknamed f.
9) Given the variable c, which stores a floating-point value, pass this to a method in FloatString

that returns the address of a stored string representation of the floating point value. Store this
address in a variable named address. Assume the nickname fst.

Projects
1) The TestBs2IoLiteObject uses method calls that are similar to the BASIC Stamp

microcontroller’s PBASIC programming language commands. This object needs a Bs2IoLite
object with methods like high, pause, low, in, and toggle. Write an object that supports these
method calls using the descriptions in the comments.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 36 of 50

''Top File: TestBs2IoLiteObject.spin
''Turn P6 LED on for 1 s, then flash P5 LED at 5 Hz whenever the
''P21 pushbutton is held down.

OBJ

 stamp : "Bs2IoLite"

PUB ButtonBlinkTime | time, index

 stamp.high(6) ' Set P6 to output-high
 stamp.pause(1000) ' Delay 1 s
 stamp.low(6) ' Set P6 to output-low
 stamp.low(5) ' Set P5 to output-low
 repeat ' Repeat (like DO...LOOP in PBASIC)
 if stamp.in(21) ' If P21 pushbutton pressed
 stamp.toggle(5) ' Toggle P5 output state
 else
 stamp.low(5)
 stamp.pause(100) ' Delay 0.1 s before repeat

2) Examine the Stack Length object in the Propeller Library, and the Stack Length Demo in the
Propeller Library Demo folders. Make a copy of Stack Length Demo.spin, and modify it to
test the stack space required for launching the Blinker object’s Blink method (from the
beginning of this lab) into a cog. Create a Parallax Serial Terminal connection based on
StackLenthDemo’s documentation to display the result. NOTE: The instructions for using
the Stack Length object are hidden in its THEORY OF OPERATION comments, which are
visible in documentation view mode.

3) Some applications will have a clock running in a cog for timekeeping. Below is a terminal

display that gets updated each time the PE Platform’s P23 pushbutton is pressed and released.

The Parallax Serial Terminal gets updated by the TerminalButtonLogger object below. There
are two calls to the TickTock object. The first is call is Time.Start(0, 0, 0, 0), which
initializes the TickTock object’s day, hour, minute, and second variables. The second method
call is Time.Get(@days, @hours, @minutes, @seconds). This method call passes the TickTock
object the addresses of the TerminalButtonLogger object’s days, hours, minutes, and seconds
variables. The TickTock object updates these variables with the current time.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 37 of 50

Your task in this project is to write the TickTock object that works with the
TerminalButtonLogger object. Make sure to use the second counting technique from the
GoodTimeCount method from the I/O and Timing lab.

'' TerminalButtonLogger.spin
'' Log times the button connected to P23 was pressed/released in
'' Parallax Serial Terminal.

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ

 Debug : "FullDuplexSerialPlus"
 Button : "Button"
 Time : "TickTock"

VAR

 long days, hours, minutes, seconds

PUB TestDatMessages

 Debug.start(31, 30, 0, 57600) ' Start FullDuplexSerialPlus object.
 waitcnt(clkfreq*3 + cnt) ' Wait for three seconds.
 Debug.tx(Debug#CLS)

 Time.Start(0, 0, 0, 0) ' Start the TickTock object and initialize
 ' the day, hour, minute, and second.
 Debug.Str(@BtnPrompt) ' Display instructions in Parallax Serial
Terminal
 repeat

 if Button.Time(23) ' If button pressed.
 ' Pass variables to TickTock object for update.
 Time.Get(@days, @hours, @minutes, @seconds)
 DisplayTime ' Display the current time.

PUB DisplayTime

 Debug.tx(Debug#CR)
 Debug.Str(String("Day:"))
 Debug.Dec(days)
 Debug.Str(String(" Hour:"))
 Debug.Dec(hours)
 Debug.Str(String(" Minute:"))
 Debug.Dec(minutes)
 Debug.Str(String(" Second:"))
 Debug.Dec(seconds)

DAT

BtnPrompt byte Debug#CLS, "Press/release P23 pushbutton periodically...", 0

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 38 of 50

Question Solutions
1) A method call in the same object just uses the method’s name. A call to a method in another

object uses a nickname that was given to the object in OBJ block, then a dot, then the
method’s name. So the difference is instead of just using MethodName, it’s
ObjectNickname.MethodName.

2) No. Parameters are passed and returned the same way they would in a method in the same
object.

3) The object that’s getting declared has to either be in the same folder with the object that’s
declaring it, or in the same folder with the Propeller Tool software.

4) In the Object View pane, which can be viewed in the Object Info window (F8), and also in
the upper-left corner of the Propeller Tool software’s Explorer pane.

5) Two apostrophes can be placed to the left of a comment that should appear in the Propeller
Tool software’s documentation view. A block of documentation text can be defined with
double-braces {{documentation comments}}.

6) By clicking the Documentation radio button above the code.
7) Method names Start and Stop.
8) Declare multiple copies of the object in the OBJ section, and call each of their Start methods.
9) If the process the object manages is already running in another cog, the call to the Stop

method shuts it down before launching the process into a new cog.
10) By clicking on characters in the Propeller Tool Character Chart.
11) Public methods are declared with PUB, private with PRI. Public methods can be called by

commands in other objects; private methods can only be called from within the same object.
12) Declare multiple copies of the same object by declaring an object array. For example, the

command nickname[3] : ObjectName declares three copies of ObjectName, nickname[0],
nickname[1], and nickname[2]. Note that it doesn’t actually make extra copies of the object
code. Each instance still uses the same copy of the Spin code that is loaded into the Propeller
chip.

13) They are stored in the same folder with the Propeller Tool software .exe file.
14) To view the Object Interface information, click the Documentation radio button, and the

Propeller Tool software automatically generates that information and displays it along with
the documentation comments.

15) In the Program codes.
16) Given a start address in RAM, the FullDuplexSerial object’s Str method fetches and

transmits characters until it fetches a zero.
17) Documentation comments should explain what the method does, its parameters (if any) and

its return value.
18) Character strings and other lists of values can be stored in an object’s DAT section.
19) They are used to (1) declare variables in VAR blocks, (2) declare list element sizes in DAT

blocks, and (3) return values stored at given addresses within PUB and PRI blocks.
20) The Float object uses FAdd to add two floating-point numbers.
21) What object’s methods can be used to display floating-point numbers as strings of characters?

FloatString.
22) No, the Propeller Tool packs 1.5 into floating-point format at compile time and stores it with

the program byte codes. The command a := 1.5 copies the value into a variable.
23) A variable’s address get passed to an object method’s parameter with the @ operator. Instead

of this format: ObjectNickname.MethodName(variableName), use the following format:
ObjectNickname.MethodName(@variableName).

24) An object can declare a list of variables in a certain order, and then assign them each values
that the object will use. Then, the address of the first variable in the list can be passed to the
object’s method.

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 39 of 50

25) The object will use either long, word or byte and the address. For example, if the address is
passed to a parameter named address, the object can access the value stored by the variable
with long[address][0] or just long[address]. To store the variable declared immediately to
the right of the variable at address, long[address][1] can be used. For the second variable to
the right, long[address][2] can be used, and so on.

26) Yes. This can be useful at times, because the parent object can simply update a variable
value, and an object running another process will automatically update based on that value.

27) Yes. This comes in handy when a process is running in another cog, and the parent object
needs one or more of its variables to be automatically updated by the other process.

Exercise Solutions
1) Solution:

led : "MyLedObject"

2) Solution:
led.On(4)

3) With the aid of the Propeller Tool software’s Character Chart: 102, 32, 61, 32, 84, 22.

4) Solution:
PRI calcArea(height, width) : area

5) Solution:
Uart[5] : "FullDuplexSerial"

6) Solution:
uart[2].str(String("Hello!!!"))

7) Solution:
DAT
 Hi byte “Hello!!!”, 0

8) Solution:

c := f.fmul(d, pi)

9) Solution:
address := fst(c)

Project Solutions
1) Example Object:

{{
Bs2IoLite.spin

This object features method calls similar to the PBASIC commands for the BASIC
Stamp
2 microcontroller, such as high, low, in0 through in15, toggle, and pause.

}}

PUB high(pin)
''Make pin output-high.

 outa[pin]~~
 dira[pin]~~

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 40 of 50

PUB low(pin)
''Make pin output-low

 outa[pin]~
 dira[pin]~~

PUB in(pin) : state
{{Return the state of pin.
If pin is an output, state reflects the
output signal. If pin is an input, state will be 1 if the voltage
applied to pin is above 1.65 V, or 0 if it is below.}}

 state := ina[pin]

PUB toggle(pin)
''Change pin's output state (high to low or low to high).

 !outa[pin]

PUB pause(ms) | time
''Make the program pause for a certain number of ms. This applies to
''the cog making the call. Other cogs will not be affected.

 time := ms * (clkfreq/1000)
 waitcnt(time + cnt)

2) For modifying Parallax Serial Terminal, save a copy of PropellerCOM under a new name,

such as TestPropellerStack.ht. Change the Parallax Serial Terminal’s Baud Rate from 57600
to 19200.

The modified Stack Length Demo object below has several changes. The code below the
Code/Object Being Tested for Stack Usage heading was replaced with the Blinker object
code. The Blinker object’s stack was variable array was increased to 32 longs. Then, in the
Temporary Code to Test Stack Usage section, the start method call was modified to work
with the Blinker object.

Run the modified Stack Length Demo object below to test the stack required by the Blink
method for launching into another cog. After the Propeller Tool has completed its download,
you will have 2 seconds to connect Parallax Serial Terminal. The result should be 9.

Since the result is 9 instead of 10 predicted by the Methods lab, this project exposes an error
in the Methods lab’s section entitled: “”How Much Stack Space for a Method Launched into
a Cog? ” The time local variable was removed from the Blink method, but not from the
discussion of how much stack space the Blink method requires.

{{
StackLengthDemoModified.spin

This is a modified version of Stack Length Demo object from the Propeller Library
Demos folder. This modified version tests the Propeller Education Kit Objects
lab's Blinker object's Blink method for stack space requirements. See Project #2
in the Objects lab for more information.
}}

{•••
 Temporary Code to Test Stack Usage
••}

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 41 of 50

CON
 _clkmode = xtal1 + pll16x 'Use crystal * 16 for fast serial
 _xinfreq = 5_000_000 'External 5 MHz crystal on XI & XO

OBJ
 Stk : "Stack Length" 'Include Stack Length Object

PUB TestStack
 Stk.Init(@Stack, 32) 'Initialize reserved Stack space (reserved below)
 start(4, clkfreq/10, 20) 'Exercise code/object under test
 waitcnt(clkfreq * 3 + cnt) 'Wait ample time for max stack usage
 Stk.GetLength(30, 19200) 'Transmit results serially out P30 at 19,200 baud

{•••
Code/Object Being Tested for Stack Usage
••}

{{
File: Blinker.spin
Example cog manager for a blinking LED process.

SCHEMATIC
───────────────────────────────
 100 ω LED
 pin ──────────┐

 GND
───────────────────────────────
}}

VAR
 long stack[32] 'Cog stack space
 byte cog 'Cog ID

PUB Start(pin, rate, reps) : success
{{Start new blinking process in new cog; return True if successful.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}
 Stop
 success := (cog := cognew(Blink(pin, rate, reps), @stack) + 1)

PUB Stop
''Stop blinking process, if any.

 if Cog
 cogstop(Cog~ - 1)

PUB Blink(pin, rate, reps)
{{Blink an LED circuit connected to pin at a given rate for reps repetitions.

Parameters:
 pin - the I/O connected to the LED circuit → see schematic
 rate - On/off cycle time is defined by the number of clock ticks
 reps - the number of on/off cycles
}}

 dira[pin]~~
 outa[pin]~

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 42 of 50

 repeat reps * 2
 waitcnt(rate/2 + cnt)
 !outa[pin]

3) This solution uses global variables for days, hours, minutes, and seconds, and the

GoodTimeCount method updates all four values. It would also be possible to just track
seconds, and use other methods to convert to days, hours, etc.

''File: TickTock.spin

VAR

 long stack[50]
 byte cog
 long days, hours, minutes, seconds

PUB Start(setDay, setHour, setMinutes, setSeconds) : success
{{
Track time in another cog.

 Parameters - starting values for:
 setDay - day
 setHour - hour
 setMinutes - minute
 setSeconds - second
}}

 days := setDay
 hours := setHour
 minutes := setMinutes
 seconds := setSeconds

 Stop
 cog := cognew(GoodTimeCount, @stack)
 success := cog + 1

PUB Stop
''Stop counting time.

 if Cog
 cogstop(Cog~ - 1)

PUB Get(dayAddr, hourAddr, minAddr, secAddr) | time
{{
Get the current time. Values are loaded into variables at the
addresses provided to the method parameters.

 Parameters:
 dayAddr - day variable address
 hourAddr - hour variable address
 minAddr - minute variable address
 secAddr - secondAddress
}}

 long[dayAddr] := days
 long[hourAddr] := hours
 long[minAddr] := minutes
 long[secAddr] := seconds

PRI GoodTimeCount | dT, T

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 43 of 50

 dT := clkfreq
 T := cnt

 repeat

 T += dT
 waitcnt(T)
 seconds ++

 if seconds == 60
 seconds~
 minutes++
 if minutes == 60
 minutes~
 hours++
 if hours == 24
 hours~
 days++

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 44 of 50

Appendix: FullDuplexSerialPlus.spin

'' From Parallax Inc. Propeller Education Kit - Objects Lab v1.1
{{
──
File: FullDuplexSerialPlus.spin
Version: 1.1
Copyright (c) 2008 Parallax, Inc.
See end of file for terms of use.

This is the FullDuplexSerial object v1.1 from the Propeller Tool's Library
folder with modified documentation and methods for converting text strings
into numeric values in several bases.

──
}}

CON ''
''Parallax Serial Terminal Control Character Constants
''──
 HOME = 1 ''HOME = 1
 CRSRXY = 2 ''CRSRXY = 2
 CRSRLF = 3 ''CRSRLF = 3
 CRSRRT = 4 ''CRSRRT = 4
 CRSRUP = 5 ''CRSRUP = 5
 CRSRDN = 6 ''CRSRDN = 6
 BELL = 7 ''BELL = 7
 BKSP = 8 ''BKSP = 8
 TAB = 9 ''TAB = 9
 LF = 10 ''LF = 10
 CLREOL = 11 ''CLREOL = 11
 CLRDN = 12 ''CLRDN = 12
 CR = 13 ''CR = 13
 CRSRX = 14 ''CRSRX = 14
 CRSRY = 15 ''CRSRY = 15
 CLS = 16 ''CLS = 16

VAR

 long cog 'cog flag/id

 long rx_head '9 contiguous longs
 long rx_tail
 long tx_head
 long tx_tail
 long rx_pin
 long tx_pin
 long rxtx_mode
 long bit_ticks
 long buffer_ptr

 byte rx_buffer[16] 'transmit and receive buffers
 byte tx_buffer[16]

PUB start(rxpin, txpin, mode, baudrate) : okay
 {{
 Starts serial driver in a new cog

 rxpin - input receives signals from peripheral's TX pin
 txpin - output sends signals to peripheral's RX pin
 mode - bits in this variable configure signaling

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 45 of 50

 bit 0 inverts rx
 bit 1 inverts tx
 bit 2 open drain/source tx
 bit 3 ignor tx echo on rx
 baudrate - bits per second

 okay - returns false if no cog is available.
 }}

 stop
 longfill(@rx_head, 0, 4)
 longmove(@rx_pin, @rxpin, 3)
 bit_ticks := clkfreq / baudrate
 buffer_ptr := @rx_buffer
 okay := cog := cognew(@entry, @rx_head) + 1

PUB stop

 '' Stops serial driver - frees a cog

 if cog
 cogstop(cog~ - 1)
 longfill(@rx_head, 0, 9)

PUB tx(txbyte)

 '' Sends byte (may wait for room in buffer)

 repeat until (tx_tail <> (tx_head + 1) & $F)
 tx_buffer[tx_head] := txbyte
 tx_head := (tx_head + 1) & $F

 if rxtx_mode & %1000
 rx

PUB rx : rxbyte

 '' Receives byte (may wait for byte)
 '' rxbyte returns $00..$FF

 repeat while (rxbyte := rxcheck) < 0

PUB rxflush

 '' Flush receive buffer

 repeat while rxcheck => 0

PUB rxcheck : rxbyte

 '' Check if byte received (never waits)
 '' rxbyte returns -1 if no byte received, $00..$FF if byte

 rxbyte--
 if rx_tail <> rx_head
 rxbyte := rx_buffer[rx_tail]
 rx_tail := (rx_tail + 1) & $F

PUB rxtime(ms) : rxbyte | t

 '' Wait ms milliseconds for a byte to be received
 '' returns -1 if no byte received, $00..$FF if byte

 t := cnt

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 46 of 50

 repeat until (rxbyte := rxcheck) => 0 or (cnt - t) / (clkfreq / 1000) > ms

PUB str(stringptr)

 '' Send zero terminated string that starts at the stringptr memory address

 repeat strsize(stringptr)
 tx(byte[stringptr++])

PUB getstr(stringptr) | index
 '' Gets zero terminated string and stores it, starting at the stringptr memory address
 index~
 repeat until ((byte[stringptr][index++] := rx) == 13)
 byte[stringptr][--index]~

PUB dec(value) | i

'' Prints a decimal number

 if value < 0
 -value
 tx("-")

 i := 1_000_000_000

 repeat 10
 if value => i
 tx(value / i + "0")
 value //= i
 result~~
 elseif result or i == 1
 tx("0")
 i /= 10

PUB GetDec : value | tempstr[11]

 '' Gets decimal character representation of a number from the terminal
 '' Returns the corresponding value

 GetStr(@tempstr)
 value := StrToDec(@tempstr)

PUB StrToDec(stringptr) : value | char, index, multiply

 '' Converts a zero terminated string representation of a decimal number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if char => "0" and char =< "9"
 value := value * 10 + (char - "0")
 if byte[stringptr] == "-"
 value := - value

PUB bin(value, digits)

 '' Sends the character representation of a binary number to the terminal.

 value <<= 32 - digits
 repeat digits
 tx((value <-= 1) & 1 + "0")

PUB GetBin : value | tempstr[11]

 '' Gets binary character representation of a number from the terminal
 '' Returns the corresponding value

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 47 of 50

 GetStr(@tempstr)
 value := StrToBin(@tempstr)

PUB StrToBin(stringptr) : value | char, index

 '' Converts a zero terminated string representaton of a binary number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if char => "0" and char =< "1"
 value := value * 2 + (char - "0")
 if byte[stringptr] == "-"
 value := - value

PUB hex(value, digits)

 '' Print a hexadecimal number

 value <<= (8 - digits) << 2
 repeat digits
 tx(lookupz((value <-= 4) & $F : "0".."9", "A".."F"))

PUB GetHex : value | tempstr[11]

 '' Gets hexadecimal character representation of a number from the terminal
 '' Returns the corresponding value

 GetStr(@tempstr)
 value := StrToHex(@tempstr)

PUB StrToHex(stringptr) : value | char, index

 '' Converts a zero terminated string representaton of a hexadecimal number to a value

 value := index := 0
 repeat until ((char := byte[stringptr][index++]) == 0)
 if (char => "0" and char =< "9")
 value := value * 16 + (char - "0")
 elseif (char => "A" and char =< "F")
 value := value * 16 + (10 + char - "A")
 elseif(char => "a" and char =< "f")
 value := value * 16 + (10 + char - "a")
 if byte[stringptr] == "-"
 value := - value

DAT

'***********************************
'* Assembly language serial driver *
'***********************************

 org
'
'
' Entry
'
entry mov t1,par 'get structure address
 add t1,#4 << 2 'skip past heads and tails

 rdlong t2,t1 'get rx_pin
 mov rxmask,#1
 shl rxmask,t2

 add t1,#4 'get tx_pin
 rdlong t2,t1

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 48 of 50

 mov txmask,#1
 shl txmask,t2

 add t1,#4 'get rxtx_mode
 rdlong rxtxmode,t1

 add t1,#4 'get bit_ticks
 rdlong bitticks,t1

 add t1,#4 'get buffer_ptr
 rdlong rxbuff,t1
 mov txbuff,rxbuff
 add txbuff,#16

 test rxtxmode,#%100 wz 'init tx pin according to mode
 test rxtxmode,#%010 wc
 if_z_ne_c or outa,txmask
 if_z or dira,txmask

 mov txcode,#transmit 'initialize ping-pong multitasking
'
'
' Receive
'
receive jmpret rxcode,txcode 'run chunk of tx code, then return

 test rxtxmode,#%001 wz 'wait for start bit on rx pin
 test rxmask,ina wc
 if_z_eq_c jmp #receive

 mov rxbits,#9 'ready to receive byte
 mov rxcnt,bitticks
 shr rxcnt,#1
 add rxcnt,cnt

:bit add rxcnt,bitticks 'ready next bit period

:wait jmpret rxcode,txcode 'run chunk of tx code, then return

 mov t1,rxcnt 'check if bit receive period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 test rxmask,ina wc 'receive bit on rx pin
 rcr rxdata,#1
 djnz rxbits,#:bit

 shr rxdata,#32-9 'justify and trim received byte
 and rxdata,#$FF
 test rxtxmode,#%001 wz 'if rx inverted, invert byte
 if_nz xor rxdata,#$FF

 rdlong t2,par 'save received byte and inc head
 add t2,rxbuff
 wrbyte rxdata,t2
 sub t2,rxbuff
 add t2,#1
 and t2,#$0F
 wrlong t2,par

 jmp #receive 'byte done, receive next byte
'
'
' Transmit
'

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 49 of 50

transmit jmpret txcode,rxcode 'run chunk of rx code, then return

 mov t1,par 'check for head <> tail
 add t1,#2 << 2
 rdlong t2,t1
 add t1,#1 << 2
 rdlong t3,t1
 cmp t2,t3 wz
 if_z jmp #transmit

 add t3,txbuff 'get byte and inc tail
 rdbyte txdata,t3
 sub t3,txbuff
 add t3,#1
 and t3,#$0F
 wrlong t3,t1

 or txdata,#$100 'ready byte to transmit
 shl txdata,#2
 or txdata,#1
 mov txbits,#11
 mov txcnt,cnt

:bit test rxtxmode,#%100 wz 'output bit on tx pin
 test rxtxmode,#%010 wc 'according to mode
 if_z_and_c xor txdata,#1
 shr txdata,#1 wc
 if_z muxc outa,txmask
 if_nz muxnc dira,txmask
 add txcnt,bitticks 'ready next cnt

:wait jmpret txcode,rxcode 'run chunk of rx code, then return

 mov t1,txcnt 'check if bit transmit period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 djnz txbits,#:bit 'another bit to transmit?

 jmp #transmit 'byte done, transmit next byte
'
'
' Uninitialized data
'
t1 res 1
t2 res 1
t3 res 1

rxtxmode res 1
bitticks res 1

rxmask res 1
rxbuff res 1
rxdata res 1
rxbits res 1
rxcnt res 1
rxcode res 1

txmask res 1
txbuff res 1
txdata res 1
txbits res 1
txcnt res 1
txcode res 1

Copyright © Parallax Inc. ● PE Lab: Objects v1.1 ● 5/5/2008 ● Page 50 of 50

{{
┌──┐
│ TERMS OF USE: MIT License │
├──┤
│Permission is hereby granted, free of charge, to any person obtaining a copy of this │
│software and associated documentation files (the "Software"), to deal in the Software │
│without restriction, including without limitation the rights to use, copy, modify, │
│merge, publish, distribute, sublicense, and/or sell copies of the Software, and to │
│permit persons to whom the Software is furnished to do so, subject to the following │
│conditions: │
│
│ │
│
│The above copyright notice and this permission notice shall be included in all copies │
│or substantial portions of the Software. │
│ │
│
│THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, │
│INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A │
│PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT │
│HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION │
│OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
└──┘
}}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

