
Stamp Applications no. 14 (April ’96):

When You Feel that Need for Speed:
Hotter Hardware and Swifter Software

Accelerating and Compiling PBASIC
And More Boolean Logic,
by Scott Edwards

THE STAMPS are no speed demons. Fortunately,
in most of the control-oriented applications for
which the Stamps are appropriate, speed is not
an issue.

But in some cases, speed is critical. In my
previous column on rotary encoders (October
’95) we discovered that at the BS1’s execution
rate of 2000 instructions per second (3000 for
the BS2), it simply could not keep up with the
pulses from a low-resolution rotary encoder
turned by hand. The solution was to use faster
hardware: a Counterfeit controller (BS1 clone;
Sources) accelerated to 8000 instructions per
second.

This month, we’re going to look at another
speed-critical application and see how dramatic
acceleration was achieved through changes in
software . Then we’ll look at a brand-new
compiler that puts the pedal to the metal by
generating assembly-language code from your
PBASIC programs. Finally, in our BASIC-for-
beginners series, we’ll examine PBASIC’s
Boolean logic operators and summarize their
uses in decision-making and bit manipulation.

Scanning LED Display. Almost two years ago,
I presented a project called the Picture Stick in
Electronics Now (Oct. ’94). The stick consists of a
microcontroller-driven array of 16 LEDs. When
you wave the stick through the air, viewers see

a two-dimensional image created by the rapidly
changing pattern of lights.

Recently I received e-mail from a high-school
instructor, Ralph Wallio of Indianola High
School (IHS), who wondered if the project could
be adapted to run on a spinning wheel and to
display text instead of individual frames of
graphics. I told him it could, but the
modification would require rewriting the
assembly language code for the project—
something he’d have to undertake himself. He
countered that it ought to be possible to create
his spinning text display with a 4x accelerated
Counterfeit (BS1 workalike in kit form;
Sources). I had my doubts.

I was wrong, having underestimated the
ingenuity and stick-to-it-iveness of Mr. Wallio
and his students.

Their first try met with my pessimistic
expectations, though. The main loop of the
program had to look up a series of values
representing columns of LEDs that made up a
message (“IHS AUDITORIUM CREW” in this
case); see figure 1. Here’s the code they used:

Display:
FOR B3=0 TO 86
 LOOKUP B3,(126,9,9,9,126,...),B4
 PINS=B4
NEXT

Stamp Applications no. 14, April 1996

2

Array of
7 LEDs

counterweight to
balance shaft
(not shown)

1000-rpm
motor

R O T A T I O N

By turning on different
patterns of LEDs as the
array spins, the program
writes a lighted message
in mid-air.

Figure 1. Spinning LED display required a fast program.

Variable B3 was used to pick one of 87 values
from a lookup table and store it in B4. Then B4
was copied to the pins of the PBASIC chip. The
IHSers measured the execution time of this loop
and found it to be 1.18 seconds at PBASIC’s
normal execution rate.

Their plan was to spin the LED array with a
1000-rpm motor. That’s 16.6 revs per second, or
about 60 milliseconds (ms) per revolution. The
program was about 20 times too slow!

Their ace in the hole was that the Counterfeit
can be accelerated 4x by substituting a faster
crystal. But the program would still miss the
mark by a factor of 5.

My first speedup suggestion was to eliminate
the step of copying B4 to PINS. After all, PINS
is a byte variable like any other, with the sole
exception that its bits protrude into the outside
world. I asked the IHS crew to change the
Lookup instruction to read:

 LOOKUP B3,(126,9,9,9,126,...),PINS

and recheck the timing. It improved only
modestly, to 1.14 seconds.

My next suggestion was more radical. Instead
of using the Lookup instruction, why not store
the data in EEPROM, and use Read to retrieve
it? My thought was that Lookup’s extra features
(error-detection, 16-bit values) might make it
slower than Read. I suggested:

EEPROM 0,(126,9,9,9,126...)
Display:
FOR B3=0 TO 86
 READ B3,PINS
NEXT

Paydirt! Timing improved to 0.160 seconds.
With the Counterfeit’s 4x hardware speedup
this would drop to 40 milliseconds, meeting the

Stamp Applications no. 14, April 1996

3

ULN2003

0

1

2

3

4

5

6

pins

7

1

2

16

3

15

4

14

5

13

6

12

7

11

10

8 9

100–
220Ω

LEDs

5—6 Vdc at up to 500mA
(4-pack of C or D cells)

10k

+5V

trigger switch
(may be Hall-effect
or optical switch)

Figure 2. Schematic of the scanning LED display.

60-ms requirement.
There are two lessons here. One is the specific

news that Read is dramatically faster than
Lookup. If you don’t need Lookup’s special
features, use Read. The other lesson is more
general: If you’re not getting the performance
you need from a program, the answer may lie in
changing your approach, rather than just
fiddling with the existing code.

Listing 1 is the finished program with the
EEPROM data pared down to just the first three
letters of the message, “IHS,” in the interest of
space. Figure 2 is the schematic. The purpose of
the trigger switch is to ensure that the LED
message always started at the same point in the
rotation of the array. This made the message
stable through successive spins of the array; just
like horizontal sync in a TV.

PBASIC Compiler. OK, so you can speed up
BASIC programs by increasing clock rate and
streamlining algorithms. What if you still need

more speed? Until very recently, you only choice
was to rewrite your code in assembly language
and program a microcontroller directly. This is a
bit more involved than working with the Stamps
or Counterfeit, because you need hardware to
burn the code into the chip, and gizmos like
simulator software or emulator hardware to get
your program debugged.

Now there’s a shortcut to assembly-language
program efficiency. Micro Engineering Labs
(Sources) sent me a prerelease sample of a
PBASIC compiler, introductory priced at $99.
This is software that runs on a PC and converts
PBASIC programs into assembly language.
Included software turns the assembly-language
code into an object file ready for programming
into a PIC16C84 (or other PIC16Cxx micro). You
need a PIC programmer to burn the object code
into a PIC, but Micro Engineering sells those,
too, starting at under $100, depending on the
options you select.

Compiled code is rarely as efficient as code

Stamp Applications no. 14, April 1996

4

written by a crafty assembly-language
programmer, but it beats the pants off
interpreted code. The Stamps are interpreters—
they store symbols representing your BASIC
program in an EEPROM. When your program
runs, the PBASIC controllers reads those
symbols, called tokens, one at a time. PBASIC
“interprets” their meanings, and performs the
required actions.

All this reading and interpreting takes time.
In fact, just reading the tokens out of the
EEPROM is the single worst bottleneck in the
process. This is where the compiled code that’s
burned directly into the PIC processor has a
tremendous advantage; reading internal
program memory is many times faster than
reading external EEPROM.

As an example, let’s look at the relative
execution rate of the BS1, BS2, 4x Turbo
Counterfeit, and compiled code running on a
PIC 16C84 at 4 MHz. Here’s the code we’ll use
as a benchmark:

again:
 b1 = b1 + 1 ' increment b1.
 toggle 0 ' toggle pin 0.
goto again ' repeat endlessly.

To determine how fast this code ran, I connected
a frequency counter to pin 0 of the micro being
tested. The higher the frequency, the faster the
micro. Here are the results:

BS1, 4 MHz 479 Hz
Counterfeit, 4 MHz 479 Hz
BS2, 20 MHz 689 Hz
Counterfeit, 16 MHz 1917 Hz
16C84, compiled, 4 MHz 7215 Hz

Compiled code running on a 16C84 runs 15
times as fast as the default BS1, and 10.5 times
the speed of a BS2.

Another advantage of the compiler is larger
program size, depending on the number of
instructions used. For example, my DS1620
demo code, presented here in April ’95, occupied
about 90% of a Stamp’s program memory.
Compiled, it took just 613 of the PIC 16C84’s
available 1024 instruction words of program

memory.
A common worry with compilers is

compatibility; will compiled code behave the
same as the original? I tested half a dozen
PBASIC programs of moderate to high
complexity, and could find no compatibility
problems. The compiler documentation does
warn that some adjustments to the timing of
PBASIC programs may be required to cope with
the blistering speed of the compiled code.

BASIC for Beginners. The last couple of
installments we’ve been looking at decision-
making with Boolean logic. We’ve discovered
that AND and OR have very precise meanings
that can be used to specify the results of
IF/THEN instructions under a range of possible
conditions.

This time we’re going to expand on those
ideas, seeing how logic operators work on bits.

You may have noticed that the terms AND
and OR turn up in a couple of places in the
PBASIC manual; first in IF/THEN, and again in
LET with the math operators. Only the AND
and OR used with LET are represented by
symbols, not words. Puzzling.

The logic operators listed under IF/THEN
alter the outcome of a decision, while those
under LET alter the contents of a variable.
Same idea; different application. And under the
heading LET, our buddies AND and OR are
joined by XOR (as well as variations with NOT,
which we’ll see later). Let’s take a look at how
these operators work on bits, starting with
AND.

AND (symbol: &)

first bit second bit result
0 0 0
0 1 0
1 0 0
1 1 1

You can test the correctness of this list, called a
“truth table,” by writing a little PBASIC
program:

let bit0 = 0
let bit1 = 1
let bit2 = bit0 & bit 1
debug bit2: end

Stamp Applications no. 14, April 1996

5

Try running the program several times with
different combinations of bit0 and bit1 until
you’ve convinced yourself of the truth of the
truth table.

Here are truth tables for the other operators:

OR (symbol: |)

first bit second bit result
0 0 0
0 1 1
1 0 1
1 1 1

XOR (exclusive OR; symbol: ^)

first bit second bit result
0 0 0
0 1 1
1 0 1
1 1 0

Where things really get interesting with the
logic operators is when you apply them to
groups of bits, like bytes and words. A byte is a
clump of eight bits, and PBASIC has 14 byte
variables named b0 through b13. In PBASIC, to
specify the bits of a byte, you precede the list of
1s and 0s with the symbol %. Using this
notation, let’s look at the effects of AND, OR,
and XOR on some sample data:

%00001111 AND %10101010 = %00001010
%00001111 OR %10101010 = %10101111
%00001111 XOR %10101010 = %10100101

The logic shown in the truth tables applies to
each pair of bits individually. In the AND
example, the rightmost pair of bits are 1 and 0,
so the resulting bit is 0, just like the truth table
shows. The second pair of bits from the right are
1 and 1, so the corresponding bit of the result is
1.

Let’s verify this with a PBASIC program:

let b0 = %00001111
let b1 = %10101010
let b2 = b0 & b1 ' AND the bytes.
let b3 = b0 & b1 ' OR the bytes.
let b4 = b0 & b1 ' XOR the bytes.
debug "AND result: " %b2

debug "OR result: " %b3
debug "XOR result: " %b4

The logic operators are good for more than just
mental exercise. Each has a classic application:

AND: The distinctive characteristic of AND is
that there’s only one way to get a 1 in the result
when you AND two values, and that’s by having
a 1 in that position of both input values. Put
another way, wherever there’s a 0 bit in one of
the input values, that bit in the output is
guaranteed to be 0. So programmers say that
AND is can strip or mask off particular bits of a
variable.

Look at the example above. The 0s in the
lefthand four bits changed those bits to 0s in the
result. The 1s in the righthand four bits
faithfully copied the bits of the other value
(1010) to the result.

OR: Where AND can clear selected bits to 0,
OR has the ability to set selected bits to 1. OR’s
truth table shows that if either or both bits
contain 1, the outcome will be 1. You can see
this effect in the example above.

XOR: This is an interesting operator. The
XOR of two bits is 1 if one or the other (but not
both) input bits is 1. One way to look at this is
that XOR allows you to selectively invert
particular bits—anywhere one value contains a
1, the result will be the opposite of the other bit.
1 XOR 1 = 0; 1 XOR 0 = 1. Any bit XORed with 0
is unchanged.

Another way of looking at XOR is as a test for
matching bit patterns. XORing two identical
bytes together yields a byte containing all 0s.
XORing two non-identical bytes together yields
a byte with 1s in the bit positions at which the
two input bytes are different. Very handy.

Variations with NOT. I mentioned that each
of the logic operators in PBASIC has a variation
with NOT; AND NOT, OR NOT and XOR NOT,
symbolized &/, |/, and ^/. The truth tables for
these guys are the same as shown above, but
with the result bits inverted (1 replaced by 0
and 0 by 1).

Summary. You’ve worked hard to understand
the logic operators, so here’s a reward: a tiny
program that creates a marquee-style chase

Stamp Applications no. 14, April 1996

6

light. Connect LEDs to the outputs (as shown in
the Button listing in the Counterfeit
Development System manual) and run the
following:

let dirs = %11111111
pins = %10101010
again:
 let pins = pins ^ %11111111
 pause 200
goto again

The program sets all pins to output (dirs=);
turns on every other pin (pins=), then enters a
loop marked by “again:” that XORs the pins
with byte consisting of all 1s. This has the effect
of inverting all of the output bits, creating the
marquee-flashing effect. After a 200-millisecond
pause, the again loop repeats.

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;

fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

The PBASIC compiler is available from Micro
Engineering Labs, Box 7532, Colorado Springs,
CO 80933; phone 719-520-5323; fax 719-520-
1867.

Send questions, suggestions, or requests for
future Stamp Applications to:
Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; e-mail (via Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
products and kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits is $69 and includes a 150-
page manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

Visa, Mastercard, and American Express
accepted for phone/fax orders. Personal checks
and money orders are welcome for mail orders.

Listing. Scanning LED Display

' Program: SCANLED.BAS (Scanning LED display developed by Ralph Wallio
' and his crew at Indianola High School)
' This is a partial listing of the scanning LED display program. I've
' shortened it to conserve space, since the majority of the program
' is EEPROM data making up the message "IHS AUDITORIUM CREW." Just
' the portion "IHS" is enough to convey the principle.

DIRS=%01111111 ' Bit 7 is input for trigger; the rest outputs.

' LED bit patterns forming the letters IHS.
EEPROM 0,(65,65,127,65,65,0,127,8,8,8,127,0,49,73,73,73,69)
' --------------- ------------- --------------
' I H S

' Wait until triggered before displaying bit patterns on LEDs.
Trigger_Loop: BUTTON 7,0,0,0,B2,1,Display
 GOTO Trigger_Loop

Display: FOR B3=0 TO 16 ' Get data from EEPROM.
 READ B3, PINS ' Copy each EEPROM byte to pins.
 PINS=0 ' Blank the LEDs.
 NEXT ' Get next byte of data.

 GOTO Trigger_Loop ' Done. Wait for next rotation.

