"7 ook ok ok ok ok o ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

""x Rotary Encoder v0.5 *
"' (C) 2005 Parallax, Inc. *

"7 ok sk o ok ok ok

VAR
byte Cog "Cog (ID+1) that is running Update
byte TotDelta "Number of encoders needing deta value support.
long Pos "Address of position buffer

PUB Start(StartPin, NumEnc, NumDelta, PosAddr): Pass

""Record configuration, clear all encoder positions and launch a continuous encoder-reading
cog.

"'PARAMETERS: StartPin = (0..63) 1st pin of encoder 1. 2nd pin of encoder 1 is StartPin+l.

Additional pins for other encoders are contiguous starting with
StartPin+2 but MUST NOT cross port boundry (31).

NumEnc = Number of encoders (1..16) to monitor.
NumDelta = Number of encoders (@..16) needing delta value support (can be less
than NumEnc) .
. PosAddr = Address of a buffer of longs where each encoder’s position (and deta
position, if any) is to be stored.
" "RETURNS: True if successful, False otherwise.
Pin := StartPin
TotEnc := NumEnc
TotDelta := NumDelta
Pos := PosAddr
Stop

longfill (Pos, @, TotEnc+TotDelta)
Pass := (Cog := cognew(@Update, Pos) + 1) > 0

PUB Stop

"'Stop the encoder-reading cog, if there is one.

if Cog > 0
cogstop (Cog-1)

PUB ReadDelta (EncID): DeltaPos
"'Read delta position (relative position value since last time read) of EncID.

DeltaPos := @ + -(EncID < TotDelta) * -long[Pos][TotEnc+EncID] + (long[Pos][TotEnc+EncID] :=
long[Pos][EncID])

"ok ok ok ok ok ok ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok o ok ok ok ok ok ok ok

* Encoder Reading Assembly Routine *
'************************************

DAT

"Read all encoders and update encoder positions in main memory.

"See ""Theory of Operation,’ below, for operational explanation.

"Cycle Calculation Equation:

" Ternms: SU = :Sample to :Update. UTI = :UpdatePos through :IPos. MMW = Main Memory

Write.

AMMN = After MMW to :Next.

‘Next to :Sample.

SU + UTI + MMW + (AMMN + NU + UTI + SH + MMW
+ (16 + 4 + 16

0

Pin, #$20
‘PinSrc, #%1
IPosAddr, #IntPos
:IClear, IPosAddr
Idx, TotEnc

0, #0

IPosAddr, #1
:IClear, IPosAddr
Idx, #:IClear

St2, ina

St2, Pin
IPosAddr, #IntPos

:IPos+@, IPosAddr
:IPos+1, IPosAddr
MPosAddr, PAR
Stl, St2

T1, St2

T1, #1

St2, inb

first encoder offset)

St2, Pin
Stl, St2
T1, St2
T1, BMask
T1, AMask
T2, Stl
T2, AMask
St1l, BMask

Stl, #1

Equation:
=92 + 16 +
= 144 + 50* (TotEnc-1)
org
Update test
muxc
for proper port
mov
position values
movd
pointer
mov
:IClear mov
add
movd
djnz
mov
pins
shr
:Sample mov
addresses
movd
movd
mov
mov
Stl = B1:A1)
mov
= B1:A1
shl
= Al:x
:PinSrc mov
St2 = B2:A2 left shifted by
shr
St2 = B2:A2)
xor
B1AB2:A14A2
xor
A1AB2: x
and
A1+B2:0
or
A1AB2:1
mov
B1AB2:A14A2
and
0:A1+A2
and
B1+B2:0
shr
0:B14B2
xor

0:A1+R24B14B2

T2, Stl

NU = :Next to :UpdatePos.

SH = Resync to Hub. NS =

(TotEnc-1) + AMMN + NS
*

) *
+6 + 8) (TotEne-1) + 16 + 12

we "Test for upper or lower port
"Adjust :PinSrc instruction

"Clear all internal encoder
set starting internal
for all encoders...
clear internal memory
increment pointer

loop for each encoder

"Take first sample of encoder

"Reset encoder position buffer

"Calc 2-bit signed offsets (
T1
T1
Sample encoders (
Adj for first encoder (
Stl =
1 =
T1 =
T1 =
T2 =
T2 =
Stl =
Stl =

T2 =

mov Stl, T2 ' Stl =
0:A1+B24B14R2

shl Stl, #1 ' Stl = A1AB2~
B1AA2:0

or Stl, T2 ' Stl = A1AB2~
B1AA2:A1AB2AB1AA2

and Stl, T1 ' Stl = A1AB24aB1AA2&
A1AB2:A1AB24B14A2

mov Idx, TotEnc "For all encoders...
:UpdatePos ror Stl, #2 "Rotate current bit pair into
31:30

mov Diff, Stl "Convert 2-bit signed to 32-
bit signed Diff

sar Diff, #30

:IPos add 0, Diff "Add to encoder position value

wrlong 0, MPosAddr "Write new position to main
memory

add IPosAddr, #1 "Increment encoder position
addresses

movd :IPos+0, IPosAddr

movd :IPos+1, IPosAddr

add MPosAddr, #4
*Next djnz Idx, #:UpdatePos "Loop for each encoder

jmp #:Sample "Loop forever
"Define Encoder Reading Cog’'s constants/variables
AMask long $55555555 "A bit mask
BMask long $AARARAAAA "B bit mask
MSB long $80000000 "MSB mask for current bit pair
Pin long 0 "First pin connected to first
encoder
TotEnc long 0 "Total number of encoders
Tdx res 1 "Encoder index
Stl res 1 "Previous state
St2 res 1 "Current state
T1 res 1 "Temp 1
T2 res 1 "Temp 2
Diff res 1 'Difference, ie: -1, 0 or +1
IPosAddr res 1 "Address of current encoder
position counter (Internal Memory)
MPosAddr res 1 "Address of current encoder
position counter (Main Memory)
IntPos res 16 "Internal encoder position

counter buffer

"7 ook ok ok o ok o ok o ok ok ok ok sk ok ok ok ok ok ok ok o ok ok k

""x FUNCTIONAL DESCRIPTION =

"7 ok sk o ok ok ok

""Reads 1 to 16 two-bit gray-code rotary encoders and provides 32-bit absolute position values
for each and optionally provides delta position support

" (value since last read) for up to 16 encoders. See "Required Cycles and Maximum RPM" below
for speed boundary calculations.

"'Connect each encoder to two contiguous I/0 pins (multiple encoders must be connected to a
contlguous block of pins). If delta position support is

"required, those encoders must be at the start of the group, followed by any encoders not
requiring delta position support.

"'To use this object:
1) Create a position buffer (array of longs). The position buffer MUST contain NumEnc +
NumDelta longs. The first NumEnc longs of the position buffer
. will always contain read-only, absolute positions for the respective encoders. The
remaining NumDelta longs of the position buffer will be "last
absolute read” storage for providing delta position support (if used) and should be
ignored (use ReadDelta() method instead).
2) Call Start() passing in the starting pin number, number of encoders, number needing
delta support and the address of the position buffer. Start() will
configure and start an encoder reader in a separate cog; which runs continuously until
Stop is called.
3) Read position buffer (first NumEnc values) to obtain an absolute 32-bit position value
for each encoder. Each long (32-bit position counter) within
the position buffer is updated automatically by the encoder reader cog.
4) For any encoders requiring delta position support, call ReadDelta(); you must have
first sized the position buffer and configured Start() appropriately
. for this feature.

""Example Code:

""0BJ

"' Encoder : RotaryEncoder

""VAR

" long Pos[3] "Create buffer for two encoders (plus room for

delta position support of 1lst encoder)

"'PUB Init
""" Encoder.Start(8, 2, 1, @Pos) "Start continuous two-encoder reader (encoders
connected to pins 8 - 11)

""PUB Main
"' repeat
<read Pos[0] or Pos[1l] here> "Read each encoder’s absolute position
<variable> := Encoder.ReadDelta (0) "Read 1st encoder’'s delta position (value since
last read)

""REQUIRED CYCLES AND MAXIMUM RPM:

""Encoder Reading Cog requires 144 + 50* (TotEnc-1) cycles per sample. That is: 144 for 1
encoder, 194 for 2 encoders, 894 for 16 encoders.

"'Conservative Maximum RPM of Highest Resolution Encoder = XINFreq * PLLMultiplier /
EncReaderCogCycles / 2 / MaxEncPulsesPerRevolution * 60

""Example 1: Using a 4 MHz crystal, 8x internal multiplier, 16 encoders where the highest
Pesolutlon encoders is 1024 pulses per revolution:

Max RPM = 4,000,000 * 8 / 894 / 2 / 1024 * 60 = 1,048 RPM

Example 2: Using same example above, but with only 2 encoders of 128 pulses per revolution:

Max RPM = 4,000,000 * 8 / 194 / 2 / 128 * 60 = 38,659 RPM

"THEORY OF OPERATION:

"Column 1 of the following truth table illustrates 2-bit, gray code rotary encoder output (
encoder pins A and B) and their possible transitions (assuming

"we're sampling fast enough). Al is the previous value of pin A, A2 is the current value of
pin A, etc. '->' means transition to . The four double-step

"transition possibilities are not shown here because we won't ever see them if we re sampling
fast enough and, secondly, it is impossible to tell direction

"if a transition is missed anyway.

"Column 2 shows each of the 2-bit results of cross XOR'ing the bits in the previous and
current values. Because of the encoder’s gray code output, when

"there is an actual transition, A1AB2 (msb of column 2) yields the direction (@ = clockuwise, 1
= counter-clockwise). When A1AB2 is paired with B14A2, the

"resulting 2-bit value gives more transition detail (0@ or 11 if no transition, 01 if
clockwise, 10 if counter-clockuwise) .

"Columns 3 and 4 show the results of further XORs and one AND operation. The result is a
convenient set of 2-bit signed values: 0 if no transition, +1 if
"clockwise, and -1 and if counter-clockuise.

"This object’'s Update routine performs the sampling (column 1) and logical operations (colum 3)
of up to 16 2-bit pairs in one operation, then adds the
"resulting offset (-1, @ or +1) to each position counter, iteratively.

1 | 2 | 3 | A | 5
------------- |-——— |
| | ALAB2AB1AA2& (A14B2): | 2-bit sign |
B1A1 -> B2A2 | A1AB2:B1~A2 | A1AB2AB1ARA2 | extended value | Diagnosis
————————————— B L] D) FR
00 -> 00 | 00 | 00 | +0 | No
21 -> 01 | 11 | 00 | +0 | Movement
11 -> 11 | 00 | 00 | +0
10 -> 10 | 11 | 00 | +0
T | === | == - | -—————— | ===
90 -> 01 | 01 | 01 | +1 | Clockwise
01 -> 11 | 01 | 01 | +1
11 -> 10 | 01 | 01 | +1
10 -> 00 | 01 | 01 | +1
————————————— R] L
00 -> 10 | 10 | 11 | -1 | Counter-
10 -> 11 | 10 | 11 | -1 | Clockwise
11 -> 01 | 10 | 11 | -1
01 -> 00 | 10 | 11 | -1

