
T
here are many types of sensors that

people can add to their hobby robot

projects, but one type of sensor that

you almost never see is an image sen-

sor. For humans, sight is our primary

method of getting information about

our world. Wouldn’t it be great to

allow our robots to perceive the world

in the same way that we do? This

month’s column will show you how

you can add an image sensor to your

robot so that it can learn much more

about the environment that it is in.

The image sensor that will be used is

not what immediately comes to mind

when you think of an image sensor. This

column will be using the Taos TSL3301. It

is a linear array of 102 pixels. This chip

comes in a clear eight-pin DIP package,

which makes it handy for those of us

who like to prototype on breadboards or

on perfboard. This chip can divide its

array into three 34-pixel sections. Each

section can have a separate gain and off-

set values though this column will set all

three sections to the same settings. This

chip can run off of a single five-volt sup-

ply and has a completely digital interface.

This is quite handy when you are using a

low-end microcontroller that doesn’t

have an analog-to-digital converter.

The TSL3301 has one of the small-

est number of pixels in the series of

chips that Taos produces, but this small

number fits well with small embedded

processors that have limited amounts

of RAM to use. Despite the RAM limi-

tation, generally your robot is going to

have all the time that it needs to

process the information that it receives

so the actual pattern recognition tasks

shouldn’t be much of a limiting factor.

Let’s look at the pinout for the

TSL3301. As you can see, it only has

three pins that you will be using to

communicate with this chip. This makes it

really easy to interface with your micro-

controller. The interface is a strange mish-

mash of the RS232 protocol and SPI.

The data lines communicate using

one start bit, eight bits of data, and

one stop bit as RS232 does, but this

data can come and go at almost

any baud rate because you are also

providing a clock signal. You will need

a pretty fast processor to hit its speed

limit, which is a clock of 10 MHz.

The other quirk about this chip is

that it has no internal clock to drive its

functionality so the clock that you

provide for the serial communications

is also what drives its internal function-

ality. Because of this, sometimes you

will need to send a few extra clock

pulses to the chip so that it can finish

doing things internally.

Before going further ahead into

how the chip operates, let’s back up

and look at how to get an image

projected onto the pixel array in the

first place. Working with optics can be

an involved process if you are trying to

achieve a high quality image.

Fortunately for us, having a low-quality

image is more than sufficient for our

purposes since we only have 102 pixels

to capture the image anyway.

A single, double convex lens was

used to project the image onto the

chip. The lens was part number NT32-

019, purchased through Edmund

Industrial Optics. This lens is 9 mm in

diameter and has a 9 mm focal length.

Because of the short focal length, this

by Jack Buffingtonby Jack Buffington

A Real Looker
How to Let Your Robot See

Figure 1. The pinout for the TSL3301.

Figure 2. A side view of the
image sensor assembly.

Figure 3. A top view of the
image sensor assembly.

SERVO 08.2006 19

Rubberbands and Baling Wire

20 SERVO 08.2006

lens allows for a wide field of view. This

can give you a good overview of the

room that your robot is in, but won’t

allow you to see detail.

This lens was mounted, as shown in

Figures 2 and 3. A piece of aluminum

was cut into a circle and a hole was

drilled in its center that was just slightly

bigger than the lens diameter. Next,

three holes were drilled into the perime-

ter of the aluminum piece that allow 1-

72 bolts to pass through. Matching holes

were drilled into a prototyping circuit

board that the image sensor was mount-

ed to. Then 1-72 bolts were put through

the holes in the prototyping board and

nuts were put onto the other side to

keep them mounted firmly in place.

Small springs were made to go

around the bolts. These springs keep

the aluminum piece and lens away

from the sensor. You can make a spring

by wrapping piano wire around a drill

bit or any other round piece of metal.

Next, the lens is mounted to the

aluminum piece by first laying the

aluminum piece flat onto a table and

placing the lens inside of its hole. Now

take some super glue and put three

drops of it around the lens on the

aluminum. Make sure that no super

glue touches the lens at this point.

Take a toothpick and carefully

drag the drops over to the edge of the

lens. Let this sit for a few minutes and

your lens will be firmly bonded to the

aluminum. Make sure that the super

glue is fully dried or else you risk

getting some onto the lens with your

fingers when you pick it up. This type

of mount is a little more involved to

make than others, but allows for high-

er precision focusing due to the high

number of threads per inch in the bolts.

Slide the aluminum disk over the

three bolts and thread some nuts onto

the bolts. These nuts won’t be tight-

ened but instead will allow you to

adjust the distance of the lens from the

image sensor. When you find the place

that is in focus, put a little locktite onto

the nuts to keep the lens in place.

Okay, you can now project an

image onto your sensor, so let’s go

back to how to talk to this chip. This

chip is really easy to communicate

with. It does, however, require that

you write your own bit-banged receive

and send routines because of its quirky

interface. The TSL3301 chip has three

communication lines. These are called:

SCK, which is the clock line; SDIN, which

is the line that the chip receives data on;

and SDOUT, which is its transmit line.

SDOUT and SCK will be used to transmit.

Do the following to send a byte to

the LTC3301:

• Drive the SDOUT line low.

• Pulse the SCK line by driving it high

and then low again. If you have a fast

processor, be mindful of the maximum

clock rate of 10 MHz.

• Create a loop that repeats eight

times and does the following:

– Look at the least significant bit in

the byte that will be sent and set

the SDOUT line to match.

– Pulse the SCK line.

– Shift the byte that is being output

one bit to the right.

• Drive SDOUT high.

• Pulse SCK.

There is some source code that

runs on a PIC16F873 processor that’s

available on the SERVO website

(www.servomagazine.com) that you

can reference if you are having trouble

with something that you see in this

month’s column.

To receive a byte from the

TDL3301, you need to do the following:

• Pulse the SCK line once to skip over

the start bit.

• Clear a register that will hold the

received byte. We’ll call this DATA.

• Now create a loop that does the

following eight times:

– Shift DATA one bit to the right.

– If SDIN is high, then it will set the

highest bit of DATA.

– Pulse SCK.

• Finally, pulse SCK once to skip over

the stop bit.

The TSL3301 chip needs to be

initialized when you first power it up.

Here is the routine that you follow to

make it happy so that you can start

sending it commands:

• Drive the SCK line low.

• Drive the SDIN line low.

• Pulse the SCK line 30 times.

• Drive the SDIN line high.

• Pulse the SCK line 10 times.

• Send 0x1B to the chip.

• Pulse the clock five times.

• Send 0x5F to the chip.

• Send 0x00 to the chip.

Before you start reading the data

from the chip, you may want to change

the gain and offset values. Gain adjusts

the scaling of the values that are read.

Increasing gain can add noise to the

image but may be necessary if you are

taking hundreds of images per second.

The gain variable can be anything from

0 to 31. Offset adds or subtracts a fixed

value from each pixel. It is an eight-bit

sign magnitude variable so it can repre-

sent any value from –128 to 127.

To adjust your gains and offsets,

Figure 4. This program is on SERVO’s
website and allows you to view the

images from the TSL3301.

you will need to write to a few

registers. There are three gain and

three offset registers that correspond

to the different 34-pixel sections of the

array. To write to a register, first you will

send its address and then the value that

you want to write to it. The addresses

for the offset registers are 0x40, 0x42,

and 0x44. The addresses for the gain

registers are 0x41, 0x43, and 0x45.

Now you are ready to capture your

image. To capture an image, you will

need to do the following:

• Send 0x80 to the chip to start captur-

ing the image.

• Pulse SCK 22 times.

• Delay for the amount of time neces-

sary to capture the image. This would

be equivalent to how long the shutter

would be open in a real camera.

Shutter times of one microsecond to

255 microseconds make for a pretty

good range that can see in bright

sunlight and in candlelight.

• Send 0x10 to the chip to stop captur-

ing the image.

• Pulse SCK five times.

• Send 0x02 to start reading the pixels

from the chip.

• Pulse SCK repeatedly until you see a

start bit (low SDOUT).

• For all 102 pixels, receive a byte.

Wow! There were a lot of things that

you needed to set up, but once you have

all of the routines that were described

here written, you can start to have some

fun with this chip. One thing that you

might like to do with this sensor is to see

in color. This sensor simply responds to

the amount of light that strikes it, so if

you want a color image, then you will

need to use filters to read red, green, and

blue images. You can then combine these

to make a full-color image.

Buying professional optical filters can

be expensive. A cheap way to get around

that problem is to go to a local store that

sells or rents motion picture, stage light-

ing, or maybe photography equipment.

You can often find sample booklets of fil-

ters that are used to color lights. The sam-

ples are far too small to put over a light

but are more than big enough to put over

your robot’s tiny lens. The nice thing is

that these filter booklets have graphs of

the colors that they allow to pass through

so filter selection is easy. Making a filter

wheel that rotates in front of your sensor

would allow you to capture color images.

Something that you should be aware

of is that if your robot is in a room with

fluorescent lights, then your images will

vary a lot in brightness due to the flicker-

ing of the fluorescent bulbs. You might

want to put a dark filter over the sensor

and increase your exposure time to a full

cycle of the bulb’s flicker rate; 8.3 millisec-

onds should work for fluorescents with

older ballasts. Newer electronic ballasts

might not create this flicker problem.

If you want an image that you can

display on a computer, you could mount

the sensor and lens onto a hobby servo

and slowly sweep it around the room.

The software that is provided on

SERVO’s website allows you to see a

graph of the brightness of each pixel

and a grayscale version of what it is see-

ing, as well. It would be fairly simple to

modify it into a program that progres-

sively captured images and displayed

them on successive columns or rows.

Visual input is not something that

you commonly see in hobby robotics

though it isn’t terribly difficult or expen-

sive to integrate into your projects.

There are endless possibilities of things

that you can do with robotic vision. You

could track moving objects. You could

do optical range finding. You could

locate objects of a certain color or deter-

mine the motion of something without

any physical contact. What could you do

with a sensor like this? SV

Rubberbands and Baling Wire

SERVO 08.2006 21

Mouser Electronics
www.mouser.com

Sells the TSL3301 chip.

LEE Filters USA
www.leefiltersusa.com

Sells filters for the motion picture
industry.

Edmund Optics
www.edmundoptics.com/US/

Sells lenses.

Custom Computer Services, Inc.
www.ccsinfo.com

Sells the C compiler used for the
PIC code on SERVO’s website.

Borland
www.borland.com/us

Sells the C++ compiler used for the
PC code on SERVO’s website.

RESOURCES

