
4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 1 of 9http://elm-chan.org/docs/mmc/mmc_e.html

How to Use MMC/SDC

Update: June 11, 2008

Now SD Memory Card (Secure Digital Memory Card) is the most popular memory card for mobile
equipments. The SD Memory Card (SDC below) was developped as upper-compatible to Multi Media Card
(MMC below) so that the SDC compleant equipments can also use an MMC with a few considerations.
There are also reduced size versions, such as RS-MMC, miniSD and microSD, with same function. The
MMC/SDC has a microcontroller in it, the flash memory controls (erase, read, write and error control) are
completed at inside of the memory card. The data is transferred between memory card and host controller in
unit of 512 bytes per block in default, so that it can be seen like a generic hard disk drive from view point of
application programs. The currentry defined file system is only FAT12/16 with FDISK patitioning rule. The
FAT32 is defined for only high capacity (>= 4G) cards.

This page describes the basic knowledge and miscellaneous things that I become aware, on using
MMC/SDC with small embedded system. I believe that this information must be a useful getting started
notes for people who is going to begin to enjoy MMC/SDC.

Contact Surface

Right photo shows the contact surface of the SDC/MMC. The MMC has seven contact pads and the SDC
has nine contact pads that two pads added to MMC. Three of the contacts for each occupy as power supply
pins so that the effective signal numbers are four and six. Ofcourse the data transfer between the host and
the card is done in clocked serial data transfer.



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 2 of 9http://elm-chan.org/docs/mmc/mmc_e.html

the card is done in clocked serial data transfer.

The working supply voltage range is indicated in OCR register and it should be read to comfirm the
operating voltage range. However, the supply voltage can be fixed to a proper value because the MMC/SDC
works at supply voltage of 2.7 to 3.6 volts. The current consumption can reach up to several ten
milliamperes, so that the host system should able to supply 100 miliamperes at least.

SPI Mode

SPI mode is an alternative operating mode that defined to use MMC/SDC without its specific host interface.
The communication protocol for the SPI mode is very simple compared to MMC/SDC native mode, the
MMC/SDC can be attached via a generic SPI port or a GPIO port built in most microcontrollers. Therefore
the SPI mode is suitable for low cost embedded applications. Especialy, there is no reason to use native
mode for electronic handiwork as a hobby. For SDC, the 'SPI mode 0' is defined for its SPI mode. But for
MMC, it is not the SPI timing, both latch and shift actions are defined with rising edge of SCLK, but it
seems work in SPI mode 0 at SPI mode. Thus SPI Mode 0 (CPHA=0, CPOL=0) is the proper setting for
MMC/SDC interface, but SPI mode 3 also works as well in most case.

Command and Response

In SPI mode, the data direction on the signal line is fixed and the data is transferred in byte oriented serial
communication. The command frame from host to card is a fixed length (six bytes) packet that shown
below. When a command frame is transmitted to the card, a response to the command (R1, R2 or R3) will
be sent back to the host. Because data transfer is driven by serial clock generated by host, the host must
continue to read bytes until receive any valid response. The command response time (NCR) is 0 to 8 bytes
for SDC, 1 to 8 bytes for MMC. The CS signal must be held low during a transaction (command, response
and data transfer if exist). The CRC field is optional in SPI mode, but it is required as a bit field to compose
a command frame. The DI signal must be kept high during read transfer.

SPI Command Set

Each command is expressed in abbreviation like GO_IDLE_STATE or CMD<n>, <n> is the number of the
command index and the value can be 0 to 63. Following table describes only commands that to be usually
used for generic read/write and card initialization. For details on all commands, please refer to spec sheets
from MMCA and SDCA.

Command
Index Argument Response Data Abbreviation Description

CMD0 None(0) R1 No GO_IDLE_STATE Software reset.

CMD1 None(0) R1 No SEND_OP_COND Initiate initialization
process.

ACMD41(*1) *2 R1 No APP_SEND_OP_COND For only SDC. Initiate
initialization process.

CMD8 *3 R7 No SEND_IF_COND For only SDC V2.
Check voltage range.

CMD9 None(0) R1 Yes SEND_CSD Read CSD register.

http://elm-chan.org/docs/spi_e.html


4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 3 of 9http://elm-chan.org/docs/mmc/mmc_e.html

CMD10 None(0) R1 Yes SEND_CID Read CID register.
CMD12 None(0) R1b No STOP_TRANSMISSION Stop to read data.

CMD16 Block
length[31:0] R1 No SET_BLOCKLEN Change R/W block

size.
CMD17 Address[31:0] R1 Yes READ_SINGLE_BLOCK Read a block.
CMD18 Address[31:0] R1 Yes READ_MULTIPLE_BLOCK Read multiple blocks.

CMD23 Number of
blocks[15:0] R1 No SET_BLOCK_COUNT

For only MMC.
Define number of
blocks to transfer
with next multi-block
read/write command.

ACMD23(*1) Number of
blocks[22:0] R1 No SET_WR_BLOCK_ERASE_COUNT

For only SDC. Define
number of blocks to
pre-erase
with next multi-block
write command.

CMD24 Address[31:0] R1 Yes WRITE_BLOCK Write a block.
CMD25 Address[31:0] R1 Yes WRITE_MULTIPLE_BLOCK Write multiple blocks.

CMD55(*1) None(0) R1 No APP_CMD Application specific
command.

CMD58 None(0) R3 No READ_OCR Read OCR.
*1:ACMD<n> means a command sequense of CMD55-CMD<n>.
*2: Rsv(0)[31], HCS[30], Rsv(0)[29:0]
*3: Rsv(0)[31:12], Supply Voltage(1)[11:8], Check Pattern(0xAA)[7:0]

SPI Response

There are three command response formats, R1, R2 and R3, depends on the command index. A byte of
response R1 is returned for most commands. The bit field of R1 response is shown in right image, the value
0x00 means successful. When any error occured, corresponding bit in the response will be set. The R3
response (R1 + OCR) is for only CMD58.

Some commands take a time longer than NCR and it responds R1b. It is an R1 response followed by busy
flag (DO is held low as long as internal process is in progress). The host controller should wait for end of
the process until 0xFF is received.

Initialization Procedure for SPI Mode

After power on reset, MMC/SDC enters its native operating mode. To put it SPI mode, follwing procedure
must be performed.

Power ON (Insersion)

After supply voltage reached 2.2 volts, wait for a millisecond at least. Set DI and CS high and apply more



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 4 of 9http://elm-chan.org/docs/mmc/mmc_e.html

than 74 clock pulses to SCLK and the card will go ready to accept native commands.

Software Reset

Set SPI clock rate between 100kHz and 400kHz and then send a CMD0 with CS low to reset the card. The
card samples CS signal when a CMD0 is received. If the CS signal is low, the card enters SPI mode. Since
the CMD0 must be sent as a native command, the CRC field must have a valid value. When once the card
enters SPI mode, the CRC feature is disabled and the CRC is not checked, so that command transmission
routine can be written with the hardcorded CRC value that valid for only CMD0 and CMD8. When the
CMD0 is accepted, the card will enter idle state and respond R1 response with In Idle State bit (0x01). The
CRC feature can also be switched with CMD59.

Initialization

In idle state, the card accepts only CMD0, CMD1 and CMD58. Any other commands will be rejected. In
this time, check working voltage range indicated in the OCR. In case of the system sypply voltage is out of
working voltage range, the card must be rejected. The card initiates initialization when a CMD1 is detected.
To poll end of the initialization, the host controller must send CMD1 and check the response until end of
the initialization. When the card is initialized successfuly, In Idle State bit in the R1 response is cleared (R1
resp changes 0x01 to 0x00). The initialization process can take several hundred milliseconds (large cards
tend to longer), so that this is a consideration to determin the time out value. After the card has initialized,
generic read/write commands will able to be accepted.

Because ACMD41 instead of CMD1 is recommended for SDC, send ACMD41 first and when it is rejected,
retry with CMD1, is ideal, to support both type of the card.

The SPI clock rate should be changed to fast as possible to optimize the read/write performance. The
TRAN_SPEED field in the CSD indicates the maximum clock rate of the card. The maximum clock rate is
20MHz for MMC, 25MHz for SDC in most case. Note that the clock rate can also be fixed to 20/25MHz in
SPI mode because there is no open-drain condition that restricts the clock rate.

The initial block length can be set larger than 512 at 2GB card, so that the block size should be re-initialized
with CMD16 if needed.

How to support SDC Ver2 and high capacity cards

After the card enters idle state with a CMD0, send a CMD8 with 0x1AA and correct CRC before initiate
initialization. When the CMD8 is rejected with an illigal command error, the card is SDC V1 or MMC.
When the CMD8 is accepted, R7 response (R1 + 32 bit return value) will be returned. The lower 12 bits in
the return value 0x1AA means that the card is SDC V2 and can work at voltage range of 2.7 to 3.6 volts. If
not the case, the card must be rejected. And then initiate initialization with ACMD41 with HCS bit. After
the initialization completed, read OCR and check CCS bit in the OCR. When it is set, subsequent data
read/write operations that described below are commanded in block address insted of byte address. The
block size is fixed to 512 bytes.

Data Transfer

Data Packet and Data Response



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 5 of 9http://elm-chan.org/docs/mmc/mmc_e.html

In a transaction with data transfer, one or more data blocks will be sent/received after command response.
The data block is transferred as a data packet that consist of Token, Data Block and CRC. The format of the
data packet is showin in right image and there are three data tokens. As for Stop Tran token that means end
of multiple block write, it is used in single byte without data block and CRC.

Single Block Read

The argument specifies the location to start to read in unit of byte or block. The sector address specified by
upper layer must be scaled properly. When a CMD17 is accepted, a read operation is initiated and the read
data block will be sent to the host. After a valid data token is detected, the host controller receives following
data field and two byte CRC. The CRC bytes must be flushed even if it is not needed. If any error occured
during the read operation, an error token will be returned instead of data packet.

Multiple Block Read

The Multiple Block Read command reads multiple blocks in sequense from the specified address. When
number of transfer blocks has not been sepecified before this command, the transaction will be initiated as
an open-ended multiple block read, the read operation will continue until stopped with a CMD12. The
received byte immediataly following CMD12 is a stuff byte, it should be discarded before receive the
response of the CMD12.

Single Block Write



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 6 of 9http://elm-chan.org/docs/mmc/mmc_e.html

When a write command is accepted, the host controller sends a data packet to the card after a byte space.
The packet format is same as Block Read command. The CRC field can have any invalid value unless the
CRC function is enabled. When a data packet has been sent, the card responds a Data Response
immediataly following the data packet. The data response trails a busy flag to process the write operation.
Most cards cannot change write block size and it is fixed to 512.

In principle of the SPI mode, the CS signal must be asserted during a transaction, however there is an
exception to this rule. When the card is busy, the host controller can deassert CS to release SPI bus for any
other SPI devices. The card will drive DO signal low again when reselect it during internal process is in
progress. Therefore a preceding busy check (wait ready immediataly before command and data packet)
instead of post wait can eliminate waste wait time. In addition the internal process is initiated a byte after
the data response, this means eight clocks are required to initiate internal write operation. The state of CS
signal during the eight clocks is negligible so that it can done by bus release process described below.

Multiple Block Write

The Multiple Block Read command writes multiple blocks in sequense from the specified address. When
number of transfer blocks has not been sepecified before this command, the transaction will be initiated as
an open-ended multiple block write, the write operation will continue until terminated with a Stop Tran
token. The busy flag will appear a byte after the Stop Tran token. As for SDC, the multiple block write
transaction must be terminated with a Stop Tran token independent of pre-defined or open-ended.

Reading CSD and CID

These are same as Single Block Read except for the data block length. The CSD and CID are sent to the
host as 16 byte data blocks. For details of the CMD, CID and OCR, please refer to the MMC/SDC specs.

Cosideration to Bus Floating and Hot Insertion



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 7 of 9http://elm-chan.org/docs/mmc/mmc_e.html

Any signal that can float should be pulled low or high properly via a resister. This is a generic design rule
on MOS devices. Because DI and DO are normally high, they should be pulled-up. According to
SDC/MMC specs, from 50k to 100k ohms is recommended to the value of pull-up registers. However the
clock signal is not mentioned in the SDC/MMC specs because it is always driven by host controller. When
there is a possibility of floating, it should be pulled to the normal state, low.

The MMC/SDC can hot insertion/removal but some considerations to the host circuit are needed to avoid an
incorrect operation. For example, if the system power supply (Vcc) is tied to the card socket directly, the
Vcc will dip at the instant of contact closed due to a charge current to the capacitor that built in the card. 'A'
in the right image is the scope view and it shows that occureing a voltage dip of about 600 millivolts. This
is a sufficient level to trigger a brown out detector. 'B' in the right image shows that an inductor is inserted
to block the surge current, the voltage dip is reduced to 200 millivoits. A low ESR capacitor, such as OS-
CON, can eliminate the voltage dip dratiscally like shown in 'C'. However the low ESR capacitor can cause
an oscillation of LDO regulator.

Cosideration on Multi-slave Configuration

In SPI, each slave device is selected with separated CS signals, and plural devices can be attached to an SPI
bus. Generic SPI slave device drives/releases its DO signal by CS signal asynchronously to share an SPI
bus. However MMC/SDC drives/releases DO signal in synchronising to SCLK. There is a posibility of bus
conflict when attach MMC/SDC and any other SPI slaves to an SPI bus. Right image shows the
drive/release timing of MMC/SDC (DO is pulled to 1/2 vcc to see the bus state). Therefore to make
MMC/SDC release DO signal, the master device must send a byte after deasserted the CS signal.



4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 8 of 9http://elm-chan.org/docs/mmc/mmc_e.html

Optimization of Write Performance

Most MMC/SDC employs NAND Flash Memory as a memory array. The NAND flash memory is cost
effective and it can read/write large data fast, but on the other hand, there is a disadvantage that rewriting a
part of data is inefficient. Generally the flash memory requires to erase existing data before write a new
data, and minimum unit of erase operation (called erase block) is larger than write block size. The typical
NAND flash memory has a block size of 512/16K bytes for write/erase operation, and recent monster card
employs large block chip (2K/128K). This means that rewriting entire data in the erase block is done in the
card even if write only a sector (512 bytes).

Benchmark

I examined the read/write performance of some MMC/SDC with a cheap 8 bit MCU (ATmega64
@9.2MHz) on the assumption that an embedded system with limited memory size. For reason of memory
size, write() and read() ware performed in 2048 bytes at a time. The result is: Write: 77kB/sec, Read:
328kB/sec on the 128MB SDC, Write: 28kB/sec, Read: 234kB/sec on the 512MB SDC and Write:
182kB/sec, Read: 312kB/sec on the 128MB MMC.

Therefor the write performance of the 512MB SDC was very poor that one third value of 128MB SDC.
Generally the read/write performance of the mass storage device increases proportional to its recording
density, however it sometimes appears a tendency of opposite on the memory card. As for the MMC, it
seems to be several times faster than SDC, it is not bad performance. After that time, I examined some
SDCs supplied from different makers, and I found that PQI's SDC was as fast as Hitachi's MMC but
Panasonic's and Toshiba's one was very poor performances.

Erase Block Size

To analys detail of write operation, busy time (number of polling cycles) after sent a write data is typed out
to console in the low level disk write function. Multiple numbers on a line indicates data blocks and a Stop
Tran token that issued by a multiple block write transaction.

In resulut of the analysis, there is a different of internal process between 128MB SDC and 512MB SDC.
The 128MB SDC rewrites erase block at end of the mutiple block write transaction. The 512MB SDC seems
have 4K bytes data buffer and it rewrites erase block every 4K bytes boundary. Therefor it cannot compared
directly but the processing time of rewriting an erase block can be read 3800 for 128MB SDC and the
512MB SDC taeks 30000 that 8 times longer than 128MB SDC. Judging from this resulut, it seems the
128MB SDC uses a small block chip and the 512MB SDC uses a large block or MLC chip. Ofcourse the
larger block size decreases the performance on pertial block rewriting. In 512MB SDC, only an area that
512K bytes from top of the memory is relatively fast. This can be read from write time in close(). It
might any special processing is applied to this area for fast FAT accsess.

Improving Write Performance

To avoid this bottleneck and rise write performance of SDC/MMC, writing large number of blocsks as
possible (aligned to erase block is ideal) at a time will do. In other words, allocate large buffer memory and
pass it to fwrite() will do. For low level disk write function, it must pre-inform number of write sectors to
the card for efficient write processing. This called `pre-defined multiple block write'. However the pre-
definition command is not the same between MMC (CMD23) and SDC (ACMD23).

Well, it might a vain efforts that to rise write performance of SDC on the cheap MCUs that have only
several kilobytes of RAM. CompactFlash have a good performance that ten times faster than SDC. When
you require a write performance to the memory card, a CompactFlash or an MMC will be suitable better
than SDC.

The memory cards are initially patitioned and formatted to align the allocation unit to the erase block. When
re-patition or re-format the memory card with a system that is not compliant to MMC/SDC (this is just a
PC) with no care, the optimization will be broken and the write performance might be lost. I tried to re-
format 512MB SDC in FAT32 with a PC, the write performance measured in file copy was lowerd to one
several. Therefore the re-formatting the card should be done with MMC/SDC compliant equipments rather

http://elm-chan.org/docs/sm_e.html
http://elm-chan.org/docs/mmc/sdmm.jpeg
http://elm-chan.org/docs/mmc/sd128.txt
http://elm-chan.org/docs/mmc/sd512.txt
http://elm-chan.org/docs/mmc/mm128.txt


4/3/09 9:14 AMELM - How to Use MMC/SDC

Page 9 of 9http://elm-chan.org/docs/mmc/mmc_e.html

several. Therefore the re-formatting the card should be done with MMC/SDC compliant equipments rather
than PC.

Links

MMCA - Multimedia Card Association
SDA - SD Card Association
SDHC Physical Layer Spec.
About SPI
Generic FAT file system module with sample code to control MMC/SDSC/SDHC

http://www.mmca.org/
http://www.sdcard.org/
http://www.sdcard.org/developers/tech/sdcard/pls/
http://elm-chan.org/docs/spi_e.html
http://elm-chan.org/fsw/ff/00index_e.html

