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ABSTRACT 

This application report discusses the design of a single-touch capacitive sensor interface 
using the MSP430 microcontroller. With ultra-low power features and integrated 
peripherals, integrating a single-touch user interface into MSP430 applications can be 
readily accomplished. This application report provides an overview of the technology, 
details about system careabouts and details for different methodologies of capacitive 
touch sensing implementations using the MSP430 family. Figure 1 shows a graphical high 
level representation of the system described in detail in the remainder of the document. 

Capacitive keys
(built into PCB layers )

MSP430

(Measure C  for each
sensor and determine the 
location of a single touch)

DELTA

Control/
c ommunicate
system activity

 

Figure 1. Capacitive Touch Sensor System Overview Using the MSP430 

All trademarks are the property of their respective owners.



SLAA363A – June 2007 – Revised October 2007 

2 PCB-Based Capacitive Touch Sensing With MSP430 

Contents 
1 Capacitive Touch Sensing Overview ............................................................................................3 
2 Sensor and Interface Construction ...............................................................................................4 

2.1 PCB Sensor Specifics ...............................................................................................................4 
2.2 Sensor Insulating Overlay .........................................................................................................6 

3 Measuring a Capacitive Touch Sensor Using the MSP430 .........................................................8 
3.1 Oscillator-Based Capacitive Measurement ...............................................................................8 
3.2 Resistor-Based Capacitive Measurement ...............................................................................11 

4 Software Implementation .............................................................................................................15 
4.1 Tracking Sensor Base Capacitance ........................................................................................15 
4.2 Implementing Button Function.................................................................................................17 
4.3 Implementing Slider Function..................................................................................................17 
4.4 Handling Slider Endpoints .......................................................................................................19 
4.5 Sensor Multiplexing for Sliders................................................................................................20 

5 Summary........................................................................................................................................22 
6 References.....................................................................................................................................22 
Appendix A. Flexible Evaluation and Demonstration Hardware ......................................................23 
Appendix B. Simple Demonstration Hardware...................................................................................24 

Figures 
Figure 1. Capacitive Touch Sensor System Overview Using the MSP430 ...................................1 
Figure 2. Open Capacitor Acting as a Sensor .................................................................................3 
Figure 3. Plate Capacitor Basics.......................................................................................................4 
Figure 4. Example Four-Sensor System for Button and Slider Function .....................................5 
Figure 5. Pour Styles (Red = Top Signal Layer, Blue = Bottom Signal Layer = GND Pour) ........5 
Figure 6. Theoretical and Empirical Sensor Sensitivity vs Insulator Thickness..........................7 
Figure 7. Basic Capacitive-Dependent Relaxation Oscillator ........................................................8 
Figure 8. Frequency Measurement Principle...................................................................................9 
Figure 9. Multi-Sensor System Using Comparator_A+...................................................................9 
Figure 10. Current Consumption and Measurement Time for One Sensor ..................................10 
Figure 11. Basic Resistive Discharge Capacitance Measurement ................................................11 
Figure 12. Measurement Methodology Using the GPIO Threshold and Timer_A ........................12 
Figure 13. Multi-Sensor Charge/Discharge Configuration .............................................................13 
Figure 14. Single Measurement Cycle for Improved Noise Rejection...........................................13 
Figure 15. Resistive Charge/Discharge ICC and Measurement Time: Single Sensor ....................14 
Figure 16. Example Algorithm for Tracking Baseline Sensor Capacitance..................................16 
Figure 17. Button Press in a Four Key System ...............................................................................17 
Figure 18. Fundamental and Neighboring Sensor Response ........................................................18 
Figure 19. Example Slider Position Determination Methodology..................................................18 
Figure 20. Representation of Count Measurement Results for Max Endpoint .............................19 
Figure 21. Example Slider Endpoint Handling.................................................................................20 
Figure 22. Example Sensor Multiplexing of 12 Capacitive Sensor Elements...............................21 
Figure 23. Flexible 4-Button RO/RC System Block Diagram..........................................................23 
Figure 24. Simple 4-Button RC System Block Diagram and Image...............................................24 

Tables 
Table 1. Dielectrics for Example Materials .....................................................................................6 
Table 2. 64-Position Slider Key .....................................................................................................18 



SLAA363A – June 2007 – Revised October 2007 

 PCB-Based Capacitive Touch Sensing With MSP430 3 

1 Capacitive Touch Sensing Overview 

The fundamental element required in the capacitive touch sensing application described is the 
variable capacitor itself. This capacitor should be easy to construct as well as sensitive to human 
touch in order to enable this as an alternative to mechanical buttons and switches.  Such a touch 
sensitive sensor element can be constructed by “opening up” a capacitor structure so that the 
electric field can be interfered with by a conductive foreign object, in this case, a finger. Figure 2 
shows the top and cross-sectional views of such a capacitive sensor as implemented in the 
printed circuit board itself. 

 

Figure 2. Open Capacitor Acting as a Sensor 

As shown, a PCB-based capacitor is formed between the center copper pad and the ground 
pour surrounding it. The electric field is allowed to leak into the area above the capacitor. The 
interaction of this sensor pad and the surrounding ground pour (also the ground plane 
underneath) create a baseline capacitance that can be measured. The base capacitance of such 
a sensor is in the range of ~10 pF for a finger-sized sensor. When a conductor, e.g., a finger, 
comes into the area above the open capacitor, the electric field is interfered with causing the 
resulting capacitance to change. The coupling of the conductive finger into the capacitive sensor 
increases the capacitance of the structure beyond the baseline capacitance, the capacitance of 
the sensor with no touch. By continuously measuring the capacitance of the sensor(s) in the 
system and comparing each result to a predetermined baseline capacitance, the system 
microcontroller can determine not only on/off button functions for each sensor element but also 
“amount” of press used for more complex interfaces such as positional sliders. 

The sensitivity of this sensor is dependent on the gap between the surrounding ground and the 
sensor plate. A gap of around 0.5 mm is recommended. In addition, PCB thickness plays into 
the overall sensitivity as well: when it is very thin as in the case of a flexible PCB, this increases 
the tight coupling between the sensor and the ground plate beneath it and decreases its 
sensitivity. A standard FR4 PCB with 1-mm to 1.5-mm thickness is ideal. 
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The sensor pad size of around 10-mm diameter is typically used. This size is similar to the 
surface area of a human finger when pressed down. Such a sensor using the above careabouts 
typically has ~5 pF to 10 pF of capacitance untouched. 

The highlighted ground plane underneath the sensor aids in shielding it from potential 
interference generated by other electronics in the system. It also helps to maintain a more 
constant baseline capacitance needed as a reference for each measurement. 

The base capacitance of such a design is affected by stray capacitances on the PCB as well as 
potentially other environmental effects such as temperature and humidity. Therefore, the 
detection system needs to constantly monitor and track this variation for correct comparison to 
touch events. 

2 Sensor and Interface Construction 

The complete interface consists of the actual PCB-based capacitive sensors themselves, as well 
as some type of insulator between the sensors and the user. 

2.1 PCB Sensor Specifics 

At a high level, the capacitive sensor dependencies can be visualized by understanding the 
basics of a plate capacitor. Figure 3 represents the key elements. 

A

X y

d

 

Figure 3. Plate Capacitor Basics 

First the base capacitance must be accounted for. The term “base capacitance” refers to the 
measurement result of an “untouched” or uninfluenced sensor element. For simplicity, the base 
capacitor can be assumed to be constructed from the sensor pad on the topside of the PCB and 
the ground pour on the bottom side of the PCB. These are the top and bottom plates in Figure 3.  

The PCB itself makes up the “d” in the equation. As mentioned earlier, as d gets smaller (such is 
the case with flex PCBs), the baseline capacitance increases resulting in reduced sensitivity. 
The permittivity of free space (ε0) and the material (εr) define the dielectric constant of the PCB 
insulator and will affect the ultimate base value. 

The area of the sensor, “A”, is typically limited to the size of the interacting finger. Usually this is 
designed to be somewhere between a child’s small fingers and an adult’s larger fingers for a 
good compromise, but is ultimately application-dependent. Keep in mind that any sensor area 
that extends outside of the overlap of the finger is essentially wasted, as it does not contribute to 
the changing capacitance desired. 

d
AC rεε0=
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The design careabouts for the capacitive sensor are simple in theory: minimize the base 
capacitance of the sensor while maximizing the potential for user interaction. The more ideal that 
each of these are made results in increased capacitive change between a touched and 
untouched sensor, the key to good sensitivity and robust design. Of course, these two goals 
works against each other: as the area gets larger to match to the full size of the interacting finger 
the base capacitance also increases, as it is proportional to A. For a given sensor construction, 
the maximum change that can be created by a finger press is essentially fixed. As the base 
capacitance for the same sensor increases, the percent change in measured capacitance goes 
down, resulting in lower sensitivity and overall performance of the sensor interface. 

One solution to help in this effort, given a fixed A for the sensor, is to manage the ground pour 
underneath the sensor pad. Figure 4 shows the simple orientation of a four key sensor interface 
for single-touch functions such as buttons or sliders. This four key sensor is used as an example 
throughout the application report.  

 

Figure 4. Example Four-Sensor System for Button and Slider Function 

Figure 5 shows the actual PCB layout of such a sensor key pad, but with four different 
approaches to implementing the ground pour. 

 

Figure 5. Pour Styles (Red = Top Signal Layer, Blue = Bottom Signal Layer = GND Pour) 

The upper left image shows only a top signal layer: four sensor pads surrounded by a top layer 
ground pour; no bottom layer is implemented. The upper right section shows the same board 
design; except now a bottom layer 25% hatched ground pour is implemented. The lower left 
version is with a 50% pour and the lower right with a 100% filled ground pour, each below the 
sensors constructed in the top layer. 
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At least some bottom layer ground pour is recommended beneath each sensor in order to 
isolate the sensor elements from noise and external variation that could affect the sensor based 
capacitance. While the obvious choice might be a 100% fill as shown in the lower left 
implementation providing maximum noise isolation, it also maximizes the area of the lower plate 
in the capacitor constructed between the sensor and ground pour. This increases the base 
capacitance through an increased area, A. To get the benefits of noise isolation as well as 
minimized base capacitance, a fill in the order of 50% to 75% is typical. 

2.2 Sensor Insulating Overlay 

In this type of application, an insulating layer, typically plastic, overlays the sensors on the PCB 
from the user. Therefore, the finger does not make physical contact with the sensor plate itself. 
Maintaining an insulated separation between sensor and the user is critical in maximizing the 
usefulness of the capacitive touch interface.  

The plate capacitor concept from Figure 3 used to describe the base capacitance of the sensor 
can also be used to visualize the interaction of the finger in changing the capacitance. In this 
case, the sensor is now the bottom plate of the capacitor and the user’s finger is the top 
conductive plate. The insulator between the two is at a minimum the solder mask covering the 
sensors or most likely the plastic housing the given sensor system is contained within. It 
becomes clear that as the area of interaction increases to the full size of the finger, an 
increasing A, the change in capacitance is maximized. Also, as the d of the insulator increases, 
the change in capacitance goes down in an inversely proportional relationship. A key factor that 
cannot be ignored is the actual material used as the user interface insulator. The dielectric 
constant of this material as well as its thickness play a very large role in dictating the sensitivity 
and usability of a given capacitive touch sensor. Table 1 highlights the dielectric constants  
(ε0 × εr) of some example materials, plastics generally being in the 2-3 range. 

Table 1. Dielectrics for Example Materials 

Material Dielectric Constant 

Vacuum 1 (by definition) 

Air 1.00054 

Polyethylene 2.25 

Paper 3.5 

Pyrex glass 4.7 

Rubber 7 

Silicon 11.68 
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In addition to the insulator itself, the connection between the insulator and the sensor is critical. 
Given the low dielectric constant of air, any gap in the coupling of the insulating overlay and the 
sensor results in a rather poor capacitive change. Assuring that the connection between the two 
elements is as good as possible is important to maintaining uniform sensitivity to touch. 
Adhesives are commonly used to achieve this but, in addition to being thin and very tactile, they 
must also respond to environmental changes with minimum shift in thickness or adhesiveness. 
Nonconductive adhesive films such as 467MP and 468MP from 3M have resilient properties for 
such an application. 

To illustrate the impact of insulator thickness on sensor sensitivity, Figure 6 plots the theoretical 
relationship as the d of the user interface insulator increases. Plotted along the continuous curve 
are three empirical data points for specific tests using the specified thickness of plastic. 

Capacitance Change vs. Thickness
(Fingerpress, 8x8mm pad, 1.5mm FR4 PCB)
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Figure 6. Theoretical and Empirical Sensor Sensitivity vs Insulator Thickness 

By understanding the physical and electrical tradeoffs for both the PCB sensor and the user 
interface insulator, performance expectations and feasibility of the system can be balanced to 
meet the given application’s requirements. Ultimately, mechanical and material constraints drive 
the limits of a given implementation. 
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3 Measuring a Capacitive Touch Sensor Using the MSP430 

Now that the sensor concepts and construction are defined, two different methods used to 
measure the capacitive touch sensor can be described. Implementations and performance 
results are detailed in each case along with a comparison and discussion of tradeoffs for each 
method. 

3.1 Oscillator-Based Capacitive Measurement 

The first methodology used to measure a capacitive touch sensor described is using an 
oscillator. Fundamentally, a simple relaxation oscillator can be created using the MSP430’s on-
chip comparator and the capacitive sensor as the tuning element. Any change in capacitance of 
the sensor corresponds to a change in frequency which can be measured using the internal 
Timer_A hardware of the MSP430. Figure 7 shows the implementation of such a system using 
an MSP430 with the Comparator_A peripheral. 

 

MSP430

TAR
TACLKR

RC

R

R

PX.YCSENSOR

CA
+

-

 

Figure 7. Basic Capacitive-Dependent Relaxation Oscillator 

The R ladder network, when Px.y is high, creates a reference for the comparator that changes 
with its output. This toggling reference is opposite in polarity to the charge or discharge of the 
sensor capacitor (CSENSOR), resulting in a continuous oscillation. With equal R’s in the ladder 
network providing 1/3VCC and 2/3VCC trip points, the frequency of oscillation is given by: 

fOSC = 1/[1.386 × RC × CSENSOR] 

By counting the oscillation periods over a fixed time duration, the frequency can be determined 
and the capacitance measured. For this application report, a sensor resistor, RC, of 100k is used. 
This results in approximately a 600-kHz oscillation frequency for a typical ~10-pF sensor. 
Figure 8 shows this counting principle as it can be implemented in the MSP430 hardware. 
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Figure 8. Frequency Measurement Principle 

Figure 8 show use of the very slow ACLK signal, in this case the 12-kHz integrated VLO, to 
clock the WDT to create a measurement window. With each WDT interrupt, the CPU in software 
takes a snapshot of the continuously counting Timer_A register, TAR. The difference between 
two of these snapshots, or captures, is the measurement result. 

In reality, the actual capacitance is of no interest, only the change in capacitance between the 
baseline measurement and a touched sensor. To determine this only the actual number of 
counts captured during the measurement window is of any importance. By storing a base 
capacitance count used for comparison of future measurements, the relative change in 
capacitance can be determined. 

While one sensor can be easily measured using Comparator_A as shown in Figure 7, to 
implement multiple sensors using the oscillator method requires use of Comparator_A+ enabled 
devices. The analog multiplexer built into Comparator_A+ allows for multiple capacitive sensors 
to independently be measured using the oscillator technique. As shown in Figure 9, a multi-
sensor system using Comparator_A+ can resolve the position of a single touch along a slider. 

 

Figure 9. Multi-Sensor System Using Comparator_A+ 
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Using one external resistor per sensor and three additional resistors for the comparator 
reference, a simple multi-sensor system can be realized using the MSP430. With 100k reference 
resistors enabled as needed by a free GPIO,  a sensitive yet ultra-low power capacitive touch 
interface system can be created. Figure 10 shows the average current consumption and 
measurement time for a single capacitive sensor using this methodology. 
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Figure 10. Current Consumption and Measurement Time for One Sensor 

Each measurement above is made for a 1% change in sensor capacitance. While small, this is 
not an uncommon amount of change for many systems due to mechanical constraints. As the 
measurement window is increased using a larger WDT divider resulting in a longer time between 
consecutive interrupts, the number of counts for a given change in capacitance increases. More 
delta counts correlates to more sensitivity and better usability in system. This high count delta 
can be achieved for a given delta C at the price of a longer measurement time and in turn, 
increased average current. 

System Current Contributors 

 DCO: ~85 µA at 1 MHz 

 Comp_A+: ~45 µA 

 CA Vref: Vcc/(1.5R) (for 100k Rs, ~20 µA) 

In order to get the most out of the application, defining t_measure for adequate counts for the 
application, yet small enough to keep current consumption to a minimum is the key. 

 A larger delta C means a smaller t_measure window can be used 

 Design to fewest counts needed for lowest current 
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3.2 Resistor-Based Capacitive Measurement 

The second methodology to be described uses an external resistor to charge or discharge the 
given capacitive sensor. Using the port pins of the MSP430 to charge or discharge the sensor 
cap, the internal Timer_A can be used to measure the corresponding charge or discharge time. 
Given a fixed external resistance to provide the charge/discharge path, the capacitance of the 
sensor can be measured. Figure 11 shows this system as implemented with an MSP430 for a 
discharge-only measurement. 

MSP430

TACCRx
Capture

R

PX.Y

CSENSOR

 

Figure 11. Basic Resistive Discharge Capacitance Measurement 

With the same small CSENSOR of ~10 pF, it is clear that R needs to be quite large in order to 
provide any realistically measurable discharge time. In this implementation, R is chosen to be 
5.1M, giving a discharge window from Vcc to near ground of ~250 µs (5tau). In this 
configuration, Px.y can be an output high to charge the sensor capacitor. It can then be switched 
to an input, allowing CSENSOR to discharge through R. Given the  ±50 nA max port pin leakage of 
the MSP430, such a measurement implementation is possible with little discharge contribution 
via the port pin structure. 

If Px.y is an interrupt-enabled GPIO (P1.x or P2.x in all MSP430’s), the internal low-level 
threshold trip voltage can be used as a discharge reference, which when reached, an interrupt 
can be generated. Using this interrupt, the CPU can take a snapshot of the Timer_A register 
using the capture logic of the Timer_A module, storing the time taken to discharge the given 
sensor. Using the internal DCO, the timer can be clocked at frequencies up to 8 MHz or 16 MHz 
depending on the MSP430 used (1xx, 2xx, or 4xx devices). The higher the frequency the higher 
the count delta can be for a given change in sensor capacitance. Figure 12 details the overall 
measurement flow using the Timer_A peripheral. 



SLAA363A – June 2007 – Revised October 2007 

12 PCB-Based Capacitive Touch Sensing With MSP430 

t

VCC

VSS

TAR

LPM0

A
ct

iv
e

A
ct

iv
e

t-

VIT-

Timer Counter

LPM3

Discharging 
Trip Point

V S
EN

SO
R

Start Timer_A 
& discharge 

sensor

TAR = 
Count result

 

Figure 12. Measurement Methodology Using the GPIO Threshold and Timer_A 

The flow chart and graph in Figure 12 show a single measurement cycle. When the timer is 
started from zero for the measurement, the TAR value after the trip point is reached is the 
resulting number of counts for the measurement. Alternatively, the timer can be allowed to run 
continuously, in which case a timer capture needs to happen at both the start of the discharge 
and at the completion, then the difference in counts from the two points is the count result. 

As the sensor capacitance increases, the time to discharge also increases and the number of 
counts measured goes up. The more counts that can be realized between an untouched sensor 
and a touched sensor, the better the sensitivity of the system. 

The described setup in Figure 11 shows one port pin and one resistor for each sensor in the 
system. The setup can be further optimized by sharing a single resistor for each pair of sensors. 
During measurement of one sensor in the pair, the GPIO connected to the other sensor and the 
other side of the resistor can be set to a low output, creating the ground point for the discharge. 
These orientations can be swapped for the measurement of the second sensor in the pair. 
Figure 13 shows this configuration, optimizing the resistor count to ½ the number of sensors in 
the system for an even sensor count. 
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Figure 13. Multi-Sensor Charge/Discharge Configuration 

Another benefit of this configuration is that each sensor can be measured in both directions: 
charged from ground to the high level threshold and then discharged from Vcc to the low level 
threshold trip point. Figure 14 shows this method. 
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Figure 14. Single Measurement Cycle for Improved Noise Rejection 
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The measurement count is now the combination of the two results. These can be averaged or 
simply summed, as the absolute result is not of interest, but instead the difference from the base 
measurement result. By measuring both the charging and the discharging phases, system noise 
such as 50/60-Hz mains noise can be better rejected from influencing the final result. 

Average current consumption for the charge/discharge system is quite low. For the given sensor 
and a 1% capacitance change, Figure 15 charts the average current consumption and 
measurement time for a single sensor based on the DCO frequency used to clock Timer_A. 
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Figure 15. Resistive Charge/Discharge ICC and Measurement Time: Single Sensor 

Given a 5.1M resistor and using the charge/discharge combined measurement, a single sensor 
can be measured in a fraction of a millisecond. Since the measurement time is set by the time 
taken to charge or discharge the sensor, the actual time needed is quite small due to the very 
small sensor capacitance. This time is essentially fixed in this method of measurement, so the 
variable under design control is the frequency used to drive the timer. The higher the frequency 
used for the Timer_A TAR, the larger the count result for a given change in capacitance. In the 
measurement shown in Figure 15, using 1 MHz provides a count delta of only 1 count, not 
usable for button determination. At 16 MHz, the count delta realized goes up to ~8, providing 
some margin for a touched/untouched switch detection event. 

As the change in capacitance goes up, the larger the resulting measurement number will be for 
use in the system. Increasing the amount of influence of the user by reducing the thickness of 
the overlay is a good method to increase the usable count delta. 
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4 Software Implementation 

Once the raw measurement result is obtained, the user software must now interpret the data for 
the given application. Given the sensitivity of the measurement, noise due to power supply, 
measurement clock frequency shift, and external factors such as 50/60-Hz mains noise can all 
lead to noisy results. 

Often it may be good enough to simply ignore some number of LSBs of the result. When a large 
change in measured counts are achieved for a given touch event, this approach is likely 
acceptable. For instance, when doing simple key press detection for on/off function, noisy LSBs 
can often be ignored. When the application requires better resolution, e.g., implementation of a 
multi-point slider, it may be necessary to handle the data more carefully. Low pass filtering of the 
data and simple averaging of multiple samples can help to smooth out position detection in such 
a system. As system constraints such as power budget and specifically the insulator thickness of 
the sensor overlay are tightened, the resulting LSB content is more critical to extract. 

4.1 Tracking Sensor Base Capacitance 

Whether implementing a simple button sensor or more complex slider, tracking of each sensor’s 
base capacitance is a key element of any touch sensing software algorithm. The base 
capacitance is the capacitance of a given sensor when untouched by the user. Voltage stability, 
PCB mechanics, insulator properties as well as ambient conditions such as temperature and 
proximity to other objects all play a role in the base measurement of a PCB-based capacitive 
sensor. 

Without a dynamic ability to track this changing baseline value, instability can result in false 
press detection or “stuck key” behavior. Consider a simple button that has a preset on/off 
threshold without dynamic baseline tracking. In the case that the baseline result drifts, it may 
move towards the trip threshold for a valid key press. If there is enough drift in the base 
(untouched) result, it can reach the pre-set trip point and create such a false trigger. 

One method for dynamically measuring and adjusting (tracking) the base capacitance is shown 
in Figure 16. Keep in mind that this must be done for each sensor independently. Also note that 
an increase or decrease in the variable “base” in the Figure is not necessarily reflecting a 
respective increase or decrease in base capacitance. Only the variable used in the algorithm is 
being adjusted. The sign of the “Delta” calculation and “base” adjustment is different for the RO 
and RC methodologies. (For RO the measured count decreases when the capacitance of the 
sensor increases; for RC the measured count increases when the capacitance of the sensor 
increases.) 
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Figure 16. Example Algorithm for Tracking Baseline Sensor Capacitance 

When a measurement is completed, it must first be determined if a valid touch is occurring. This 
can be done by looking for a threshold that would represent the smallest real touch to be 
detected. For a simple on/off button this can be a number much smaller than the on/off 
threshold. 

Once determined that no touch is occurring, the base value can be adjusted. How the base 
value is adjusted is dependent on the direction in which it is perceived to have changed. For 
instance, if the result of the measured sensor indicates that the base capacitance is decreasing, 
the base value is automatically adjusted down. Since a touched sensor will increase in 
capacitance, the decreasing result is taken as a genuine decrease in the base value. This is 
implemented by a simple average of the old base value with the new measured value, resulting 
in the new base value to be used in the next measurement. 

When the measured result indicates an increase in base capacitance, it is recommended that 
the base value be tracked more slowly. While an increase may mean that that it is truly shifting 
up, it may also mean that a finger is nearby that will soon be in contact with the sensor in 
question. If the base value is adjusted upwards too quickly, the change calculated when the 
finger is really in contact with the sensor may not be enough to indicate a press. For a detected 
increase in an untouched sensor, the base value is simply adjusted by a single count in the 
algorithm represented in Figure 16. 
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4.2 Implementing Button Function 

Implementing simple button functionality is relatively straight forward using capacitive touch 
sensing. Because a single level of detection is required for a simple on/off button, the sensitivity 
and magnitude of the change in capacitance for a touch event is minimal. Figure 17 shows a 
graphical representation of the measured counts in a system for four keys. Untouched keys 
provide a count representing the base capacitance. The second key that is touched provides a 
larger delta count result, due to the increased capacitance. Sensitivity of each key is tuned by 
adjusting the threshold to a higher or lower value between the base and maximum count results. 

 

Figure 17. Button Press in a Four-Key System 

The threshold set point should be above any noise in the measurement to allow for a robust and 
accurate key press result. 

4.3 Implementing Slider Function 

Extending beyond simple buttons with on/off functionality, it is possible to determine more than 
one threshold using the capacitive sensor to implement multiple “positions” for a single “button”. 
As more of the capacitive sensor is interacted with by the user, the larger the capacitance will 
be. Figure 18 represents the response as a single touch moves across the four sensor 
elements. 

 

∆TAR 
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Figure 18. Fundamental and Neighboring Sensor Response 

 

A simple slider implementation can be realized by assigning multiple positions to each sensor. 
The example here establishes 16 positions to each sensor of the four sensor configuration 
providing detection of 64 individual steps. The number of steps a sensor can accommodate is a 
function of the sensitivity of the sensor to a given touch, which is the amount of capacitive 
change induced. The greater the change in capacitance, the greater the number of delta counts 
measured, and the greater the number of individual positions per sensor. Figure 19 defines a 
simple algorithm that implements a 64 position slider with four sensors. 

Get key delta & limit to max 
value

positionKEY = delta / step size

If KEY pressed: Slider position = 
positionKEY + steps*weightKEY

(0, 1, 2, 3...)

Set max delta expected
Set steps per key (stepsKEY)

Step size = max delta / stepsKEY
(slider steps = stepsKEY * #keys)

Steps

DELTAMAX

Count Delta

0

Step size
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Figure 19. Example Slider Position Determination Methodology 

This implementation simply limits the maximum response to an upper value which can always 
be achieved for a given system. This max delta is then divided by the desired steps per key. 
Each key is weighted to linearly result in steps 1 through 64 (position “0” is defined by no key 
press). The most significant sensor touched is used for determining the position. Table 2 
indicates the associated steps from each key. 

Table 2. 64-Position Slider Key 

Sensor Positions per sensor Weight factor Resulting Position 

1 
1 to 16 

(min  to max delta) 
0 1-16 + 16×0: 1-16 

2 
1 to 16 

(min  to max delta) 
1 1-16 + 16×1: 17-32 

3 
1 to 16 

(min  to max delta) 
2 1-16 + 16×2: 33-48 

4 
1 to 16 

(min  to max delta) 
3 1-16 + 16×3: 49-64 
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One drawback to this simple method is that once the maximum delta is achieved for a given 
sensor, the position calculated will not change until the next most significant sensor is 
influenced. While not described in the context of this document, it is possible to realize robust 
implementations providing a more linear transfer characteristic by interpolating position based 
on not only the maximally influenced sensor, but also its neighbors. 

4.4 Handling Slider Endpoints 

The simple slider described previously determines position across a 4-sensor array. Position “0” 
is for no key press and position “1” is the lowest key press. It is associated to the left-most 
position of the slider. Position “64” is the maximum position and is associated to the right-most 
position of the slider. 

The simple algorithm implemented inherently handles proper increase or decrease in position at 
the minimum end point and up through the sensors moving left to right. However the maximum 
endpoint must be managed more directly. This is because the measured result for the most 
significant end will decrease from the maximum delta once the touch extends beyond the center 
of the last sensor and will increase from the minimum with a touch beginning at the rightmost 
edge of the same sensor. Figure 20 represents both scenarios. 

 

Figure 20. Representation of Count Measurement Results for Max Endpoint 

In the figure, the A portion represents a touch extending up to and then beyond the desired 
maximum position and the B portion shows a touch approaching from the maximum position. In 
both cases, this influence must be correctly assessed and the expected position calculated 
accordingly. 

In the case of this 64-position slider, a touch extending beyond the maximum position, left-to-
right, will result in a decrease in measured response for the end key until the key is no longer 
touched measured as a “0” delta result. Without any special handling, this will appear as a 
decrease from position 64 gradually down to 49 and then 0, even though the touch did not move 
in the decreasing direction. 
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Similarly, a touch approaching from the right-most position, tight-to-left, it will appear as an 
increase in measured response for the end key until the maximum influence is applied resulting 
in a maximum delta measurement. Without any special handling, this will appear as an 
immediate change from 0 to 49 and then gradually increase up to 64, even though the touch 
started at the physical end of the slider. 

The algorithm defined in Figure 21 manages both conditions. In the case that condition A in 
Figure 20 is occurring, it is detected by monitoring the last position calculated as well as the next 
to last sensor (the third sensor in this example). When the third sensor is determined to be 
decreasing in influence and the prior position was the max, 64, the new position calculated will 
be held at 64, even if the actual measured result for the last sensor is decreasing. 

 

Figure 21. Example Slider Endpoint Handling 

In the case condition B is occurring, it is detected by determining that the rightmost key is 
beginning to be touched without any response form the next key to the left. This is interpreted as 
a touch moving right to left beginning at the rightmost sensor and results in an immediate 
position determination at the maximum, 64. 

4.5 Sensor Multiplexing for Sliders 

When implementing sliders, it is often possible to extend the number of sensors used beyond 
the actual number of MSP430 pins available for measurement. This is achieved by connecting 
more than one sensor to a given measurement pin. To the measurement, the additional sensor 
simply appears as a larger base capacitance and does not impact the functionality of the 
system. However, since the base capacitance is increased and only one of the two sensors is 
influenced at a time, the response of the parallel sensors decreases. A practical limit for the 
number of sensors connected in parallel is considered to be two. 
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In terms of the sensor pairs being measured, the MSP430 cannot distinguish between the two 
and “sees” the same result for both, independent of which sensor in the pair is actually touched 
by the user. In order to use such a setup for a slider implementation, it is assumed that the 
mechanical design allows for multiple sensors to be influenced along any point of the slider. If 
this is achieved, and the sensors are organized in a way that the combined response of multiple 
sensors being influenced is unique for any position along the slider, the usability of the slider and 
positions can be extended. Figure 22 show a 6-to-12 pairing and the positions of each of the 
6 pairs. Analyzing the figure it can be determined that for a touch anywhere along the slider, a 
unique response will be established across the group of sensors. Using an interpolating 
algorithm that accounts for this unique response detection, the sensor count can be extended 
beyond the actual pin count for a given device. 

1 2 3 4 5 2 4 1 5 36 6
 

Figure 22. Example Sensor Multiplexing of 12 Capacitive Sensor Elements 
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5 Summary 

Two methods of implementing single-touch capacitive sensing on the MSP430 have been 
discussed. While each method has its own advantages and disadvantages, each can be used to 
realize a solution when the proper measures are taken both from a mechanical assembly and 
hardware/software standpoint.  

In summary, each method’s key takeaways are: 

  MSP430 RO Method 
o Works in Comp_A+ devices only 
o Number of independent sensors limited by available CA+ mux inputs 
o Needs one external resistor per sensor plus reference ladder (three additional 

resistors) 
o Sensitivity limited by current consumption (programmable measurement time) 

  MSP430 RC Method 
o Can be implemented on any MSP430 
o Up to 16 independent sensors (16 interruptible GPIOs) 
o Single external resistor per two sensors 
o Sensitivity limited by on-chip maximum clock frequency (fixed measurement time) 
o Lowest power implementation 

Fundamentally, the actual measurement of the capacitance is quite simple; however, the 
mechanics of the assembly regarding the sensors and touch interface along with the software 
algorithms used to determine the nature of the touch provide the implementation in an end-
equipment with significant challenges. The contents of this application report are not to provide a 
one-size-fits-all solution, but rather to establish the fundamentals of the application and 
methodologies used which can be extended and customized to fit a given product. 
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Appendix A. Flexible Evaluation and Demonstration Hardware 

This section is the hardware description of a 4-button MSP430-based single-touch capacitive 
sensing system described and used for test/measurement in the previous sections of this 
document. This hardware implements both the oscillator and RC methods on a single platform 
for evaluation purposes 

 

Figure 23. Flexible 4-Button RO/RC System Block Diagram 

Both methods for capacitive sensor measurement discussed can be realized with this hardware. 
However, each method is implemented independent of the other, allowing the two instances to 
be cut apart from a single PCB. In addition to the touch sensing interface, each implementation 
provides a dedicated 2xAAA battery power supply, 14-pin header for JTAG access to each 
MSP430 MCU and hardware interface to Timer_A pins. The Timer_A connections allow for 
communication of-board with a PC-based application, for example, providing a means of data 
transfer and control via standard UART. (Detailed implementation of a Timer_A UART can be 
found in additional MSP430 Application Note collateral.) 

Corresponding hardware and software materials can be found in the .zip archive associated with 
this application note, downloadable from www.msp430.com. 

http://www.msp430.com/
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Appendix B. Simple Demonstration Hardware 

This section is the hardware and software description of a simple 4-button single-touch sensing 
system using the MSP430. This system implements only the RC-based measurement technique 
and is designed for a use with the EZ430 development tool. 

 

Figure 24. Simple 4-Button RC System Block Diagram and Image 

Information regarding the EZ430 development tool can be found at 
http://focus.ti.com/docs/toolsw/folders/print/ez430-f2013.html 

Corresponding hardware and software materials can be found in the .zip archive associated with 
this application note, downloadable from www.msp430.com. 

 

http://focus.ti.com/docs/toolsw/folders/print/ez430-f2013.html
http://www.msp430.com/
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