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1 General formulation

1.1 Process model

The equation 1 gives the internal dynamics of the process itself. The index k
represent the discrete time steps. Usually the actual state variable xk cannot be
directly observed, but it can be estimated through some type of measurement
device. The measurement device is modelled in equation 2. The measurement
zk can be directly observed. The column vectors wk and vk represent white
noise added to the system. The Kalman filter presented in this tutorial will
assume the system is modelled in accordance with these equations.

xk = Axk−1 + Buk−1 + wk−1 (1)
zk = Hxk + vk (2)

1.2 Noise covariances

When you have a single scalar stochastic variable you can estimate its variance.
When you have a stochastic state vector then you don’t have the variance any-
more, but you have the covariance matrix instead. The covariance matrix is
symmetric. The element at row i and column j of the covariance matrix tells
the correlation between the elements at rows i and row j of the state vector. If
the element at row i of xk has no correlation at all with element at row j, then
the element at row i and column j of the covariance matrix will be zero.

Below the equations 3 and 4 define the process and measurement covariance
matrices, respectively.

Q = cov(w) (3)

R = cov(v) (4)

Usually the measurement noise covariance matrix R can be approximated
or computed based on the characteristics of the sensor being used. Matrix R
is more accessible than matrix Q and may even be estimated because we have
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direct access to the measurements. The matrix Q may be “hand tunned” by
trial and error. Higher magnitudes in the elements of Q can be used to account
for expected uncertainties (higher variance) between the corresponding elements
of the state vector.

1.3 Kalman filter

The kalman filter is implemented in two steps:

1. Time update or prediction;

2. Measurement update or correction.

The time update (or prediction) is given by equations 5 and 6. The column
vector x̂−k represents the estimation of the state variable xk done a priori, before
the actual measurement. The matrix P−k is an a priori estimation of the error
covariance: P−k = cov(xk − x̂−k ).

x̂−k = Ax̂k−1 + Buk−1 (5)
P−k = APk−1A

T + Q (6)

The measurement update (or correction) is given by equations 7, 8 and 9.
The matrix Kk is the Kalman gain which is used in equation 8 to estimate
the state variable by balancing between the predicted measurement and the
actual measurement. The term zk −Hx̂−k is called innovation. The matrix Pk,
computed in equation 9 is the error covariance at time k which will be used in
order to predict the next error covariance in the next step, in equation 6.

Kk = P−k HT (HP−k HT + R)−1 (7)
x̂k = x̂−k + Kk(zk −Hx̂−k ) (8)
Pk = (I −KkH)P−k (9)

The Kalman filtering algorithm consists basically of computing equations 5
and 6 (prediction equations) and then equations 7, 8 and 9 in a loop. For the
initial iteration P̂−k can be initialized equals to Q or simply as I. In practice it
should quickly converge so that its steady values can be sampled in a preliminary
experiment and used for the next initialization.

2 Gyroscope + Accelerometer model

In this section specific implementations of the Kalman filter are introduced
for the problem of estimating the tilt angle from gyroscope and accelerometer
readings. Chip gyroscopes measure the angular rate (here noted as θ̇gyro

k ). This
means the measurements have to be integrated over time in order to estimate
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the angle. Due to the gradual accumulation of small errors this causes a drift,
introducing an incremental bias to the measurement. Chip 2-axis accelerometers
can be used to measure the tilt angle directly: θaccel

k = tan−1(accx/axxy) (in
programming often there is a function called atan2 which accounts for the
sign of the arguments in order to return the angle in the correct quadrant.)
Unfortunatelly accelerometers are very noisy and must be filtered, thus taking
longer to update the correct angle.

In summary:

Gyroscope Accelerometer
Pros Fast No bias
Cons Accumulate bias Slow

2.1 Process model

The process is modeled following the same construction introduced in section
1.1. The variable θk represents the tilt angle (in rad) θ̇k represents the angle
increment (in rad/s) and δ̇ represents the increment bias error (also in rad/s).
The constant dt represents the time elapsed between two measurements (in sec)
which means tk = kdt. The variable θ̇gyro

k represents the reading of the gyro (in
rad/s) and θaccel

k represents the reading of the accelerometer (in rad).

 θk

θ̇k

δ̇k

 =

 1 0 −dt
0 0 −1
0 0 1

 θk−1

θ̇k−1

δ̇k−1

 +

 dt 0
1 0
0 0

[
θ̇gyro

k−1

θaccel
k−1

]
+ wk−1 (10)

[
θ̇gyro

k

θaccel
k

]
=

[
0 1 1
1 0 0

] θk

θ̇k

δ̇k

 + vk (11)

Process noise covariance should be tunned experimentally. Here is an “initial
guess”:

Q =

 0.2dt
0.2
0.1

 0.2dt
0.2
0.1

T

(12)

The measurement noise covariance can be estimated by using some ground
truth (e.g. attach the system to another device with an encoder). Another
way to quickly estimate the measurement noise covariance is by consulting the
variance of the measurement error in the datasheet or manual of the individual
devices.

R =
[

var(θ̇gyro) 0
0 var(θaccel)

]
(13)
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Time update or prediction:
θ̂−k
ˆ̇
θ
−

k

ˆ̇
δ
−

k

 =

 1 0 −dt
0 0 −1
0 0 1


 θ̂k−1

ˆ̇
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 +

 dt 0
1 0
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[
θ̇gyro

k−1

θaccel
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]
(14)

P−k =

 1 0 −dt
0 0 −1
0 0 1

Pk−1

 1 0 0
0 0 0
−dt −1 1

 + Q (15)

Measurement update or correction:

Kk = P−k

 1 0
0 1
0 1

[
0 1 1
1 0 0

]
P−k

 1 0
0 1
0 1

 + R

−1

(16)

 θ̂k

ˆ̇
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θ
−

k

ˆ̇
δ
−

k

 + Kk

[
θ̇gyro

k

θaccel
k

]
−

[
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θ̂−k
ˆ̇
θ
−

k

ˆ̇
δ
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 (17)

Pk =

 1 0 0
0 1 0
0 0 1

−Kk

[
0 1 1
1 0 0

] P−k (18)

Good luck!
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