
Simple Compare

Page 1

Date: 11-17-2012
Version: V. 0.97

Group SF Lexicon status note

MODIFIED ITEMS – NOT MERELY RENAMED

Loop loop+ Modified ??

stack/memory ! modified

stack/memory @ modified

stack/memory literal modified

word creation create modified

word creation variable modified

RENAMED ITEMS

character    blank renamed

commentary ( renamed

commentary ) renamed

Dictionary word renamed

stack manipulation renamed??

STARTING FORTH ITEMS NOT INCLUDED IN PROPFORTH 5.03

base octal none Octal is not needed much these days

character    hold none character string output

character    page none This is an ANSI ESC character sequence that clears the Console screen

character    type none outputs a string

character string >number none Not used

character string compare none Not used

character string count none Not used

? none ? alone not in use, prints the contents of an address followed by a space

Dictionary marker none

double functions 2! none ! Changed to 4 different ! Items, size and location dependent

double functions 2@ none @ Changed to 4 different @ Items, size and location dependent

Double number functions d- none

Double number functions none

Double number functions d+ none

Double number functions d< none

Double number functions d= none

Double number functions none

Double number functions none

Double number functions none

Double number functions m* none

Double number functions m*/ none

Double number functions m+ none

execution abort" none Cease execution and output message to console

execution quit none terminates current task and returns control to console

Starting Forth Lexicon Missing or Changed in PropForth
Author : G. Herzog, aka Loopy Byteloose

2nd Draft – several errors removed

PropForth uses +loop, NOT sure if this is modified or just renamed.

PropForth divides this into 4 items COG!, L!, W!, and C! (C! was in Starting Forth)

PropForth divides this into 4 items; COG@, L@, W@, and C@ (C@ was in Starting Forth)

PropForth has two different length literals: litl and litw

In PropForth, this does NOT return a dictionary address. CANNOT create arrays, use variable – allot – cells

PropForth  has variable (which is 32bit and creates arrays) and wvariable (which is 16bit, maybe arrays, too)

PropForth has bl

Prop Forth uses { and } for text to be ignored, it seems the parenthesis are used for other purposes

Prop Forth uses { and } for text to be ignored, it seems the parenthesis are used for other purposes

PropForth uses words

r@ See RS@

console fron addr

Use forget

Double number functions would be 64 bit in PropForth, less needed

d.r Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed

dmax Double number functions would be 64 bit in PropForth, less needed

dmin Double number functions would be 64 bit in PropForth, less needed

du< Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed

Double number functions would be 64 bit in PropForth, less needed



Simple Compare

Page 2

file and OS none

file and OS block none

file and OS empty-buffers none

file and OS include none

file and OS list none

file and OS load none

file and OS none

file and OS update none

file and OS use none

interpret [  none Enter interpretative state

interpret ['] none Find word and compile as literal

Loop repeat none Not used

math mod none Not used, not sure why – see a different approach to mod is followed.

math none Chapter 7 – rather a complex word, see Starting Forth text

math none Chapter 7 – rather a complex word, see Starting Forth text

Memory clear erase none Stores zeros in X bytes of memory

numeric formats u< none

relocate none Not used

relocate move none Not used

stack manipulation none Leading ? Not in use – Duplicates only in non-zero

stack manipulation ?stack none

stack manipulation 2over none Can be created by the user

stack manipulation 2swap none Can be created by the user

stack manipulation none stack pointer

stack manipulation sp0 none stack pointer

stack/memory none add a number to an address – would need to determine Cog versus Hub ram and maybe data length

text format -trailing none removes trailing white space

text format none

TIB none TIB not used

TIB none TIB not used

word creation 2constant none

word creation 2variable none

word creation does> none Not implemented – A significant difference in how as CREATE … DOES> is not provided

word creation postpone none Not used

blk Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

scr Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

Not supported in Prop Forth – use safeforth and/or eeprom and sdcard file systems

fm/mod
sm/rem

Unsigned number are supported in PropForth, this word is just not provided

cmove>

?dup
Leading ? Not in use – tests for stack underflow, PropForth resets underflow, returns error

sp@

+!  

u.r Right justified – Unsigned number are supported in PropForth, this word is just not provided

#tib
tib

PropForth  has constant (which is 32bit) and wconstant (which is 16bit)

PropForth  has variable (which is 32bit) and wvariable (which is 16bit)


	Simple Compare

