
Explore Features Enterprise Blog

Clone this wiki locally

Affordable 9 DoF Sensor Fusion

Kris Winer edited this page on Jul 24 · 123 revisions

For the individual maker, the last few years have seen a revolution in inertial motion

sensing technology (Inertial Motion Units or IMUs) that consists of three components: the

availability of inexpensive gyroscope/accelerometer/magnetometer sensors of high

precision; the development of efficient and simple open-source 6- and 9-degrees-

of-freedom (9 DoF) sensor fusion algorithms; and the availability of small, fast, and

inexpensive microcontrollers. The combination of these three elements allows the creation

of devices that can track absolute orientation with respect to a fixed Earth frame of

reference with high accuracy in a very small package and for less than twenty dollars. My

intention here is to explore this new world, demonstrate the kind of performance one can

easily achieve, and illustrate some of the limitations too. I will start with the MPU-6050.

GY-521 Breakout Board with the MPU-6050 showing the Invensense MPU-6050 front

and center (made in March (11th week of) 2012), the KB33 voltage regulator, and 2200

Ohm pull-up resistors on the SDA and SDL lines, which are broken out along with power

and ground pins, auxiliary I2C lines, an address pin, and an interrupt pin.

The MPU-6050 is made by Invensense and consists of a MEMS (microelectromechanical

system) accelerometer and gyroscope with 16-bit analog-to-digital converters for 60 micro

g and 0.01 degree/second precision, respectively. The device was first released at the end

of 2010 but is still state-of-the-art being used in the MPU-9150 device with an embedded

magnetometer, which I will discuss later. The MPU6050 has been recently redesigned to

become the MPU6500 gyro/accelerometer, shrunk 40% in size, and is being used in the

newest MPU9250 9-axis sensor (more below). The MPU-6050 is available in many

varieties of breakout board, which can be purchased for as little as $2 each, but is usually

found on Amazon.com for ~$5. An astounding bargain considering the chip itself costs

more than $5 in quantities of 100.

The MPU-6050 has a remarkable innovation called the Digital Motion Processor (DMP)

integrated into the chip whose programming is proprietary to Invensense. It allows 6-axis

sensor fusion calculations to be performed by the DMP at a fixed rate of 200 Hz and the

 Sign up

Sign up

Sign in

Sign in

11 4 Star

 Star Fork

 Fork

kriswiner / MPU-6050

 Pages 3

2014 Invensense Developer's

Conference

Affordable 9 DoF Sensor Fusion

Home

https://github.com/kriswiner/MPU-6050.wiki.gi

This repository

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

1 of 11 09/13/2014 11:47 AM

results delivered to the host microcontroller in the form of a quaternion, Yaw, Pitch, and

Roll, tap interrupts, portrait/landscape detection, etc. This capability is of major importance

for the primary application of this chip in the smart phone and tablet markets. For the

individual maker, as I will show, the use of the DMP is neither desirable nor necessary to

get all the same functionality in a completely transparent fashion. I will discuss how to do

this with open-source sensor fusion algorithms shortly.

The last of the three elements in our revolution is the microcontroller itself. I have chose to

work primarily with the 3.3 V 8 MHz Pro Mini Atmega 328P AVR microcontroller since it is

small (2 cm x 5 cm), light (2 g), and cheap ($9 each when purchased by the dozen). I will

also use the Arduino Uno which operates at 5 V and 16 MHz, and the Teensy 3.1. The

latter is the epitome of affordable, powerful ARM microcontrollers being of the same size

as the Pro Mini, about twice the cost (still cheap), and operating both at 3.3 V and up to 96

MHz processor speed with overclocking. This is overkill for the comparatively easy task of

9 DoF sensor fusion, as we shall see.

Hook up of the MPU-6050 to the Pro Mini is straightforward, only requiring connection of

3.3 V and ground and the SDA and SCL I2C lines (Pro Mini pins A4 and A5, respectively).

There are pull-up resistors on most breakout boards so external ones are usually not

required. Some breakout boards even have their own voltage regulator and can handle 5

V power. But the sensor is not 5 V tolerant and it is best to use a logic converter if you are

using an Arduino Uno. There are several basic Arduino sketches that can be used to

obtain scaled accelerometer and gyro data from the MPU-6050; I will be using and

referring to this sketch.

Before we do anything else, let's get ourselves oriented. Think of a jet in the sky.

Gravity is down (+z axis). The Yaw is the angle (psi in the diagram) in the horizontal plane

between the fuselage and true North (x-axis), the pitch (theta in the diagram) is the angle

the nose makes with respect to the horizontal (x-y) plane, and the roll is the angle (phi in

the diagram) of the wings about the long axis of the jet.

Figure 1

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

2 of 11 09/13/2014 11:47 AM

I'll get into more detail of what a typical sensor fusion sketch does in a bit; for now let's just

take a look at some results to illustrate what the MPU-6050 can and cannot do. Here is

plotted the Yaw, Pitch, and Roll output from a 6 DoF open-source sensor fusion algorithm

using the MPU-6050 accelerometer and gyro data as input. We can see that the filtered

Roll and Pitch are essentially zero for the sensor laying flat on the table and remain so for

several minutes. The Yaw is slowly changing (about 1.8 degrees per minute here) due to

gyro drift. Despite the drift, the Yaw returns to trend after slight rotations at the ~two

minute mark. With only one axis as a frame of reference (gravity), we can specify two

reference vectors (one parallel and one perpendicular) relative to the reference direction.

That leaves one direction, the Yaw, undetermined. Due to the natural drift of any

mechanical gyro, the Yaw will drift unless corrected by a second reference frame

standard, like Magnetic North.

Figure 2

The proprietary sensor fusion algorithms in the MPU-6050 DMP do a better job than the

simple open-source algorithm as shown here. Again, the Roll and Pitch are unchanging

since there are two good reference axes. The Yaw is drifting although at a slower rate

(~0.4 degrees per minute) than with the simpler sensor fusion filter. This device also

responds quickly to changes in Yaw as seen at the ~one minute mark, returning to the

previous Yaw drift trajectory after the excursion. We don't know what is in the proprietary

sensor fusion filter used by Invensense but it is doing pretty well. Kudos to Invensense!

We can guess that there is a sensor fusion filter, similar to what is in the sketch above, as

well as low- and high-pass filters to smooth the output. In fact, we can get a sense of this

by noticing the ~ten seconds it takes to get to a stable value of the Yaw, which then drifts

at a slow rate. However, there is still drift which makes using this device, even with the

improved algorithms in the DMP, as a reference for absolute orientation problematic. For

smartphone and tablet orientation, the DMP is programmed to calibrate the acceleration

and gyro biases whenever motion stops, so it will keep relative orientation accuracy over

short times. But we can do much better than even the multi-talented DMP just by adding

one other sensor device to provide a second orthogonal reference vector; the

magnetometer.

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

3 of 11 09/13/2014 11:47 AM

Figure 3

Magnetometers are typically Hall-effect sensors that offer three-axis magnetic field

measurement with high-precision and accuracy, for example, the HMC5883L by

Honeywell achieves +/- 2 milliGauss resolution for a full-range of +/- 8 Gauss. These

devices come in relatively inexpensive breakout boards, communicate via I2C, and can be

easily added to the MPU-6050 to achieve very accurate, absolute orientation as shown

here. With the addition of the Magnetic North reference vector to the system, we have

three constraints that uniquely determine the orientation of our three axes and it shows:

the Yaw, Pitch, and Roll are stable over many minutes within better than one degree

precision and, depending on the care in the sensor calibration, as good as a few degrees

absolute accuracy. Moreover, the Yaw now represents an absolute measurement; the

edge of my desk that I use to align the sensor in all of these examples is about 45 degrees

from true North. The power of 9 DoF sensor fusion is that it gives accurate, reproducible

absolute orientation that 6 DoF sensor fusion cannot. So let's talk about sensor fusion.

Sensor fusion is a fancy name for error correction and at the highest level works like this.

We form an estimate of the orientation which is usually represented by a Quaternion,

which is a four-component vector that contains all the information needed to specify a

unique direction in x/y/z space. The gyro output W in radians per second can be thought

of as rates of change of this Quaternion:

dQ/dt = 1/2W x Q or Qt = Qt-1 x (1 + 1/2Wdt)

for each of the three spatial axes. Think of Q as our estimate of the sensor orientation.

This just says that the rate of change of the Quaternion is half the gyro rate for each axis.

Or, in terms useful for numerical integration, the new Quaternion estimate is equal to the

old one times a function of the sensor rotation in a small time interval.

The error correction comes in by comparing the Quaternion estimate of the acceleration to

that measured by the accelerometer:

Qt = Qt-1 x (1 + 1/2Wdt) + (AQ - Ameas) x beta x dt .

The estimate of Qt can be iterated to minimize this error term with the adjustable

parameter beta controlling the rate of convergence to a stable answer. In practice,

reasonable convergence can be achieved in two or three iterations meaning that we would

like this error correction or sensor fusion filter to operate at a rate two or three times the

output data rate of the sensor. For gyro and accelerometer output rates of 200 Hz, this

means we want filter update rates approaching 1 kHz. In order to make use of our

Quaternion estimate of orientation it is conventional to transform the four-component

vector into a 3 x 3 rotation matrix, or into even simpler Yaw, Pitch, and Roll rotation

angles. The best format will be dictated by the ultimate application of the sensor output.

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

4 of 11 09/13/2014 11:47 AM

We will use the standard Attitude Heading Reference System (AHRS) reference frame

applicable to aerial navigation, but there are other reference frames that might be more

appropriate.

Note the simple error correction term gets us stable Roll and Pitch values but this

orientation estimate will be subject to Yaw drift no matter how fancy the filter is since it

lacks a second orthogonal reference vector to constrain the Yaw. With the addition of a

magnetometer we can modify our orientation estimate by augmenting the error correction

by comparing the Quaternion estimate of magnetic field with that measured by the

magnetometer:

Qt = Qt-1 x (1 + 1/2Wdt) + [(AQ - Ameas) + (MQ - Mmeas)] x beta x dt .

Now we have an estimate that quickly converges to a unique solution that represents the

absolute sensor orientation with respect to a fixed Earth reference frame. The Yaw, Pitch,

and Roll values will always return to the same values no matter what the intervening

motion when the sensor is reoriented back to a given direction.

All 9 DoF sensor fusion filters follow this basic approach but differ in the methods used to

either construct the error terms, minimize the error terms, or both. See here for an

excellent summary of methods and sources. The most common approach, yet also one of

the more complicated ones, is the Kalman Filter (see here and here). Although these

filters can be highly accurate, they require several matrix inversions and other matrix

operations that are relatively expensive for small microcontrollers to handle quickly. Here

is a nice discussion of sensor fusion using an easier-to-implement direction-cosine matrix

approach that also requires matrix operations. In 2008, Robert Mahony developed a

non-linear complementary filter to correct for gyroscope drift by using the gravity vector as

a reference similar to the principle discussed above. In 2010 Sebastian Madgwick

developed simple 6 DoF IMU and 9 DoF MARG (Magnetic, Angular Rate, Gravity) sensor

fusion algorithms optimized for high filter update rates on small microcontrollers.

Madgwick's paper is accessible and very well-worth reading. In addition to being fast,

efficient, and accurate, the best thing about these filters is that they are open source! They

are capable of matching the performance of the proprietary filters in the Invensense DMP

in terms of accuracy and filter update rates, and allow full 9 DoF sensor fusion that the

DMP cannot do as of yet.

I have implemented the open source sensor fusion algorithms for a variety of MARG

sensors and have measured their performance using three microcontroller platforms for

the sensor fusion filtering: the 3.3 V 8 MHz pro Mini, the 5 V 16 MHz Arduino Uno, and the

3.3 V 24/48/96 MHz Teensy 3.1. The sensor architectures, output data rates, and costs

are compared in Table 1 and the performance characteristics of the filters are shown in

Table 2.

[Table 1] These six different motion sensor solutions vary in their attributes, advantages,

and limitations. Listed are typical sample rates and corresponding bandwidths in Hz. Also

listed are typical costs and where to find breakout boards for your own testing. Of course,

you can always make your own.

We have covered the MPU-6050 whose main limitation is the lack of a magnetometer.

This can be remedied by adding a separate magnetometer, such as the Honeywell

HMC5883L but with the disadvantage of increased complexity for the user (2 devices

rather than one) and the problem of alignment between the two distinct devices. This is

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

5 of 11 09/13/2014 11:47 AM

more of an issue in applications where high precision is required. For quadcopters, this

solution will suffice. The GY-80 is in this category of multiple separate devices. It is the

only 10 DoF sensor in the group having a BMP-180 pressure sensor integrated on the

breakout board. The GY-80 class of multiple individual sensors on a board was state-

of-the-art perhaps five years ago when multiple devices integrated into the same small

package were unavailable. One can still find many examples of the GY-80-style multi-

sensor board for sale at still rather elevated prices; some approaching $100. The GY-80 is

a relatively inexpensive Chinese-made version of this solution with four individual sensors

(six if you include the temperature sensors embedded in the BMP-180 and the L3G4200D

gyro). The complexity for the user has been diminished somewhat by the on-board

integration and some care has been taken to get the relative orientation of the devices

correct. Still, one can do better.

The modern approach is to integrate multiple sensors into one small package. Popular

examples of this are the MPU-9150 from Invensense and the LSM9DS0 from ST

Microelectronics, both of which combine an accelerometer/gyro with a Hall-sensor

magnetometer into one 4 mm x 4 mm package. ST Microelectronics is a leader in MEMS

gyro design and has the largest market share, although Invensense has the smallest

9-axis solution and is in a position to challenge that lead.

The MPU-9150 uses the MPU-6050 accelerometer/gyro discussed above married with an

Asahi Kasei AK8975A magnetometer. The AK8975A magnetometer is limited to one-shot

data output so a register write to the device must be made each time magnetometer data

is desired. The resolution of the magnetometer is +/- 3 milliGauss with a full-scale range of

+/- 12 Gauss. The DMP still does 6 DoF sensor fusion but there is no way to get

magnetometer data into or out of the DMP to get true 9 DoF; Invensense announced a 9

DoF sensor fusion solution for multiple microcontroller platforms at their latest (June

11-12) Developer's Conference. For the individual maker, microcontroller-based sensor

fusion will have to do for now. There is a comprehensive library for the MPU-6050 and

MPU-9150 developed by Jeff Rowberg et al. at I2CDevLib; most folks find it a bit hard to

use but it does have a 'hack' on the DMP usage which works well. I created a more

transparent C++ Arduino sketch that accesses the data from all the MPU-9150 sensors

and does 9 DoF sensor fusion on the results using Madgwick's and Mahony's sensor

fusion filters. You can find that sketch here.

The LSM9DS0 offers similar capability as the MPU-9150 without the DMP. I find the

LSM9DS0 data sheet a bit easier to negotiate than the MPU-9150 data sheet and Jim

Lindblom of Sparkfun has created an excellent library for this device, which includes a

sensor fusion capability I added using the same open-source sensor fusion algorithms as

those discussed above. The magnetometer in the LSM9DS0 offers several output data

rates from 3 to 100 Hz and excellent resolution at +/-80 microGauss with a full-scale range

up to +/-12 Gauss. In future versions of this integrated sensor solution ST Microelectronics

will be adding an embedded processor, like Invensense's DMP, for off-loading the sensor

fusion function from the host microcontroller, and integrating additional devices such as a

pressure sensor into smaller and smaller packages. Freescale is also active in the highly-

integrated motion sensor market and hopes to compete with the MPU-9150 and

LSM9DS0 with its new offerings (see here and here). More sensors integrated into smaller

packages is the current trend in motion sensing and I expect tremendous near-term

progress by these three leaders toward increasing capability, and decreasing footprint and

cost driven by the smart device market. What a wonderful trend for the individual maker!

The epitome of small-scale sensor integration is represented by the MPU-9250 by

Invensense. It marries the MPU-6500 accelerometer/gyro, which allows either SPI or fast

I2C communication with a host, with the AK8963 magnetometer, which allows continuous

data output at either 8 or 100 Hz rates and +/-1.5 milliGauss resolution with full-scale

range of +/- 48 Gauss, all in a small 3 mm x 3 mm package.

A teardown comparison between the LSM9DS0, MPU9250 and BMX-055 9-axis motion

sensor solutions is discussed here. I haven't mentioned the BMX-055 by Bosch since I just

discovered it and am in the process of making my first breakout boards and writing a

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

6 of 11 09/13/2014 11:47 AM

sensor fusion code for it. I'll have more to say about its performance later. For now, let me

quote liberally from the above teardown review...

"The three components use different packaging, with footprints that range from 4x4 mm

(16 mm²) for the STMicroelectronics part to 3x3 mm (9 mm²) for the InvenSense device.

STMicroelectronics and Bosch Sensortec use LGA packages, while InvenSense uses a

QFN package.

ST Microelectronics LSM9DS0, Bosch's BMX-055, and Invensense's MPU9250 9-axis

motion sensors.

"Strong differences in internal structure emerged after we removed the epoxy resin. For

example, STMicroelectronics and Bosch use five die, but InvenSense only uses two -- one

die for a six-axis accelerometer/gyroscope and one for a three-axis magnetometer."

"Thus, each player varied widely in the silicon area they used, from 19 mm² for

STMicroelectronics to 14 mm² for Bosch and just 8 mm² for InvenSense. More silicon die

requires more wire bonding for connecting them. The STMicroelectronics IMU uses 76

wire bondings, compared to 25 for the InvenSense device."

"STMicroelectronics uses a single MEMS die for the six-axis accelerometer/gyroscope,

shrinking the size of the six-axis function by more than 30% over its previous combo

solution, which used two dice."

"The Bosch component is the only nine-axis MEMS IMU with all its functions

(accelerometer, gyroscope, and magnetometer) developed and manufactured by the

same player. The BMX055 integrates the second generation of Bosch's geomagnetic

sensor with the three-axis support in a single die compared to three separates die for the

previous generation."

"InvenSense's latest nine-axis IMU integrates a new three-axis gyroscope, now using a

single vibrating structure, versus three different structures for the previous generation.

This new design results in 40% shrinkage in the three-axis gyro area."

"A second benefit of this new design is that its Nasiri process has been changed. Cavities

which were traditionally etched in the ASIC to allow MEMS structures to move are no

longer used, resulting in a cost reduction."

"The device also integrates a new three-axis magnetometer, which features an almost

40% size reduction from the previous generation."

You can buy(!) the entire report here.

Let's talk about performance. One of the most important performance figures of merit is

the sensor fusion filter rate. This determines how quickly the iteration to a stable

quaternion is achieved and, as you might imagine, depends more on processor speed and

the sensor fusion algorithm than the details of the motion sensor.

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

7 of 11 09/13/2014 11:47 AM

[Table 2] Typical sensor fusion rates for the six motion sensor solutions examined here on

four microcontroller platforms. The filter update rates depend on the processor speed and

top out at a rate limited by the sampling rate and averaging methods chosen.

The table is evolving; I fixed the compiler error I was having on the Teensy 3.1 by

installing an updated Adafruit graphics library, so now I have complete Teensy data up to

96 MHz clock speed. Also, I discovered (thanks Paul Stoffregen) I was not using the 400

kHz i2c rate on Teensy as I thought; this has now been sorted out. I also had to implement

a filter update rate averaging scheme which brought many of the previously reported

instantaneous rate down about ten percent. When the filter update rates are greater than

the sample output rate, the microcontroller has to wait for the sample output and this can

cause a variety of instantaneous filter update rates to be reported, making performance

comparisons between microcontrollers difficult without some kind of rate averaging. Now

all these data are reported on more or less the same footing, which allows a

straightforward comparison between the different microcontroller platforms and sensor

solutions. Let's dig into the data.

The first observation is that the filter update rates for the MPU-6050

accelerometer/gyroscope are faster than those of most of the other sensors with any given

microcontroller. This is because there are only two sensors to read, and both are faster

than the magnetometers in the other sensors. The exception is the LSM9DS0, of which

we shall say much more. Another consequence of the absence of a magnetometer is the

filter itself has fewer operations and is, therefore, usually faster to run.

We can see that the filter update rates are roughly proportional to the processor speed,

which is expected. Even the 8 MHz Pro Mini is capable of reaching filter update rates well

above 100 Hz and, with the Mahony filter, is keeping up with the sensor sample output

rates. The Uno at 16 MHz is getting into the ideal filter update rate regime with update

rates approaching twice the data sampling rates. The Teensy can update the sensor

fusion filter at a much faster rate (>1000 Hz) than necessary in most cases. The

dependence on processor speed can be better seen in the following plot:

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

8 of 11 09/13/2014 11:47 AM

The filter update rate average smooths out the rate jitter I was seeing before but

introduces some additional overhead that diminishes the reported rate; for the Pro Mini the

rate is 10% less with the averaging than the case when only the instantaneous rate is

reported. This is mostly due to certain processor tasks such as updating the display, etc.

that interrupt the smooth flow of the sensor fusion; the rate is further diminished by 10%

when I turn on the Serial Debug output. In other words, and no surprise, overhead

matters. For maximum efficiency the microcontroller should be asked to do only those

tasks necessary to achieve the application goal. The rates depend also on various code

efficiencies being achieved, for example, the temperature doesn't have to be read at the

same rate as the accelerometer and gyro. So while the averaging allows some sensible

comparison between the processors, the points in the plot should be thought of as having

+/-10% error bars. The plot shows that the sensor fusion filter update rates rise

approximately linearly with processor speed, as one should expect. The 32-bit ARM

processors significantly outperform the 8-bit AVR processors. But there is something more

going on here.

Why does the LSM9DS0 allow significantly higher sensor fusion filter update rates,

especially at the fastest processor speeds where the difference between the LSM9DS0

filter update rate and that of the nearest rival is more than 30%? The sketches are not

exactly the same and I investigated whether using interrupts to prompt data acquisition,

like used in the LSM9DS0 sketch, was making the difference compared to the STATUS

register polling I was using elsewhere. The short anwer is no; there was a slight (maybe

5%) change with the interrupt approach, but none of the other sensors or platforms could

approach the LSM9DS0 filter update rates at the high end. For those sensors solutions

that depend on multiple separate devices, communication across the I2C bus even at the

400 kHz I am using could limit the effective sample read rate and thereby reduce the

overall filter update rate. It is also curious that the GY-80 and MPU-6050 + HMC5883

sensor solutions behave so similiarly slowly. I suspect the common HMC5883

magnetometer to be the culprit. Can we verify this hypothesis by comparing the details of

the two magnetometers: the HMC5883 and the LIS3MDL? No, the specs seems pretty

similar.

At the highest processor speeds, the update rates are far higher than the data sample

output rates, so the processor has a lot of time while it is waiting for new data to iterate

through the sensor fusion filter. The filter itself should be the rate limiting step and, as far

as I can tell, the filters are 'identical', so the rates should be also. I am missing something

here, and I still suspect that the differences in filter update rates at the limit of high

processor speed are related to the performance of the magnetometers but I don't yet

know how.

As you can see, I have also started to experiment with using another ARM processor, the

STM32F401 which runs at 84 MHz and has a single-precision floating point engine

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

9 of 11 09/13/2014 11:47 AM

embedded in the core. It is performing even better with the MPU-6050 than the Teensy

3.1. I am working on getting timing data for the other sensors. It is a bit harder to program

than the Teensy 3.1 using Teensyduino, the Arduino-like programming created and

maintained by Paul Stoffregen at pjrc.com/Teensy but it is one of a family of inexpensive

and very powerful ARM microcontrollers perfectly suited to sensor fusion and motion

control.

Let's talk about accuracy and stability. Absolute orientation with respect to a fixed Earth

reference frame is a solved problem. The simple open-source 9-axis sensor fusion

algorithms achieve this goal but with what accuracy? Below is a plot of the performance of

the MPU-9250 9-axis motion sensor running Madgwick's sensor fusion filter using the

Teensy 3.1 operating at clock speed of 96 MHz, which achieves average sensor fusion

filter update rates of 2000 Hz.

Figure 5 Yaw, pitch and roll from an MPU-9250 using Madgwick's sensor fusion algorithm

running on a 96 MHz Teensy 3.1 at a filter update rate of 2000 Hz. Data was collected

over a half-hour period.

The data are captured from the initialization of the device to the end of 1800 seconds of

continuous run time where periodically I picked up the breadboard containing the

controller and MPU-9250 and moved around the room and waved it about. The goal was

to measure stability of the output over a reasonable use time and determine how

reproducibly the device returned to its reference orientation when placed back at the edge

of my desk. We can see that after each excusrion, lasting anywhere from 10 seconds to

nearly a minute, where I tried to simulate vigorous motion the device returned very rapidly

to its reference orientation readings, which at the edge of my desk were 131 degrees yaw,

and 0 degrees pitch and roll. The relative error of the static readings is less than one

degree; the slight upward tilt of the yaw is likely due to imprecise placement of the device

at the edge of my desk after the last excursion. My interpretation of this experiment is that

the relative orientation achievable is a degree or less in each direction and is very stable

to all kinds of intervening movement.

Absolute accuracy is harder to quantify. I mean I would like to know how far off the x-axis

is from true North when I orient the device such that it reads 0,0,0 for yaw, pitch, and roll.

This is going to depend on how well the accelerometer and gyro are calibrated (very well)

and how well the magnetometer is calibrated (not so well). The latter is going to limit the

absolute accuracy. Here is what I did: I taped a piece of paper to my dining table and drew

a line that corresponds to true North according to my hiking compass after correcting for

the local declination. Then I removed the compass so as to reduce stray magnetic fields

and oriented the MPU-9250 sensor device such that the x-axis was aligned with true North

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

10 of 11 09/13/2014 11:47 AM

as determined previously with the compass. The roll and pitch will remain at zero and the

yaw registered by the sensor will give the absolute orientation error. I found this to be 4 +/-

3 for the MPU-9250 running in the above configuration powered by a LiPo battery.

This not too bad an average absolute deviation, but the jitter is somewhat dissapointing.

The accuracy of any magnetometer-based sensor fusion is going to strongly depend on

the accuracy of the magnetometer calibration. Just calibraing by min/max averaging on

the axes as we have done here might not be sufficient if the response surface is not

spherical; and there is no reason to expect it to be. There are sophisticated methods for

magnetometer calibration and, if absolute accuracy is your goal, you might have to

investigate them.

For instance, one of the most challenging motion sensor applications is determination of

relative position. Imagine you are at a large Mall; can the motion sensor tell you where you

are relative to where you came in. Leave alone absolute position, which is extremely

challenging, even relative position determination quickly goes awry when faced with +/- 3

degree variations in absolute orientation. How could we have this jitter when Figure 4

shows such stable performance. Well part of the answer is that my true North experiment

took place with a laptop in the vicinity; when I removed the laptop the result changed a bit

to 5 +/- 2 degrees. And this illustrates the problem. Even a properly calibrated

magnetometer will be strongly influenced by environmental variations in magnetic field

(called soft iron effects) that will quickly render even relative position calculations nearly

useless without some sophisticated correction algorithms. Challenging? Yes, but fun too!

We have just scratched the surface in our discussion of accuracy, but just on the basis of

the filter update rates and the stability achieved here, any of these MARG sensor solutions

coupled with open-source 9 DoF sensor fusion algorithms run on your favorite

microcontroller provide adequate performance for all but the most demanding motion

sensing tasks. And all for a modest total cost of between $20 and $50 depending on

(mostly) the choice of sensor and (to a lesser extent) microcontroller.

Status API Training Shop Blog About© 2014 GitHub, Inc. Terms Privacy Security Contact

Affordable 9 DoF Sensor Fusion · kriswiner/MP... https://github.com/kriswiner/MPU-6050/wiki/Aff...

11 of 11 09/13/2014 11:47 AM

