
HomeHomeHomeHome

Port Triggered InterruptsPort Triggered InterruptsPort Triggered InterruptsPort Triggered Interrupts
What is an Interrupt?What is an Interrupt?What is an Interrupt?What is an Interrupt?

An interrupt is a defined condition that causes the microcontroller (MCU) to suspend what it is doing
and go to a known memory location to execute a special block of code. The condition could be that a
certain time has elapsed (Timed Interval) or a port (or ports) has changed state (Port Trigger Interrupt).
Interrupts are used in computers to ensure that a specific task is done a certain number of times or that
an alarm condition is handled IMMEDIATELY.

This chapter covers Port Triggered Interrupts. For a discussion of interrupts that are generated based
on a timed event, please see the chapter on RTCC Interrupts.

OverviewOverviewOverviewOverview

Microcontrollers are marvelous little devices that take the drugery out of life. We could either sit at our
front door and wait for a thief to break it down or we could connect an MCU to that sensor that will notify
us that there is a message for us to handle NOW!!!!

In this chapter I assume you read the previous one on Timed Interrups so that we can get right into Port
Triggered Interrupts. Again, we will make a VERY SIMPLE program that only emphasizes the narrow
concept being demonstrated. In the case of this chapter we are going to design a program that will
respond to a button being pressed and when it is pressed, it will blink an LED and make a sound.

How do I know my program got started?How do I know my program got started?How do I know my program got started?How do I know my program got started?

A couple of years ago I learned a valuable lesson from the masters at Parallax. In several of the
demonstration programs, they would instruct the MCU to make a quick sound during the initialization
phase so that you know the MCU is working and that your speaker is connected properly. Let's do that
first.

In the SX help file under the SOUND command they have a little schematic on how to hook up a piezo
element to the MCU. Or if you have a Professional Development Board, just connect port RA.0 to X7
block (lower right) and make sure the volume control is about half way.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 PROGRAM Start

 Start:

 tris_A=%0000 ' Set port direction (0=output, 1=input)

 SOUND RA.0, 100, 20 ' Send a tone for 20 * 10 miliseconds to RA.0

 Main:

 goto main

(c) 2010 John J. Couture

After you load the program and the MCU starts, it should make a short sound. Ok, now we know that
part of the hardware is connected correctly.

Now let's test the button!Now let's test the button!Now let's test the button!Now let's test the button!

One of the nice things about using the Professional Development Board (PDB) is that several of the
peripherals are already wired up for you. Referring to the schematic for the PDB on pg 4, the buttons
are connected to Vss (ground) on one side and "pulled high" on the other. This means that the other
side of the push button is connected to a resistor which is then connected to Vdd (5vdc). This means
that if connected to an MCU that it will show a logical ZERO when you press the button and ONE when
you let go.

Let's connect a push button to our MCU pin RB.0. If you have a PDB, just run a wire from RB.0 to the
X10 block, position 0. This enables the "0" pushbutton on the board. If you do not have a professional
development board, you can use any push button and connect it as follows:

Diagram from "What's a Microcontroller?, pg 69 (c) 2009 Parallax Corp

Port B is used for Hardware InterruptsPort B is used for Hardware InterruptsPort B is used for Hardware InterruptsPort B is used for Hardware Interrupts

On the SX processor, the RB port is special in that it is the one used for port triggers. Thus, the
selection of RB.0 is not an arbritrary one.

For the following program, we will just use simple logic to test the condition of the port. In other words,
when you press the button, the main loop will test the condition of the button, if it is showing that the
button is connected to ground (someone is pushing it), it will sound the tone, otherwise it will ignore it
and loop again.

To make this program work properly we need to indicate to the compiler that we want to use the RB.0

(c) 2010 John J. Couture

pin as an INPUT. We do that with the "tris" compiler directive. This command indicates the "direction" of
a specific pin. One indicates input and zero indicates output. If you imagine that the one looks like an "I"
for input and the zero looks like the "O" for output, they you have it memorized already.

 tris_B=%00000001 'Set port direction (0=output, 1=input)

Next we will add code that tests the condition of RB.0. Is it a one or a zero? Remember zero indicates
that the button has been pushed and is connected to ground.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 Program Start

 Start:

 ' initialization code here

 tris_A=%0000 ' Set port direction (0=output, 1=input)

 tris_B=%00000001 ' Set port direction (0=output, 1=input)

 SOUND RA.0, 100, 20 ' Send a tone for 20 * 10 miliseconds to RA.0

 Main:

 ' Later we will put additional code here

 ' For now we just want to loop forever

 IF RB.0 = 0 THEN

 sound RA.0,75,50

 ENDIF

 goto main

When you start the MCU, you will get one tone. When you press the button you will get a different tone.
This is because we changed the parameters of the SOUND command. Here it says RA.0,75,50 which
means send the sound to the RA.0 pin, using the 75 tone (which is lower than the 100 tone) and for
50*10 milliseconds.

Interrupt EtiquetteInterrupt EtiquetteInterrupt EtiquetteInterrupt Etiquette

Ok, we know our basic hardware works. Now all we need to do is add the interrupt code. What we want
to be able to do is to take out the trigger code in the main loop and put it into the interrupt. A couple of
things to remember though:

� Whatever you put into the interrupt section, it should execute quickly. This will become VERY
important if your main loop is doing something that is time sensitive like monitoring a serial port.

� If you want to monitor more than one "alarm" line, you will need to set a variable in the interrupt so
that the main loop knows that an additional alarm was triggered.

� Just like your alarm clock, once an alarm is triggered, you have to remember to turn it off. I'll
demonstrate that below.

(c) 2010 John J. Couture

Revisit the OPTION RegisterRevisit the OPTION RegisterRevisit the OPTION RegisterRevisit the OPTION Register

Here we are going to set the OPTION register a little differently. Basically we want to tell the compiler
that do not need timed interrupts and therefore we do not need to use the prescaler:

 7 RTW - 1 = use the RTCC (not the watchdog timer)

 6 RTI - 1 = disable interrupt on rollover

 5 RTS - 0 = increment on instruction cycle

 4 RTE - 1 = we want the HIGH to LOW transition (default)

 3 PSA - 0 = turn the prescaler off. We want to know NOW, not later!

 2 PS2 - 0 = we are not using the prescaler.

 1 PS1 - 0 = we are not using the prescaler.

 0 PS0 - 0 = we are not using the prescaler.

This all is accomplished by using the OPTION command:

 OPTION = %11010000 'RTCC,no rollover,Inst Cycle, High to Low

 ' or you could use the HEX version

 OPTION = $D0

Option RegisterOption RegisterOption RegisterOption Register
7 6 5 4 3 2 1 0

RTW RTI RTS RTE PSA PS2 PS1 PS0

(c) 2010 John J. Couture

Now Let's Add Some Interrupt CodeNow Let's Add Some Interrupt CodeNow Let's Add Some Interrupt CodeNow Let's Add Some Interrupt Code

As we discussed in the last chapter, most of the action happens after the FREQ command and before
the START. In the code snippet below is an outline of what we are going to do. We still need to fill in the
INTERRUPT and MAIN areas with code but it gives you an idea of what it looks like.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 INTERRUPT

 ISR_Start:

 ' Do this when an alarm is triggered

 ISR_Exit:

 ' Before you exit the interrupt, reset the

 ' alarm or it will just come right back.

 ' This is known as the "pending" register.

 WKPND_B = 0 ' reset condition that caused the interrupt

 RETURNINT ' {cycles}

 PROGRAM Start

 Start:

 ' Setup Port A (our speaker)

 tris_A = %0000 ' Set port direction (0=output,1=input)

 ' Setup Port B (our sensors)

 tris_B = %00000001 ' Set pin RB.0 as an input

 wken_B = %11111110 ' Set pin RB.0 as being able to trigger

 ' an interrupt.

 ' Setup Port C (my LED outputs)

 tris_C = %00000000 ' Set all of RC as an output

 ' Set the Option register

 OPTION = %11010000 ' (see below)

 ' Use RTCC and DISABLE rollover interrupt

 SOUND RA.0, 100, 20 ' Send a tone for 20 * 10 miliseconds to RA.0

 Main:

 ' Later we will put additional code here

 ' For now we just want to loop forever

 goto Main

(c) 2010 John J. Couture

Port Triggered Interrupt CodePort Triggered Interrupt CodePort Triggered Interrupt CodePort Triggered Interrupt Code

We want to be able to detect when someone pushes a button. When they do, we want to jump to the
interrupt code and do something that will get our attention. We want to be careful that what we do in the
interrupt so that it does not take up too much time and impact what we are doing in the main loop.

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 INTERRUPT

 ISR_Start:

 ' Do this when an alarm is triggered

 RC.0 = ~ RC.0 ' Blink the LED by reversing its state

 SOUND RA.0, 75,5 ' Send a tone for 5 * 10 miliseconds to RA.0 (short interval)

 ISR_Exit:

 ' Before you exit the interrupt, reset the

 ' alarm or it will just come right back.

 ' This is known as the "pending" register.

 WKPND_B = 0 ' reset condition that caused the interrupt

 RETURNINT ' {cycles}

 PROGRAM Start

 Start:

 ' Setup Port A (our speaker)

 tris_A = %0000 ' Set port direction (0=output,1=input)

 ' Setup Port B (our sensors)

 tris_B = %00000001 ' Set pin RB.0 as an input

 wken_B = %11111110 ' Set pin RB.0 as being able to trigger

 ' an interrupt.

 ' Setup Port C (my LED outputs)

 tris_C = %00000000 ' Set all of RC as an output

 ' Set the Option register

 OPTION = %11010000 ' (see below)

 ' Use RTCC and DISABLE rollover interrupt

 SOUND RA.0, 100, 20 ' Send a tone for 20 * 10 miliseconds to RA.0

 Main:

 ' Later we will put additional code here

 ' For now we just want to loop forever

 goto Main

(c) 2010 John J. Couture

Debouncing the ButtonDebouncing the ButtonDebouncing the ButtonDebouncing the Button

There are a couple of problems with this code in real life. First of all, the button will "bounce". As you
were testing it, you noticed that the LED sometimes flashes quickly on and then off. Other times the
LED smoothly transitioned from on to off with each push of the button. This is known a "switch bounce"
and happens because the MCU is SO FAST that it actually detected the brief interval when the button
was just barely touching and a tiny bit of current got through. Then it detected when you actually held
the button down. Thus, it detected the equivalent of TWO button pushes. We can solve the problem
with hardware by adding some capicators and delay circuts or we can solve it with sofware by telling the
MCU that we will only respond to an alarm once every so many milliseconds. For now, and for
simplicity, we will just use two pushbuttons.

Hardware ConnectionsHardware ConnectionsHardware ConnectionsHardware Connections

Connect the following items to your microcontroller:

� RA.0 is connected to the Piezo speaker
� RB.0 is connected to a push button that is grounded when pushed and "tied-high" when released.
� RB.1 is connected to a second push button that is also grounded and tied high.
� RC.0 is connected to a resistor (about 220 ohms) which is then connected to an LED. The other

side of the LED is grounded.

Taking too long in the InterruptTaking too long in the InterruptTaking too long in the InterruptTaking too long in the Interrupt

The SOUND RA.0, 75,5 basically "hogs" the MCU for a period of time. This is bad in an interrupt
because you want the MCU to be handle several things and not miss a beat. A better solution would be
to put the SOUND command in the MAIN loop and have the interrupt simply set a variable in the
interrupt to indicate that an alarm condition exists. This will enable the interrupt to get in and out quickly
and the main routine to handle the alarm. We'll also solve the switch "bounce" by using two push
buttons, one to indicate it is on, and one to indicate it is off. Not the best solution, but the main
emphasis for this tutorial is simplicity.

Going FurtherGoing FurtherGoing FurtherGoing Further

Another use for a port trigger is to develop an accurate clock. Many GPS boards output a super
accurate pulse on the second. You can use that pulse to trigger an interrupt that will reset an internal
timer once a second.

Well now that you know how to trigger an interrupt using an outside trigger tied to a port you can create
all sorts of fun projects.

(c) 2010 John J. Couture

Revised Port Triggered Interrupt CodeRevised Port Triggered Interrupt CodeRevised Port Triggered Interrupt CodeRevised Port Triggered Interrupt Code

 DEVICE SX28, OSC4MHZ, TURBO, STACKX, OPTIONX

 FREQ 4_000_000 ' Identify the frequency of the Resonator

 Alarm VAR Byte

 INTERRUPT

 ISR_Start:

 ' Do this when an alarm is triggered

 if RB.0 = 0 THEN

 Alarm = 1

 ENDIF

 if RB.1 = 0 THEN

 Alarm = 0

 ENDIF

 ISR_Exit:

 ' Before you exit the interrupt, reset the

 ' alarm or it will just come right back.

 ' This is known as the "pending" register.

 WKPND_B = 0 ' reset condition that caused the interrupt

 RETURNINT ' {cycles}

 PROGRAM Start

 Start:

 ' Setup Port A (our speaker)

 tris_A = %0000 ' Set port direction (0=output,1=input)

 ' Setup Port B (our sensors)

 tris_B = %00000011 ' Set pin RB.0 as an input

 wken_B = %11111100 ' Set pin RB.0 as being able to trigger

 ' an interrupt.

 ' Setup Port C (my LED outputs)

 tris_C = %00000000 ' Set all of RC as an output

 ' Set the Option register

 OPTION = %11010000 ' (see below)

 ' Use RTCC and DISABLE rollover interrupt

 SOUND RA.0, 100, 20 ' Send a tone for 20 * 10 miliseconds to RA.0

 Alarm = 0

 Main:

 IF Alarm = 1 then

 RC.0 = 1 ' Turn the ALARM LED ON

 SOUND RA.0, 75, 10 ' Make a sound

 ELSE

 RC.0 = 0

 ENDIF

 ' Later we will put additional code here

 ' For now we just want to loop forever

 goto Main

File: ./sx/Interrupts./sx/Interrupts./sx/Interrupts./sx/Interrupts----Port.mkdPort.mkdPort.mkdPort.mkd updated: 04/23/2010 17:30

(c) 2010 John J. Couture

