

IR Remote for the Boe-Bot
By Andy Lindsay

VERSION 1.0

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2004 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, SumoBot, and SX-Key are registered trademarks of Parallax,
Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. Boe-Bot, HomeWork Board, Parallax, the Parallax logo, and
Toddler are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(trademark) is a trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN 1-928982-31-X

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our
web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators – Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue
for robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot™, Toddler™, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.

 Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents · Page v

Table of Contents

Preface...vii
An Autonomous Robot and a Handheld Remote.. vii
Audience... vii
Support and Discussion Groups .. viii
Teacher’s Guide .. viii
The Stamps in Class Educational Series... ix
Foreign Translations ...x
Special Contributors ...x

Chapter 1: Infrared Remote Communication...1
Getting Started..1
Kit Contents ..1
How the Remote Sends Messages ..4
Activity #1: Configuring Your Remote...6
Activity #2: Characterizing the IR Messages ..8
Activity #3: Capturing the IR Messages..19
Activity #4: Basic IR Remote Boe-Bot Navigation ..29
Activity #5: Adding Features to Your Simple IR Boe-Bot ..33
Summary ..40

Chapter 2: Create and Use Remote Applications..45
Reusable Programs ..45
Activity #1: Interpreting the IR Messages ...45
Activity #2: Designing a Reusable Remote Program..58
Activity #3: Application Testing with Boe-Bot Navigation..64
Activity #4: Entering Large Numbers with the Keypad..70
Activity #5: Keypad Boe-Bot Direction and Distance ..80
Summary ..92

Chapter 3: More IR Remote Applications...97
Expanding Application Programs..97
Activity #1: Autonomous Navigation with Remote Speed Control97
Activity #2: Multi-Function Boe-Bot with Remote Select ...110
Activity #3: Remote Programmed Boe-Bot ...110
Summary ..110

Appendix A: IR Remote AppKit Documentation ...110
Index ..110

Preface · Page vii

Preface

AN AUTONOMOUS ROBOT AND A HANDHELD REMOTE
The handheld remote may be the tool of choice for channel surfing couch potatoes
worldwide, but this device can also be used to send messages to your Boe-Bot™ robot.
The press of a button on the remote's keypad opens up an array of new Boe-Bot
possibilities. Once you understand how a remote uses infrared to transmit messages to a
TV or VCR, programming the BASIC Stamp® 2 microcontroller to detect and process
these messages is pretty easy. Once these tasks are reduced to subroutines, programming
the Boe-Bot to take action based on these messages is a snap.

Here are a few Boe-Bot applications that you will have the opportunity to try in the next
three chapters:

• Press and hold keys on the remote's keypad to control your Boe-Bot like a
remote-controlled car.

• Send messages to your Boe-Bot while it autonomously roams to change the way
it behaves.

• Remotely enable/disable the Boe-Bot program with the power on/off key.
• Tell the Boe-Bot which program to run.
• Remotely program the Boe-Bot with motion sequences.

Along the way, you will learn about pulse width modulation (PWM) for sending
electronic messages, the binary number system, the PBASIC PULSIN command, and new
uses for the RCTIME and SELECT…CASE commands.

AUDIENCE
This text is organized so that it can be used by the widest possible variety of students as
well as independent learners. Middle school students can try the examples in this text in
a guided tour fashion by simply following the check-marked instructions and instructor
supervision. At the other end of the spectrum, pre-engineering students’ comprehension
and problem-solving skills can be tested with the questions, exercises, and projects (with
solutions) in each chapter summary. The independent learner can work at his or her own
pace, and obtain assistance through the Stamps in Class® Discussion Forum cited below.

Page viii · IR Remote for the Boe-Bot

SUPPORT AND DISCUSSION GROUPS
The following two Discussion Forums are available for those who would like support in
using this text. These groups are accessible from www.parallax.com under Discussion
Forums on the Support menu.

Stamps In Class Group: Open to students, educators, and independent learners, this forum
allows members to ask each other questions and share answers as they work through the
activities, exercises, and projects in this text.

Parallax Educator’s Group: This moderated forum provides support for educators and
welcomes feedback as we continue to develop our Stamps in Class curriculum. To join
this group you must have proof of your status as an educator verified by Parallax. The
Teacher’s Guide for this text is available as a free download through this forum.

Educational Support: stampsinclass@parallax.com Contact the Parallax Stamps in Class
Team directly if you are having difficulty subscribing to either of these Discussion
Forums or have questions about the material in this text, our Stamps in Class Curriculum,
our Educator’s Courses, or any of our educational services.

Educational Sales: sales@parallax.com Contact our Sales Team for information about
educational discount pricing and classroom packs for our Stamps in Class kits and other
selected products.

Technical Support: support@parallax.com Contact our Tech Support Team for general
questions regarding the set-up and use of any of our hardware or software products.

TEACHER’S GUIDE
Each chapter summary contains a set of questions, exercises and projects with solutions
provided. A Teacher’s Guide is also available for this text. It contains an additional set
of solved questions, exercises, and projects, and occasionally some expanded and
alternative solutions to the material in the text. The Teacher’s Guide is available free in
both Word and PDF file formats by joining the Parallax Educators Forum or by emailing
stampsinclass@parallax.com. To obtain these files, you must provide proof of your status
as an educator.

Preface · Page ix

THE STAMPS IN CLASS EDUCATIONAL SERIES
Parallax created the Stamps in Class educational program to fill the need for affordable
electronics and engineering resources. IR Remote for the Boe-Bot is a sequel to our most
popular Stamps in Class Student Guide, Robotics with the Boe-Bot. You can continue
your studies with any of the Student Guides listed below. All of the books listed are
available for free download from www.parallax.com. The versions cited below were
current at the time of this printing. Please check our web sites www.parallax.com or
www.stampsinclass.com for the latest revisions; we continually strive to improve our
educational program.

Stamps in Class Student Guides:

For a well-rounded introduction to the design practices that go into modern devices and
machinery, working through the activities and projects in the following Student Guides is
highly recommended. What’s a Microcontroller? is the gateway text in the series, and is
recommended before the titles that follow.

“What’s a Microcontroller?”, Student Guide, Version 2.2, Parallax
 Inc., 2004
“Applied Sensors”, Student Guide, Version 1.3, Parallax Inc., 2003
“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
“Industrial Control”, Student Guide, Version 1.1, Parallax Inc., 1999

Robotics Kits:

Some enter the Stamps in Class curriculum through the Robotics with the Boe-Bot
Student Guide. After completing it, you will be ready for the more advanced robotics
texts and kits that follow:

 “Robotics with the Boe-Bot”, Student Guide, Version 2.2, Parallax Inc., 2004

“IR Remote for the Boe-Bot”, Student Guide, Version 1.0, Parallax Inc.,
 2004
“Advanced Robotics with the Toddler”, Student Guide, Version 1.3, Parallax
Inc., 2004
“SumoBot”, Manual, Version 2.0, Parallax Inc., 2004

Page x · IR Remote for the Boe-Bot

Educational Project Kits:

Elements of Digital Logic, Understanding Signals and Experiments with Renewable
Energy focus more closely on topics in electronics, while StampWorks provides a variety
of projects that are useful to hobbyists, inventors and product designers interested in
trying a variety of projects.

“Elements of Digital Logic”, Student Guide, Version 1.0, Parallax Inc., 2003
“Experiments with Renewable Energy”, Student Guide, Version 1.0, Parallax
Inc., 2004
“StampWorks”, Manual, Version 1.2, Parallax Inc., 2001
“Understanding Signals”, Student Guide, Version 1.0, Parallax Inc., 2003

Reference

This book is an essential reference for all Stamps in Class Student Guides. It is packed
with information on the BASIC Stamp series of microcontroller modules, our BASIC
Stamp Editor, and our PBASIC programming language.

 “BASIC Stamp Manual”, Version 2.0c, Parallax Inc., 2000

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a discussion group for Parallax translators that you may join. Direction for
finding the Parallax Translators Forum are included in the section Internet Discussion
Lists preceding the Table of Contents.

SPECIAL CONTRIBUTORS
The Parallax team assembled to produce this text includes: curriculum design and
technical writing by Andy Lindsay, illustration by Rich Allred, cover design by Larissa
Crittenden, technical review by Kris Magri, and technical editing by Stephanie Lindsay.
Thanks also to Parallax customers Robert Ang and Sid Weaver for their advanced
feedback. Stamps in Class was founded by Ken Gracey, and Ken wishes to thank the
Parallax staff for the great job they do. Each and every Parallaxian has made
contributions to this and every Stamps in Class text.

Chapter 1: Infrared Remote Communication · Page 1

Chapter 1: Infrared Remote Communication

GETTING STARTED
The IR Remote AppKit has two documents you can use to get started:

• This book – takes you from beginner to advanced in a step-by-step format.
• IR Remote AppKit Documentation – a quick start guide that comes with the

AppKit as a package insert and can be found in this book in Appendix A.

This book is, for the most part, a continuation of Robotics with the Boe-Bot. It follows
the same format in terms of introducing new hardware, explaining how things work, and
demonstrating new PBASIC techniques. By doing the activities, questions, exercises,
and projects, you will build your programming, electronics, and robotics skills as you
learn about infrared communication and control. The knowledge and skills you will gain
will be useful for future robot and/or product designs of your own. NOTE: You will need
a fully assembled Parallax Boe-Bot™ robot to complete the material in this text.

IR Remote AppKit Documentation summarizes selected activities from this book in a
few pages. It's mainly the bare essentials that an intermediate to advanced BASIC
Stamp® programming enthusiast needs to understand how IR communication works, and
how to use the applications developed in this text. You can find this as a package insert
in the Parallax IR Remote AppKit as well as in Appendix A of this text. NOTE: a Boe-
Bot robot is not required; you may use your own BASIC Stamp project.

This book and the IR Remote AppKit Documentation are both available for free download
from www.parallax.com.

KIT CONTENTS
The IR Remote AppKit contains a universal remote similar to the one shown in Figure 1-
1. The activities in this chapter will make use of the signals sent by a universal remote
after it has been configured to control a SONY® television set. Most universal remotes
can be configured to send messages to a SONY TV. If you want to try these activities
with a universal remote you already own, or one purchased at a local store, you will need
to read the documentation that comes with the remote to find out how to configure it to
control a SONY TV.

Page 2 · IR Remote for the Boe-Bot

Infrared Remote Parts List:*

(1) 020-00001 Universal Remote and Universal Remote Manual
(1) 350-00014 IR detector
(1) 150-02210 Resistor – 220 Ω
(1) 800-00016 Jumper wires – bag of 10

*Two alkaline AA batteries sold separately

Figure 1-1
Contents of IR
Remote Kit

In addition to a fully assembled Boe-Bot, there are also some parts that you will need
from your original Boe-Bot Robot Kit (see Figure 1-2). The activities in this chapter will
make use of the same infrared detection circuit used in Chapters 7 and 8 of Robotics with
the Boe-Bot. The resistors, LEDs, and piezospeaker should also be familiar from earlier
chapters. Only one IR detector is required to capture messages sent by the remote.
However, some of the later activities in this chapter will make use of the entire IR
detection circuit for autonomous roaming combined with remote control.

321

Chapter 1: Infrared Remote Communication · Page 3

Figure 1-2
Parts from Boe-Bot Parts Kit

Parts List:

(2) Infrared detectors

(2) IR LEDs – (clear case)

(2) IR LED shield assemblies

(2) Resistors – 220 Ω

(2) Resistors – 1 kΩ

(1) Piezospeaker

(2) LEDs – red

1
2
3

1
2
3

+

-
Flattened
edge

Longer lead

+
-

220 Ω

Red
Red

Brown

Gold
Silver
or
Blank

1 kΩ

Brown
Black

Red

Gold
Silver
or
Blank

+

 +

Page 4 · IR Remote for the Boe-Bot

HOW THE REMOTE SENDS MESSAGES
Figure 1-3 shows how the handheld remote can be used to send messages to a Boe-Bot.
When a button on the remote is pressed, it flashes its IR LED on/off at 38.5 kHz to
broadcast a code for that button. The code is produced by controlling the brief amounts
of time the IR LED flashes on and off. The sequence of IR broadcast times shown in the
figure corresponds to the beginning of the code that tells a SONY TV the 3 button has
been pressed. To send messages to a SONY TV, the remote has to broadcast IR for 2.4
ms signaling that a message is about to start. The message that follows consists of a
combination of 1.2 ms (binary-1) and 0.6 ms (binary-0) broadcasts. Notice how the IR
detector on the Boe-Bot sends low signals that match the time pattern broadcast by the
remote. The BASIC Stamp can then be programmed to detect, measure, record and
interpret the durations of low pulses in this pattern to figure out which key on the remote
was pressed.

Figure 1-3: Handheld Remote Infrared Messages

2.4 m
s

0.6 m
s1.2 m

s0.6 m
s

Rem
ot

e

2.4
m

s

0.6
m

s

1.2
m

s

0.6
m

s

Chapter 1: Infrared Remote Communication · Page 5

The IR receiver the Boe-Bot used for infrared object detection in Robotics with the Boe-
Bot is the same detector found in many TVs and VCRs. This detector sends a low signal
whenever it detects IR flashing on/off at 38.5 kHz and a high signal the rest of the time.
When the IR detector sends low signals, the processor inside a TV or VCR measures how
long each of the low signals lasts. Then, it uses these measurements to figure out which
key was pressed on the remote. Like the processor inside a TV or VCR, the BASIC
Stamp 2 can be programmed to detect, measure, store, and interpret the sequence of low
pulses it receives from the same IR detector.

Pulse width modulation (PWM): Pulse durations are used in many applications, a few of
which are digital-to-analog conversion, motor control, and communication. Since the IR
detector sends low pulses that can be measured to determine what information the IR
remote is sending, it's an example of using PWM for communication.

Carrier signal: The IR remote uses a 38.5 kHz "carrier signal" to transmit the pulse
durations from the remote to the IR detector.

Communication protocol: A communication protocol is a set of rules for devices that have
to exchange electronic messages. Protocols tend to have rules for voltages, the amount of
time signals last, carrier signal frequencies and/or wavelengths, and much more. When two
or more devices follow the rules of a given protocol, they should be able to communicate
and exchange information.

There are many different communication protocols that a universal remote can use to
transmit PWM messages to entertainment system components. This text will focus on
the SONY protocol. It is easy to understand, and it works well with the same IR detector
that we used for infrared object and distance detection in Robotics with the Boe-Bot.

Figure 1-4 shows a timing diagram example for an example signal the IR detector might
send to the BASIC Stamp when it receives a SONY TV control message from the IR
remote. This message consists of thirteen negative pulses that the BASIC Stamp can
easily measure. The first pulse is the start pulse, which lasts for 2.4 ms. The next twelve
pulses will either last for 1.2 ms (binary-1) or 0.6 ms (binary-0). The first seven data
pulses contain the IR message that indicates which key is pressed. The last five pulses
contain a binary value that specifies whether the message is intended being sent to a TV,
VCR, CD, DVD player, etc. The pulses are transmitted in LSB-first order. This stands
for least significant bit first, meaning the first data pulse is bit-0, the next data pulse is
bit-1, and so on. If you press and hold a key on the remote, the same message will be
sent over and over again with a 20 to 30 ms rest between messages.

Page 6 · IR Remote for the Boe-Bot

Figure 1-4: IR Message Timing Diagram

Resting states
between data pulses
= 0.6 ms

Start pulse
duration = 2.4 ms

Binary-0
data pulse
durations = 0.6 ms

Binary-1
data pulse
durations = 1.2 ms

Resting state
between message
packets = 20-30 ms

Bit-0 Bit-2 Bit-4 Bit-6

0Start 0 0 0 0 0 0 0 0 011

Bit-8 Bit-10

Bit-1 Bit-3 Bit-5 Bit-7 Bit-9 Bit-11

In this chapter, you will start with simple programs to make your BASIC Stamp 2 module
interpret and act on the pulse patterns sent by the infrared remote. You will then expand
these programs to guide the Boe-Bot with the IR remote.

ACTIVITY #1: CONFIGURING YOUR REMOTE
In this activity, you will program your universal remote so that it sends PWM messages
to a television set using the SONY protocol. In this case, the term "programming" means
a sequence of key-presses on the remote that tells it to send signals to a SONY TV.

If you change the batteries in your remote, you will probably have to repeat the steps in
this activity. Why? Because when you remove the batteries, the remote will probably forget
that it was programmed to be a SONY TV controller.

Chapter 1: Infrared Remote Communication · Page 7

Infrared Remote Parts

(1) Universal remote
(1) Instruction sheet for the universal remote
(2) AA alkaline batteries

How to Configure the Universal Remote from the Parallax Kit

These instructions are for the particular universal remote that comes with the IR Remote
AppKit. If you are using a different remote, check its instruction booklet or sheet to find
out how to program it to control a SONY TV.

Missing instruction booklets: The IR Remote AppKit sold by Parallax has been tested
with these activities, and it comes with the necessary instruction booklet for that model of
universal remote. If you want to try these activities with a remote you already own, you will
need the instruction booklet for that remote. If this booklet has been misplaced or lost, there
may be a copy published on the World Wide Web. Universal remotes can also be
purchased from local department stores, and most include instruction booklets. Check the
package before you purchase a particular remote to make sure it can be configured to
control a SONY TV.

Example: Configuring from Instructions

These instructions are for the remote included in the IR Remote AppKit.

√ Load two AA alkaline batteries into the remote following the instructions on
page 3 of the instruction manual.

These next instructions are a summary of what is on page 4 of the instruction manual in
the "To Manually Program the Remote Control" section.

√ Look up SONY in the “Setup Codes for Television” section. It should be 0001
(see page 17).

√ Press and release the TV key.
√ Press and hold the SET key until the indicator LED on the remote turns on and

stays on. NOTE: The LED may flicker briefly as soon as you press SET, but you
will probably have to hold the SET button down for a couple seconds before the
LED stays on.

√ Use the digit keys to enter 0001. The LED may turn off briefly as you press each
digit.

Page 8 · IR Remote for the Boe-Bot

√ If it worked right, the indicator LED should turn off and stay off after you press
the last digit (the 1 in 0001).

If the indicator light stayed on or flashed a few times after you entered your code: It
means the code was not accepted by the microcontroller inside the remote; try again.

Your Turn – Testing the Remote on Other Devices

√ If you'd like to test it out on your brand of TV/VCR, etc., try following the
instructions in the remote manual to see if you can get it to work.

√ Before moving on to the next activity: If you followed the instruction in the

previous checkmark, make sure to reprogram the remote to control a SONY TV!

ACTIVITY #2: CHARACTERIZING THE IR MESSAGES
This activity focuses on measuring the pulses the Boe-Bot's IR detector sends when it
detects messages from the handheld remote. Figure 1-5 shows a timing diagram of the IR
detector's output at the beginning of an IR remote message. The IR detector sends a low
signal while it detects infrared flashing on/off at 38.5 kHz. While the IR detector does
not detect 38.5 kHz infrared, it sends a high signal. Before the message can be
interpreted by the BASIC Stamp module, the durations of these low signals have to be
measured and stored.

2.4
m

s

0.6
m

s

1.2
m

s

0.6
m

s

Figure 1-5
IR Detector
Output for IR
Remote
Message

Chapter 1: Infrared Remote Communication · Page 9

Infrared Detection Parts

All parts from the previous activity
(1) Infrared detector
(1) Resistor – 220 Ω (red-red-brown)
(2) Jumper wires

The IR Detection Circuit

It only takes one IR detector to capture messages from the IR remote (see Figure 1-6).

√ Build this circuit on your Boe-Bot's prototyping area.

The numbers (1, 2, 3) on the IR detector are also shown on the pin map in Figure 1-2.
You can use this as a guide to make sure the IR detector is correctly wired.

P15
P14
P13
P12
P11
P10

P8
P7
P6
P5
P4
P3
P2
P1
P0

P9

X2

X3
Vdd VssVin

Figure 1-6
IR Detection
Circuit

Measuring Start and Data Pulses

The PULSOUT command you've been using to send pulses to the Boe-Bot servos has a
complementary command called PULSIN. The syntax for the PULSIN command is

PULSIN Pin, State, Variable

Pin is, of course, used to select the I/O pin for measuring the pulse. State is used to
determine whether the pulse is a high pulse (1) or a low pulse (0). Variable stores the
pulse duration measured by the BASIC Stamp.

Vdd

 Vss

 P9
220 Ω

1
2
3

Page 10 · IR Remote for the Boe-Bot

High pulse vs. low pulse: If the voltage a BASIC Stamp I/O pin senses starts low, then
goes high for a while before returning to low, that's a high pulse. The term positive pulse
is also commonly used. The PULSIN command measures the amount of time the signal is
high if the State argument is 1.

A low pulse is the opposite: the signal will be high, then drop low for a while before
returning to the high state. It is also called a negative pulse. The PULSIN command
measures the amount of time the signal is low if the State argument is 0.

Let's say your program has a word variable named time for storing the measured pulse
duration. The 2.4 ms, 1.2 ms, and 0.6 ms pulses shown in Figure 1-7 are negative pulses.
To measure them with the IR detector circuit, you will have to use the command:

PULSIN 9, 0, time

2.4
m

s

0.6
m

s

1.2
m

s

0.6
m

s

Figure 1-7
A Closer Look at
the Pulses

The high time between two low pulses can be measured as a positive pulse. True, it
doesn't contain any data, but it can be useful for figuring out how long an entire IR
message takes to transmit. By changing the PULSIN command's State argument from 0
to 1, you can measure the duration of a positive pulse, like this:

PULSIN 9, 1, time

Example Program: CountStartPulses.bs2

The first pulse that we will examine using the PULSIN command is the 2.4 ms start pulse.
This pulse won't be exactly 2.4 ms (2400 µs), but it should be fairly close, give or take

Chapter 1: Infrared Remote Communication · Page 11

250 µs. This is the pulse that signifies that twelve more data pulses are about to be sent
by the remote.

CountStartPulses.bs2 counts the number of low pulses that it receives with durations that
fall in the 1.95 to 2.85 ms range. Figure 1-8 shows what your Debug Terminal should
display after you have pressed a numeric key for a couple of seconds while pointing the
remote at the IR detector. The duration shown in the Debug Terminal for a sample start
pulse is 2562 µs. Although it's not exactly 2400 µs, it is well within +/- 250 µs.

Figure 1-8
Debug Terminal for
CountStartPulses.bs2

√ Enter and run CountStartPulses.bs2.
√ Point the remote at the bubble on the front of the infrared detector.
√ Press and hold one of the numbered keys (0 – 9) on the remote.
√ Make sure pulses in the 2.25 to 2.75 ms range are detected (that's 2250 to 2750

µs displayed in the Debug Terminal).
√ Make a note of the actual value of the start pulse for your remote here: _______.

If the value is different each time, make a guess at the average.

If the program does not detect the start pulse, make sure your remote is set to control a
SONY TV set. First, press the TV button on the remote, then try beaming your BASIC
Stamp another message. If that doesn't work, repeat the steps from Activity #1. If those two
solutions do not work, check your IR detector's wiring, then check your program for errors.
Still no luck? Try configuring the remote to be a SONY TV controller using the directions in
the remote's instruction manual.

Page 12 · IR Remote for the Boe-Bot

Do not press CBL, VCR, or TV/VCR. If you press one of these keys, it tells the remote to
send messages to a different device, either a VCR or cable box. In either case, the
messages the remote sends will use a non-SONY TV protocol. The result will be that the
programs in this book will seem to stop working.

If you accidentally press one of those keys: just press the TV key to get the remote back
to sending (SONY) TV signals.

' IR Remote for the Boe-Bot - CountStartPulses.bs2
' Capture and count the number of 2.4 ms (low) start pulses.

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word
counter VAR Word

DEBUG "START PULSES", CR,
 "Repetitions Current Duration", CR,
 " (microseconds) ", CR,
 "----------- ----------------"

DO

 PULSIN 9, 0, time

 IF (time > 975) AND (time < 1425) THEN

 counter = counter + 1

 DEBUG CRSRXY, 0, 4,
 DEC counter,
 CRSRXY, 13, 4,
 DEC5 time * 2

 ENDIF

LOOP

How CountStartPulses.bs2 Works

This program starts by declaring two word variables, time to store the start pulse
duration, and counter to store the number of start pulses received. Then, a DEBUG
command adds some column headings for displaying the variables.

time VAR Word
counter VAR Word

Chapter 1: Infrared Remote Communication · Page 13

DEBUG "START PULSES", CR,
 "Repetitions Current Duration", CR,
 " (microseconds) ", CR,
 "----------- ----------------"

Inside the DO…LOOP, the program executes the command PULSIN 9, 0, time, which
measures pulses. Whenever a pulse duration is between 975 (1.95 ms) and 1425 (2.85
ms), the IF…THEN…ENDIF code block increments the counter variable and displays the
counter and time variables under the Repetitions and Current Duration headings.

DO

 PULSIN 9, 0, time

 IF (time > 975) AND (time < 1425) THEN

 counter = counter + 1

 DEBUG CRSRXY, 0, 4,
 DEC counter,
 CRSRXY, 13, 4,
 DEC5 time * 2

 ENDIF

LOOP

What's the * 2 in the DEBUG command? Remember that the PULSIN command
measures duration in 2 µs units. That's what gets stored in the time variable, the number
of 2 µs units the PULSIN command measured. By multiplying time by 2 with the *
operator, the DEBUG command displays the actual number of microseconds for the pulse
measurement.

Your Turn – Measuring the Binary-1 and Binary-0 Pulses

By modifying the DEBUG and IF…THEN statement in the example program, you can
capture and display the duration the binary-1 and binary-0 pulses. Here's how to:

√ Save CountStartPulses.bs2 as MeasureBinary1Pulses.bs2.
√ Change

 DEBUG "START PULSES", CR,

to

Page 14 · IR Remote for the Boe-Bot

 DEBUG "BINARY-1 PULSES", CR,

√ Change

 IF (time > 975) AND (time < 1425) THEN

to

 IF (time > 450) AND (time < 750) THEN

√ Save your modified program.
√ Run the program.
√ Press and hold one of the numbered keypad keys until the Debug Terminal

displays a pulse duration.
√ Record the pulse duration for binary-1 here ___________________.
√ Save MeasureBinary1Pulses.bs2 as MeasureBinary0Pulses.bs2.
√ Change

 DEBUG "BINARY-1 PULSES", CR,

to

 DEBUG "BINARY-0 PULSES", CR,

√ Change

 IF (time > 450) AND (time < 750) THEN

to

 IF (time > 150) AND (time < 450) THEN

√ Save your modified program.
√ Run the program and use one of the remote's numbered keypad keys to send

messages to your Boe-Bot.
√ Record the pulse duration for binary-0 here ___________________.

Measuring the Resting State between Messages

When you press and hold a given key on the remote, the remote sends the code for that
key, then waits a while and sends it again. CountStartPulses.bs2 also can be modified to

Chapter 1: Infrared Remote Communication · Page 15

search for this resting time between messages. This resting time is shown in Figure 1-9,
and it turns out to be an important factor in Boe-Bot navigation.

Figure 1-9
Two IR
Messages

This screen
capture from
the Parallax
USB
Oscilloscope
shows two IR
messages and
the resting
state between
them.

To measure this resting state with the BASIC Stamp module, all you have to do is think
of the high time between messages as a positive pulse with a very long duration. The
PULSIN command must be modified to search for a positive pulse by changing the State
argument from 0 to 1. The IF…THEN statement also has to be modified so that it takes no
action if the measured time is less than 1000 (2 ms). This ensures that the brief high
pulses between the start pulse and data bits won't be reported. Instead, only the longer
high time between messages will be reported.

Example Program: CountRestingStates.bs2

√ Enter and run CountRestingStates.bs2.
√ Point the remote at the IR detector, and press and hold the 5 key.
√ Make sure high pulses in the 20 to 35 ms range (20,000 to 35,000 µs) are

detected.
√ Make a note of the actual duration of the resting state between messages here:

_____________.

' IR Remote for the Boe-Bot - CountRestingStates.bs2
' Capture and count the number of 20 ms+ (high) resting states.

'{$STAMP BS2}

IR message IR message

Resting time between messages

Page 16 · IR Remote for the Boe-Bot

'{$PBASIC 2.5}

time VAR Word
counter VAR Word

DEBUG "RESTING STATE", CR,
 "Repetitions Current Duration", CR,
 " (microseconds) ", CR,
 "----------- ----------------"

DO

 PULSIN 9, 1, time

 IF (time > 1000) THEN

 counter = counter + 1

 DEBUG CRSRXY, 0, 4,
 DEC counter,
 CRSRXY, 13, 4,
 DEC5 time * 2

 ENDIF

LOOP

How CountRestingStates.bs2 Works

CountRestingStates.bs2 is just CountStartPulses.bs2 with a few modifications. The first
change was just the display heading for the information in the Debug Terminal. The
command DEBUG "START PULSES", CR, was changed to DEBUG "RESTING STATE",
CR,. Next, the program has to search for high pulses that last between 20 and 35 ms
instead of low pulses that only last 2.4 ms. To accommodate for high pulses instead of
low pulses, the command PULSIN 9, 0, time was changed to PULSIN 9, 1, time.
To search for 20-35 ms durations instead of 2.4 ms durations, the condition for the
IF…ENDIF code block was changed from IF (time > 975) AND (time < 1425)
THEN to IF (time > 1000) THEN.

Your Turn – Measuring the Time between Data Pulses

You can modify the condition for the IF…ENDIF code block again, this time to search for
the very brief high resting states between data pulses.

Chapter 1: Infrared Remote Communication · Page 17

√ Save CountRestingStates.bs2 as CountRestingStatesYourTurn.bs2.
√ Change the condition for the IF…ENDIF code block from

 IF (time > 1000) THEN

to

 IF (time > 1) AND (time < 1000) THEN

√ Add a PAUSE 100 command right before the LOOP command.
√ Run the program and record the resting state between data pulses here: _______.

IR Message Timing Diagram

Figure 1-10 shows a timing diagram for an IR message from the remote. This diagram
shows the timing while the 5 key on its digital keypad is pressed and held. Your task will
be to fill in the blanks for each measurement using the numbers you have recorded in this
activity. Remember that there are 1000 µs in every 1 ms. Your measurements have been
in microseconds, so you will have to divide each by 1000 to enter the millisecond
measurements in the timing diagram.

√ Use the measurements you have taken in this activity to fill in the millisecond
measurements in Figure 1-10.

√ Add up all the times to calculate the total message time: one resting state
between messages, one start pulse, twelve resting states between pulses, twelve
data pulses, two of which are binary-1 and ten of which are binary-0.

√ Record your IR message time here: ____________.

Page 18 · IR Remote for the Boe-Bot

Figure 1-10
IR Message
Timing
Diagram

Fill in your
measurements
for the times
indicated in
the diagram.

Your Turn – Counting the Number of Messages Per Second

By pressing and holding a key on the remote for ten seconds, you can determine how
many messages per second the IR remote sends.

√ Run CountStartPulses.bs2 again; it was the first example program in this
activity.

√ With the aid of a clock or watch, press and hold the 5 key for ten seconds.
√ Divide the number of messages by 10.
√ Record the number of messages per second here ___________________.
√ You can use this to calculate the time it takes for an IR message and a resting

state with this formula:

Chapter 1: Infrared Remote Communication · Page 19

√ Compare this IR message time to the one you calculated by adding up all the IR

message's components.

ACTIVITY #3: CAPTURING THE IR MESSAGES
In this activity, you will write programs to measure and capture each pulse in the PWM
message sent by the infrared remote. There are a total of twelve data pulses in a given
message, and each can be captured and stored. By programming the BASIC Stamp to
capture and store these pulses, you will have the key programming ingredient for sending
messages to your Boe-Bot with the handheld remote.

Introduction to Array Variables

Twelve pulse measurements have to be stored separately because they are each a unique
part of the message. Even so, they are related to each other. They are all pulse
measurement values, and they are all going to be examined to determine which key on
the remote is being pressed.

The best way to store a group of related values is with a special kind of variable called an
array variable. An array variable is a group of variables that all have the same name.
Declaring an array variable is similar to declaring most other variables. The only
difference is that a number is added in parentheses next to the Size argument that tells
how many variables to create that will share the same name. Here is the syntax for an
array variable declaration:

name VAR Size(n)

Here is an example of an array that can store five bytes:

characters VAR Byte(5)

Figure 1-11 shows the five characters variables created by this declaration:
characters(0), characters(1), characters(2), characters(3), and
characters(4). Each of these variables, called array elements, can store a byte. Each
element has a number called an index (the number inside parentheses) that differentiates
it from the other elements. In other words, each array element variable has the same
name, but a different index number.

 second/messages
1time_ packet =

Page 20 · IR Remote for the Boe-Bot

Figure 1-11
Elements in
an Array

Example Program: ArrayExample.bs2

This example program uses the Debug Terminal for setting array elements and then
displaying their contents. Figure 1-12 shows an example of what the Debug Terminal

will look like after you run and test the program. Each character you type into the Debug
Terminal's Transmit Windowpane is loaded into the next characters array element.
After you type the fifth character, the program reads and displays each array element.

Figure 1-12
Using the Debug
Terminal to Type
Characters into an
Array

Click the Transmit
Windowpane, then
type five
characters.

characters VAR Byte(5)

characters(0)
characters(1)
characters(2)
characters(3)
characters(4)

Five variables
named characters,
each of which can
store a different
byte value.

Transmit
Windowpane

Receive
Windowpane

Chapter 1: Infrared Remote Communication · Page 21

√ Enter and run ArrayExample.bs2.
√ Click the Debug Terminal's Transmit Windowpane.
√ Type five letters.
√ When the Debug Terminal displays "You typed: …", verify that the BASIC

Stamp has sent back the same characters you entered.

' IR Remote for the Boe-Bot - ArrayExample.bs2
' Set array element values with DEBUGIN and display them with DEBUG.

' {$STAMP BS2}
' {$PBASIC 2.5}

characters VAR Byte(5)
index VAR Nib

FOR index = 0 TO 4
 DEBUG "Type character(", DEC index, ") "
 DEBUGIN characters(index)
 DEBUG CR
NEXT

DEBUG CR, "You typed: "

FOR index = 0 TO 4
 DEBUG characters(index)
NEXT

END

How ArrayExample.bs2 Works

An array of five bytes named characters is declared along with a nibble variable named
index.

characters VAR Byte(5)
index VAR Nib

A FOR…NEXT loop repeats the code block between the FOR and NEXT statements five
times. Each time through, the value of index is incremented by 1, so the DEBUGIN
command stores the character in the next array element.

FOR index = 0 TO 4
 DEBUG "Enter character(", DEC index, ") "
 DEBUGIN characters(index)
 DEBUG CR
NEXT

Page 22 · IR Remote for the Boe-Bot

A second FOR…NEXT loop reads and displays the values of each characters array
element.

FOR index = 0 TO 4
 DEBUG characters(index)
NEXT

The first time through the FOR…NEXT loop, the value of index is 0, so characters(0) is
displayed. The second time through, index is 1, so characters(1) is displayed, and so
on.

Your Turn – Storing Values Instead of Characters

You can use the DEC modifier to store values instead of characters. Here's how:

√ Save ArrayExample.bs2 as ArrayExampleYourTurn.bs2.
√ Change

 DEBUG "Type character(", DEC index, ") "
 DEBUGIN characters(index)
 DEBUG CR

 to

 DEBUG "Type value - character(", DEC index, ") "
 DEBUGIN DEC characters(index)

√ Change

 DEBUG characters(index)

to

 DEBUG CR, DEC characters(index)

√ Run the modified program and enter values (0 to 255). Make sure to press the
Enter key after the last digit in each value you enter.

√ Verify that the program displays the values you stored in each array element.

Capturing the Entire Message

An entire message from the remote has twelve data pulses. Here is how to capture all of
their durations:

Chapter 1: Infrared Remote Communication · Page 23

• Keep executing the PULSIN command until the resting state between pulses is
detected.

• Use twelve more PULSIN commands to capture the next twelve data pulses into
an array of word variables.

• Optional – use a FOR…NEXT loop to display the elements of the array.

Figure 1-13 shows the array variable declaration time VAR Word(12). The declaration
creates twelve different word variables, each of which can store its own value. In the
case of the time variable array declaration, there's time(0), time(1), time(2), and so
on, up through time(11). Each of the elements in the time array can store a different
value between 0 and 65535.

Figure 1-13
Elements in the
time Variable
Array

time VAR Word(12)

time(0)
time(1)
time(2)
time(3)
time(4)
time(5)
time(6)
time(7)
time(8)
time(9)
time(10)
time(11)

Twelve variables
named time, each
of which can store
a different word
value

Page 24 · IR Remote for the Boe-Bot

The next example program will not use a loop to set each of the time array element
values. Because the time between the pulses sent by the remote is very small, the extra
code overhead involved in a FOR…NEXT loop could cause the program to miss pulses. So
each array element value will be set sequentially with twelve PULSIN commands.

PULSIN 9, 0, time(0)
PULSIN 9, 0, time(1)
PULSIN 9, 0, time(2)
 •
 •
 •
PULSIN 9, 0, time(11)

Whenever you see three dots between commands it means there are elements in the
sequence that were left out to keep the explanation shorter. For example, in the
sequence of PULSIN commands, the

 •
 •
 •

indicates that PULSIN 9, 0, time(3) through PULSIN 9, 0, time(10) were
there, but not shown. Three dots … are also used to describe commands such as
FOR…NEXT, DO…LOOP, and other statements that have code blocks in between the
beginning and ending keywords. The … indicates there are one or more commands
between the keywords that are not shown.

Example Program: RecordAndDisplayPwm.bs2

This example program measures and displays the durations of all twelve data pulses.
Figure 1-14 shows an example of what's displayed when the remote's 5 key is pressed and
held. You can use this program to examine the pulse patterns for each key on your
remote. Keep in mind that some of the keys are not for TV sets, such as play and pause,
which would work with a VCR. These keys do not cause the remote to send messages
when it's configured to function as a SONY TV controller.

Remember not to press the VCR, TV/VCR, or CBL keys. If you do by mistake, press the
TV key to get back to SONY TV controller mode.

Chapter 1: Infrared Remote Communication · Page 25

Figure 1-14
Debug Terminal for
RecordAndDisplayPwm.bs2

Pulse pattern for the 5 key.

√ Enter and run RecordAndDisplayPwm.bs2.
√ Resize the Debug Terminal so that it's as tall as your monitor, because otherwise

the data might not all fit.
√ Try pressing and holding the following keys and verify that each binary pattern

is different for each key: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, VOL-, VOL+, CH-, CH+, POWER,
and MENU. Pay close attention to time(0) through time(6) and try to detect
the pattern of durations for each key.

' IR Remote for the Boe-Bot - RecordAndDisplayPwm.bs2
' Measure all data pulses from SONY IR remote set to control a TV.

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word(12) ' SONY TV remote variables.
index VAR Nib
 ' Display heading.
DEBUG "time ARRAY", CR,

Page 26 · IR Remote for the Boe-Bot

 "PWM MEASUREMENTS", CR,
 "Element Duration, 2-us", CR,
 "------- --------------"

DO ' Beginning of main loop.

 DO ' Wait for rest between messages.
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

 PULSIN 9, 0, time(0) ' Measure/store data pulses.
 PULSIN 9, 0, time(1)
 PULSIN 9, 0, time(2)
 PULSIN 9, 0, time(3)
 PULSIN 9, 0, time(4)
 PULSIN 9, 0, time(5)
 PULSIN 9, 0, time(6)
 PULSIN 9, 0, time(7)
 PULSIN 9, 0, time(8)
 PULSIN 9, 0, time(9)
 PULSIN 9, 0, time(10)
 PULSIN 9, 0, time(11)

 FOR index = 0 TO 11 ' Display 12 pulse measurements.

 DEBUG CRSRXY, 0, 4 + index, "time(", DEC index, ")",
 CRSRXY, 9, 4 + index, DEC time(index)

 NEXT

LOOP ' Repeat main loop.

How RecordAndDisplayPwm.bs2 Works

The time variable declaration creates an array with twelve word elements. The program
also uses a nibble variable named index.

time VAR Word(12)
index VAR Nib

A single DEBUG command with lots of text and arguments creates column headings for
the information to be displayed.

DEBUG "time ARRAY", CR,
 "PWM MEASUREMENTS", CR,
 "Element Duration, 2-us", CR,
 "------- --------------"

Chapter 1: Infrared Remote Communication · Page 27

The code block in the this DO…LOOP keeps measuring high pulses until it finds one that's
larger than 2 ms, which means it must be the resting state between IR messages.

 DO
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

When the PULSIN command finishes measuring the resting pulse and the program is
deciding what to do next, the remote is sending the start pulse. This is the perfect time to
line up twelve PULSIN commands to catch the twelve data pulses. Notice how each is
loaded into separate array elements. These twelve PULSIN commands also demonstrate
how constant values such as 0, 1, 2 through 11 can be used to index elements in an array.

 PULSIN 9, 0, time(0)
 PULSIN 9, 0, time(1)
 PULSIN 9, 0, time(2)
 •
 •
 •
 PULSIN 9, 0, time(11)

Next is an example of another way to index array elements, with a variable. In this case,
the variable is index, and it is incremented each time through a FOR…NEXT loop. The last
argument in the DEBUG command is DEC time(index). Since the value of index
increases by one each time through the FOR…NEXT loop, the DEBUG command displays the
value stored by each successive element in the time array. The first time through the
loop, the DEBUG command displays time(0), the second time through, it displays
time(1), and so on.

 FOR index = 0 TO 11

 DEBUG CRSRXY, 0, 4 + index, "time(", DEC index, ")",
 CRSRXY, 9, 4 + index, DEC time(index)

 NEXT

LOOP

Page 28 · IR Remote for the Boe-Bot

The last LOOP command sends the program back to the first DO command. The code
block within this outer DO…LOOP repeats over and over again, processing the messages as
the remote sends them.

Your Turn – Recording Pulse Patterns for Each Key

The next two activities will feature programs that make navigation decisions based on the
pulse durations stored in the time array. The first seven time array elements contain all
the pulse measurements that you'll need to identify the remote's buttons. Table 1-1 has
rows for each of the first seven time array measurements and columns for each digit key
and some of the other buttons. Fill it in so that you can use it as a reference while writing
programs in the next two activities.

√ Press and release each of the keys listed in Table 1-1.
√ Fill in each key column with the time array measurements from the Debug

Terminal.

Chapter 1: Infrared Remote Communication · Page 29

Table 1-1: Time Measurements for Each Key
Remote Key Array

Element 1 2 3 4 5 6 7 8 9 0
time(0)
time(1)
time(2)
time(3)
time(4)
time(5)
time(6)

Remote Key Array
Element VOL- VOL+ CH- CH+ ENTER POWER
time(0)
time(1)
time(2)
time(3)
time(4)
time(5)
time(6)

ACTIVITY #4: BASIC IR REMOTE BOE-BOT NAVIGATION
One rather fun application is to program the Boe-Bot so that you can control its motion
directly with the remote, like a remote-controlled car. In this activity, you will program
the Boe-Bot to recognize when you are pressing and holding the 1, 2, 3, or 4 keys, and to
perform a different maneuver for each. You can also use the CH+/- and VOL+/- keys.

Infrared Remote Control Parts and Circuit

All parts from Activity #1 and #2
(1) Boe-Bot
(1) Piezospeaker
(misc) Jumper wires

Page 30 · IR Remote for the Boe-Bot

√ Build/rebuild and test the Boe-Bot servo, IR detector, and piezospeaker circuits
shown in Figure 1-15 as needed.

Figure 1-15
Boe-Bot Servo, IR
Detector, and
Piezospeaker Circuit
and Wiring Diagram

The Boe-Bot's left servo
should be connected to
P13, and its right servo
should be connected to
P12.

Back to IF…THEN Statements for Navigation

The next example program is a modified version of RecordAndDisplayPwm.bs2. Here's
what has to be done to the program to get it to control the Boe-Bot:

√ Remove the index variable declaration.
√ Reduce the size of the time array to two elements.

Vin

Vss

P13 White
Red
Black

Vin

Vss

P12 White
Red
Black

P4

Vss

P15
P14
P13
P12
P11
P10

P8
P7
P6
P5

P3
P2
P1
P0

P9

P4

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

Chapter 1: Infrared Remote Communication · Page 31

√ Add FREQOUT 4, 2000, 3000 before the first DO.
√ Remove all the DEBUG commands.
√ Remove all the PULSIN commands except the ones that store time measurements

into time(0) and time(1).
√ Remove the FOR…NEXT loop that displays the pulse durations.
√ Use the pulse information in Table 1-1 to make IF…THEN statements that choose

the PULSOUT Duration arguments for a maneuver based on four possible
combinations of values that time(0) and time(1) might store.

Go back to Table 1-1 and take a look at the measurements stored in the time array for the
1 through 4 keys. Focus on time(1) and time(0). If you compare the pulse
measurements to 500, there are only four possible combinations:

(1) Both time(1) and time(0) are less than 500.
(2) time(1) is less than 500, but time(0) is greater than 500.
(3) time(1) is greater than 500, but time(0) is less than 500.
(4) Both time(1) and time(0) are greater than 500.

This is definitely enough information to write an IF…THEN statement similar to the ones
that guided the Boe-Bot through whisker and IR navigation:

 IF (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 ENDIF

Example Program – 2BitRemoteBoeBot.bs2

You can press and hold the 1, 2, 3, or 4 keys to select from one of four directions:
forward, backward, rotate right, rotate left. These directions also work with the CH+, CH-,
VOL+, and VOL- keys, which works nicely because those buttons point in the forward,
backward, right, and left directions on most remotes.

Page 32 · IR Remote for the Boe-Bot

These programs are written for Boe-Bots with Parallax Continuous Rotation servos. If
your Boe-Bot is labeled with the letters "PM" highlighted in blue, you will need to use
different PULSOUT Duration arguments in your programs. If you have Parallax PM
servos, use 500 in place of 650 and 1000 in place of 850.

√ Enter, save, and run 2BitRemoteBoeBot.bs2.
√ Make sure the power switch on the Board of Education is in position-2.
√ While pointing the remote at the Boe-Bot, press and hold the CH+ button, and

verify that the Boe-Bot rolls forward.
√ Repeat the test with the 1 key, it should have the same effect.
√ Test the CH+, 1, CH-, 2, VOL+, 3, VOL-, and 4 keys.
√ Have fun driving the Boe-Bot around.

For some of the maneuvers, my Boe-Bot seems jittery, why is that? It has to do with the
way the program detects the start of the IR message. It doesn't always get detected on the
first try. We'll fix that in the next activity.

' IR Remote for the Boe-Bot - 2BitRemoteBoeBot.bs2
' Control your Boe-Bot with an IR remote set to control a SONY TV
' with the 1-4 or CH+/- and VOL+/- keys.

'{$STAMP BS2}
'{$PBASIC 2.5}

time VAR Word(2) ' SONY TV remote variables.
DEBUG "Press and hold a digit key (1-4) or CH+/- and VOL+/-..."

FREQOUT 4, 2000, 3000 ' Start/reset indicator.

DO ' Beginning of main loop.

 DO ' Wait for rest between messages.
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

 PULSIN 9, 0, time(0) ' Measure/store data pulses.
 PULSIN 9, 0, time(1)

 ' Decide which maneuver to execute depending on the combination
 ' of pulse durations stored in the first two pulse measurements.

 IF (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850 ' Forward
 PULSOUT 12, 650

Chapter 1: Infrared Remote Communication · Page 33

 ELSEIF (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650 ' Backward
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850 ' Right rotate
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650 ' Left rotate
 PULSOUT 12, 650
 ENDIF

LOOP ' Repeat main loop.

Your Turn – Explaining Why CH/VOL and 1-3 Do the Same Thing

√ Go back to Table 1-1 on page 29 and compare the pulse durations in the
time(1) and time(0) rows for 1 and CH+, 2 and CH-, 3 and VOL+, and finally 4
and VOL-.

√ Now, explain why these keys cause the Boe-Bot to perform the same function.
√ Take a look at the time(4) column, and explain how a SONY TV can tell the

difference between the CH+ and 1 keys.

ACTIVITY #5: ADDING FEATURES TO YOUR SIMPLE IR BOE-BOT
2BitRemoteBoeBot.bs2 can be expanded to perform more maneuvers. Figure 1-16
shows a drawing of the IR remote's keypad with maneuvers assigned to each key.
Getting almost all these functions completed is easy, but it takes a little extra work to
finish the job. In later activities, you will be introduced to a more universal way to add
and remove button/key functions with much less work.

Page 34 · IR Remote for the Boe-Bot

Figure 1-16
Numeric Keypad
Control

One Timing Change and Lots More IF…THEN

There are two changes you will have to make to 2BitRemoteBoeBot.bs2 to get it to
accommodate this specification. You may have already guessed the first change; the
program will have to make its decisions based on at least three pulses, maybe 4. Take yet
another look at Table 1-1 on page 29. If all you are using to make your decisions are
time(1) and time(0), the program could easily mistake the 5 key for the 1 key.
Likewise with the 2 and 6 keys, and so on. To fix this problem, you can use IF…THEN
reasoning based on three pulses. This will cover keys 1-8. The 9 key is still a problem,
but we'll leave that for the Your Turn section.

To measure three data pulses, you will have to make two changes to
2BitRemoteBoeBot.bs2:

√ Modify the time variable declaration so that it's a three-word array instead of a
two-word array.

√ Add a third PULSIN command to capture a third pulse and store it in the time(2)
variable.

√ Change the Debug Terminal prompt to read "Press and hold a digit key (1-8)…"

Once you've made those changes, here's an IF…THEN statement that will get the job done
for keys 1-8:

Chapter 1: Infrared Remote Communication · Page 35

 IF (time(2) < 500) AND (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 650
 ELSEIF (time(2) < 500) AND (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (time(2) < 500) AND (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 750
 ELSEIF (time(2) < 500) AND (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 ELSEIF (time(2) > 500) AND (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 750
 ELSEIF (time(2) > 500) AND (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 ELSEIF (time(2) > 500) AND (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 850
 ELSEIF (time(2) > 500) AND (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 850
 ENDIF

Getting familiar with the code block above is useful for getting familiar with counting in
binary, which will be introduced in the next chapter. Below is another IF…THEN
statement you can use that does the same job more efficiently. While the IF…THEN
statements with three arguments might have to check the value of the time(2) variable
up to eight times, this one never checks it more than twice.

IF (time(2) < 500) THEN
 IF time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 650
 ELSEIF (time(1) < 500) AND (time(0) > 500) THEN
 •
 •
 •
 ENDIF
ELSEIF (time(2) > 500) THEN
 IF (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 750
 ELSEIF (time(1) < 500) AND (time(0) > 500) THEN
 •
 •
 •

Page 36 · IR Remote for the Boe-Bot

 ENDIF
ENDIF

The next change that has to be made is much more subtle, and the reason for the change
isn't necessarily all that obvious either. First, here is the change that has to be made:

√ Change the PULSIN command in the DO…LOOP that scans for the resting state
between pulses from this:

 DO
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

to an RCTIME command. When you have finished the change, it should look like
this:

 DO
 RCTIME 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

Make sure all your programs from this point onward use RCTIME instead of PULSIN
to detect the resting time between messages.

Here's the reason why this change has to be made. The PULSIN commands combined
with the decision making in the IF…THEN statements can end up taking longer than it
takes for the IR message to complete. It doesn't right now, but that can change as you
add features. The PULSIN command needs to detect both the rising and falling edges at
the beginning and ending of the resting time shown in Figure 1-17. As soon as the
PULSIN commands combined with the decision making exceeds the time it takes for the
IR message to complete, the PULSIN command will miss the rising edge of the resting
time between messages.

Chapter 1: Infrared Remote Communication · Page 37

Figure 1-17
PULSIN vs.
RCTIME for
Detecting the
Resting State
Between
Messages

If the PULSIN command does not detect the rising edge of the resting state, the loop that
searches for a high pulse will keep testing for pulses and waiting for one that's longer
than 1000. Eventually, maybe 80 or so ms later, the loop will detect the resting state after
the next repeat of the IR message. Finally, at that point, it will move on to the IF…THEN
and PULSOUT commands. This time delay causes a problem for the servos. If the time
between servo pulses goes up to 90 ms because the PULSIN command can't catch the first
rest between messages, the servos won't work well at all.

The solution for this problem is to use RCTIME instead. Take a second look at Figure 1-
17. While PULSIN needs both a rising and falling edge to complete its time measurement,
RCTIME only needs a falling edge. So, even if the program doesn't start monitoring for
the resting state until after it has started, it will still be able to recognize it.

Example Program – 3BitRemoteBoeBot.bs2

This program makes the Boe-Bot respond when you press and hold a given digit key on
the remote. The directions for each key are shown in Figure 1-16. The 9 key does not
work right, but you will fix that in the Your Turn section. It's better to make sure the 1-8
keys work right before tackling the 9 key.

√ Enter and run 3BitRemoteBoeBot.bs2.
√ Test the keys and have fun driving the Boe-Bot around for a while.

Page 38 · IR Remote for the Boe-Bot

√ Explain the problem with the 9 key using Table 1-1 as a reference.

' IR Remote for the Boe-Bot - 3BitRemoteBoeBot.bs2
' Control your Boe-Bot with keys 1-8 on a remote set to control a SONY TV.

'{$STAMP BS2}
'{$PBASIC 2.5}

time VAR Word(3) ' SONY TV remote variables.

FREQOUT 4, 2000, 3000 ' Start/reset indicator.
DEBUG "Press and hold a digit key (1-8)..."

DO ' Beginning of main loop.

 DO ' Wait for rest between messages.
 RCTIME 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

 PULSIN 9, 0, time(0) ' Measure/store data pulses.
 PULSIN 9, 0, time(1)
 PULSIN 9, 0, time(2)

 ' Decide which maneuver to execute depending on the combination
 ' of pulse durations stored in the first three pulse measurements.

 IF (time(2) < 500) AND (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 650
 ELSEIF (time(2) < 500) AND (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (time(2) < 500) AND (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 750
 ELSEIF (time(2) < 500) AND (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 ELSEIF (time(2) > 500) AND (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 750
 ELSEIF (time(2) > 500) AND (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 ELSEIF (time(2) > 500) AND (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 750
 PULSOUT 12, 850
 ELSEIF (time(2) > 500) AND (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 850

Chapter 1: Infrared Remote Communication · Page 39

 ENDIF

LOOP ' Repeat main loop.

Your Turn – Fixing the 9 Key

If you refer back to Table 1-1 on page 29, you'll notice that the 9 key has time(3) greater
than 500 while the rest of the time array elements are less than 500. The reason the Boe-
Bot pivoted forward and to the left is because the lower three time measurements are the
same as the 1 key. To fix the problem, you'll have to increase the size of the time array
by one word and also add another PULSIN measurement. Lastly, you'll have to modify
the IF…THEN statement to catch the 9 key before it misinterprets it as a 1 key.

√ Use Save As from the File menu to save a copy of 3BitRemoteBoeBot.bs2 as
4BitRemoteBoeBot.bs2.

√ Change your time array variable declaration so that it sets aside four words
named time instead of three.

√ Add a PULSIN command that measures the fourth data pulse and stores it in
time(3).

√ Expand the IF...THEN statement by adding a condition to the beginning that
checks to see if the fourth data pulse is greater than 500. If it is, then the Boe-
Bot should pivot backwards and to the right. You can accomplish this by
replacing this line of code:

IF (time(2) < 500) AND (time(1) < 500) AND (time(0) < 500) THEN

with these four lines:

IF (time(3) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 750
ELSEIF (time(2) < 500) AND (time(1) < 500) AND (time(0) < 500) THEN

√ Run and test the program, and trouble-shoot as needed.

Page 40 · IR Remote for the Boe-Bot

SUMMARY
This chapter demonstrated how the BASIC Stamp can detect and store messages sent by
universal handheld remote controls. The particular signal used to control SONY TV sets
was introduced and explained, then measured in detail using an infrared detector circuit
Pulse width modulation (PWM) for communication was introduced as the foundation for
communication between the handheld remote and entertainment system components.
Applications involving direct Boe-Bot remote control demonstrated how to capture and
interpret these messages with the help of the PULSIN and RCTIME commands, and array
variables.

Questions
1. What does PWM stand for, and what are its uses?
2. Imagine that the remote's IR LED is flashing on/off at 38.5 kHz. Then, it stops

for a while before starting again. What signal does the IR detector send during
this rest?

3. What does it mean to "program" a universal remote to send messages to a SONY
TV set?

4. What are the PULSIN command's three arguments, and what does each do?
5. How do you configure a PULSIN command to measure positive pulses? What do

you have to do to change a PULSIN command that measures positive pulses to
make it measure negative pulses?

6. There are several different low pulse durations transmitted by the infrared
remote, and each has its own meaning. How can you program the BASIC Stamp
to filter for a particular duration and discard the others?

7. Which lasts longer, the IR remote's message or the resting state between
messages? Note: Your answer may be correct for SONY TV control, but it
might differ for other protocols.

8. What kind of variable works best for storing successive pulse duration
measurements? How do you declare this variable?

9. What threshold value was used to distinguish between to make decisions based
on data pulse durations?

Exercises
1. Declare an array large enough to hold the string of eight characters.
2. Explain what would be different about Figure 1-14 on page 25 if the 4 key were

pressed and held instead of the 5 key.

Chapter 1: Infrared Remote Communication · Page 41

Projects
1. Write a program that adds up all the IR pulses and displays the duration of an IR

message in microseconds. Hints: Start with RecordAndDisplayPwm.bs2.
Record and add up all the data pulses first. Then filter for, capture, and add: the
resting state between messages, the resting state between data pulses multiplied
by twelve, and the start pulse. After you've totaled the data pulses, you can use
one time array element to store the total, and three more for the other
measurements.

2. Modify 4BitRemoteBoeBot.bs2 so that it turns a full-circle every time you press
the 5 button.

3. Modify 4BitRemoteBoeBot.bs2 so that the CH+/- and VOL+/- keys work in
conjunction with the rest of the keys.

Page 42 · IR Remote for the Boe-Bot

Solutions
Q1. PWM stands for pulse width modulation, and it can be used for digital to analog

conversion, motor control, and communication.
Q2. A high signal.
Q3. On page 6, it states: "the term 'programming' means a sequence of key-presses

on the remote that tells it to send signals to a SONY TV".
Q4. Pin selects the I/O pin that will sense the incoming pulse, State configures the

PULSIN command to measure either positive or negative pulses. Variable is a
variable that stores the pulse measurement's duration in 2 µs units.

Q5. The State argument should be set to 1 to measure positive pulses. It can be
changed to 0 if you want to measure negative pulses.

Q6. Use a loop to keep measuring pulses, but only enter a particular code block if the
duration falls in a certain range. IF…THEN works for this purpose. For example,
IF (time > 975) AND (time < 1425) THEN filters for pulses that last longer
than 1950 µs and shorter than 2850 µs).

Q7. The resting state lasts longer.
Q8. An array variable works best for storing successive, related measurements. Add

the number of elements to the variable declaration's Size argument in
parentheses.

Q9. A value of 500 is convenient for distinguishing between pulses that are typically
in the neighborhood of either 300 (0.6 ms) or 600 (1.2 ms).

E1. characters VAR Byte(8).
E2. The time(2) array element would probably be 364, while time(1) and

time(0) would be around 660. This was accomplished with the help of Table 1-
1 on page 29.

P1. Start with RecordAndDisplayPwm.bs2 and use various elements in the time

array to measure the elements of the message: twelve data pulses, the rest
between messages, twelve rests between data pulses, and the start pulse.

' IR Remote for the Boe-Bot - Chapter1Project1.bs2
' Add all the pulse durations for total message time.

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word(12) ' SONY TV remote variables

Chapter 1: Infrared Remote Communication · Page 43

index VAR Nib

DO ' Beginning of main loop

 DO ' Wait for rest between messages
 PULSIN 9, 1, time(0)
 LOOP UNTIL time(0) > 1000

 PULSIN 9, 0, time(0) ' Measure/store data pulses
 PULSIN 9, 0, time(1)
 PULSIN 9, 0, time(2)
 PULSIN 9, 0, time(3)
 PULSIN 9, 0, time(4)
 PULSIN 9, 0, time(5)
 PULSIN 9, 0, time(6)
 PULSIN 9, 0, time(7)
 PULSIN 9, 0, time(8)
 PULSIN 9, 0, time(9)
 PULSIN 9, 0, time(10)
 PULSIN 9, 0, time(11)

 FOR index = 1 TO 11 ' Add up data pulse durations.

 time(0) = time(0) + time(index)

 NEXT

 DO ' Wait for rest between messages
 PULSIN 9, 1, time(1)
 LOOP UNTIL time(1) > 1000

 DO ' Wait for start pulse
 PULSIN 9, 0, time(2)
 LOOP UNTIL (time(2) > 1000)

 DO ' Wait for data pulse rest
 PULSIN 9, 1, time(3)
 LOOP UNTIL (time(3) > 1) AND (time(3) < 1000)

 time(3) = time(3) * 12 ' Twelve data pulse rests

 ' Add time(1) (rest between messages), time(2) (start pulse),
 ' time(3) (twelve rests between messages), and time(0) (the total
 ' data pulses). This is the message total.

 time(0) = time(0) + time(1) + time(2) + time(3)

Page 44 · IR Remote for the Boe-Bot

 DEBUG "time(0) = ",
 DEC time(0) * 2,
 " us", CR ' Display time in us

LOOP ' Repeat main loop

P2. Start with 4BitRemoteBoeBot.bs2.

√ Add this variable declaration:
 counter VAR Byte

√ Delete these two PULSOUT commands:
PULSOUT 13, 750
PULSOUT 12, 750

√ Replace them with this FOR…NEXT loop. You will have to tune the EndValue
of 76.

FOR counter = 1 TO 76
 PULSOUT 13, 650
 PULSOUT 12, 650
 PAUSE 20
NEXT

P3. Begin with 4BitRemoteBoeBot.bs2.

√ Increase the time array to 5 elements.
√ Add a fifth PULSIN command to load time(4).
√ Change the IF statement to ELSEIF.
√ Before the ELSEIF statement (that you just changed from IF) add this code:

IF (time(4) > 500) THEN
 IF (time(1) < 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSEIF (time(1) < 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) < 500) THEN
 PULSOUT 13, 850
 PULSOUT 12, 850
 ELSEIF (time(1) > 500) AND (time(0) > 500) THEN
 PULSOUT 13, 650
 PULSOUT 12, 650
 ENDIF

Chapter 2: Create and Use Remote Applications · Page 45

Chapter 2: Create and Use Remote Applications

REUSABLE PROGRAMS
In this chapter, you will develop and test two different multi-purpose IR remote
application programs. You will test them on their own, and also with new Boe-Bot
applications. They will make all kinds of Boe-Bot IR remote programs possible with
much less programming. These application programs can also be used with many other
projects. Think about all the machines and inventions that have keypads. You can
design your own version of these inventions with an infrared detector and a universal
remote.

ACTIVITY #1: INTERPRETING THE IR MESSAGES
The key to making the pulse measurements you collected in the previous chapter more
useful is decoding. In the case of the messages the universal remote sends, decoding
means converting a series of pulse duration measurements into a single value that your
PBASIC program can use to make decisions.

Decode

a: to convert (as a coded message) into intelligible form
b: to recognize and interpret (an electronic signal)

Source: Merriam-Webster Online Dictionary – www.merriam-webster.com

In this activity, you will write programs that decode the PWM messages sent by the
infrared remote. You will also look for relationships between these decoded values and
the keys on the remote. If a relationship exists, it will make the remote control programs
much simpler. When it's easier to write remote control programs, you will be able to
create more powerful Boe-Bot applications with less work.

Counting in Binary vs. Counting in Decimal

Here is how to count to 20 with binary numbers:

Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011
Decimal 0 1 2 3 4 5 6 7 8 9 10 11

Page 46 · IR Remote for the Boe-Bot

Binary 1100 1101 1110 1111 10000 10001 10010 10011 10100
Decimal 12 13 14 15 16 17 18 19 20

Notice that it takes four or less binary digits to count to 15, but it takes a fifth digit to get
to 20.

In binary numbers, digits are usually called bits. Whereas a digit can be 0 through 9 in
the decimal number system, a bit can only be 1 or 0 in the binary number system. Figure
2-1 shows a map of the bits in a byte size binary number. The rightmost bit is bit-0, the
next one over is bit-1, then bit-2, all the way through bit-7.

Figure 2-1
The Bits in a
Binary Byte

Each box can
hold either a 1 or
a 0.

Each bit in a binary number tells you how many of a certain power of 2 the number
contains. Bit-0 tells you how many ones are in the binary number, bit-1 tells how many
twos, bit-2 tells how many fours, and so on. Even if you have a really large binary
number, you can always figure out a given bit value because it's 2bit.

Here is an example of how to take 2 and raise it to the power of its bit position. Bit-0
tells how many ones are in a binary number because 20 = 1. Likewise, bit-1 tells how
many twos are in the number because 21 = 2. Bit-2 tells how many fours are in the
number because 22 = 4. Bit-6 indicates how many sixty-fours are in a binary number
because 26 = 2×2×2×2×2×2 = 64.

Figure 2-2 shows how to convert a binary number with up to 8 bits (a byte) to its
corresponding decimal value.

• First, enter the binary number into the upper row of boxes. Make sure to put the
rightmost bit into the rightmost box, then continue to the left as you copy
numbers.

• Second, multiply each bit by its power of two, and enter the product into the box
directly below.

• Third, add up all the product boxes and enter it in the result.

Chapter 2: Create and Use Remote Applications · Page 47

Figure 2-2
Converting
Binary to
Decimal

Figure 2-3 follows these steps to work out the decimal value of binary 10011.

Figure 2-3
Working
Out the
Decimal
Equivalent
of Binary-
10011

Example Program – BinaryToDecimal.bs2

Although you can write a PBASIC program that follows each of the steps just discussed,
the BIN and DEC modifiers make the job easy.

√ Enter and run BinaryToDecimal.bs2.
√ Click the Debug Terminal's Transmit Windowpane.
√ Type in up to eight binary digits (ones and zeros), then press Enter.
√ Hand-calculate the value using the steps shown in Figure 2-2.

Page 48 · IR Remote for the Boe-Bot

√ Compare your hand calculated result to the one in the Debug Terminal result.

' IR Remote for the Boe-Bot - BinaryToDecimal.bs2
' Enter a binary value into the Debug Terminal's Transmit Windowpane,
' and get the decimal value in the Receive Windowpane.

'{$STAMP BS2}
'{$PBASIC 2.5}

value VAR Byte

DO

 DEBUG "Enter binary value: "
 DEBUGIN BIN value
 DEBUG "Decimal value is: ", DEC value, CR

LOOP

Your Turn – Counting in Binary

By entering each of the binary numbers listed beginning on page 45, you will get practice
counting in binary. Especially if you delve further into inventions with microcontrollers,
the ability to count in binary will be a skill you will rely on over and over again.

√ While the program is running, enter each of the twenty-one binary values listed
beginning on page 45 into the Debug Terminal's Transmit Windowpane.

√ Make sure that the decimal conversion verifies that you are up-counting
correctly.

Setting and Clearing Bits with the .BIT Modifier

Although the BIN modifier made it easy to enter binary numbers into the Debug
Terminal, it's not very helpful for converting a series of pulses into a binary number.
Each pulse corresponds to a different bit in the binary number the remote is transmitting.
That means that each pulse has to be translated to a 1 or 0, and then the corresponding bit
position in a variable has to be set or cleared.

The .BIT variable modifier can be used to set and clear bits in a variable. It does so by
making it possible to select individual bits in a given variable. Let's say that you have a
byte variable named value, and you want to clear bit-5 and set bit-6. Here's a way to do
that with the help of the .BIT variable modifier:

value.BIT5 = 0

Chapter 2: Create and Use Remote Applications · Page 49

value.BIT6 = 1

The next example program demonstrates how to use the .BIT modifier to set and clear
bits in a byte variable with the help of the Debug Terminal's Transmit and Receive
Windowpanes. It uses three variables, a byte named value, a nibble named index, and
a bit named setClear. By storing values in index and setClear with the DEBUGIN
command, you can pick any bit in the value variable and either set it to one or clear it to
zero with these commands:

DEBUGIN DEC1 index

DEBUGIN BIN1 setClear

IF index = 0 THEN value.BIT0 = setClear
IF index = 1 THEN value.BIT1 = setClear
IF index = 2 THEN value.BIT2 = setClear
IF index = 3 THEN value.BIT3 = setClear
IF index = 4 THEN value.BIT4 = setClear
IF index = 5 THEN value.BIT5 = setClear
IF index = 6 THEN value.BIT6 = setClear
IF index = 7 THEN value.BIT7 = setClear

Coding tip – the .LOWBIT modifier: The .LOWBIT modifier can be used to treat the bits
in a variable as array elements. Here is how you can use the .LOWBIT modifier to replace
the eight IF…THEN statements just discussed.

 value.LOWBIT(index) = setClear

This technique cannot be used in the upcoming IR remote examples because it would
require more calibration with the IR remote pulse measurements. Even so, it's a worthwhile
exercise to replace the eight IF…THEN statements with this one command in the next
example program. Verify that both techniques perform the same operation.

Example Program – SetAndClearWithDotBit.bs2

Figure 2-4 shows an example of what you can do with SetAndClearWithDotBit.bs2. By
typing a digit into the Transmit Windowpane when prompted for the "bit index" you can
select the bit in the value variable that you want to change. Then, by typing a 1 or 0 into
the Transmit Windowpane when prompted for "1 to set or 0 to clear", you can control
whether the bit in value is set to 1 or cleared to 0.

Page 50 · IR Remote for the Boe-Bot

Figure 2-4
Clearing and Setting
Bits in a Byte with the
Debug Terminal

√ Enter, save, and run SetAndClearWithDotBit.bs2.
√ When the prompt "Type bit index (0 to 7): " appears, decide which bit you want

to change, and type that digit.
√ When the prompt "Type 1 to set or 0 to clear: " appears, type the 1 or 0 key.

The program will pause for half a second, then refresh the display.

√ Check and make sure the change you entered appears in the "Binary value".
√ Experiment with setting and clearing bits in the "Binary value".

' IR Remote for the Boe-Bot - SetAndClearWithDotBit.bs2
' Use the Debug Terminal's Transmit Windowpane to choose a bit in
' the value variable and set or clear it.

'{$STAMP BS2}
'{$PBASIC 2.5}

value VAR Byte
index VAR Nib
setClear VAR Bit

DO

 DEBUG CLS,
 BIN8 value, " <- Binary value", CR,
 "76543210 <- Bit index", CR, CR,
 "Type bit index (0 to 7): "

 DEBUGIN DEC1 index

Use the Transmit
Windowpane to
reply to the
prompts.

Chapter 2: Create and Use Remote Applications · Page 51

 DEBUG CR, "Type 1 to set or 0 to clear: "

 DEBUGIN BIN1 setClear

 IF index = 0 THEN value.BIT0 = setClear
 IF index = 1 THEN value.BIT1 = setClear
 IF index = 2 THEN value.BIT2 = setClear
 IF index = 3 THEN value.BIT3 = setClear
 IF index = 4 THEN value.BIT4 = setClear
 IF index = 5 THEN value.BIT5 = setClear
 IF index = 6 THEN value.BIT6 = setClear
 IF index = 7 THEN value.BIT7 = setClear

 PAUSE 500

LOOP

How SetAndClearWithDotBit.bs2 Works

The value variable is the byte, with 8 bits that you clear and set with the Debug
Terminal. The index variable stores the value that determines which bit in value will be
set/cleared, and the setClear variable stores a 1 or a 0.

value VAR Byte
index VAR Nib
setClear VAR Bit

The rest of the commands are nested inside the main DO…LOOP.

A DEBUG CLS command clears the Receive Windowpane, displays the 8-bit binary
representation of the value variable, then displays the index values for each bit, followed
by the first prompt for the user (you) to enter a digit.

DEBUG CLS,
 BIN8 value, " <- Binary value", CR,
 "76543210 <- Bit index", CR, CR,
 "Type bit index (0 to 7): "

The value of index is set with a DEBUGIN command followed by a second DEBUG
command, which displays a second prompt. Then a second DEBUGIN command gets the
value of setClear from the Debug Terminal's Transmit Windowpane.

 DEBUGIN DEC1 index

 DEBUG CR, "Type 1 to set or 0 to clear: "

Page 52 · IR Remote for the Boe-Bot

 DEBUGIN BIN1 setClear

This code block stores the value of setClear in the bit you chose in the value variable.
The series of IF…THEN statements examines the index variable. When a match is
found, the corresponding bit in value is assigned the 1 or 0 you stored in setClear.

 IF index = 0 THEN value.BIT0 = setClear
 IF index = 1 THEN value.BIT1 = setClear
 IF index = 2 THEN value.BIT2 = setClear
 IF index = 3 THEN value.BIT3 = setClear
 IF index = 4 THEN value.BIT4 = setClear
 IF index = 5 THEN value.BIT5 = setClear
 IF index = 6 THEN value.BIT6 = setClear
 IF index = 7 THEN value.BIT7 = setClear

Next, PAUSE 500 waits for half a second, then the main DO…LOOP repeats. When it does,
the screen is cleared, and the new binary representation of the value variable is
displayed.

Your Turn – Adding Decimal Conversion to the Program

This program can also be a useful tool for examining the relationship between binary and
decimal numbers.

√ Save SetAndClearWithDotBit.bs2 as SetAndClearWithDotBitYourTurn.bs2.
√ Modify the DEBUG command so that it looks like this:

 DEBUG CLS,
 BIN8 value, " <- Binary value", CR,
 "76543210 <- Bit index", CR,
 "Decimal value: ", DEC3 value, CR, CR,
 "Type bit index (0 to 7): ", CR

√ Run your modified version of the program. It should now display the decimal
equivalent of the binary number whose bits you are setting and clearing.

√ Starting with the rightmost bit (bit-0), set it, note the value, then clear it.
√ Repeat with bit-1, then with bit-2, all the way through bit-7.
√ Explain what you observed.
√ Next, try setting and clearing bits so that you count from 0 to 20 in binary again.

Converting the IR Message Pulse Durations to Decimal Values

We will use a variable named remoteCode to store the value transmitted by the IR
message pulses. Since the program will only set bits if a given pulse measurement

Chapter 2: Create and Use Remote Applications · Page 53

greater than 1 ms, all the bits in remoteCode should be cleared before the pulse
measurements are captured. The easiest way to clear all the bits in a variable is by simply
setting it equal to zero. If a byte variable stores the value 0, it's really storing the binary
number 00000000. In effect, all the bits are set to zero.

remoteCode = 0

Next, wait for the resting state between IR remote messages with a DO…LOOP that was
introduced in Chapter 1, Activity 5.

DO
 RCTIME 9, 1, time
LOOP UNTIL time > 1000

Then, start measuring data pulses. After each data pulse measurement, check to see if it
lasted long enough to mean a binary-1. If it did, set the corresponding bit in the
remoteCode variable; otherwise, leave it clear

PULSIN 9, 0, time ' Measure pulse.
IF time > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
RCTIME 9, 0, time ' Measure next pulse.
IF time > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
RCTIME 9, 0, time ' etc.
IF time > 300 THEN remoteCode.BIT2 = 1
RCTIME 9, 0, time
IF time > 300 THEN remoteCode.BIT3 = 1
RCTIME 9, 0, time
IF time > 300 THEN remoteCode.BIT4 = 1
RCTIME 9, 0, time
IF time > 300 THEN remoteCode.BIT5 = 1
RCTIME 9, 0, time
IF time > 300 THEN remoteCode.BIT6 = 1

Why use PULSIN to measure the first pulse and RCTIME to measure the rest? Saving six
word variables is worth a little code gymnastics. This routine only uses one time
variable, not an array of seven like the examples in Chapter 1. Figure 2-5 shows the
timing of the command execution in relation to the incoming IR message pulses. From
left to right, there is plenty of time for the DO…LOOP to detect when a high pulse greater
than 1000 is detected because the start pulse that follows lasts 2.4 ms. There is also
enough time to execute a PULSIN command to capture the first data pulse. The problem
occurs when the first IF…THEN statement executes. Keep in mind that we are trying to
use one time variable to take all the pulse measurements, not an array of seven. Because
the time variable has to be reused to measure the next pulse the current value of time has
to be examined and used to either set or clear remoteCode.BIT0.

Page 54 · IR Remote for the Boe-Bot

Figure 2-5: Command Execution Timing in Relation to Incoming IR Pulses

0Start 1 0

2.4 ms 0.6 ms 1.2 ms

 PULSIN 9, 0, time
 IF time > 500 THEN remoteCode.BIT0 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT1 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT2 = 1

 RCTIME 9, 1, time
 LOOP UNTIL time > 1000

0.6 ms

DO

The reason RCTIME has to be used to measure the next pulse is because the IF…THEN
statement does not finish until after the next data pulse has already begun. Since the start
of the pulse (its negative edge) is missed while the IF…THEN statement is executing,
PULSIN cannot properly detect the beginning of the pulse. Instead, PULSIN would miss
the data pulse and measure the next one, making it possible to only capture half the data
pulses in a given IR message. On the other hand, RCTIME can be used to measure what's
left of the data pulse, and all the data pulses that follow.

Through experiments similar to the ones in Chapter 1, Activity #2, the successive RCTIME
measurements stored time values of approximately 450 for a binary-1 pulse or 150 for a
binary-0 pulse. 300 is half way between these two values, and is used to decide whether

Chapter 2: Create and Use Remote Applications · Page 55

the rest of the pulse measurements are binary-1 or binary-0. IF…THEN statements follow
each of these pulse measurements to either set or clear remoteCode.BIT1 through
remoteCode.BIT6 based on this 300 value.

Example Program: PulsesToByteValue.bs2

This program demonstrates the concepts that have been introduced thus far by decoding
the remote's PWM message and displaying it as a decimal value. Any time you need to
know what the code for one of the remote keys is, you can use this program. When you
know what each code in the remote's keypad is, writing programs that make the Boe-Bot
act on the PWM messages it receives using IF…THEN and SELECT…CASE becomes much
easier.

√ Enter and run PulsesToByteValue.bs2.
√ Press the various remote keys and find out what each decimal value is.
√ Test the 1 through 9 keys and explain the relationship between the decimal value

displayed in the Debug Terminal and the value of the number on the keypad.
√ Try the 0 key. Does the value for the zero key present a programming problem?
√ Compare the binary version of the remoteCode variable displayed in the Debug

Terminal against your entries in Table 1-1 on page 29. If a given bit in the
remoteCode variable is 1, the corresponding time(index) measurement in
Table 1-1 should be above 500. If the bit in remoteCode is 0, the corresponding
value in the time(index) measurement should be below 500.

' IR Remote for the Boe-Bot - PulsesToByteValue.bs2
' Display the binary and decimal values of the lower seven bits of
' IR message.

'{$STAMP BS2}
'{$PBASIC 2.5}

time VAR Word ' SONY TV remote variables.
remoteCode VAR Byte

DEBUG "Binary Value Decimal Value", CR, ' Display heading.
 "Bit 76543210 ", CR,
 "------------ -------------"

DO ' Beginning of main loop.

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.

Page 56 · IR Remote for the Boe-Bot

 RCTIME 9, 1, time
 LOOP UNTIL time > 1000

 PULSIN 9, 0, time ' Measure pulse.
 IF time > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME 9, 0, time ' Measure next pulse.
 IF time > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME 9, 0, time ' etc.
 IF time > 300 THEN remoteCode.BIT2 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT3 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT4 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT5 = 1
 RCTIME 9, 0, time
 IF time > 300 THEN remoteCode.BIT6 = 1

 DEBUG CRSRXY, 4, 3, BIN8 remoteCode, ' Display keypad code.
 CRSRXY, 14, 3, DEC2 remoteCode

LOOP ' Repeat main loop.

How PulsesToByteValue.bs2 Works

For this application, we are not concerned with whether the remote is sending a message
to a TV, VCR, or cable box, so the higher bits in the message do not matter. This
program captures seven pulses because that's all that's necessary to capture the TV remote
keys. Also, seven measurements take less time to execute, giving the BASIC Stamp
extra time to take other measurements.

Remember that a pulse in the neighborhood of 1.2 ms is a binary-1, while a pulse in the
neighborhood of 0.6 ms is a binary-0. For the first PULSIN command, if the time array
element stores a value above 500 (1000 µs = 1 ms), it must be a binary-1 pulse.
Likewise, if the time array element stores a value below 500, is must be a binary-0 pulse.
For the RCTIME commands that follow, if time stores a value above 300, it must be a
binary-1; otherwise, it's a binary-0.

Your Turn – Correcting the Keypad Values

The rules for how numeric values correspond to keys on the keypad can be a little
confusing. When remoteCode is 0, the key pressed is really 1. When remoteCode is 1,

Chapter 2: Create and Use Remote Applications · Page 57

the key pressed is really 2, and so on up until remoteCode is 8, which means the 9 key
was pressed. But wait, when remoteCode stores 9, it means the 0 key is pressed!

You can fix this problem with a couple of IF…THEN statements. These IF…THEN
statements can adjust the value stored in the remoteCode variable so that it matches the
key value on the keypad. In other words, when you press 5, remoteCode stores 5. When
you press 8, remoteCode stores 8. More importantly, when you press 0, remoteCode
stores 0.

√ Save PulsesToByteValue.bs2 as PulsesToByteValueYourTurn.bs2.
√ Modify the program by inserting these two commands between the last

IF...THEN statement and the DEBUG command.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

√ Run the program and verify that the value stored by remoteCode now matches
the number of the key pressed on the IR remote's keypad.

√ Write a brief report explaining how these two commands get the job done.
√ Update Table 2-1 below, and mark this page for reference on how the numeric

values correspond to the keys pressed on the keypad.

Table 2-1: Remote Key Codes
Key Decimal

Value
0-9

VOL-
VOL+

CH-
CH+

ENTER
POWER

Page 58 · IR Remote for the Boe-Bot

ACTIVITY #2: DESIGNING A REUSABLE REMOTE PROGRAM
Up to this point, you have completed a program that performs IR remote message capture
and decoding for SONY TV signals. Before doing more Boe-Bot applications, it's better
to rewrite the program so that all the work is done in subroutines. Along with the
subroutines, the program should also have CON directives for non-numbered keys and VAR
declarations for the variables that are used by the subroutines.

Building an Application for Reading the IR Remote

The next example program is a more reusable version of
PulsesToByteValueYourTurn.bs2. Here are the changes that were made to it:

• Constants – keypad values with meaningful names
Table 2-1 was used to build a list of CON directives.

• Variables – variables that have to be used with the subroutines
The VAR declarations from PulsesToByteValue.bs2 were given their own
section.

• Main routine – call the subroutine and display the data
A very simple main routine that displays the IR remote code in the Debug
Terminal was inserted here along with a comment to add your own code.

• Subroutine – capture message pulses from the infrared remote and decode
This one should contain everything inside the main the DO...LOOP from
PulsesToByteValueYourTurn.bs2.

To test the remote, the SELECT…CASE statement will be used to make sure the program
recognizes all the different keys. Remember, the SELECT…CASE allows you to select a
variable and evaluate it on a case by case basis. You can use single values, a list of
values separated by commas, or a range of values.

Example Program: IrRemoteButtons.bs2

√ Enter, save, and run IrRemoteButtons.bs2.
√ Press and release each digit key on the remote and verify that the correct digit is

displayed.
√ Try out the ENTER, CH+, CH-, VOL+, VOL-, and POWER keys. Verify that the

displayed value matches the CON directives in the program.

Chapter 2: Create and Use Remote Applications · Page 59

You will be saving many copies of this file, and then modifying these copies to perform a
variety of Boe-Bot functions.

√ Make sure to save this program under the name IrRemoteButtons.bs2.

Here is an example of saving and modifying a copy of IrRemoteButtons.bs2.

√ Use the File → Save As menu to save a copy of this program. Use the name
TestIrRemoteButtons.bs2.

√ Replace the existing main routine with this code block:

DO

 GOSUB Get_Ir_Remote_Code

 DEBUG CLS, "Remote code: "

 SELECT remoteCode
 CASE 0 TO 9
 DEBUG DEC remoteCode
 CASE Enter
 DEBUG "ENTER"
 CASE ChUp
 DEBUG "CH+"
 CASE ChDn
 DEBUG "CH-"
 CASE VolUp
 DEBUG "VOL+"
 CASE VolDn
 DEBUG "VOL-"
 CASE Power
 DEBUG "POWER"
 CASE ELSE
 DEBUG DEC remoteCode, " (unrecognized)"
 ENDSELECT

 DEBUG CLREOL

LOOP

√ Run TestIrRemoteButtons.bs2 and test the remote's keypad keys as well as the
other buttons listed in the constant declarations section.

√ Try the SLEEP, MUTE, and LAST keys, what happened? The Your Turn portion of
this activity will give you some hints for solving this.

Page 60 · IR Remote for the Boe-Bot

' -----[Title]---
' IR Remote for the Boe-Bot - IrRemoteButtons.bs2
' Capture and store button codes sent by a universal remote configured to
' control a SONY TV.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input received from IR detector

IrDet PIN 9

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word
remoteCode VAR Byte

' -----[Main Routine]--

' Replace this DO...LOOP with your own Code.

DO
 GOSUB Get_Ir_Remote_Code
 DEBUG CLS, "Remote code: ", DEC remoteCode
 PAUSE 100
LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

Chapter 2: Create and Use Remote Applications · Page 61

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

How IrRemoteButtons.bs2 Works

This PIN declaration gives a name to the I/O pin that senses the IR detector's output. You
can now use the name IrDet in place of IN9. You can also use it as an argument to a
command, so instead of PULSIN 9, 0, IrPulse, you can use PULSIN IrDet, 0,
IrPulse.

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9

These constant names can be used in place of the keypad values. This allows you to
make decisions on the value from the infrared remote with meaningful names such as
Enter instead of 11 and ChUp instead of 16. For example, if you want to make an

Page 62 · IR Remote for the Boe-Bot

IF…THEN decision depending on whether or not the ENTER key is pressed, it's much better
to use IF (remoteCode = Enter) THEN instead of IF (remoteCode = 11) THEN.

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

These are the variables you will need for your subroutines. The time variable from
PulsesToByteValue.bs2 was renamed to irPulse.

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word
remoteCode VAR Byte

Many published PBASIC application examples you will encounter just have a comment,
such as ' Insert your code here, possibly followed by an END command. In that
case, it will be up to you to look at the comments, subroutines, and other parts of the
program and figure out how to make it work. Often there will be a separate program
available for download that demonstrates some of the things you can do with the
application. This main routine has a comment about inserting code, but it also has a
simple DO…LOOP that allows you to test it.

' -----[Main Routine]--

' Replace this DO...LOOP with your own code.

DO
 GOSUB Get_Ir_Remote_Code
 DEBUG CLS, "Remote code: ", DEC remoteCode
 PAUSE 100
LOOP

The code block in the Get_Ir_Remote_Code subroutine is mostly the contents of the
DO…LOOP from PulsesToByteValue.bs2 (from Activity #1). There are two differences.
First, it's in a subroutine instead of a DO…LOOP in the main routine. Second, this

Chapter 2: Create and Use Remote Applications · Page 63

subroutine has two IF…THEN statements just before the RETURN command that were
introduced in the last Your Turn section in Activity #1. They adjust the value the
remoteCode variable stores so that it matches any keypad digit that gets pressed.

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

Your Turn – Expanding the List of Known Keys

You can expand your program to include the SLEEP, MUTE, and LAST keys.

√ Re-run TestIrRemoteButtons.bs2 and get the values for SLEEP, MUTE and LAST.
√ Save the program as TestIrRemoteButtonsYourTurn.bs2.
√ Modify the Constants section so that these values are accounted for. Be careful,

SLEEP is a PBASIC command, so you will have to choose a different name for

Page 64 · IR Remote for the Boe-Bot

the value that corresponds to the remote's SLEEP key. Try FnSleep instead;
that's short for function-sleep.

√ Modify the SELECT…CASE statement so that it displays "SLEEP" when the SLEEP
key is pressed, "MUTE" when the MUTE key is pressed, and "LAST" when the
LAST key is pressed. NOTE: Some universal remotes label the LAST key PREV
CH.

VCR control buttons

VCR control buttons such as >> (FAST FORWARD) and << (REWIND) buttons don't cause
the remote to send codes when it's in TV mode. You can use your remote's manual and try
programming it with the SONY VCR remote codes. One of them usually works for making
the remote speak the same PWM language as the SONY TV controller. Keep in mind that
this works with some (but not all) universal remotes.

The VCR button can then be used to enable all the VCR control buttons. Provided you
programmed in the right code, most of the TV buttons will still work too. You can use
IrRemoteButtons.bs2 to display the values of remoteCode for each VCR control button
and expand your list of constants (the CON directives). The values of the remoteCode
variable for the VCR control buttons (STOP, PAUSE, PLAY, REWIND, FAST FORWARD,
and RECORD) should range between 24 and 29.

ACTIVITY #3: APPLICATION TESTING WITH BOE-BOT NAVIGATION
There are lots of application kits, application notes, and magazine articles published that
show how to use BASIC Stamp microcontroller modules with all manner of sensors,
actuators, and coprocessors. You can use many of these as resources to add features to
your Boe-Bot. Many pre-written example programs in these resources are formatted
similarly to the IrRemoteButtons.bs2 application in the activity you just finished. You
will often see constant declarations for meaningful numbers, subroutines that do the key
jobs, and of course, the variables needed for the application and its subroutines. Other
sections that contain DATA directives, initialization routines, and revision histories may
also appear.

In this activity, you will write a Boe-Bot navigation main routine that uses the features
provided by IrRemoteButtons.bs2. By getting familiar with adapting these reusable
programs to your Boe-Bot, you can make use of a much wider variety of published
resources. Especially when it comes to a new sensor, display, or sound processor, the
"hard" work has already been done in the published example program. It will be up to
you to adapt it to your specific robotic (or other) application. In many cases, you will

Chapter 2: Create and Use Remote Applications · Page 65

take subroutines and their associated constants and variables from several programs and
combine them into a master application that controls several subsystems.

A Simple Boe-Bot Main Routine

In the previous activity, you replaced the main routine in IrRemoteButtons.bs2 with a
code block that contained a SELECT…CASE statement. The best way to remember how
SELECT…CASE works is that you use it to SELECT a (constant, variable or expression) and
evaluate it on a CASE by CASE basis. SELECT remoteCode made it possible to evaluate
the remoteCode variable on a case by case basis, executing different DEBUG commands
for each different CASE (value stored in remoteCode).

SELECT…CASE is also really good for Boe-Bot navigation. Instead of DEBUG commands,
each CASE statement can contain code blocks that deliver pulses for different Boe-Bot
maneuvers. This can be showcased by repeating the functionality of
4BitRemoteBoeBot.bs2 from Chapter 1, Activity #5. The difference is, this time, it will
be really easy to write, and even easier to adjust and expand.

All you have to do with the next example program is open IrRemoteButtons.bs2, save it
under a new name, and modify the main routine. The IR remote code reading is taken
care of in a subroutine, so you can focus on programming the Boe-Bot, and all you need
to know is the value of the remoteCode variable after you call the Get_Ir_Remote_Code
subroutine.

Example Program – 7BitRemoteBoeBot.bs2

This example gives you all the number key features of 4BitRemoteBoeBot.bs2 from
Chapter 1, Activity #5, plus the CH+/- and VOL+/- key features from Chapter 1, Activity
#4.

√ Open IrRemoteButtons.bs2 and save it as 7BitRemoteBoeBot.bs2.
√ Add an initialization section just before the Main Routine:

' -----[Initialization]--

DEBUG "Press and hold a key (1-9 or CH/VOL)..."
FREQOUT 4, 2000, 3000 ' Start/reset indicator.

√
√ Replace the DO…LOOP in the main routine with this one:

DO

Page 66 · IR Remote for the Boe-Bot

 ' Call subroutine that loads the IR message value into the
 ' remoteCode variable.

 GOSUB Get_Ir_Remote_Code

 ' Send PULSOUT durations for the various maneuvers based on
 ' the value of the remoteCode variable.

 SELECT remoteCode
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Right
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate Left
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT

LOOP

A complete copy of the program is below.

√ Run and test the program. Verify that the 1 through 9 keys perform as expected.
√ Try the CH+/- and VOL +/- keys too, and verify that they work correctly.
√ Think about how much easier this was than the approach that was used in

Chapter 1, Activities #4 and #5.
√ Save your work, you will also save copies of this program and modify it later.

Chapter 2: Create and Use Remote Applications · Page 67

' -----[Title]---
' IR Remote for the Boe-Bot - 7BitRemoteBoeBot.bs2

' With an IR remote configured to control a SONY TV, point the remote at
' the Boe-Bot and press and hold the 1-9 keys for different maneuvers.
' You can also use CH+/- and VOL+/-..

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word
remoteCode VAR Byte

' -----[Initialization]--

DEBUG "Press and hold a key (1-9 or CH/VOL)..."
FREQOUT 4, 2000, 3000 ' Start/reset indicator.

' -----[Main Routine]--

' Boe-Bot button control routine.

DO

 ' Call subroutine that loads the IR message value into the
 ' remoteCode variable.

 GOSUB Get_Ir_Remote_Code

 ' Send PULSOUT durations for the various maneuvers based on

Page 68 · IR Remote for the Boe-Bot

 ' the value of the remoteCode variable.

 SELECT remoteCode
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Left
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate Right
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot Back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot Back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold Position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT

LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.

Chapter 2: Create and Use Remote Applications · Page 69

 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

How 7BitRemoteBoeBot.bs2 Works

The SELECT…CASE statement inside the main routine's DO…LOOP is perfect for delivering
PULSOUT commands based on the value of the remoteCode variable.

 GOSUB Get_Ir_Remote_Code

 SELECT remoteCode
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Left
 PULSOUT 13, 650
 PULSOUT 12, 650
 •
 •
 •
 CASE ELSE ' Hold Position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT

Notice that the CASE statements are using constants such as ChUp and VolDn, from the
IrRemoteButtons.bs2 template's constant declarations section:

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons.

Enter CON 11

Page 70 · IR Remote for the Boe-Bot

ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

Your Turn – Adding the POWER Button

You can turn the Power button into a disable switch for the Boe-Bot. In other words, if
the Power button is pressed, the Boe-Bot can be programmed to cease to respond to
remote commands. In this example, the Reset button on the Board of Education must be
pressed and released to restart the program.

√ Insert a CASE statement for POWER with an END command into your modified
version of 7BitRemoteBoeBot.bs2.

√ Test it and trouble-shoot as needed.

ACTIVITY #4: ENTERING LARGE NUMBERS WITH THE KEYPAD
Most devices let you enter large numbers by pressing sequences of digit buttons. For
example, you might press 3-1-5 on your microwave oven to reheat some food, and the
oven cooks the food for three minutes and fifteen seconds. Likewise, you might enter 1-
0-0-0 into your calculator as a number (one-thousand) to be multiplied, divided, etc.
Many television sets have a menu selection where you can use the keypad on a remote to
enter the current time, and VCRs have the same feature so that you can program the VCR
to record TV shows when you're not there.

Multi-digit entry is a feature that could be really handy in a second application example
that you can add to your library of useful programs. In this activity, you will develop this
feature, and then save it for future use and reuse.

The Speaker Circuit

Whether it's a keypad on an alarm system, microwave oven, or a Boe-Bot, a speaker
really helps let you know that the device understood when you pressed that digit key.
The speaker shown in Figure 2-6 was already added to your Boe-Bot in Chapter 1,
Activity #4. Up until now, it was only used to let you know that the program started (or
spontaneously restarted due to low batteries).

In this activity, we will also use the piezospeaker circuit to signal that the Boe-Bot
detected and understood when you pressed a button on the remote. This is especially

Chapter 2: Create and Use Remote Applications · Page 71

useful for typing multi-digit values on the remote's numeric keypad. You will also write
commands to send different tones indicating the wrong key was pressed.

√ If you have not already done so, add the speaker circuit shown in Figure 2-6 to
your Boe-Bot's prototyping area.

P4

Vss

Figure 2-6
Speaker for Keypad
Entry Feedback

Converting Sequences of Digits to Decimal Numbers

Let's say you want to send a larger value to the Boe-Bot, like the decimal value 635. To
send this number, you will have to press and release the 6, then the 3, then the 5, then the
ENTER key. The BASIC Stamp will have to successively receive each digit, multiply by
ten, then add the next most recently received digit. When the ENTER key is pressed, the
value 11 is sent, which means the multiply by ten and add routine is finished. Here is a
step by step list of how the BASIC Stamp has to process the incoming messages to
rebuild the value 635:

• The digit 6 is received, so store 6.
• The digit 3 is received, so multiply 6 by ten, then add 3.
• The digit 5 is received, so multiply 63 by ten, then add 5.
• The value 11 is received, so keep the value 635 and exit the routine.

Example Program: EnterLargeValues.bs2

This example program behaves similarly to a microwave oven with a digital keypad.
You can build larger numbers, such as 635 by pressing and releasing the 6, 3, and 5 keys
followed by the ENTER key. This program makes the Boe-Bot's piezospeaker send a tone
to acknowledge each button press. The speaker also provides debouncing for the
pushbutton.

Page 72 · IR Remote for the Boe-Bot

What's "debounce"?

Electronic circuits operate at much higher speeds than human actions and mechanical
contacts. Circuit and embedded systems engineers have to take this fact into account when
designing circuits. When a switch is closed or pushbutton is pressed, there's a collision
between metal contacts. The metal surfaces bounce and scrape against each other before
settling down and maintaining contact. This in turn sends a rapid succession of ones and
zeros to the processor. A circuit or program routine that makes it impossible for these zeros
and ones to confuse the processor is called a debounced circuit. Humans also have a
tendency to hold down a button or switch for a certain amount of time. Especially when
entering the same digit several times, it's important to program the microcontroller to make
sure that a person's natural button pressing tendencies are recognized.

√ Open IrRemoteButtons.bs2, then save it as EnterLargeValues.bs2.
√ Add this directive to the I/O Definitions section:

Speaker PIN 4

√ Add this variable declaration to the program's Variables section.

' Main Routine Variables

value VAR Word ' Stores multi-digit value

√ Replace the DO…LOOP in the main routine with this one:

DO

 DEBUG "Type a value (up to 65535)", CR, "Then press ENTER", CR, CR

 value = 0
 remoteCode = 0
 DEBUG "Digits entered: "

 DO

 value = value * 10 + remoteCode

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode >= 0) AND (remoteCode <= 9) THEN
 DEBUG DEC remoteCode
 ENDIF

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 LOOP UNTIL (remoteCode = Enter)

Chapter 2: Create and Use Remote Applications · Page 73

 DEBUG CR, "The value is: ", DEC value, CR, CR

LOOP

√ Follow the Debug Terminal's prompts, and type in a number on your remote as
though you are entering a number into a calculator.

√ Press and release the ENTER key.
√ Verify that the value the BASIC Stamp stores is correct.
√ Use the keypad and ENTER key to enter and store numbers with several digits

into the BASIC Stamp.

How EnterLargeValues.bs2 Works

This program started as IrRemoteButtons.bs2. Only the I/O Definitions, Variables, and
Main Routine sections were modified.

√ In addition to the variables for decoding the IR remote message, a word variable
named value is declared. This variable stores the multi-digit value entered into
the remote. The Speaker PIN 4 directive, allows you to use Speaker in the
FREQOUT command’s Pin argument.

' SONY TV IR remote variables

irPulse VAR Word
remoteCode VAR Byte

' Main Routine variables

value VAR Word ' Stores multi-digit value

The first thing the code in the main routine does is clear the value and remoteCode
variables. Then, a DEBUG command displays the "Digits entered: " message.

 value = 0
 remoteCode = 0
 DEBUG "Digits entered: "

The DO…LOOP for keypad entry is conditional, and it executes until the remote's ENTER
key is pressed. As digits are successively entered, the value variable is multiplied by
ten, then the most recent digit stored by remoteCode is added to value. That's what
value = value * 10 + remoteCode does. Notice that a FREQOUT command and
PAUSE command follow the GOSUB Get_Ir_Remote_Code command. This causes the

Page 74 · IR Remote for the Boe-Bot

Boe-Bot to beep after each digit is entered. It beeps and pauses long enough that the user
lets go of the key. This prevents one press on the 5 key from being received as the value
555.

 DO

 value = value * 10 + remoteCode

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode >= 0) AND (remoteCode <= 9) THEN
 DEBUG DEC remoteCode
 ENDIF

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 LOOP UNTIL (remoteCode = Enter)

After the ENTER key is pressed and released, the DO…LOOP terminates, and the multi-digit
number stored by the value variable is displayed:

 DEBUG "The value is: ", DEC value, CR, CR

Your Turn – Processing Only Digits and Enter

If you were to design a product with a BASIC Stamp and a universal remote, you might
get some complaints from customers if you use EnterLargeValues.bs2 without some extra
work. The program needs to ignore non-digit keys such as POWER and VOL+. Pressing
these keys can lead to some pretty crazy values.

√ Try entering non-digits with your unmodified version of EnterLargeValues.bs2.
√ Save the program as EnterLargeValuesYourTurn.bs2.
√ Replace the DO…LOOP in the main routine with this one:

DO

 DEBUG "Type a value (up to 65535)", CR, "Then press ENTER", CR, CR

 value = 0
 remoteCode = 0

 DO

 value = value * 10 + remoteCode

Chapter 2: Create and Use Remote Applications · Page 75

 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode < 10) THEN
 DEBUG "You pressed: ", DEC1 remoteCode, CR
 GOSUB Beep_Valid
 EXIT
 ELSEIF (remoteCode = Enter) THEN
 DEBUG "You pressed: ENTER", CR
 GOSUB Beep_Valid
 EXIT
 ELSE
 DEBUG "Press 0-9 or ENTER", CR
 GOSUB Beep_Error
 ENDIF
 LOOP

 LOOP UNTIL (remoteCode = Enter)

 DEBUG CR, "The value is: ", DEC value, CR, CR

LOOP

√ Add these two subroutines to the end of your program:

' -----[Subroutine - Beep_Valid]------------------------------------

' Call this subroutine to acknowledge a key press.

Beep_Valid:

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 RETURN

' -----[Subroutine - Beep_Error]------------------------------------

' Call this subroutine to reject a key press.

Beep_Error:

 FREQOUT Speaker, 100, 3000
 PAUSE 200

 RETURN

√ Test this solution and verify that it works.
√ Save your work.

Page 76 · IR Remote for the Boe-Bot

Adding a Keypad Entry Feature to Your Application

By copying the functional part of EnterLargeValues.bs2 into a subroutine in
IrRemoteButtons.bs2, you will have a new application program that can either read single
remote button presses or receive large values with keypad entry. Which function the
application performs depends on which subroutine is called.

Example Program – IrRemoteKeypad.bs2

√ Open EnterLargeValuesYourTurn.bs2 and save it as IrRemoteKeypad.bs2.
√ Add a subroutine named Get_Multi_Digit_Value to IrRemoteKeypad.bs2.
√ Use Edit → Copy and Edit → Paste to move everything shown below from

EnterLargeValuesYourTurn.bs2 into your new Get_Multi_Digit_Value
subroutine in IrRemoteKeypad.bs2.

 value = 0
 remoteCode = 0

 DO

 value = value * 10 + remoteCode

 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode < 10) THEN
 DEBUG "You pressed: ", DEC1 remoteCode, CR
 GOSUB Beep_Valid
 EXIT
 ELSEIF (remoteCode = Enter) THEN
 DEBUG "You pressed: ENTER", CR
 GOSUB Beep_Valid
 EXIT
 ELSE
 DEBUG "Press 0-9 or ENTER", CR
 GOSUB Beep_Error
 ENDIF
 LOOP

 LOOP UNTIL (remoteCode = Enter)

√ Add a RETURN command at the end of the subroutine.
√ Modify the main routine so that it looks like this:

' Replace this DO...LOOP with your own code.

DO
 DEBUG "Enter a value: "

Chapter 2: Create and Use Remote Applications · Page 77

 GOSUB Get_Multi_Digit_Value
 DEBUG "The value is: ", DEC value, CR, CR
LOOP

√ Add comments to your program explaining how the DO…LOOP UNTIL statement
works.

After you have made these changes, your program should resemble the one below.

√ Run and test IrRemoteKeypad.bs2.
√ Trouble-shoot as needed.
√ Save the program after you have fully tested it.

' -----[Title]---
' IR Remote for the Boe-Bot - IrRemoteKeypad.bs2
' Capture and store button codes sent by a universal remote configured to
' control a SONY TV. This program also supports keypad entry of
' multi-digit values.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9
Speaker PIN 4

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons.

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word ' Single-digit remote variables
remoteCode VAR Byte
index VAR Nib
value VAR Word ' Stores multi-digit value

Page 78 · IR Remote for the Boe-Bot

' -----[Main Routine]--

' Replace this DO...LOOP with your own code.

DO
 DEBUG "Enter a value: ", CR
 GOSUB Get_Multi_Digit_Value
 DEBUG "The value is: ", DEC value, CR, CR
LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

' -----[Subroutine - Get_Multi_Digit_Value]------------------------------

' Acquire multi-digit value (up to 65535) and store it in
' the value variable. Speaker beeps each time a key is

Chapter 2: Create and Use Remote Applications · Page 79

' pressed.

Get_Multi_Digit_Value:

 value = 0
 remoteCode = 0

 DO

 value = value * 10 + remoteCode

 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode < 10) THEN
 DEBUG "You pressed: ", DEC1 remoteCode, CR
 GOSUB Beep_Valid
 EXIT
 ELSEIF (remoteCode = Enter) THEN
 DEBUG "You pressed: ENTER", CR
 GOSUB Beep_Valid
 EXIT
 ELSE
 DEBUG "Press 0-9 or ENTER", CR
 GOSUB Beep_Error
 ENDIF
 LOOP

 LOOP UNTIL (remoteCode = Enter)

 RETURN

' -----[Subroutine - Beep_Valid]------------------------------------

' Call this subroutine to acknowledge a key press.

Beep_Valid:

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 RETURN

' -----[Subroutine - Beep_Error]------------------------------------
' Call this subroutine to reject a key press.

Beep_Error:

 FREQOUT Speaker, 100, 3000
 PAUSE 200

 RETURN

Page 80 · IR Remote for the Boe-Bot

Your Turn – Making Application Backup Copies

You will use and re-use the application programs you have developed in Activity #2
through Activity #4.

√ Create a separate folder for your application programs.
√ Make backup copies of IrRemoteButtons.bs2, 7BitRemoteBoeBot.bs2, and

IrRemoteKeypad.bs2.

ACTIVITY #5: KEYPAD BOE-BOT DIRECTION AND DISTANCE
In this activity, you will program the Boe-Bot to receive direction and distance
information from the infrared remote. Here is how the program will work:

• Press/release a CH or VOL key to select one of four maneuvers: forward,
backward, rotate left, or rotate right.

• Next, use the keypad to enter the number of pulses to deliver.
• When the ENTER button is pressed/released, the Boe-Bot executes the maneuver.

By writing a Boe-Bot main routine for IrRemoteKeypad.bs2, you can make use of its
button code and keypad entry subroutine features. This will make writing a main routine
that allows you to choose the direction with CH and VOL keys and then enter a number of
pulses with the keypad much easier to develop. You will have to call the
Get_Ir_Remote_Code subroutine to get the CH/VOL key for direction. After that, you
can call the Get_Multi_Digit_Value subroutine to get the number of pulses.

Example Program – KeypadDirectionDistance.bs2

√ Open IrRemoteKeypad.bs2 and save it as KeypadDirectionDistance.bs2.
√ Add these PIN directives:

' Boe-Bot Servo Pins

ServoLeft PIN 13
ServoRight PIN 12

√ Add these declarations to the Variables section.

' Boe-Bot navigation variables

direction VAR Byte
counter VAR Byte

Chapter 2: Create and Use Remote Applications · Page 81

√ Add the initialization routine for the Boe-Bot's start/reset indicator along with
some operation instructions for the Debug Terminal. This section should be
placed just before the Main Routine section.
' -----[Initialization]---

DEBUG "Program Starting...", CR, CR ' Start/reset indicator.

FREQOUT Speaker, 2000, 3000

DEBUG "Use CH/VOL for direction,", CR, ' Debug instructions.
 "then type distance (up to ", CR,
 "255) then press ENTER.", CR, CR

√ Replace the code in the Main Routine section with this:

DO

 DEBUG "Select direction (CH/VOL):", CR

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode < ChUp) OR (remoteCode > VolDn) THEN
 DEBUG "Select direction (CH/VOL):", CR
 GOSUB Beep_Error
 ENDIF

 LOOP UNTIL (remoteCode >= ChUp) AND (remoteCode <= VolDn)

 direction = remoteCode

 GOSUB Beep_Valid

 DEBUG "Enter number of pulses: ", CR

 GOSUB Get_Multi_Digit_Value

 DEBUG "The value is: ", DEC value, CR
 DEBUG "Running...", CR, CR

 FOR counter = 1 TO value

 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850

Page 82 · IR Remote for the Boe-Bot

 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 650
 ENDSELECT

 PAUSE 20

 NEXT

LOOP

A complete program listing is included after these checklist instructions.

√ Save then run your modified program.
√ Make sure your Boe-Bot's 3-position switch is set to position-2.
√ Press/release the CH+ key to select forward.
√ Press/release the digits 1, 6, 2.
√ Press/release the ENTER button.

The Boe-Bot should travel forward for about a yard (or meter if you're thinking in
metric).

√ Press/release the VOL+ key to select rotate right.
√ Press/release the digits 2, 0.
√ Press/release the ENTER button.

The Boe-Bot should turn roughly 90-degrees clockwise (to the right).

√ For a review of pulses and distances, see Robotics with the Boe-Bot Chapter 4.
√ Practice entering directions and distances until you are fairly confident with your

navigation.

' -----[Title]---
' IR Remote for the Boe-Bot - KeypadDirectionDistance.bs2
' Each Boe-Bot maneuver involves three steps:
' 1) Select a maneuver
' CH+ = Forward, CH- = Backward, VOL+ = Right, VOL- = Left
' 2) Type in a distance (1 to 255) pulses.
' 3) Press ENTER.

' {$STAMP BS2}

Chapter 2: Create and Use Remote Applications · Page 83

' {$PBASIC 2.5}

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9
Speaker PIN 4

' Boe-Bot Servo Pins

ServoLeft PIN 13
ServoRight PIN 12

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons.

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word ' Single-digit remote variables
remoteCode VAR Byte
value VAR Word ' Stores multi-digit value

' Boe-Bot navigation variables

direction VAR Byte
counter VAR Byte

' -----[Initialization]--

DEBUG "Program Starting...", CR, CR ' Start/reset indicator.

FREQOUT Speaker, 2000, 3000

DEBUG "Use CH/VOL for direction,", CR, ' Debug instructions.
 "then type distance (up to ", CR,
 "255) then press ENTER.", CR, CR

' -----[Main Routine]--

DO

Page 84 · IR Remote for the Boe-Bot

 DEBUG "Select direction (CH/VOL):", CR

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode < ChUp) OR (remoteCode > VolDn) THEN
 DEBUG "Select direction (CH/VOL):", CR
 GOSUB Beep_Error
 ENDIF

 LOOP UNTIL (remoteCode >= ChUp) AND (remoteCode <= VolDn)

 direction = remoteCode

 GOSUB Beep_Valid

 DEBUG "Enter number of pulses: ", CR

 GOSUB Get_Multi_Digit_Value

 DEBUG "The value is: ", DEC value, CR
 DEBUG "Running...", CR, CR

 FOR counter = 1 TO value

 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850
 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 650
 ENDSELECT

 PAUSE 20

 NEXT

LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the

Chapter 2: Create and Use Remote Applications · Page 85

' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

' -----[Subroutine - Get_Multi_Digit_Value]------------------------------

' Acquire multi-digit value (up to 65535) and store it in
' the value variable. Speaker beeps each time a key is
' pressed.

Get_Multi_Digit_Value:

 value = 0
 remoteCode = 0

 DO

 value = value * 10 + remoteCode

 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode < 10) THEN

Page 86 · IR Remote for the Boe-Bot

 DEBUG "You pressed: ", DEC1 remoteCode, CR
 GOSUB Beep_Valid
 EXIT
 ELSEIF (remoteCode = Enter) THEN
 DEBUG "You pressed: ENTER", CR
 GOSUB Beep_Valid
 EXIT
 ELSE
 DEBUG "Press 0-9 or ENTER", CR
 GOSUB Beep_Error
 ENDIF
 LOOP

 LOOP UNTIL (remoteCode = Enter)

 RETURN

' -----[Subroutine - Beep_Valid]------------------------------------

' Call this subroutine to acknowledge a key press.

Beep_Valid:

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 RETURN

' -----[Subroutine - Beep_Error]------------------------------------

' Call this subroutine to reject a key press.

Beep_Error:

 FREQOUT Speaker, 100, 3000
 PAUSE 200

 RETURN

How KeypadDirectionDistance.bs2 Works

Two variables have to be added to IrRemoteKeypad.bs2, one for storing the Boe-Bot's
direction, and the other for counting the number of pulses in a FOR…NEXT loop.

' Boe-Bot navigation variables

direction VAR Byte
counter VAR Byte

Chapter 2: Create and Use Remote Applications · Page 87

The first command inside the main DO…LOOP is a DEBUG command prompting for a
CH/VOL direction.

 DEBUG "Select direction (CH/VOL):", CR

The program calls the Get_Ir_Remote_Code subroutine over and over again, until a
remoteCode that falls between ChUp (16) and VolDn (19) is received from the remote. If
some button that's not CH+/- or VOL+/- is pressed, the IF…THEN statement delivers the
lower pitched error beep along with a Debug Terminal prompt to press one of the CH or
VOL buttons.

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode < ChUp) OR (remoteCode > VolDn) THEN
 DEBUG "Select direction (CH/VOL):", CR
 GOSUB Beep_Error
 ENDIF

 LOOP UNTIL (remoteCode >= ChUp) AND (remoteCode <= VolDn)

After the Get_Ir_Remote_Code subroutine is called, the direction you sent to the Boe-
Bot with the remote is stored in the remoteCode variable. This value needs to get stored
in a different variable before another IR message is processed; otherwise, the value will
be lost. That's why the direction value stored in remoteCode has to be copied to another
variable, which is conveniently named direction.

 direction = remoteCode

The right button had to have been pressed for the program to have exited the DO…LOOP
that calls the Get_Ir_Remote_Code. The program calls the Beep_Valid subroutine,
which makes the higher pitched acknowledgement beep to let you know the right key was
pressed.

 GOSUB Beep_Valid

Another DEBUG command prompts you to enter the number of pulses (using the remote's
numeric keypad).

 DEBUG "Enter number of pulses: ", CR

The Get_Multi_Digit_Value subroutine call is the part where you use the numeric
keypad to enter the number of pulses to deliver. This is also the part where the value of

Page 88 · IR Remote for the Boe-Bot

the remoteCode value changes, which is why the direction you entered had to be copied
to another variable. Unlike the remoteCode variable, the value variable will not be
overwritten by anything in the program before the pulses are delivered to the servos. So
value does not need to get copied to another variable; it can store the number of pulses.

 GOSUB Get_Multi_Digit_Value

A DEBUG command also lets you verify the value you entered (if you leave the Boe-Bot
connected to the programming cable). A second DEBUG command displays the message
"Running…" while the servos are being pulsed.

 DEBUG "The value is: ", DEC value, CR
 DEBUG "Running...", CR, CR

The direction is now stored in the direction variable, and the number of pulses is stored
in the value variable. A FOR…NEXT loop uses the value variable to determine how many
pulses it delivers to the servos. Inside the FOR…NEXT loop, a SELECT…CASE statement uses
the value stored in the direction variable to decide which pulse durations to deliver to
the servos. After the SELECT…CASE, PAUSE 20 keeps the time between servo pulses
constant.

 FOR counter = 1 TO value

 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850
 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 650
 ENDSELECT

 PAUSE 20

 NEXT

Chapter 2: Create and Use Remote Applications · Page 89

Your Turn – Repeating The "LAST" Action

For TV control, the LAST button (sometimes labeled PREV CH) switches you back to the
channel you viewed just before the channel you are currently watching. The LAST button
could be wisely employed. Here's one way to modify your program to accomplish this
task.

√ Save KeypadDirectionDistance.bs2 as KeypadDirectionDistanceYourTurn.bs2.
√ The Your Turn section of Activity #2 went through expanding the list of CON

directives for IR remote buttons. Here is a constant you will need to add to your
program for the LAST key:

 Last CON 59

√ Modify this DO…LOOP:

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode < ChUp) OR (remoteCode > VolDn) THEN
 DEBUG "Select direction (CH/VOL):", CR
 GOSUB Beep_Error
 ENDIF

 LOOP UNTIL (remoteCode >= ChUp) AND (remoteCode <= VolDn)

by adding a condition to the IF…THEN statement that causes the program to jump
to a label named Servo_Pulses if remoteCode stores the Last constant value.

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode) = Last THEN
 GOSUB Beep_Valid
 GOTO Servo_Pulses
 ELSEIF (remoteCode < ChUp) OR (remoteCode > VolDn) THEN
 DEBUG "Select direction (CH/VOL):", CR
 GOSUB Beep_Error
 ENDIF

 LOOP UNTIL (remoteCode >= ChUp) AND (remoteCode <= VolDn)

√ Add this Servo_Pulses: label between the two DEBUG shown here:

 DEBUG "The value is: ", DEC value, CR

Page 90 · IR Remote for the Boe-Bot

Servo_Pulses: ' <--- Add this label.

 DEBUG "Running...", CR, CR

Spaghetti Code Alert!

Using the GOTO command to jump to a label elsewhere in a program is frowned upon by
many instructors, computer programmers, robot design managers, and others. The reason
it is called "spaghetti code" is because of the difficulties you can encounter when trying to
find a mistake in a program with too many GOTO commands. Understanding how the
program works becomes like trying to visually follow a single noodle through a plate of
spaghetti.

One non-spaghetti code way to implement the LAST button is by moving the code block
that sends pulses to the servos into a subroutine. That way, a GOSUB command can be
used instead of a GOTO command. GOSUB tends not to cause spaghetti code because the
RETURN command sends the program to the command that immediately follows the
subroutine call.

√ Save KeypadDirectionDistanceYourTurn.bs2 as
KeypadDirectionDistanceYourTurn2.bs2.

√ Move the Servo_Pulses: label, the DEBUG command, and the FOR…NEXT loop
that delivers the servo pulses from the main routine into a subroutine. It should
look like this when you are done.

' -----[Subroutine - Servo_Pulses]----------------------------------

' Call this subroutine to deliver pulses to the servos.
' You must store the number of pulses in the value variable
' and the maneuver in the direction variable. ChUp = forward,
' ChDn = backward, VolUp = rotate right, VolDn = rotate left.

Servo_Pulses:

 DEBUG "Running...", CR, CR

 FOR counter = 1 TO value

 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850

Chapter 2: Create and Use Remote Applications · Page 91

 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 650
 ENDSELECT

 PAUSE 20

 NEXT

 RETURN

√ In place of all that code you just removed from the main routine, add this
subroutine call:

GOSUB Servo_Pulses

√ Change the line in the main routine that reads:

 GOTO Servo_Pulses

so that it reads:

 GOSUB Servo_Pulses

√ Save, run, and test the program. Verify that it behaves the same as the GOTO
implementation.

Page 92 · IR Remote for the Boe-Bot

SUMMARY
Decoding is the process of converting an electronic signal into something understandable
and useable. In the case of the IR remote message, decoding involved converting pulse
duration measurements into binary 1s and 0s in a byte variable. Each time the process
completes, the byte variable stores a number (code) that corresponds with a key on the
keypad.

In order to understand the decoding process, the concepts of counting in binary and
binary to decimal conversion were introduced. The .BIT modifier was introduced as a
way to set and clear bits in a variable. IF…THEN statements were written that examined
pulse measurement to determine the value of a bit in a variable that stores the decoded
value of the remote's pulse width modulated message. These IF…THEN statements
employed the .BIT modifier to set a bit in a variable if the corresponding pulse
measurement was above a certain value, or clear the bit if the pulse measurement was
below a certain value.

This chapter developed application programs with constants, variable declarations, and
subroutines that serve as building blocks that you can use in larger programs. These
application programs reduced programs from Chapter 1 that were somewhat challenging
down to a few lines in the application's main routine.

Techniques were introduced for modifying application program examples and using their
features to the Boe-Bot's advantage. Examples included using constants with helpful
names in decision making, calling subroutines to capture IR messages, and adding
variable declarations, PIN directives and routines that adapt an application program for
use with the Boe-Bot's servos.

Questions
1. What does it mean to "decode" an IR message from the universal remote?
2. What's a binary digit usually called?
3. How can you figure out the value a particular bit position represents?
4. What does it mean to set or clear a bit?
5. How do you use .BIT to set and clear bits in a variable?
6. How are constants used in IrRemoteButtons.bs2?
7. What does it mean when a pushbutton is debounced?

Chapter 2: Create and Use Remote Applications · Page 93

8. Why would you use a speaker with a pushbutton or keypad?

Exercises
1. Count from 0 to 7 in binary.
2. What must 24 be in binary?
3. Calculate the multiplier you would use for bit-12 in a binary number.
4. Convert 1111 to a decimal number.
5. Assume you have eight pulse measurements to decode instead of seven. Explain

how to modify the Get_Ir_Remote_Code subroutine to capture and decode the
pulse measurements.

6. Let's say you declared a bit variable named onOffState. Write a SELECT…CASE
command that changes onOffState to a 1 if it's a 0 and to 0 if it's a 1. Use the ~
(not) operator.

Project
1. Modify 7BitRemoteBoeBot.bs2 so that the SLEEP button on the remote can be

used to disable and enable Boe-Bot navigation in response to the other keys.

Page 94 · IR Remote for the Boe-Bot

Solutions
Q1. "To recognize and interpret an electronic signal."
Q2. A bit.
Q3. By raising 2 to the power of the bit position.
Q4. A bit is set when it is "set" to one. A bit is cleared if it is set to zero.
Q5. The variable name has to come before the .BIT operator, and the bit address has

to follow. Do not use spaces. For example, to use the .BIT operator to refer to
bit-4 in the remoteCode byte variable, use remoteCode.BIT4.

Q6. They give meaningful names to values used in the program. Specifically, the
non-numeric buttons on the remote can be referred to by their names instead of
their numeric values.

Q7. According to the ?-box on page 72, it means that the button can no longer
misinterpret the rapid stream of ones and zeros sent by an electrical contact when
the surfaces meet. Either part of the pushbutton circuit or the processors
program filters out these unpredictable signals.

Q8. The speaker lets the user know the key-press sent the desired message.

E1. 0, 1, 10, 11, 100, 101, 110, 111.
E2. 11000.
E3. 212 = 4096.
E4. 8 + 4 + 2 + 1 = 15.
E5. After these two commands:

RCTIME IrDet, 0, irPulse
IF irPulse > 300 THEN remoteCode.BIT6 = 1

add two more that capture another pulse and then set/clear remoteCode.BIT7.

RCTIME IrDet, 0, irPulse
IF irPulse > 300 THEN remoteCode.BIT7 = 1

E6.
SELECT remoteCode
 CASE Power
 onOffState = ~ onOffState
ENDSELECT

P1. This solution requires the piezospeaker circuit that was added in Activity #4. The

following changes were made to the program:

Chapter 2: Create and Use Remote Applications · Page 95

√ Add this declaration to the Constants section:

RemoteSleep CON 54

√ Add a bit variable to the Variables section. Name it sleepOnOff.

 ' Boe-Bot control bit
 sleepOnOff VAR Bit

√ Add this command to the Initialization that sets sleepOnOff to 1.

' -----[Initialization]------------------------
sleepOnOff = 1

√ Add this command between the Get_Ir_Remote_Code subroutine call and
the SELECT statement:

IF (sleepOnOff = 0) AND (remoteCode <> RemoteSleep) THEN
 remoteCode = 127
ENDIF

√ Add a CASE to the SELECT…CASE code block that reads:

 CASE RemoteSleep
 FREQOUT 4, 50, 4000
 PAUSE 50
 FREQOUT 4, 50, 4000
 PAUSE 300
 sleepOnOff = ~ sleepOnOff

√ Comment the two PULSOUT commands below the CASE ELSE statement.

Chapter 3: More IR Remote Applications · Page 97

Chapter 3: More IR Remote Applications

EXPANDING APPLICATION PROGRAMS
The whole point of reusable code is that it allows you to more easily build on previous
work to make better and more powerful applications. The previous work might be code
you wrote, or it might be published code that you add to or adapt. In this chapter, you
will see how the applications you have worked with up to this point can be merged with
other applications. For example, Boe-Bot code from Robotics with the Boe-Bot will be
added to the IR remote code application template to perform a variety of tasks.

In Activity #1, you will merge a program for autonomous IR object-avoidance roaming
with an IR remote communication template. The result will be a roaming Boe-Bot whose
speed you can control with the remote. In Activity #2, you will make the Boe-Bot into a
multi-function remote controlled bot. With the press of a button, you will be able to
choose from three of the most popular Boe-Bot behaviors: remote controlled Boe-Bot,
roaming Boe-Bot, and following Boe-Bot. In Activity #3, you will design an interpreter
for executing lists of instructions from the IR remote. In essence, you will be able to
"program" your Boe-Bot with the IR remote.

ACTIVITY #1: AUTONOMOUS NAVIGATION WITH REMOTE SPEED
CONTROL
This activity will demonstrate an example of autonomous navigation with remote
adjustment. For autonomous navigation, the Boe-Bot will roam with infrared using the
example program from Robotics with the Boe-Bot Chapter 7, Activity #5. This example
program will then be modified so that you can set speed control from the Debug
Terminal's Transmit Windowpane. The autonomous IR roaming with speed control
program can then be merged with the keypad entry program. After these two programs
are combined, issuing speed control commands can be done with the IR remote instead of
through the Debug Terminal.

One of the most common mistakes in robotics projects is trying to make all the parts
work together in one fell swoop. The end result is usually a programming bug that's too
difficult to find. It's best to make sure each part of the project works before integrating it
into a larger system. With this point in mind, this activity is separated into four steps:

Page 98 · IR Remote for the Boe-Bot

Step 1 – Rebuild, test, and trouble-shoot the IR detection system by following the
steps in Robotics with the Boe-Bot, Chapter 7, Activites #1 and #2.

Step 2 – Test the roaming with IR object detection and IR interference programs
that were introduced in Robotics with the Boe-Bot, Chapter 7, Activity
#5.

Step 3 – Modify the program so that you can control roaming speed with a
DEBUGIN command.

Step 4 – Integrate the roaming with speed control function into the IR remote
application program that supports keypad entry of large numbers.

Step 1 - Rebuild, Test, and Trouble-Shoot the IR Detection System

Figure 3-1 shows the circuits for IR detection and user indicators from Robotics with the
Boe-Bot, Chapter 7, Activity #2, and Figure 3-2 shows a way to build these circuits with
wiring diagrams.

√ Build the circuits shown in Figure 3-1 and Figure 3-2.
√ Test the circuits following the instructions from Robotics with the Boe-Bot,

Chapter 7, Activity #2. You will use both TestIrPairsAndIndicators.bs2 and
IrInterferenceSniffer.bs2.

Chapter 3: More IR Remote Applications · Page 99

Left IR Pair Right IR Pair

P10

Vss

220 Ω

Red
LED

P1

Vss

220 Ω

Red
LED

LED Indicator for Left IR Pair LED Indicator for Right IR Pair

Figure 3-1
IR Detection
Testing and
Roaming
Circuit

Vdd

Vss

P9

P8

IR
LED

Vss

1 k Ω

220 Ω

Vdd

Vss

P0

P2

IR
LED

Vss

1 kΩ

220 Ω

Page 100 · IR Remote for the Boe-Bot

P15
P14
P13
P12
P11
P10
P9
P8

P4

P2
P1
P0

P7
P6
P5

P3

X2

X3
Vdd VssVin

Board of Education
 © 2000-2003Rev C

Vdd

Black
Red

X4 X5

15 14 13 12

To Servos

+

P15
P14

P11

P13
P12

P10
P9
P8

P4

P2
P1
P0

P7
P6
P5

P3

X2

X3
Vdd VssVin

Rev B
(916) 624-8333
www.parallax.com
www.stampsinclass.com

To Servos

+

HomeWork Board

Figure 3-2
IR Detection
Testing and
Roaming
Circuit Wiring
Diagrams

Step 2 - Test the Roaming with IR Object Detection Program

Chapter 7, Activity #5 from Robotics with the Boe-Bot introduces a high performance
version of roaming with IR. This program checks for an object between each servo pulse
(that's around 40 times per second), so the Boe-Bot is very responsive when it detects
obstacles. You will be modifying this program, so go ahead and do a refresher on how it
works. It's also important to make sure the original program works with your circuit
before moving on to the other modifications.

√ Review the program FastIrRoaming.bs2 and the explanation of how it works in
Robotics with the Boe-Bot, Chapter 7, Activity #5.

√ Open (or re-enter) and test FastIrRoaming.bs2 by following the instructions in its
activity.

Step 3 - Modify the Program so that You Can Control Roaming Speed

Variables can be used to control a variety of Boe-Bot behaviors. Among other things,
these variables can tell the Boe-Bot how fast to go (this step) and what task to perform
(next step). Just a few examples of conditions that can be used to change these variables
are:

Longer
(anode)
leads

Longer
(anode)
leads

Chapter 3: More IR Remote Applications · Page 101

• Sensor inputs
• Messages from the Debug Terminal
• Messages from an IR remote

In the next example program, a variable named speed is added so that the speed of the
servos can be set with a DEBUGIN command. By entering a value between 0 and 100,
you can make the Boe-Bot roam at anywhere between 0 and 100 % of full speed.

The IF…THEN statement from FastIrRoaming.bs2 really needs some restructuring before it
lends itself to speed control. Instead of using the values 650 and 850 for full speed, the
values of pulseLeft and pulseRight should be determined by declaring a speed
variable and then adding to or subtracting it from 750. Table 3-1 shows how the original
IF…THEN statement from FastIrRoaming.bs2 looks next to the modified IF…THEN
statement from the next example program, IrRoamingWithSpeedControl.bs2.

Table 3-1: Roaming Code with/without Speed Control
Without Speed Control With Speed Control

IF (irDetectLeft = 0) AND ••• THEN
 pulseLeft = 650
 pulseRight = 850
ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
ELSE
 pulseLeft = 850
 pulseRight = 650
ENDIF

IF (irDetectLeft = 0) AND ••• THEN
 pulseLeft = 750 - speed
 pulseRight = 750 + speed

ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 750 + speed
 pulseRight = 750 + speed

ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 750 - speed
 pulseRight = 750 - speed
ELSE
 pulseLeft = 750 + speed

 pulseRight = 750 - speed
ENDIF

On the "With Speed Control" side of the table, the PULSOUT commands to the left and
right servos use the pulseLeft and pulseRight variables for their Duration
arguments. The command pulseLeft = 650 is replaced with pulseLeft = 750 –
speed. When speed is a small value, pulseLeft is close to 750, and the Boe-Bot's left
wheel rotates clockwise very slowly. As the speed variable gets closer to 100, the Boe-
Bot's left wheel gets closer to full speed clockwise. Now, look at how pulseRight =
850 has been replaced with pulseRight = 750 + speed. When speed is small, the

Page 102 · IR Remote for the Boe-Bot

right wheel rotates counterclockwise slowly, and when speed is close to 100, it turns
counterclockwise at full speed.

Example Program: IrRoamingWithSpeedControl.bs2

This example program is a modified version of FastIrRoaming.bs2 from Robotics with
the Boe-Bot, Chapter 7, Activity #5. The comments in the program listing will show you
which lines you will need to add or change to complete the modification.

Before IrRoamingWithSpeedControl.bs2 starts, the Debug Terminal will prompt you to
enter a speed between 0 and 100. After you enter the desired speed, the Boe-Bot will
roam at that percent of full speed.

√ Enter and run IrRoamingWithSpeedControl.bs2.
√ When you run the program, the Debug Terminal will prompt you for the percent

of full speed that you want the Boe-Bot to roam at. Enter the desired speed into
the Debug Terminal's Transmit Windowpane.

For a review of how to use the Debug Terminal's Transmit Windowpane, see Figure 1-12 on
page 20.

√ Try re-running the program a few times, each time selecting a different percent

of full speed.

' IR Remote for the Boe-Bot - IrRoamingWithSpeedControl.bs2
' Higher performance IR object detection assisted navigation.
' The "<-- Add" comments indicate new commands lines of code.
' The "<-- Change" comments indicate lines of code that should be changed.

' {$STAMP BS2}
' {$PBASIC 2.5}

irDetectLeft VAR Bit ' Variable Declarations
irDetectRight VAR Bit
pulseLeft VAR Word
pulseRight VAR Word
speed VAR Byte ' <-- Add

FREQOUT 4, 2000, 3000 ' Signal program start/reset.

DEBUG CLS, "Enter percent of", CR, ' <-- Add
 "full speed (0 TO 100): " ' <-- Add
DEBUGIN DEC speed ' <-- Add

Chapter 3: More IR Remote Applications · Page 103

DEBUG "Main routine running..." ' <-- Add

DO ' Main Routine

 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 750 - speed ' <-- Change
 pulseRight = 750 + speed ' <-- Change
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 750 + speed ' <-- Change
 pulseRight = 750 + speed ' <-- Change
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 750 - speed ' <-- Change
 pulseRight = 750 - speed ' <-- Change
 ELSE
 pulseLeft = 750 + speed ' <-- Change
 pulseRight = 750 - speed ' <-- Change
 ENDIF

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15

LOOP ' Repeat main routine

How IrRoamingWithSpeedControl.bs2 Works

A speed control variable is added to the Declarations section. The variable is wisely
named speed.

speed VAR Byte ' <-- Add

A DEBUG command prompts you to enter the percent of full speed that you want the Boe-
Bot to roam at.

DEBUG CLS, "Enter percent of", CR, ' <-- Add
 "full speed (0 TO 100): " ' <-- Add

A DEBUGIN command stores the value you enter into the speed variable. If the speed
value is set to 100 by the user, the Boe-Bot will roam at full speed. When a value less
than 100 is entered, the Boe-Bot will roam at a percentage of full speed.

DEBUGIN DEC speed ' <-- Add

Page 104 · IR Remote for the Boe-Bot

The percent value you enter determines the percent of the full speed pulse width.
This is not the same as the actual speed. For help predicting the actual speed, consult the
transfer curves introduced in Robotics with the Boe-Bot, Chapter 3, Activity #4.

A DEBUG message indicates that the main routine is running.

DEBUG "Main routine running..." ' <-- Add

This IF…THEN statement was introduced just before the example program. It sets the
value of the pulseLeft and pulseRight variables. Depending on which direction
each servo should turn, the speed value is either added to or subtracted from 750 to set
the servo's speed.

 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 750 - speed ' <-- Change
 pulseRight = 750 + speed ' <-- Change
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 750 + speed ' <-- Change
 pulseRight = 750 + speed ' <-- Change
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 750 - speed ' <-- Change
 pulseRight = 750 - speed ' <-- Change
 ELSE
 pulseLeft = 750 + speed ' <-- Change
 pulseRight = 750 - speed ' <-- Change
 ENDIF

After the pulseLeft and pulseRight variable values have been set by the IF…THEN
statement, these variables are used to set the PULSOUT Duration arguments. These
PULSOUT commands send pulses to the left and right servos, and the pulse durations
determine the direction and speed the Boe-Bot wheels turn.

 PULSOUT 13,pulseLeft ' Apply the pulse.
 PULSOUT 12,pulseRight
 PAUSE 15

Your Turn – Saving Variable Space

You can save two word-size RAM variables by using PULSOUT commands inside the
IF…THEN statement. Here's how:

√ Save your working program under another name
(like IrRoamingWithSpeedControlYourTurn.bs2).

Chapter 3: More IR Remote Applications · Page 105

√ Click Run and select Memory Map (or CTRL-M or the Memory Map toolbar icon).
√ Check the RAM Map to see how much RAM you are using. The color coding

should show that REG 0 and 1 are word storage variables. It should also show
that REG 2 has a byte and two bit variables, as shown on the left in Figure 3-3.

√ Comment the pulseLeft and pulseRight variable declarations.
√ Replace all instances of pulseLeft = with PULSOUT 13, .

Be careful here, the result of your first substitution should be:

 PULSOUT 13, 750 - speed

√ Replace all 4 instances of pulseRight = with PULSOUT 12, .
Again, the result of your first of four substitutions should be:

PULSOUT 12, 750 + speed

√ Comment out the two PULSOUT commands that come after the ENDIF in the
program (by inserting an apostrophe to the left of each of the two commands).

√ Save, run, and test the modified program. Trouble-shoot as needed.
√ Open the Memory Map again, and verify that only a byte and two bit variables

are allocated to REG 0, as shown on the right in Figure 3-3.

Figure 3-3
The RAM Map portion of the
Memory Map

IrRoamingWithSpeedControl.bs2
(left)

Modified Your Turn version
(right)

Step 4 - Integrate Roaming with Speed Control into the IR Template

By combining IrRoamingWithSpeedControl.bs2 with IrRemoteKeypad.bs2, you can use
the IR remote to adjust the Boe-Bot's speed while it roams. Here's how it will work:

Page 106 · IR Remote for the Boe-Bot

• By pressing the any button, you will interrupt the Boe-Bot's roaming.
• Then, you will use the numeric keypad to type in the new percent-speed.
• To make the Boe-Bot resume roaming at the new speed, press the ENTER button.

IrRoamingWithSpeedControl.bs2 already uses infrared to check for obstacles between
each pair of pulses to the servos. The key to detecting incoming messages from the
remote is to check the IR detectors before using the FREQOUT command to look for
objects. If the program checks to find out if IR is detected before checking for obstacles,
it can easily detect an incoming message from the remote. Here are the steps that should
be executed inside the main routine's DO…LOOP:

• Before testing for objects with the Boe-Bot's IRLED headlights, test the IR
detector's output pin to see if a signal is coming from the remote.

• If the IR detector is sending a low signal it means an infrared message is
 coming in. Call the Process_Ir_Message subroutine.
• If the IR detector is sending a high, move on to the next task, which is
 object detection.

• Check the IR detectors.
• Use IF…THEN to control the servo directions and speeds.

Example Program: RoamingWithRemoteSpeedControl.bs2

Follow these steps to write the program:

√ Open IrRemoteKeypad.bs2.
√ Save a copy of it as RoamingWithRemoteSpeedControl.bs2.

You can copy and paste to transfer sections of code from your version of
IrRoamingWithSpeedControlYourTurn.bs2 into RoamingWithRemoteSpeedControl.bs2.

√ Add these declarations to the variables section:

' Boe-Bot control variables.

irDetectLeft VAR Bit ' IR detector bit storage
irDetectRight VAR Bit
speed VAR Byte ' Speed control variable

Chapter 3: More IR Remote Applications · Page 107

√ Add an Initialization section with this startup code for the Boe-Bot just before
the main routine section.

' -----[Initialization]--

' Boe-Bot initialization.

 DEBUG "Starting...", CR, CR ' Signal program start/reset.
 FREQOUT 4, 2000, 3000
 speed = 0 ' Initial speed is zero.

√ Replace the DO…LOOP in the main routine with this one:

DO ' Main Routine.

 IF (IN9 = 0) OR (speed = 0) THEN ' Check for IR message.
 FREQOUT Speaker, 100, 3500 ' Signal remote message
 PAUSE 100 ' detected.

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 DEBUG "Speed range: 0 to 100", CR, CR,
 "Type speed on remote", CR,
 "keypad, then press", CR,
 "ENTER", CR, CR

 GOSUB Get_Multi_Digit_Value ' Get new speed.
 speed = value ' Set new speed.

 DEBUG ? speed, CR

 DEBUG "Running...", CR,
 "Press any key to", CR,
 "interrupt roaming", CR, CR

 PAUSE 250 ' Pause for debounce.
 ENDIF

 FREQOUT 8, 1, 38500 ' Check IR Detectors.
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 PULSOUT 13, 750 - speed ' Backward
 PULSOUT 12, 750 + speed
 ELSEIF (irDetectLeft = 0) THEN
 PULSOUT 13, 750 + speed ' Rotate right
 PULSOUT 12, 750 + speed

Page 108 · IR Remote for the Boe-Bot

 ELSEIF (irDetectRight = 0) THEN
 PULSOUT 13, 750 - speed ' Rotate left
 PULSOUT 12, 750 - speed
 ELSE
 PULSOUT 13, 750 + speed ' Forward
 PULSOUT 12, 750 - speed
 ENDIF

 PAUSE 15 ' Between servo pulses.

LOOP ' Repeat main routine.

√ Save and run your modified program.
√ To interrupt the Boe-Bot's roaming, point the remote at it and press any key.

The Boe-Bot will beep twice to indicate that it received the signal. Make sure to
release the key you're pressing as soon as you hear the beep.

√ Use the remote's numeric keypad to type in the new percent speed value (0 to
100).

√ Press the ENTER key to get the Boe-Bot to resume its roaming at the new speed.

How RoamingWithRemoteSpeedControl.bs2 Works

Normally, during IR detection, a FREQOUT command causes one of the IR LEDs to flash
IR on/off at 38.5 kHz. If this flashing infrared light reflects off an object in the Boe-Bot's
path, it will be detected by the IR detector. Remember that this value has to be stored in
a bit variable immediately after the FREQOUT command. An instant later, the IR detector's
output returns to high indicating that IR is not detected.

During roaming with no IR remote message coming in, the Main Routine's DO…LOOP
executes over and over again, checking for obstacles with IR and controlling the servos.
The key to intercepting an IR remote message is to check the state of the IR detectors
output before broadcasting any infrared with the IR LEDs. The perfect time to do this is
at the beginning of the Main Routine's DO…LOOP, because this comes right after the 15 ms
pause at the end of the DO…LOOP.

The statement IF (IN9 = 0) OR (speed = 0) THEN... does the actual checking for
an incoming IR remote message. It also checks whether or not the speed variable has
already been set. The first time the program is run, the value of speed is initialized to
zero. The IF…THEN statement detects this and the code block within prompts you to enter
a speed. The IF…THEN statement also detects when the remote is sending a message.
When an infrared message is coming in, IN9 = 0. The code block starts by beeping

Chapter 3: More IR Remote Applications · Page 109

twice to let you know that you can release the button you were pressing on the remote.
Then, it calls the Get_Multi_Digit_Value subroutine, which is where you press the
keys to set the new speed, followed by ENTER to re-start the Boe-Bot. When an infrared
message is not coming in, IN9 = 1, and the code block between the IF and the ENDIF
does not execute. The result is that the Boe-Bot keeps roaming.

 IF (IN9 = 0) OR (speed = 0) THEN ' Check for IR message.
 FREQOUT Speaker, 100, 3500 ' Signal remote message
 PAUSE 100 ' detected.
 •
 •
 •
 GOSUB Get_Multi_Digit_Value ' Get new speed.
 speed = value ' Set new speed.
 •
 •
 •
 PAUSE 250 ' Pause for debounce.
 ENDIF

Your Turn – Filtering for the POWER Key

At present, you can interrupt the Boe-Bot's roaming by pressing any TV control key on
the remote. Of course, this won't work if you press keys on the remote that aren't for a
TV control. Let's say you only want to use the POWER key to interrupt the Boe-Bot's
roaming.

You can modify the code so that the Get_Multi_Digit_Value subroutine is only called
when the POWER button is pressed by nesting all the code that gets the new speed from
the remote inside a second IF…THEN statement. Before this IF…THEN statement, the
Get_Ir_Remote_Code subroutine is called. Remember that this subroutine stores the
remote button value it received in the remoteCode variable. So, this second, inner
IF…THEN statement can check remoteCode. If it's equal to the Power constant, then
update the speed variable; otherwise, play an error code on the piezo speaker.

√ Save RoamingWithRemoteSpeedControl.bs2 as
RoamingWithRemoteSpeedControlYourTurn.bs2.

√ Replace this IF…THEN statement:

 IF (IN9 = 0) OR (speed = 0) THEN ' Check for IR message.
 FREQOUT Speaker, 100, 3500 ' Signal remote message
 PAUSE 100 ' detected.
 •

Page 110 · IR Remote for the Boe-Bot

 •
 •
 GOSUB Get_Multi_Digit_Value ' Get new speed.
 speed = value ' Set new speed.
 •
 •
 •
 PAUSE 250 ' Pause for debounce.
 ENDIF

with this one:

 IF (IN9 = 0) OR (speed = 0) THEN ' Check for IR message.
 DEBUG "Press POWER to set", CR,
 "speed...", CR, CR
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode = Power) OR (speed = 0) THEN
 FREQOUT Speaker, 100, 3500 ' Signal remote message
 PAUSE 100 ' detected.

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 DEBUG "Speed range: 0 to 100", CR, CR,
 "Type speed on remote", CR,
 "keypad, then press", CR,
 "ENTER", CR, CR

 GOSUB Get_Multi_Digit_Value ' Get new speed.
 speed = value ' Set new speed.

 DEBUG ? speed, CR

 DEBUG "Running...", CR, CR

 PAUSE 250 ' Pause for debounce.
 ELSE
 GOSUB Beep_Error
 ENDIF
 ENDIF

√ Save the changes you made, then run and test the program.

ACTIVITY #2: MULTI-FUNCTION BOE-BOT WITH REMOTE SELECT
With the press of a remote button, you can select between three different Boe-Bot
functions:

• Remote controlled Boe-Bot

Chapter 3: More IR Remote Applications · Page 111

• Autonomous roaming Boe-Bot
• Following Boe-Bot

Selecting Among Main Routines

The next example program starts with 7BitRemoteBoeBot.bs2 from this text. The main
routine from this program and the main routines from FastIrRoaming.bs2 and
FollowingBoeBot.bs2 (from Robotics with the Boe-Bot) can all be pasted into CASE
statements. The main routine of this new program can then use one large SELECT…CASE
statement that uses a variable named operation to select which routine to execute. The
result is a Boe-Bot with three IR remote selectable functions.

Keep in mind that PIN directives, constant and variable declarations, and subroutines also
have to be brought in from FastIrRoaming.bs2 and FollowingBoeBot.bs2.

Getting all the routines to work together involves some adjustments. There has to be
some way to interrupt the Boe-Bot's current task, be it roaming, remote control or
following, so that you can tell it to perform a different task. Since the number, channel,
and volume keys are already being used for one of the tasks, we'll use the POWER button
to interrupt the Boe-Bot's current task again.

Here's how the program's main routine will work:

Page 112 · IR Remote for the Boe-Bot

DO
 SELECT operation

 ' If operation = 1, execute a modified version of
 ' 7BitRemoteBoeBot.bs2 that also allows
 ' you to change the operation variable with the POWER key.
 CASE 1

 ' Modified main routine from 7BitRemoteBoeBot.bs2
 ' goes here.
 •
 •
 •

 ' If operation = 2, execute modified FastIrRoaming.bs2.
 CASE 2

 ' Modified main routine from FastIrRoaming.bs2 goes here.
 •
 •
 •

 ' If operation is 3, execute the FollowingBoeBot.bs2.
 CASE 3

 ' Modified main routine from FollowingBoeBot.bs2 goes here.
 •
 •
 •

 ENDSELECT ' End SELECT operation

LOOP

Let's first build and test the program, then we'll take a closer look at how it works.

Example Program: IrMultiBot.bs2

This example program starts off as the normal 7BitRemoteBoeBot.bs2. So, you can use
the number, channel, and volume keys to drive the Boe-Bot around. You can make the
Boe-Bot roam autonomously by pressing the POWER key, then the 2 key. Make the Boe-
Bot follow objects by pressing the POWER key, then the 3 key. To return to remote
keypad controlled navigation, press the POWER key, then the 1 key.

Here's how to build the program. First each of the three programs you will use to build
this larger program have to be run and tested. 7BitRemoteBoeBot.bs2 was developed in
this text, Chapter 2, Activity #3. The other two programs were developed in Robotics

Chapter 3: More IR Remote Applications · Page 113

with the Boe-Bot. FastIrRoaming.bs2 was featured in Chapter 7, Activity #5, and
FollowingBoeBot.bs2 was featured in Chapter 8, Activity #2.

√ Load, run, and test 7BitRemoteBoeBot.bs2.
√ Load, run, and test FastIrRoaming.bs2.
√ Load, run, and test FollowingBoeBot.bs2.

When you have run and verified that each of the three programs work properly on their
own, you will be ready to start integrating them.

√ Save a copy of 7BitRemoteBoeBot.bs2 as IrMultiBot.bs2.
√ Update the title and description comments in the Title section.

' -----[Title]--
' IR Remote for the Boe-Bot - IrMultiBot.bs2
' Select one of three Boe-Bot behaviors with the IR remote 1-3 keys.

' Press POWER key to interrupt the Boe-Bot's operation.
' Then, press one of these digit keys to select a new mode:

' 1 - Control Boe-Bot with 1-9 keys and/or CH+/- and VOL+/- keys.
' 2 - Roam and avoid objects.
' 3 - Follow objects.

' Note: Startup default is mode 1.

' {$STAMP BS2}
' {$PBASIC 2.5}

You will find the Speaker PIN directive to be useful.

√ Add this declaration to the I/O Definitions section:

Speaker PIN 4

Next, you will need the constants, variables, and a couple of subroutines from
FollowingBoeBot.bs2. Since FollowingBoeBot.bs2 built on FastIrRoaming.bs2, you will
not need any extra constants, variables, or subroutines from FastIrRoaming.bs2.

√ Add these constant declarations to the Constants section of the program:

' Boe-Bot proportional control constants (from FollowingBoeBot.bs2).

Kpl CON -35

Page 114 · IR Remote for the Boe-Bot

Kpr CON 35
SetPoint CON 2
CenterPulse CON 750

√ Copy these variable declarations from FollowingBoeBot.bs2, and paste them
into IrMultiBot.bs2's Variables section.

' Boe-Bot navigation variables (from FollowingBoeBot.bs2).

freqSelect VAR Nib
irFrequency VAR Word
irDetectLeft VAR Bit
irDetectRight VAR Bit
distanceLeft VAR Nib
distanceRight VAR Nib
pulseLeft VAR Word
pulseRight VAR Word

√ Add two more variable declarations for IrMultiBot.bs2 functions.

' IrMultiBot.bs2 variables.

counter VAR Nib ' <--- New
operation VAR Nib ' <--- New

√ Add these two subroutines to the end of the program:

' -----[Subroutine – Get_IR_Distances]-------------------------------

Get_Ir_Distances:
 distanceLeft = 0
 distanceRight = 0
 FOR freqSelect = 0 TO 4
 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight
 NEXT
 RETURN

' -----[Subroutine - Send_Pulse]-------------------------------------

Send_Pulse:
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight

Chapter 3: More IR Remote Applications · Page 115

 PAUSE 5
 RETURN

√ Replace the initialization routine with the one shown here:

' -----[Initialiazation]--

DEBUG "Press POWER to select", CR,
 "mode of operation:", CR, CR,
 "1 – Remote control 1-9 & CH/VOL", CR,
 "2 – Autonomous IR roaming", CR,
 "3 – Object find and follow", CR, CR

FREQOUT Speaker, 2000, 3000

operation = 1 ' Initialize to remote.

√ Modify the Main Routine section to make it like the one below. Although you
can borrow heavily (copy/cut and paste) from the main routines of the programs
you loaded and tested, you will still have to make adjustments to each of the
CASE statements below. Modified or new lines will have comments like: <---
Modified or <--- New.

DO

 SELECT operation ' <--- New

 ' If operation = 1, execute a modified version of
 ' 7BitRemoteBoeBot.bs2 that also allows
 ' you to change the operation variable with the POWER key.

 CASE 1 ' <--- New

 ' Modified main routine from 7BitRemoteBoeBot.bs2
 ' goes here.

 GOSUB Get_Ir_Remote_Code

 ' Check for POWER button. If yes, get remote code; otherwise,
 ' send PULSOUT durations for the various maneuvers based on
 ' the value of the remoteCode variable.

 SELECT remoteCode
 CASE Power ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 100 ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 200 ' <--- New
 DEBUG "Select operation mode...", CR ' <--- New

Page 116 · IR Remote for the Boe-Bot

 GOSUB Get_Ir_Remote_Code ' <--- New
 operation = remoteCode ' <--- New
 DEBUG ? operation, CR, ' <--- New
 "Running...", CR ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 100 ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 200 ' <--- New
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Left
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate Right
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot Back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot Back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold Position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT

 ' If operation = 2, execute modified FastIrRoaming.bs2.
 CASE 2 ' <--- New

 ' Modified main routine from FastIrRoaming.bs2 goes here.

 IF IN9 = 0 THEN operation = 1 ' <--- New.

 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650

Chapter 3: More IR Remote Applications · Page 117

 pulseRight = 850
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
 ELSE
 pulseLeft = 850
 pulseRight = 650
 ENDIF

 GOSUB Send_Pulse ' <--- Modified.

 ' If operation is 3, execute the following Boe-Bot routine.
 CASE 3 ' <--- New

 IF IN9 = 0 THEN operation = 1 ' <--- New

 GOSUB Get_Ir_Distances

 ' Calculate proportional output.

 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

 GOSUB Send_Pulse

 ENDSELECT ' <--- New
 '(End SELECT operation)
LOOP ' Repeat Main Routine.

The completed program is shown below in case you need to check it for trouble-shooting.

√ Build, save, and run IrMultiBot.bs2.
√ Test the CH+/-, VOL+/-, and numeric keys and verify that it runs properly.
√ Press/release the POWER button. The Boe-Bot should beep twice.
√ Press/release the 2 key.
√ The Boe-Bot should beep twice, then start autonomously roaming and avoiding

objects.
√ Press/release the POWER button. The Boe-Bot should beep twice.
√ Press/release the 3 key.
√ The Boe-Bot should now roam in object following mode. Test to make sure it

will lock onto and follow an object.
√ Press/release the POWER button. The Boe-Bot should beep twice.
√ Press/release the 1 key.

Page 118 · IR Remote for the Boe-Bot

√ This should return the Boe-Bot to remote control mode (CH/VOL +/- and number
keys).

' -----[Title]---
' IR Remote for the Boe-Bot - IrMultiBot.bs2
' Select one of three Boe-Bot behaviors with the IR remote 1-3 keys.

' Press POWER key to interrupt the Boe-Bot's operation.
' Then, press one of these digit keys to select a new mode:

' 1 - Control Boe-Bot with 1-9 keys and/or CH+/- and VOL+/- keys.
' 2 - Roam and avoid objects.
' 3 - Follow objects.

' Note: Startup default is mode 1.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9
Speaker PIN 4

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' Boe-Bot proportional control constants (from FollowingBoeBot.bs2).

Kpl CON -35
Kpr CON 35
SetPoint CON 2
CenterPulse CON 750

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word
remoteCode VAR Byte

Chapter 3: More IR Remote Applications · Page 119

' Boe-Bot navigation variables (from FollowingBoeBot.bs2).

freqSelect VAR Nib
irFrequency VAR Word
irDetectLeft VAR Bit
irDetectRight VAR Bit
distanceLeft VAR Nib
distanceRight VAR Nib
pulseLeft VAR Word
pulseRight VAR Word

' IrMultiBot.bs2 variables.

counter VAR Nib ' <--- New
operation VAR Nib ' <--- New

' -----[Initialization]---

DEBUG "Press POWER to select", CR,
 "mode of operation:", CR, CR,
 "1 - Remote control 1-9/CH/VOL", CR,
 "2 - Autonomous IR roaming", CR,
 "3 - Object find and follow", CR, CR

FREQOUT Speaker, 2000, 3000

operation = 1 ' Initialize to remote.

' -----[Main Routine]--

DO

 SELECT operation ' <--- New

 ' If operation = 1, execute a modified version of
 ' 7BitRemoteBoeBot.bs2 that also allows
 ' you to change the operation variable with the POWER key.

 CASE 1 ' <--- New

 ' Modified main routine from 7BitRemoteBoeBot.bs2
 ' goes here.

 GOSUB Get_Ir_Remote_Code

 ' Check for POWER button. If yes, get remote code; otherwise,
 ' send PULSOUT durations for the various maneuvers based on
 ' the value of the remoteCode variable.

 SELECT remoteCode

Page 120 · IR Remote for the Boe-Bot

 CASE Power ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 100 ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 200 ' <--- New
 DEBUG "Select operation mode...", CR ' <--- New
 GOSUB Get_Ir_Remote_Code ' <--- New
 operation = remoteCode ' <--- New
 DEBUG ? operation, CR, ' <--- New
 "Running...", CR ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 100 ' <--- New
 FREQOUT Speaker, 100, 3500 ' <--- New
 PAUSE 200 ' <--- New
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Left
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate Right
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot Back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot Back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold Position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT

 ' If operation = 2, execute modified FastIrRoaming.bs2.
 CASE 2 ' <--- New

 ' Modified main routine from FastIrRoaming.bs2 goes here.

 IF IN9 = 0 THEN operation = 1 ' <--- New.

 FREQOUT 8, 1, 38500 ' Check IR Detectors

Chapter 3: More IR Remote Applications · Page 121

 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 850
 ELSEIF (irDetectLeft = 0) THEN
 pulseLeft = 850
 pulseRight = 850
 ELSEIF (irDetectRight = 0) THEN
 pulseLeft = 650
 pulseRight = 650
 ELSE
 pulseLeft = 850
 pulseRight = 650
 ENDIF

 GOSUB Send_Pulse ' <--- Modified.

 ' If operation is 3, execute the following Boe-Bot routine.
 CASE 3 ' <--- New

 IF IN9 = 0 THEN operation = 1 ' <--- New

 GOSUB Get_Ir_Distances

 ' Calculate proportional output.

 pulseLeft = SetPoint - distanceLeft * Kpl + CenterPulse
 pulseRight = SetPoint - distanceRight * Kpr + CenterPulse

 GOSUB Send_Pulse

 ENDSELECT ' <--- New
 '(End SELECT operation)
LOOP ' Repeat Main Routine.
' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.

Page 122 · IR Remote for the Boe-Bot

 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

' -----[Subroutine - Get IR Distances]-----------------------------------

Get_Ir_Distances:
 distanceLeft = 0
 distanceRight = 0
 FOR freqSelect = 0 TO 4
 LOOKUP freqSelect,[37500,38250,39500,40500,41500], irFrequency

 FREQOUT 8,1,irFrequency
 irDetectLeft = IN9
 distanceLeft = distanceLeft + irDetectLeft

 FREQOUT 2,1,irFrequency
 irDetectRight = IN0
 distanceRight = distanceRight + irDetectRight
 NEXT
 RETURN

' -----[Subroutine - Send_pulse]---

Send_Pulse:
 PULSOUT 13,pulseLeft
 PULSOUT 12,pulseRight
 PAUSE 5
 RETURN

Chapter 3: More IR Remote Applications · Page 123

How IrMultiBot.bs2 Works

As mentioned earlier, the Main Routine selects one of three different routines depending
on the value stored in the operation variable. Each time through the DO…LOOP, if
operation is 1, the routine inside the CASE 1 statement is executed. This is the routine
for Boe-Bot remote control with the CH/VOL and number keys. If operation is 2, the
routine inside the CASE 2 statement is executed. This is the routine for autonomous
roaming. If operation is 3, the routine inside the CASE 3 statement is executed. This is
the routine for the following Boe-Bot.

DO
 SELECT operation

 CASE 1

 ' Modified 7BitRemoteBoeBot.bs2

 •••

 CASE 2

 ' Modified FastIrRoaming.bs2

 •••

 CASE 3

 ' Modified FollowingBoeBot.bs2

 •••

 ENDSELECT

LOOP

When the program starts, the value of operation is initialized to zero by default. This
would be a problem because none of the CASE statements accept a zero. For this reason,
a command setting operation to 1 was added to the Initialization section.

' -----[Initialization]---
 •
 •
 •
operation = 1 ' Initialize to remote.

Page 124 · IR Remote for the Boe-Bot

The main routine from 7BitRemoteBoeBot.bs2 was modified to let you change the value
of the operation variable with the remote. To do this, a CASE statement had to be added
to handle a press/release of the POWER key.

 SELECT remoteCode
 CASE Power
 FREQOUT Speaker, 100, 3500
 PAUSE 100
 FREQOUT Speaker, 100, 3500
 PAUSE 200
 DEBUG "Select operation mode...", CR
 GOSUB Get_Ir_Remote_Code
 operation = remoteCode
 DEBUG ? operation, CR,
 "Running...", CR
 FREQOUT Speaker, 100, 3500
 PAUSE 100
 FREQOUT Speaker, 100, 3500
 PAUSE 200

One problem is, what happens if you press/release the POWER key when operation is 2
(roaming) or 3 (following)? In these two modes, there isn't any way to change the value
of the remoteCode variable with the remote. A simple solution is to insert a line at the
beginning of the roaming and following routines that checks for an incoming message
from the remote. This one line of code can be added to the other two roaming routines to
make them respond to a press of the POWER key.

 IF (IN9 = 0) THEN operation = 1 ' <--- New

With this one line of code, the first thing the roaming and following routines do is check
to find out if a message from the remote really is coming in. If it is (IN9 = 0), then, the
value of operation is changed to 1. The next time through the DO…LOOP, the modified
main routine from 7BitRemoteBoeBot.bs2 will be executed. This routine has a CASE
statement for processing the POWER key and storing a new value in the operation
variable. This CASE statement contains commands that make it possible for you to select
a different routine.

Your Turn – Fixing Bugs and Adding Comments

This program gets lost if you press the POWER key, then a number key other than 1, 2, or
3. Let's say operation is set to 4. In this case, there is no CASE statement, so the
program just keeps repeating the DO…LOOP over and over again looking for CASE 4, and
not finding it. The solution for this is to add a statement that catches all the potential

Chapter 3: More IR Remote Applications · Page 125

values of operations and sends them back to the routine that allows you to select the
operation variable with the remote. One way to do this is with a CASE ELSE statement.

√ Before modifying this program, test it by pressing POWER then any digit on the
keypad other than 1, 2, or 3. Verify that there is nothing you can do with the
remote to bring the Boe-Bot back to life. (You can press and release the RESET
button on your board, but you're out of luck because there's not remote button
you can use to wake the Boe-Bot back up.)

√ Locate the last three commands in the Main Routine, they should look like this:

 GOSUB Send_Pulse

 ENDSELECT

LOOP

√ Add the CASE ELSE statement shown below. This will cause the program to
listen for commands from the remote, regardless of what the value of operation
is.

 GOSUB Send_Pulse

 CASE ELSE ' <--- New

 IF (IN9 = 0) THEN operation = 1 ' <--- New

 ENDSELECT

LOOP

√ Test your modified program and make sure the Boe-Bot no longer gets confused
when you set the operation variable to a value other than 1, 2, or 3.

√ Save your work!

ACTIVITY #3: REMOTE PROGRAMMED BOE-BOT
You can write a PBASIC program for your Boe-Bot that will allow you to program it
with motion patterns using your remote. By pressing a sequence of buttons on the
remote, you can load a sequence of maneuvers into the Boe-Bot's BASIC Stamp
EEPROM memory. Here's an example of a sequence of key-presses that instructs the
Boe-Bot to go forward for 40 pulses, rotate left for 20 pulses, rotate right for 20 pulses,
then go backward for 40 pulses:

Page 126 · IR Remote for the Boe-Bot

• POWER to initialize programming.
• CH+, 40, ENTER for forward 40 pulses.
• VOL-, 20, ENTER for rotate left by 20 pulses.
• VOL+, 20, ENTER for rotate right by 20 pulses.
• CH-, 40, ENTER for backward 40 pulses.
• ENTER a second time exits programming mode.
• ENTER a third time makes the Boe-Bot execute the maneuvers.
• ENTER again makes the Boe-Bot repeat the sequence of maneuvers.
• POWER to reprogram a new sequence of maneuvers.

What's a user interface? It starts with the buttons, dials, displays, and menu systems you
use to tell machines, appliances, and computer programs what you want them to do.
Probably the most important aspect of any user interface is how it behaves in response to
your button-press, dial turn, etc.

If a given product's user interface is difficult to learn or doesn't make sense, it will quickly get
a bad reputation, and people won't want to buy it

User interface is often abbreviated as UI.�

The challenging part about writing code for a UI is making sure that it doesn't confuse the
person holding the remote. Here is a list of features the program should have to make the
Boe-Bot easier to program with the remote:

• Recognize and discard incorrect key presses.
• Exit programming mode if ENTER is pressed twice in a row.
• Exit programming mode without asking how many pulses.
• Allow the user to replay the motion sequence many times.
• Remember the most recent motion sequence, even when the power has been

disconnected and reconnected

This is another design that should be broken into a step-by-step process. The majority of
the development work will be done with the Debug Terminal. After the program's
functionality has been proven with the Debug Terminal, adapting it to the infrared
template will be a relatively simple task.

Step 1 – Use the READ command to retrieve and display values that were stored
in EEPROM at compile time with a DATA statement.

Chapter 3: More IR Remote Applications · Page 127

Step 2 – Exit a routine when a terminate character is received without asking for
more information.

Step 3 – Store values in EEPROM during runtime with the WRITE command,
then retrieve and display.

Step 4 – Don't accept characters that have no meaning to the program; wait until
the right character is entered.

Step 5 – Nest the store and retrieve routines in a loop with menu options.
Step 6 – Adapt the Debug Terminal prototype to the IR remote template.
Step 7 – Add LED and speaker indicators to help the user.

Compile time vs. run time. The work the editor does on the program before downloading it
to the BASIC Stamp is done during compile time. DATA statements and CON and VAR
directives are all processed during compile time. Commands that are executed by the
BASIC Stamp while the program is running (DEBUG, FREQOUT, etc) are done during run
time.

Step 1 – Read and Display Values Stored in EEPROM by a DATA Statement

In this step, we will write and test a program that stores characters in EEPROM during
compile time and fetches and executes them during runtime. The storing will be done
with the DATA directive, and the fetching and executing will be done with the READ and
DEBUG commands. Let's review the DATA directive; here is its syntax from the BASIC
Stamp Editor's PBASIC Syntax Guide.

Syntax: {Symbol} DATA {@Address,} {Word} DataItem {, DataItem ...}

To view the information about DATA in the PBASIC Syntax Guide, click Help in the BASIC
Stamp Editor, and select Index. Type DATA into the keyword field, then double-click the
entry when it appears in the list below.�

Figure 3-4 shows examples of the two DATA directives in the next example program,
DebugPlayback.bs2, and how they relate to the command syntax. Most of this syntax
was introduced in Robotics with the Boe-Bot v2.0 in Chapter 4, Activity #6. One element
that may be new to you is the optional {@Address} argument. It is used in the two
example DATA directives to place the DataItems at specific addresses in the BASIC
Stamp's EEPROM.

Page 128 · IR Remote for the Boe-Bot

In the first DATA directive, @ 15 places the first DataItem at EEPROM address 15. The
"F" is stored at address 15, the "L" at address 16, the "R" at address 17, and etc. The
optional Maneuver_List symbol will automatically be set to 15 by the BASIC Stamp
Editor during compile time. You can use this symbol in your program in place of the
number 15, and as you will see, it makes writing programs to access EEPROM data
much easier.

Maneuver_List DATA @ 15, "F", "L", "R", "B", "Q"
Distance_List DATA @ 35, 40, 20, 20, 40, 0

Figure 3-4
How the DATA
Directive's
Syntax Can
Be Used

The programs in this activity will only use byte values, so the optional Word modifier will not
be needed. For more information and examples of the Word modifier, try the DATA
directive examples with Word modifiers in the BASIC Stamp Editor's PBASIC Syntax Guide.
You can also find examples that make use of the Word modifier in What's a Microcontroller
and Robotics with the Boe-Bot. �

The second DATA directive also uses the @Address argument, and its DataItems begin
at address 35. The result is that the number 40 is stored at address 35, the number 20 at
address 36, and so on. Both DATA directives have the optional {Symbol} name. The
symbol name for this second DATA directive is Distance_List, and it will become a
constant 35, which you will also use in DebugPlayback.bs2.

Here is the syntax for the READ command:

READ Location, {Word} Variable {, {Word} Variable, ...}

Location is the EEPROM address that stores the value you want to retrieve, and
Variable is the name of the variable that receives the value fetched from EEPROM. If
you look up this command in the BASIC Stamp Editor's PBASIC Syntax Guide, it says
this about the Location and the Variable:

{Symbol} DATA {, DataItem ...} {@Address,} DataItem

Chapter 3: More IR Remote Applications · Page 129

• Location is a variable/constant/expression* (0 - 255 on BS1, 0 - 2047 on all other
BASIC Stamp modules) that specifies the EEPROM address to read from.

• Variable is a variable (usually a byte) where the value is stored.

The great thing about Location is that it can be a "variable/constant/expression". An
expression is typically some combination of variables and constants that involve some
math.

Here is an excerpt from the next example program that uses expressions in the Location
arguments of its READ commands.

 eeIndex = 0

 DO UNTIL (direction = "Q") OR (eeIndex = 19)

 READ Maneuver_List + eeIndex, direction
 READ Distance_List + eeIndex, distance

 DEBUG direction, " ", DEC distance, CR

 PAUSE 200
 eeIndex = eeIndex + 1

 LOOP

The first READ command adds Maneuver_List (a constant equal to 15) to eeIndex (a
variable who's value is increased by one each time through the DO…LOOP). The first time
through the DO…LOOP, eeIndex will be zero, and Maneuver_List is always 15. The
result is that the READ command fetches the byte stored at EEPROM address 15 and
stores it in the direction variable. Since the DATA directive discussed earlier stored an
"F" at address 15, the READ command stores an "F" in the direction variable the first
time through the loop.

The second time through, eeIndex will be 1 while Maneuver_List is still 15. The
READ command fetches the "L" stored at address 16 and stores it in the direction
variable. The third time through the loop, eeIndex is 2, so the Location expression
evaluates to 17, and "R" is stored in the direction variable.

The same principle applies to the second READ command, except that Distance_List is
35, so the first time through, the value 40 is fetched from EEPROM and stored in
distance, the second time through, 20, the third time through, another 20, and so on.

Page 130 · IR Remote for the Boe-Bot

Example Program – DebugPlayback.bs2

This example program stores values in the BASIC Stamp's EEPROM with the DATA
directive, then retrieves and displays these items with the READ command.

√ Enter and run DebugPlayback.bs2.

' -----[Title]---
' IR Remote for the Boe-Bot - DebugPlayback.bs2
' Fetch and display DataItems from a pair of DATA directives.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[EEPROM Data]---

 Maneuver_List DATA @ 15, "F", "L", "R", "B", "Q"
 Distance_List DATA @ 35, 40, 20, 20, 40, 0

' -----[Variables]---

 direction VAR Byte
 distance VAR Byte
 eeIndex VAR Byte

' -----[Main Routine]--

 ' Playback routine

 eeIndex = 0

 DO UNTIL (direction = "Q") OR (eeIndex = 19)

 READ Maneuver_List + eeIndex, direction
 READ Distance_List + eeIndex, distance

 DEBUG direction, " ", DEC distance, CR
 PAUSE 200

 eeIndex = eeIndex + 1

 LOOP

 END

Chapter 3: More IR Remote Applications · Page 131

Your Turn – Step 2 – Exit the Routine without Displaying Q or 0

The DO…LOOP can be modified so that it skips displaying the "Q" and the 0 at the end of
the list. You can do this by removing the (direction = "Q") argument from the DO
UNTIL statement. Then, add an IF…THEN statement with an EXIT command immediately
after the READ commands. By executing EXIT when direction = "Q", the program
will skip out of the DO…LOOP before executing the DEBUG command:

 DO UNTIL (eeIndex = 19)

 READ Maneuver_List + eeIndex, direction
 READ Distance_List + eeIndex, distance

 IF (direction = "Q") THEN EXIT

 DEBUG direction, " ", DEC distance, CR
 PAUSE 200

 eeIndex = eeIndex + 1

 LOOP

√ Rename and save the program as DebugPlaybackYourTurn.bs2.
√ Try modifying DO…LOOP code block in DebugPlaybackYourTurn.bs2 as shown.
√ Run the program and verify that it no longer displays the "Q" and the 0.
√ Save the modified program.

Step 3 – Store Runtime Values with the WRITE Command

When you beam your Boe-Bot directions with the IR remote, you will be storing values
in EEPROM during runtime. While the DATA directive is for entering EEPROM data at
compile time, the WRITE command is for storing values in EEPROM during runtime. In
this activity, you will expand the program from the previous step so that you can write
values to the EEPROM during runtime.

While the READ command retrieves a DataItem from a Location in EEPROM, the
WRITE command stores a DataItem to a Location. Here is the WRITE command's
syntax from the PBASIC Syntax guide:

WRITE Location, {Word} DataItem {, {Word} DataItem ...}

Here is the DO…LOOP that stores instructions with WRITE commands. By adding this to
DebugPlaybackYourTurn.bs2, you can build your own list of characters in EEPROM
during runtime.

Page 132 · IR Remote for the Boe-Bot

' Routine - Record Instructions

 eeIndex = 0

 DO UNTIL (eeIndex = 19)

 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction
 WRITE Maneuver_List + eeIndex, direction

 IF direction = "Q" THEN
 DEBUG CR, CR
 EXIT
 ENDIF

 DEBUG CR, "Enter distance: "
 DEBUGIN DEC distance
 WRITE Distance_List + eeIndex, distance

 eeIndex = eeIndex + 1

 LOOP

This code block will allow you to set the values of the direction and distance
variables with the Debug Terminal's Transmit Windowpane. Each of these values will be
stored in EEPROM with the WRITE command in the same manner that they were
retrieved from EEPROM in DebugPlayback.bs2.

Let's take a closer look at the two WRITE commands in the loop:

 •
 •
 •
 WRITE Maneuver_List + eeIndex, direction
 •
 •
 •
 WRITE Distance_List + eeIndex, distance

Since DATA directives won't be needed, why do the WRITE commands still use
Maneuver_List and and Distance_List in the Location expressions? The answer is
because the DATA directives are still at the beginning of the program to hold those
locations for memory space. The only difference is that no DataItems is written to
EEPROM during compile time.

Chapter 3: More IR Remote Applications · Page 133

 Maneuver_List DATA @ 15
 Distance_List DATA @ 35

These two empty DATA directives act as anchors. Maneuver_List will still point to
EEPROM address 15, and Distance_List will still point to 35. They can also still be
used in READ and WRITE commands as place holders for the two different lists of
EEPROM data. The only difference is that the WRITE commands will store values in
these EEPROM memory locations during runtime.

The DO…LOOP for writing data to EEPROM has one other feature similar to the one we
added in the previous activity's Your Turn section:

 IF (direction = "Q") THEN EXIT

After the WRITE command to the Direction_List, the direction variable might still
contain the character "Q". We can use this variable to decide whether or not to jump out
of the DO…LOOP before getting a distance value. Since we really don't want to ask for any
distance after "Q" is entered, the IF…THEN statement causes the program to jump to the
instruction immediately following the LOOP command.

Example Program – DebugRecordPlayback.bs2

√ Enter and run DebugRecordPlayback.bs2. (This is a modified version of
DebugRecordYourTurn.bs2.)

√ For best results, set the Caps Lock key on your keyboard so that the characters
you type are capitalized ("F", "B", "L", "R", and "Q").

√ Follow the prompts and use the Debug Terminal's Transmit Windowpane to
enter your directions and distances.

√ Verify that the list of directions and distances you entered are the same list that is
played back after you enter the character "Q".

' -----[Title]---
' IR Remote for the Boe-Bot - DebugRecordPlayback.bs2
' Use Debug Terminal to Store a list of values to EEPROM, then retrieve
' and display them.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[EEPROM Data]---

 Maneuver_List DATA @ 15
 Distance_List DATA @ 35

Page 134 · IR Remote for the Boe-Bot

' -----[Variables]---

 direction VAR Byte
 distance VAR Byte
 eeIndex VAR Byte

' -----[Main Routine]--

 ' Routine - Record Instructions

 eeIndex = 0

 DO UNTIL (eeIndex = 19)

 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction
 WRITE Maneuver_List + eeIndex, direction

 IF direction = "Q" THEN EXIT

 DEBUG CR, "Enter distance: "
 DEBUGIN DEC distance
 WRITE Distance_List + eeIndex, distance

 eeIndex = eeIndex + 1

 LOOP
 DEBUG CR, CR

 ' Routine - Play Back Instructions

 eeIndex = 0
 direction = 0

 DO UNTIL (eeIndex = 19)

 READ Maneuver_List + eeIndex, direction
 READ Distance_List + eeIndex, distance

 IF direction = "Q" THEN EXIT

 DEBUG direction, " ", DEC distance, CR
 PAUSE 200

 eeIndex = eeIndex + 1

 LOOP

 END

Chapter 3: More IR Remote Applications · Page 135

Your Turn – Step 4 – Wait until the Right Character is Entered

One problem with the existing example program is that it will accept any character, not
just the "F", "B", "L", "R", and "Q" you want for navigation.

√ Run the program again and try entering characters other than those listed when
prompted for direction.

A SELECT…CASE statement inside a DO…LOOP is a tool you can use to filter for only the
characters you want before moving on. The SELECT…CASE statement can have two cases,
one with a list of the characters you want to receive and an ELSE case for all the
characters you don't want. When the direction variable contains one of the characters you
want, the CASE with the list of correct characters can EXIT from the DO…LOOP. The CASE
ELSE code block only has to contain a message that the wrong character was received.
After the ENDSELECT, the LOOP will cause the DO…LOOP to repeat until the correct
character is received. Here is how to change the program so that it filters for only the
characters you want:

√ Rename and save the program as DebugRecordPlaybackFiltered.bs2
√ Replace these two commands:

 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction

with this code block:

 DO
 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction
 SELECT direction
 CASE "F", "B", "R", "L", "Q"
 EXIT
 CASE ELSE
 DEBUG CR, "Invalid character", CR
 ENDSELECT
 LOOP

√ Re-run the program and verify that it only accepts the characters: "F", "B", "R",

"L", and "Q".
√ Save the modified program.

Page 136 · IR Remote for the Boe-Bot

Step 5 - Nest the Store and Retrieve Routines in a Loop with Menu Options

The EEPROM storage and retrieval routines are working pretty well now. In this
activity, you will modify the program so that it gives you the choice of "R" for record or
"P" for playback. These characters can be used to choose between the record and
playback routines. Here is an example of the shell that contains your record and playback
routines:

DO

 DEBUG CLS,
 "R = Record", CR,
 "P = Play back", CR,
 "Choose operation: "
 DEBUGIN operation
 DEBUG CR

 IF (operation = "R") THEN

 ' Routine - Record Instructions
 •
 •
 •
 ELSEIF (operation = "P") THEN

 ' Routine - Play Back Instructions
 •
 •
 •
 ENDIF
LOOP

You will need to declare another byte variable named operation to support this main
routine. Aside from that, the next example program is how your code should look after
the modifications.

Example Program – DebugRecordPlaybackWithMenu.bs2

√ Save DebugRecordPlaybackFiltered.bs2 as
DebugRecordPlaybackWithMenu.bs2.

√ Modify it so that it matches the one below.
√ Run it.
√ Use the Debug Terminal to verify that you can type "R" to record directions and

distances and "P" to play them back.

Chapter 3: More IR Remote Applications · Page 137

√ Verify also that any other character will cause the message "Invalid character, try
again" to appear.

√ Save your program.

' -----[Title]---
' IR Remote for the Boe-Bot - DebugRecordPlaybackWithMenu.bs2
' Use the Debug Terminal to select between record and playback modes.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[EEPROM Data]---

 Maneuver_List DATA @ 15
 Distance_List DATA @ 35

' -----[Variables]---

 direction VAR Byte
 distance VAR Byte
 eeIndex VAR Byte
 operation VAR Byte

' -----[Main Routine]--

DO

 DEBUG CLS,
 "R = Record", CR,
 "P = Play back", CR,
 "Choose operation: "
 DEBUGIN operation
 DEBUG CR

 IF (operation = "R") THEN

 ' Routine - Record Instructions

 eeIndex = 0
 direction = 0

 DO UNTIL (eeIndex = 19)

 DO

 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction

 SELECT direction

Page 138 · IR Remote for the Boe-Bot

 CASE "F", "B", "R", "L", "Q"
 EXIT
 CASE ELSE
 DEBUG CR, "Invalid character", CR
 ENDSELECT

 LOOP

 WRITE Maneuver_List + eeIndex, direction

 IF (direction = "Q") THEN EXIT

 DEBUG CR, "Enter distance: "
 DEBUGIN DEC distance
 WRITE Distance_List + eeIndex, distance

 eeIndex = eeIndex + 1

 LOOP

 DEBUG CR

 ELSEIF (operation = "P") THEN

 ' Routine - Play Back Instructions

 eeIndex = 0
 direction = 0

 DO UNTIL (eeIndex = 19)

 READ Maneuver_List + eeIndex, direction
 READ Distance_List + eeIndex, distance

 IF direction = "Q" THEN EXIT

 DEBUG direction, " ", DEC distance, CR
 PAUSE 200

 eeIndex = eeIndex + 1

 LOOP

 ELSE

 DEBUG "Invalid character", CR,
 "try again."

 ENDIF

 DEBUG CR, "Press any key..."

Chapter 3: More IR Remote Applications · Page 139

 DEBUGIN operation

LOOP

Your Turn – Step 6 – Adapting maneuvers to the Boe-Bot

You can replace the PAUSE 200 command with a simple routine to drive the Boe-Bot.
Here's how:

√ Rename and save the program as DebugRecordBoeBotPlayback.bs2.
√ Add this declaration to the program's Variables section:

pulseCount VAR Byte

√ Replace the PAUSE 200 command with this code block:

 FOR pulseCount = 1 TO distance

 SELECT direction
 CASE "F"
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE "B"
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE "L"
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE "R"
 PULSOUT 13, 850
 PULSOUT 12, 850
 ENDSELECT

 PAUSE 20

 NEXT

√ Run the program and verify that you can program and reprogram the Boe-Bot's
motion sequences with the Debug Terminal.

√ Save your modified program.

Step 7 – Adapting the Program to the Infrared Remote

At this point, you are now very close to a remote programmed Boe-Bot. You can take
the main routine from Step 6, DebugRecordBoeBotPlayback.bs2, and, after some

Page 140 · IR Remote for the Boe-Bot

adapting, drop it into IrRemoteKeypad.bs2. Here is a list to give you a general idea of
the adaptations that need to be made:

• GOSUB Get_Ir_Remote_Code is used in place of DEBUGIN.
• GOSUB Get_Multi_Digit_Value is used in place of DEBUGIN DEC.
• ChUp, ChDn, VolUp, and VolDn are used in place of "F", "B", "R", and "L".
• ENTER is used in place of "Q".
• POWER and ENTER are used in place of "P" and "R".

Below is a detailed account of how DebugRecordBoeBotPlayback.bs2 is adapted to and
integrated into IrRemoteKeypad.bs2:

√ Open IrRemoteKeypad.bs2 and save a copy as
RemoteRecordBoeBotPlayback.bs2.

√ Update the Title section so that it includes the correct program name, a brief
description, and user instructions:

' -----[Title]---
' IR Remote for the Boe-Bot - RemoteRecordBoeBotPlayback.bs2
' Press key sequences to program motion routines into the
' Boe-Bot's EEPROM and replay them.

' Press POWER key to program or ENTER key to play program.
' In programming mode, press a CH/VOL key to choose a maneuver.
' Use the keypad to enter the number of pulses, then press ENTER.
' Pressing ENTER again terminates programming.
' Pressing ENTER a third, fourth, etc time replays the program.
' Press POWER to reprogram.

' {$STAMP BS2}
' {$PBASIC 2.5}

√ Insert this section between the Stamp/PBASIC directives and the I/O
Definitions.

' -----[EEPROM Data]--

' Set aside data for lists of Maneuver_List and Distance_List.

Maneuver_List DATA @ 15 ' 20 bytes for Maneuver_List.
Distance_List DATA @ 35 ' 20 bytes for Distance_List.

√ Copy these declarations into the Pin Definitions section:

Chapter 3: More IR Remote Applications · Page 141

' Boe-Bot Servo Pins

ServoLeft PIN 13
ServoRight PIN 12

√ Copy these declarations into the Variables section:

' Boe-Bot navigation variables

direction VAR Byte
counter VAR Word
eeIndex VAR Byte

If you examine this next DO…LOOP closely, you will see that it has the same overall function
and structure as the main routine from DebugRecordBoeBotPlayback.bs2. �

√ Replace the DO…LOOP in the main routine with this one.

DO

 DEBUG "Press POWER to record", CR,
 "or ENTER to playback", CR, CR

 GOSUB Get_Ir_Remote_Code

 IF remoteCode = Power THEN

 ' Routine - Record data

 GOSUB Beep_Valid

 eeIndex = 0

 DO UNTIL eeIndex = 19

 DEBUG "Menu: ", CR,
 " CH+ = Forward", CR,
 " CH- = Backward", CR,
 " VOL+ = Right", CR,
 " VOL- = Left", CR,
 " ENTER = Done recording", CR, CR

 DO

 GOSUB Get_Ir_Remote_Code

 SELECT remoteCode
 CASE ChUp TO VolDn, Enter
 GOSUB Beep_Valid

Page 142 · IR Remote for the Boe-Bot

 EXIT
 CASE ELSE
 DEBUG "Press CH+/-, VOL+/-, or ENTER", CR
 GOSUB Beep_Error
 ENDSELECT

 LOOP

 direction = remoteCode
 WRITE eeIndex + Maneuver_List, direction

 IF (direction = Enter) THEN EXIT

 DEBUG "Enter number of pulses: ", CR
 GOSUB Get_Multi_Digit_VAlue
 DEBUG DEC value, " pulses", CR, CR
 WRITE eeIndex + Distance_List, value
 eeIndex = eeIndex + 1

 LOOP

 ELSEIF remoteCode = Enter THEN

 ' Routine - playback data

 GOSUB Beep_Valid
 DEBUG "Running...", CR, CR

 eeIndex = 0
 direction = 0

 DO UNTIL (eeIndex = 19)

 READ eeIndex + Maneuver_List, direction
 READ eeindex + Distance_List, value

 IF (direction = Enter) THEN EXIT

 FOR counter = 1 TO value
 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850
 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650

Chapter 3: More IR Remote Applications · Page 143

 PULSOUT ServoRight, 650
 ENDSELECT
 PAUSE 20
 NEXT

 eeIndex = eeIndex + 1

 LOOP

 ELSE

 GOSUB Beep_Error

 ENDIF

LOOP

Example Program – RemoteRecordBoeBotPlayback.bs2

The completed program is shown below.

√ Enter and run the program and follow the prompts in the Debug Terminal for
remote programming.

√ Try the following key sequence:

√ POWER to initialize programming.
√ CH+, 40, ENTER for forward 40 pulses.
√ VOL-, 20, ENTER for rotate left 20 pulses.
√ VOL+, 20, ENTER for rotate right 20 pulses.
√ CH-, 40, ENTER for backward 40 pulses.
√ ENTER a second time exits programming mode.
√ ENTER a third time makes the Boe-Bot execute the maneuvers.
√ ENTER again makes the Boe-Bot repeat the sequence of maneuvers.
√ POWER to reprogram a new sequence of maneuvers.

' -----[Title]---
' IR Remote for the Boe-Bot - RemoteRecordBoeBotPlayback.bs2
' Press key sequences to program motion routines into the
' Boe-Bot's EEPROM and replay them.

' Press POWER key to program or ENTER key to play program.
' In programming mode, press a CH/VOL key to choose a maneuver.
' Use the keypad to enter the number of pulses, then press ENTER.
' Pressing ENTER again terminates programming.
' Pressing ENTER a third, fourth, etc time replays the program.
' Press POWER to reprogram.

Page 144 · IR Remote for the Boe-Bot

' {$STAMP BS2} ' $STAMP directive
' {$PBASIC 2.5} ' $PBASIC directive

' -----[EEPROM Data]--

' Set aside data for lists of Maneuver_List and Distance_List.

Maneuver_List DATA @ 15 ' 20 bytes for Maneuver_List.
Distance_List DATA @ 35 ' 20 bytes for Distance_List.

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9
Speaker PIN 4

' Boe-Bot Servo Pins

ServoLeft PIN 13
ServoRight PIN 12

' -----[Constants]---

' SONY TV IR remote constants for non-keypad buttons.

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Power CON 21

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word ' Single-digit remote variables
remoteCode VAR Byte
index VAR Nib
value VAR Word ' Stores multi-digit value

' Boe-Bot navigation variables

direction VAR Byte
counter VAR Word
eeIndex VAR Byte

' -----[Main Routine]--

Chapter 3: More IR Remote Applications · Page 145

DO

 DEBUG "Press POWER to record", CR,
 "or ENTER to playback", CR, CR

 GOSUB Get_Ir_Remote_Code

 IF remoteCode = Power THEN

 ' Routine - Record data

 GOSUB Beep_Valid

 eeIndex = 0

 DO UNTIL eeIndex = 19

 DEBUG "Menu: ", CR,
 " CH+ = Forward", CR,
 " CH- = Backward", CR,
 " VOL+ = Right", CR,
 " VOL- = Left", CR,
 " ENTER = Done recording", CR, CR

 DO

 GOSUB Get_Ir_Remote_Code

 SELECT remoteCode
 CASE ChUp TO VolDn, Enter
 GOSUB Beep_Valid
 EXIT
 CASE ELSE
 DEBUG "Press CH+/-, VOL+/-, or ENTER", CR
 GOSUB Beep_Error
 ENDSELECT

 LOOP

 direction = remoteCode
 WRITE eeIndex + Maneuver_List, direction

 IF (direction = Enter) THEN EXIT

 DEBUG "Enter number of pulses: ", CR
 GOSUB Get_Multi_Digit_Value
 DEBUG DEC value, " pulses", CR, CR
 WRITE eeIndex + Distance_List, value
 eeIndex = eeIndex + 1

 LOOP

Page 146 · IR Remote for the Boe-Bot

 ELSEIF remoteCode = Enter THEN

 ' Routine - playback data

 GOSUB Beep_Valid
 DEBUG "Running...", CR, CR

 eeIndex = 0
 direction = 0

 DO UNTIL (eeIndex = 19)

 READ eeIndex + Maneuver_List, direction
 READ eeindex + Distance_List, value

 IF (direction = Enter) THEN EXIT

 FOR counter = 1 TO value
 SELECT direction
 CASE ChUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 650
 CASE ChDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 850
 CASE VolUp
 PULSOUT ServoLeft, 850
 PULSOUT ServoRight, 850
 CASE VolDn
 PULSOUT ServoLeft, 650
 PULSOUT ServoRight, 650
 ENDSELECT
 PAUSE 20
 NEXT

 eeIndex = eeIndex + 1

 LOOP

 ELSE

 GOSUB Beep_Error

 ENDIF

LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the

Chapter 3: More IR Remote Applications · Page 147

' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0 ' Clear all bits in remoteCode.

 DO ' Wait for rest between messages.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN IrDet, 0, irPulse ' Measure pulse.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1 ' Set (or leave clear) bit-0.
 RCTIME IrDet, 0, irPulse ' Measure next pulse.
 IF irPulse > 300 THEN remoteCode.BIT1 = 1 ' Set (or leave clear) bit-1.
 RCTIME IrDet, 0, irPulse ' etc.
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Adjust remoteCode so that keypad keys correspond to the value
 ' it stores.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

' -----[Subroutine - Get_Multi_Digit_Value]------------------------------

' Acquire multi-digit value (up to 65535) and store it in
' the value variable. Speaker beeps each time a key is
' pressed.

Get_Multi_Digit_Value:

 value = 0
 remoteCode = 0

 DO

 value = value * 10 + remoteCode

 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode < 10) THEN

Page 148 · IR Remote for the Boe-Bot

 DEBUG "You pressed: ", DEC1 remoteCode, CR
 GOSUB Beep_Valid
 EXIT
 ELSEIF (remoteCode = Enter) THEN
 DEBUG "You pressed: ENTER", CR
 GOSUB Beep_Valid
 EXIT
 ELSE
 DEBUG "Press 0-9 or ENTER", CR
 GOSUB Beep_Error
 ENDIF
 LOOP

 LOOP UNTIL (remoteCode = Enter)

 RETURN

' -----[Subroutine - Beep_Valid]------------------------------------

' Call this subroutine to acknowledge a key press.

Beep_Valid:

 FREQOUT Speaker, 100, 3500
 PAUSE 200

 RETURN

' -----[Subroutine - Beep_Error]------------------------------------

' Call this subroutine to reject a key press.

Beep_Error:

 FREQOUT Speaker, 100, 3000
 PAUSE 200

 RETURN

Your Turn – LED Prompts and Program Organization

To make this program complete, a pair of LEDs can make it easier to program the Boe-
Bot without the Debug Terminal. This could come in handy for certain navigation
contests.

√ Rename your program RemoteRecordBoeBotPlaybackLed.bs2.
√ Design and implement LED prompts that accompany the Debug Terminal

information.

Chapter 3: More IR Remote Applications · Page 149

√ Write an instruction manual for your Boe-Bot describing how to use the remote
to program the Boe-Bot relying on just the speaker and LEDs. Use the pamphlet
that came with the universal remote as an example.

The Program and Run routines should be moved to subroutines.

√ Do it, then save your work. You might want to reuse them in other programs.

Page 150 · IR Remote for the Boe-Bot

SUMMARY
This chapter introduced some more applications you can create with the IR remote
application. Application programs have to be well organized, with each task
accomplished in subroutines. The I/O pins, variables, and constants also have to be
defined and documented in the declarations section. When application programs follow
these conventions, it makes it possible to combine the two (or more) of these programs to
achieve more difficult and complex robotic goals.

The first two activities focused on how to merge and integrate more than one application
program into a larger program that does more. In each of these activities, subroutines
from the various programs were copied and pasted into a larger program, likewise with
the constants, variables, and other declarations. By virtue of the fact that application
programs are written to be modular, none of the subroutines had to be modified. Instead,
they were utilized and orchestrated in the main routine. By relying on the functionality of
the subroutines, the main routine could be written in simpler terms while accomplishing
much more difficult tasks.

In the first two activities, testing programs and circuits that were used in Robotics with
the Boe-Bot was emphasized. Each of the programs and circuits have to be known to
work on their own before they can be combined into a larger circuit and/or program.
SELECT…CASE was introduced as a way of choosing between alternate main routine
options that are chosen by a menu system. This scheme is easy to expand by simply
adding more CASE statements.

The subroutines in a single application template can also be used in new and creative
ways to create more powerful robotic behaviors. The third activity demonstrated this by
building an IR remote keypad entry scheme for programming the Boe-Bot. EEPROM
storage was examined more closely as a tool for storing and retrieving sequences of
characters and values. By using the @Address operator in a DATA directive, you can
define blocks of unused program memory for use by the program. Optional Symbol
names can be placed before the DATA to help calculate the location of a given DataItem.
It makes storing values to EEPROM with the WRITE command and retrieving them with the
READ command much simpler. Especially if you have to store and manage more than one
list of related items, such as Boe-Bot maneuvers and distances.

Chapter 3: More IR Remote Applications · Page 151

Elements of user interface (UI) design have been introduced throughout this text. In
earlier chapters, button debouncing and speaker and LED feedback have already been
introduced and applied. In the third activity of this chapter, programming techniques
were introduced for limiting the key presses that the program will accept. Designing and
implementing sensible sequences of key presses for choosing certain robotic functions
was introduced by example.

A stepwise process for solving complex tasks was also introduced. The Debug
Terminal's Transmit and Receive Windowpanes were relied on heavily as a prototyping
tool for UI design. After the interactions with the user were defined with the help of the
Debug Terminal, the DEBUGIN and DEBUGIN DEC commands were ported to an IR remote
communication template.

Questions
1. What's the name of the variable used for speed control in

IrRoamingWithSpeedControl.bs2?
2. What does the CLS in DEBUG CLS do?
3. What happens when the variable used in a SELECT…CASE statement does not

contain any of the values specified in the CASE statements? If this becomes a
problem, how can you fix it?

4. What does the optional @Address argument do for a DATA directive? How does
this effect the value of the optional Symbol?

5. What's the difference between the READ command and the WRITE command?
6. How can SELECT…CASE statement be used inside a DO…LOOP to wait for a specific

value before continuing to the next step in the program?

Exercises
1. In IrRoamingWithSpeedControl.bs2, what will the pulse durations for the left

and right servos be if no object is detected and speed = 50?

2. The Selecting between Main Routines section in Activity #2 shows the shell of a
SELECT…CASE statement. Expand this shell so that it contains a case for 4 and a
catch-all case for any other value.

3. Write READ commands to retrieve the values 7 and 13 using My_List in the
Location argument. Assume you have declared a variable = myValue.

4. Modify this code block so that it only accepts values between 16 and 19.

 DO

Page 152 · IR Remote for the Boe-Bot

 DEBUG CR, "F, B, R, L, Q", CR,
 "Enter Direction: "
 DEBUGIN direction
 SELECT direction
 CASE "F", "B", "R", "L", "Q"
 EXIT
 CASE ELSE
 DEBUG CR, "Invalid character", CR
 ENDSELECT
 LOOP

5. List the remote key press sequence that makes the Boe-Bot draw a 50 pulse by
100 pulse rectangle with RemoteRecordBoeBotPlayback.bs2.

Projects
1. Use 7BitRemoteBoeBot.bs2 from Chapter 2, Activity #3 as your starting point.

Add a routine that overrides instructions from the remote and stops the Boe-Bot
before it collides with an object. This way, you can try to run the Boe-Bot into
an obstacle, but it will not let you.

2. Expand IrMultiBotYourTurn.bs2 so that you can press the following digit keys
for the following functions:

• 1 - Remote button controlled Boe-Bot
• 2 - Full speed IR roaming
• 3 - Following Boe-Bot
• 4 - Servo centering mode
• 5 - Slow roaming Boe-Bot for lead roaming Boe-Bot
• 6 – One-shot ballast interference detector

Solutions
Q1. The variable's name is speed.
Q2. According to the PBASIC Syntax Guide, it clears the screen. In other words, it

erases everything currently displayed in the Debug Terminal's Transmit
Windowpane.

Q3. If none of the CASE statements match the SELECT statement's variable the
program finds the ENDSELECT keyword and moves on from there. You can add a
catch-all statement CASE ELSE with any code that you want the SELECT…CASE
statement to execute if the variable that was selected stores a value that does not
match any of the other CASE statements.

Q4. The @Address operator allows you to specify the starting address in EEPROM
for the DATA directive's first DataItem. The Symbol for that data directive will

Chapter 3: More IR Remote Applications · Page 153

be a constant equal to the value that follows the @Address operator. This will
also be the address of the first DataItem in the DATA directive.

Q5. The WRITE command stores a DataItem to a Location in EEPROM; the READ
command fetches a DataItem from a Location in EEPROM.

Q6. A DO…LOOP can have a SELECT…CASE statement nested inside it. One of the CASE
statements can contain a list of possible values that you want to relieve before
moving on in the program. The code block for this CASE statement should
contain the EXIT command for breaking out of the DO…LOOP since its code block
will be executed when one of the desired values is stored by the SELECT
statement's variable. The other CASE ELSE statement should contain a code
block that's executed when the wrong value is received. Since it will not contain
an EXIT command, the DO…LOOP will repeat itself until one of the desired values
is stored in the SELECT statement's variable.

E1. If no object is detected, the CASE ELSE statement is executed. This case sets the

variables used for the PULSOUT commands to the left and right servos. The
value of pulseLeft will be 750 – 50 = 700. To figure the pulse duration,
multiply the PULSOUT command's duration argument by 2 µs. 700 × 0.000002 s
= 0.0014 s = 1.4 ms. The value of pulseRight will be 750 + 50 = 800, which
delivers a 1.6 ms pulse.

E2. Near the main routine's DO…LOOP, there is an ENDSELECT. Insert this code block
just above the ENDSELECT.

 ' If operation is 4, execute the YourProgram.bs2.
 CASE 4

 ' Modified main routine from YourProgram.bs2 goes here.
 •
 •
 •
 ' If operation is not 1-4, execute this routine.
 CASE ELSE

 ' Catch-all commands go there.
 •
 •
 •

E3. Solution: READ My_List + 4, myValue: READ My_List + 7, myValue

Page 154 · IR Remote for the Boe-Bot

E4. Here is the modified code. Be careful to make sure to add the DEC operator to
the DEBUGIN command.

 DO
 DEBUG CR, "16, 17, 18, or 19", CR,
 "Enter Value: "
 DEBUGIN DEC direction
 SELECT direction
 CASE 16 to 19
 EXIT
 CASE ELSE
 DEBUG CR, "Invalid character", CR
 ENDSELECT
 LOOP

E5. Try this sequence with some adjustments to the 21 pulse turns to get 90-degrees
with your servos:

√ POWER to initialize programming.
√ CH+, 100, ENTER for forward 100 pulses.
√ VOL-, 21, ENTER for rotate left 21 pulses.
√ CH+, 50, ENTER for forward 50 pulses.
√ VOL-, 21, ENTER for rotate left 21 pulses.
√ CH+, 100, ENTER for forward 100 pulses.
√ VOL-, 21, ENTER for rotate left 21 pulses.
√ CH+, 50, ENTER for forward 50 pulses.
√ ENTER a second time exits programming mode.
√ ENTER a third time makes the Boe-Bot execute the maneuvers.

Project Solutions
P1. Add these bit declarations to the Variables section of the program.

irDetectLeft VAR Bit
irDetectRight VAR Bit

√ Grab the IR detection functions from TestIrPairsAndIndicators.bs2 and paste

them into your project program just before the SELECT statement in the main
routine.

 FREQOUT 8, 1, 38500
 irDetectLeft = IN9

Chapter 3: More IR Remote Applications · Page 155

 FREQOUT 2, 1, 38500
 irDetectRight = IN0

√ Modify this CASE statement:

 CASE 2, ChUp
 PULSOUT 13, 850
 PULSOUT 12, 650

so that it reads

 CASE 2, ChUp
 IF (irDetectLeft = 1) AND (irDetectRight = 1) THEN
 PULSOUT 13, 850
 PULSOUT 12, 650
 ELSE
 FREQOUT Speaker, 3, 4500
 ENDIF

P2. Add case statements to the outer SELECT…CASE in the Main Routine's DO…LOOP
for each function. Remember to update the menu list in the Initialization routine.

DO
 SELECT operation

 CASE 1
 •
 •
 •
 CASE 2
 •
 •
 •
 CASE 3
 •
 •
 •
 ' If operation is 4, put Boe-Bot in servo centering mode.
 CASE 4

 IF IN9 = 0 THEN operation = 1

 pulseLeft = 750
 pulseRight = 750

 GOSUB Send_Pulse

 ' If operation is 5, run slow roaming routine for the lead Boe-Bot
 CASE 5

Page 156 · IR Remote for the Boe-Bot

 ' Modified main routine from FastIrRoaming.bs2 goes here.

 IF IN9 = 0 THEN operation = 1

 FREQOUT 8, 1, 38500 ' Check IR Detectors
 irDetectLeft = IN9
 FREQOUT 2, 1, 38500
 irDetectRight = IN0
 ' Decide how to navigate.
 IF (irDetectLeft = 0) AND (irDetectRight = 0) THEN
 TOGGLE 1
 TOGGLE 10
 pulseLeft = 725
 pulseRight = 775
 ELSEIF (irDetectLeft = 0) THEN
 TOGGLE 10
 pulseLeft = 775
 pulseRight = 775
 ELSEIF (irDetectRight = 0) THEN
 TOGGLE 1
 pulseLeft = 725
 pulseRight = 725
 ELSE
 pulseLeft = 775
 pulseRight = 725
 ENDIF

 GOSUB Send_Pulse ' <--- Modified.

 LOW 1
 LOW 10

 ' If operation is 6, test for ballast interference. This versions
 ' of the ballast interference tester only triggers once. If
 ' triggered, the remote has to be used to reset the Boe-Bot to
 ' function 6 to repeat the 1-shot ballast interference detection.
 CASE 6

 DO

 IF IN9 = 0 THEN

 operation = 1

 FOR counter = 1 TO 10
 FREQOUT 4, 40, 4500
 PAUSE 50
 NEXT

 EXIT

Chapter 3: More IR Remote Applications · Page 157

 ENDIF

 LOOP

 CASE ELSE

 IF IN9 = 0 THEN operation = 1 ' <--- New

 ENDSELECT ' <--- New
 '(End SELECT operation)
LOOP ' Repeat Main Routine.

 Appendix A: IR Remote AppKit Documentation · Page 159

Appendix A: IR Remote AppKit Documentation

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

INFRARED REMOTE APPKIT (#29112)

A Wireless Keypad for Your BASIC Stamp® Microcontroller Module
With a universal remote and an infrared receiver, you can add a wireless keypad to your
BASIC Stamp Applications. The IR receiver is inexpensive, and only takes one I/O pin.
Universal remotes are also inexpensive, easy to obtain and replace, and have enough
buttons for most applications. The parts in this kit along with the example programs
make it possible to enter values and control your projects in the same way you might with
a TV, VCR, or other entertainment system component.

IR Remotes can also add zing to your robotics projects. While this package insert
provides you with the essential background information, circuits, and example programs
to get started, you can learn lots more with IR Remote for the Boe-Bot. This text is for
the most part, a continuation of Robotics with the Boe-Bo, but with an IR remote twist. It
follows the same format in terms of introducing new hardware, explaining how things
work, and demonstrating new PBASIC techniques. IR remote applications for the Boe-
Bot™ robot include remote control, keypad entry control, hybrid autonomous and remote
control, and remote motion sequence programming.

Page 160 · IR Remote for the Boe-Bot

Kit Contents*

Infrared Remote Parts List:

(1) 020-00001 Universal Remote and
 Universal Remote
 Manual
(1) 350-00014 IR detector
(1) 150-02210 Resistor – 220 Ω
(1) 800-00016 Jumper wires – bag of

10

*Two alkaline AA batteries sold
separately

3 2 1

How IR Communication Works
The universal remote sends messages by strobing its IR LED at 38.5 kHz for brief
periods of time. The actual data is contained in the amount of time each strobe lasts.
There are many different IR protocols, but, in general, the amount of time each 38.5 kHz
signal lasts transmits some kind of message. One duration might indicate the start of a
message, while another indicates a binary-1, and still another indicates a binary-0.

The IR detector's output pin sends a low signal while it detects the 38.5 kHz IR signal,
and a high signal while it does not. So, a low signal of one duration might indicate the
start of a message, while another indicates a binary-1, and still another indicates a binary
0. This communication scheme is called pulse width modulation (PWM), because when
graphed against time, the IR detector's high/low signals form pulses of different widths
that correspond to their durations.

 Appendix A: IR Remote AppKit Documentation · Page 161

2.4 m
s

0.6 m
s1.2 m

s0.6 m
s

Rem
ot

e

2.4
m

s

0.6
m

s

1.2
m

s

0.6
m

s

Handheld Remote Infrared Messages

Excerpt from IR Remote for the Boe-Bot text

The examples here will rely on the protocol universal remotes use to control SONY® TV
sets. This protocol strobes the IR thirteen times with roughly half a millisecond rest
between each pulse. It results in thirteen negative pulses from the IR detector that the
BASIC Stamp can easily measure. The first pulse is the start pulse, which lasts for 2.4
ms. The next twelve pulses will either last for 1.2 ms (binary-1) or 0.6 ms (binary-0).
The first seven data pulses contain the IR message that indicates which key is pressed.
The last five pulses contain a binary value that specifies whether the message is intended
being sent to a TV, VCR, CD, DVD player, etc. The pulses are transmitted in LSB-first
order, so the first data pulse is bit-0, the next data pulse is bit-1, and so on. If you press
and hold a key on the remote, the same message will be re-sent after a 20 to 30 ms rest.

Page 162 · IR Remote for the Boe-Bot

Resting states
between data pulses
= 0.6 ms

Start pulse
duration = 2.4 ms

Binary-0
data pulse
durations = 0.6 ms

Binary-1
data pulse
durations = 1.2 ms

Resting state
between message
packets = 20-30 ms

Bit-0 Bit-2 Bit-4 Bit-6

0Start 0 0 0 0 0 0 0 0 011

Bit-8 Bit-10

Bit-1 Bit-3 Bit-5 Bit-7 Bit-9 Bit-11

IR Message Timing Diagram

Values are approximate and will vary from one remote to the next.

IR Detection Circuit
For testing purposes, all you need is this IR detector circuit and the Debug Terminal.

IR Detector Circuit

IR detector viewed from the top. Also see Kit
Contents figure for pin map.

BASIC Stamp 2 "Bare-Bones" Example – IrRemoteCodeCapture.bs2
This example program demonstrates how to capture and display a remote code with the
BASIC Stamp 2. If you modify the $STAMP directive, it can also be used with the
BASIC Stamp 2e or 2pe.

Vdd

 Vss

 P9

220 Ω

1
2
3

 Appendix A: IR Remote AppKit Documentation · Page 163

√ Make sure to configure your universal remote to control a SONY® TV. Use the
documentation that comes with your universal remote.

√ Press the TV button on your remote so that you know it is sending TV signals.
√ Download or hand enter and run IrRemoteCodeCapture.bs2.
√ Point the remote at the IR detector, and press/release the digit keys.
√ Also try POWER, CH+/-, VOL+/-, and ENTER to view the codes for these values.

' Ir Remote Application - IrRemoteCodeCapture.bs2
' Process incoming SONY remote messages & display remote code.

' {$STAMP BS2}
' {$PBASIC 2.5}

' SONY TV IR remote variables

irPulse VAR Word ' Stores pulse widths
remoteCode VAR Byte ' Stores remote code

DEBUG "Press/release remote buttons..."

DO ' Main DO...LOOP

 remoteCode = 0

 DO ' Wait for end of resting state.
 RCTIME 9, 1, irPulse
 LOOP UNTIL irPulse > 1000

 PULSIN 9, 0, irPulse ' Get data pulses.
 IF irPulse > 500 THEN remoteCode.BIT0 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT1 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT2 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT3 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT4 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT5 = 1
 RCTIME 9, 0, irPulse
 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Map digit keys to actual values.
 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 DEBUG CLS, ? remoteCode
LOOP ' Repeat main DO...LOOP

Page 164 · IR Remote for the Boe-Bot

How IrRemoteCodeCapture.bs2 Works
Each time through the outermost DO…LOOP, the value of remoteCode is cleared. There's
also an inner DO…LOOP with an RCTIME command to detect the end of a high signal that
lasted longer than 2 ms. This indicates that the rest between messages just ended, and the
start pulse is beginning. The first PULSIN command captures the first data pulse, and the
IF…THEN statement that follows uses the value of the irPulse variable to either set (or
leave clear) the corresponding bit in the remoteCode variable. Since the next data pulse
has already started while the IF…THEN statement was executing, the remainder of the next
data pulse is measured with an RCTIME command. This next value is again used to either
set (or leave clear) the next bit in remoteCode. This is repeated five more times to get
the rest of the useful part of the IR message and set/clear the rest of the bits in
remoteCode.

The BS2sx and BS2p handle remote codes a little differently. The programs usually
search for the actual start pulse with a PULSIN command instead of searching for the
resting state between messages. They also use PULSIN commands to capture all the
pulses since the IF…THEN statements that sets bits in the remoteCode variable complete
before the starting edge of the next data pulse. To see a code example that does this, see
the #CASE statement for the BS2sx, BS2p inside the next example program's
Get_Ir_Remote_Code subroutine.

BASIC Stamp 2 Series Application Example IrRemoteButtonDisplay.bs2
You can use this application example with BASIC Stamp 2, 2e, 2sx, 2p, or 2pe modules
to test your remote and display which key you pressed.

√ As with the previous example program, make sure your remote is configured to
control a SONY TV first.

√ Update the $STAMP Directive for the BASIC Stamp module you are using.
√ Download or hand enter, then run IrRemoteButtonDisplay.bs2.
√ Point the remote at the IR detector, press and release buttons.
√ Make sure the Debug Terminal reports the correct button. Start with digits,

channel, volume, etc.

You can modify or expand the SELECT…CASE statement to test for VCR keys defined in
the Constants section (Play, Stop, Rewind, etc.). There are usually several different
codes for configuring universal remotes to control SONY VCRs, so you may need to try

 Appendix A: IR Remote AppKit Documentation · Page 165

a few before finding the code that makes the remote speak the same PWM language as
the TV controller. You can determine if the code worked because number, CH/VOL+/-,
and POWER keys will still work after you have pressed the VCR button.

' -----[Title]---
' Ir Remote Application - IrRemoteButtonDisplay.bs2

' Process incoming SONY remote signals and display the corresponding button
' in the Debug Terminal.

' {$STAMP BS2} ' BS2, 2sx, 2e, 2p, or 2pe
' {$PBASIC 2.5}

' -----[Revision History]--

' V1.0 - Supports most SONY TV and VCR control buttons.
' Supports BASIC Stamp 2, 2SX, 2e, 2p, and 2pe modules.

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9 ' I/O pin to IR detector output

' -----[Constants]---

' Pulse duration constants for SONY remote.

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE ' PULSE durations
 ThresholdStart CON 1000 ' Message rest vs. data rest
 ThresholdPulse CON 500 ' Binary 1 vs. 0 for PULSIN
 ThresholdEdge CON 300 ' Binary 1 vs. 0 for RCTIME
 #CASE BS2P, BS2SX
 ThresholdStart CON 2400 ' Binary 1 vs. start pulse
 ThresholdPulse CON 500 * 5 / 2 ' Binary 1 vs. 0 for PULSIN
 #CASE #ELSE
 #ERROR This BASIC Stamp NOT supported.
#ENDSELECT

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11
ChUp CON 16
ChDn CON 17
VolUp CON 18
VolDn CON 19
Mute CON 20
Power CON 21
TvLast CON 59 ' AKA PREV CH

Page 166 · IR Remote for the Boe-Bot

' SONY VCR IR remote constants

' IMPORTANT: Before you can make use of these constants, you must
' also follow the universal remote instructions to set your remote
' to control a SONY VCR. Not all remote codes work, so you may have to
' test several.

VcrStop CON 24
VcrPause CON 25
VcrPlay CON 26
VcrRewind CON 27
VcrFastForward CON 28
VcrRecord CON 29

' Function keys

FnSleep CON 54
FnMenu CON 96

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word ' Stores pulse widths
remoteCode VAR Byte ' Stores remote code

' -----[Initialization]--

DEBUG "Press/release remote buttons..."

' -----[Main Routine]--

' Replace this button testing DO...LOOP with your own code.

DO ' Main DO...LOOP

 GOSUB Get_Ir_Remote_Code ' Call remote code subroutine

 DEBUG CLS, "Remote button: " ' Heading

 SELECT remoteCode ' Select message to display
 CASE 0 TO 9
 DEBUG DEC remoteCode
 CASE Enter
 DEBUG "ENTER"
 CASE ChUp
 DEBUG "CH+"
 CASE ChDn
 DEBUG "CH-"
 CASE VolUp

 Appendix A: IR Remote AppKit Documentation · Page 167

 DEBUG "VOL+"
 CASE VolDn
 DEBUG "VOL-"
 CASE Mute
 DEBUG "MUTE"
 CASE Power
 DEBUG "POWER"
 CASE TvLast
 DEBUG "LAST"
 CASE ELSE
 DEBUG DEC remoteCode, " (unrecognized)"
 ENDSELECT

LOOP ' Repeat main DO...LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the
' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0

 #SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 DO ' Wait for end of resting state.
 RCTIME IrDet, 1, irPulse
 LOOP UNTIL irPulse > ThresholdStart
 PULSIN IrDet, 0, irPulse ' Get data pulses.
 IF irPulse > ThresholdPulse THEN remoteCode.BIT0 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT1 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT2 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT3 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT4 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT5 = 1
 RCTIME IrDet, 0, irPulse
 IF irPulse > ThresholdEdge THEN remoteCode.BIT6 = 1
 #CASE BS2SX, BS2P
 DO ' Wait for start pulse.
 PULSIN IrDet, 0, irPulse
 LOOP UNTIL irPulse > ThresholdStart
 PULSIN IrDet, 0, irPulse ' Get data pulses.
 IF irPulse > ThresholdPulse THEN remoteCode.BIT0 = 1
 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT1 = 1

Page 168 · IR Remote for the Boe-Bot

 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT2 = 1
 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT3 = 1
 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT4 = 1
 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT5 = 1
 PULSIN IrDet, 0, irPulse
 IF irPulse > ThresholdPulse THEN remoteCode.BIT6 = 1
 #CASE #ELSE
 #ERROR "BASIC Stamp version not supported by this program."
 #ENDSELECT

 ' Map digit keys to actual values.
 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1
 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

BASIC Stamp 2 Series Example - Multi-Digit Application
You can use the remote for keypad entry of values by replacing the DO…LOOP in
IrRemoteButtonDisplay.bs2's main routine with the one shown below. It works for
values from 0 to 65535; just type in the value on the digital keypad, then press the
remote's ENTER key.

√ Add this declaration to the IrRemoteButtonDisplay.bs2's Variables section:

 value VAR Word ' Stores multi-digit value

√ Replace the DO…LOOP in IrRemoteButtonDisplay.bs2's main routine with the one
shown below.

√ Run the program and follow the Debug Terminal's prompts.

' Replace the DO...LOOP in the Main Routine with this one for multi-
' digit value acquisition (up to 65535). Value stored in value
' variable.

DEBUG CR, CR, "Type value from", CR, "0 to 65535,", CR,
 "then press ENTER", CR, CR

DO
 value = 0
 remoteCode = 0
 DO

 Appendix A: IR Remote AppKit Documentation · Page 169

 value = value * 10 + remoteCode
 DO
 GOSUB Get_Ir_Remote_Code
 IF (remoteCode > 9) AND (remoteCode <> Enter) THEN
 DEBUG "Use digit keys or ENTER", CR
 PAUSE 300
 ELSE
 DEBUG "You pressed: "
 IF remoteCode = Enter THEN
 DEBUG "Enter", CR
 ELSE
 DEBUG DEC remoteCode, CR
 ENDIF
 PAUSE 300
 ENDIF
 LOOP UNTIL (remoteCode < 10) OR (remoteCode = Enter)
 LOOP UNTIL (remoteCode = Enter)
 DEBUG ? value, CR, "Ready for next value...", CR
LOOP

Boe-Bot Application for the BASIC Stamp 2
This next application requires a Boe-Bot robot with a BASIC Stamp 2 module which you
will be able to control by pressing and holding the numeric keys to execute the
maneuvers shown in the figure. In addition, you can use CH+ = forward, CH- = backward,
VOL+ = rotate right, VOL- = rotate left.

Numeric Keypad
Direction Control

Page 170 · IR Remote for the Boe-Bot

The routine below is for a Boe-Bot robot with Parallax Continuous Rotation servos. Its
left servo should be connected to P13, and its right servo connected to P12. If you have
Parallax PM servos, use 500 in place of 650 and 1000 in place of 850 for the PULSOUT
command Duration arguments.

√ Replace the DO…LOOP in the IrRemoteButtonDisplay.bs2's main routine with this
one, run it, and operate the Boe-Bot with your remote. Have fun!

DEBUG CR, CR, "Press and hold digit", CR, "or CH+/-, VOL+/- keys", CR,
 "to control the Boe-Bot..."

DO
 GOSUB Get_Ir_Remote_Code
 SELECT remoteCode
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate left
 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate right
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT
LOOP

 Appendix A: IR Remote AppKit Documentation · Page 171

More Resources
These resources are available from www.parallax.com.

Lindsay, Andy. IR Remote for the Boe-Bot, Student Guide, Version 1.0, California:
Parallax, Inc., 2004.
This book is discussed on the first page of this package insert.

Williams, Jon. The Nuts and Volts of the BASIC Stamps, Volume 3, California:
Parallax, Inc., 2003.
Column #76: Control from the Couch introduces capturing and decoding SONY TV IR
control signals with the BASIC Stamp 2SX (or 2p).

BASIC Stamp is a registered trademark of Parallax Inc. Boe-Bot, Parallax, and the Parallax logo are trademarks of
Parallax Inc. Sony is a registered trademark of Sony Corporation Japan.

 Index · Page 173

Index

 - . -

.BIT, 48

.LOWBIT modifier, 49

 - 3 -

38.5 kHz, 4

 - 9 -

9 key, 39

 - A -

array, 19
declaring variables, 19

using Debug Terminal, 20

array elements, 19
.LOWBIT modifier, 49

index, 19

array variable, 19
array variable declaration, 23
audience, vii
autonomous navigation, 97

 - B -

batteries, 2, 6, 7
BIN, 47
BIN modifier, 47
binary number system, 46
binary numbers, 45

bits, 46

counting, 45

binary to decimal conversion, 47
bits, 46

Board of Education, 70
Boe-Bot functions

autonomous navigation with remote
adjustment, 97

autonomous roaming, 110

following, 110

interrupt operation, 109

IR roaming with speed control, 102

menu system, 136

remote control, 110

remote programming, 125

speed control, 102

Boe-Bot Robot Kit, 2

 - C -

carrier signal, 5
CLS, 51
communication protocol, 5
compile time, 127
CON directive, 58
Continuous Rotation servos, 32

 - D -

DATA, 64, 127
debounce, 72
DEBUG, 12, 13

BIN modifier, 47

DEC modifier, 22

DEBUG modifier
CLS, 51

Page 174 · IR Remote for the Boe-Bot

Debug Terminal, 11
DEBUGIN, 21, 51
DEC modifier, 22
decimal number system, 46
decode, 45
disable switch, 70
DO…LOOP, 13
DO…LOOP UNTIL, 77

 - E -

Educational Support, viii
END, 62

 - F -

FOR…NEXT, 21
FREQOUT, 31, 73

 - H -

high pulse, 10

 - I -

IF…THEN, 54
IF…THEN…ENDIF, 13
index, 19
infrared detector, 3, 9
infrared led, 2, 3, 8, 10, 11, 20, 23, 160
instruction booklet, 7
IR LED, 3
IR Remote AppKit, 1
IR Remote AppKit Documentation, 159

 - K -

key patterns, 16

 - L -

large numbers, 70
least significant bit first, 5
LED shield assemblies, 3
LSB-first, 5

 - M -

maneuvers, 33
Memory Map, 105
multi-digit values, 71

 - N -

negative pulse, 10

 - P -

Parallax Educator's Group, viii
Parts from Boe-Bot Parts Kit, 3
PBASIC commands

PULSIN, 9

PBASIC commands
.BIT variable modifier, 48

.LOWBIT modifier, 49

BIN modifier, 47

CLS modifier, 51

compile time commands, 127

DATA directive, 64, 127

DEBUG, 13

DEBUGIN, 21

DEC modifier, 22

DO…LOOP, 13

DO…LOOP UNTIL, 77

END, 62

FOR…NEXT, 21

FREQOUT, 31

IF…THEN…ENDIF, 13

PIN declaration, 61

PULSOUT, 9

 Index · Page 175

RCTIME, 36

run time commands, 127

SELECT…CASE, 55, 58

syntax. See PBASIC Syntax Guide

VAR decalration, 58

WRITE, 131

PBASIC Syntax Guide, 127
piezospeaker, 70
Piezospeaker, 3
PIN, 61
positive pulse, 10
program orgainzation, 148
protocol, 5
Pulse width modulation, 5
PULSIN, 9, 54
PULSOUT, 69
PWM, 5

 - R -

RCTIME, 36, 54
remote-controlled car, 29
Reset button, 70
Resistors, 3
reusable code, 97
run time, 127

 - S -

SELECT…CASE, 55, 58, 65, 135
servos, 32, 37

time delay, 37

SONY protocol, 5
spaghetti code, 90
subroutines, 58
Support, viii
syntax. See PBASIC Syntax Guide

 - T -

Teacher’s Guide, viii
Technical Support, viii
timing diagram, 6, 17
Transmit Windowpane, 20, 49

 - U -

UI. See user interface
Universal Remote, 2
user interface, 126

 - V -

VAR declarations, 58
variable modifier

.BIT, 48

variables, 12
VCR control buttons, 64

 - W -

Word modifier, 128
WRITE, 131

