1

Seattle Robotics

CMUcam Vision System

for

[image: image1.jpg]

[image: image2.jpg]CMUcam

B Boe 25t

oe Sewrre Sebeias

Soattlo Roboticw

A W — T ——
-—

Faa= « Boe-Bot

User Manual

Boe-Bot

User Manual

This is a modified version of the CMUcam Manual v1.15 for the CMUcam v1.12 firmware.

This product or portions thereof is manufactured under license from Carnegie Mellon University.

Copyright 2002 Anthony Rowe and Carnegie Mellon University. All Rights Reserved.

2About the CMUcam

About the camera
2
Getting Started
3
For Technical Support:
3
Installing the CMUcam on your Boe-Bot
4
Mounting
4
Wiring
5
Important Notes:
5
Battery Problems
5
CMUcam tilt angle
6
Lens focus
6
Serial Communication format
7
CMUcam color balance
7
Software - Getting Started
8
Program 1
8
CMUcam Calibration procedure - Important
9
Program 2
9
Program 3
11
Program 4
13
Program 5
15
Basic Command Set
18
Output Data Packet Descriptions - Basic
21
Information for advanced users
22
Parallel Processing in Slave Mode
22
Advanced Command Set
23
Output Data Packet Descriptions - Advanced
27

About the CMUcam

The functions provided by the CMUcam are meant to give the user a toolbox of color vision functions. Actual applications may vary greatly and are left up to the imagination of the user. By being able to change the viewable window, grab color / light statistics and track colors the user can interweave these functions on the host processor (Basic Stamp) to create higher levels of functionality.

The CMUcam is a SX28 microcontroller (http://www.ubicom.com/products/processors/sx28ac.html) interfaced with a OV6620 Omnivision CMOS camera (http://www.ovt.com/omnicmoss.htm) on a chip that allows simple high level data to be extracted from the camera’s streaming video. The board communicates using a TTL level serial port and has the following functionality:

Track user defined color blobs at 17 Frames Per Second

Find the centroid of the blob

Gather mean color and variance data

Arbitrary image windowing
80x143 Resolution

9600 baud serial communication

Automatically detect a color and drive a servo to track an object

Slave parallel image processing mode off a single camera bus – advanced function

Ability to control 1 servo or have 1 digital I/O pin – advanced function

Adjust the camera's image properties – advanced function

About the camera

When using the camera outside, due to the sun’s powerful IR (Infra-Red) emissions, even on relatively cloudy days, it will probably be necessary to use either an IR cutoff filter or a neutral density 3 camera filter to decrease the ambient light level. We have found a lens taken from a cheap drug store pair of sunglasses when placed over the camera lens will allow the CMUcam to work in sun lit conditions.

Getting Started
Your Boe-Bot CMUcam kit includes:

1. A CMUcam with mounting brackets and colored connecting wires installed

2. Two 1” standoffs

3. A printed user manual

4. [image: image3.png]©) R
8 olio —

Ground
+Tnput

Signal

A CD-ROM that includes an electronic versions of this manual, data sheets and videos of the Boe-Bot running the included tutorial programs.

Before opening the plastic bag containing the CMUcam be careful to discharge any static charge from your body before handling the CMUcam. Typically you can do this by holding your finger to a metal table or lamp as you remove the CMUcam from its package. Although the CMUcam is quite rugged static discharge can damage it. You may wish to use a grounding strap during installation.

You may notice that the CMUcam printed circuit board appears to be missing some of the components. This is correct, there is nothing wrong with your board. The circuit board for the CMUcam is a multi-purpose board capable of serving several functions. The optimal components for the Boe-Bot have been incorporated in this version of the assembly. Your CMUcam board and camera module have been tested at the factory before shipping to assure proper operation when you get it.
For Technical Support:

Parallax, Inc.

http://www/parallaxinc.com
 or http://www.stampsinclass.com
sales@parallaxinc.com
 or stampsinclass@parallaxinc.com

(916) 624-8333

Fax: (916) 624-8003

Seattle Robotics

www.seattlerobotics.com
support@seattlerobotics.com
(253) 630-9836

Fax: (253) 630-9914

Carnegie Mellon University

http://www.cs.cmu.edu/~cmucam
cmucam@cs.cmu.edu
Installing the CMUcam on your Boe-Bot

Mounting

1. Before beginning the installation process be sure the power to your Boe-Bot is disconnected. It is good practice to remove the batteries from the Boe-Bot during the installation process.

2. Remove the two 4-40 screws that hold the front of the Boe-Bot circuit board to the chassis and set them aside as you will use them again in a moment.

3. Remove the standoff next to the servo connector that is between the Boe-Bot circuit board and the chassis. Do this by removing the 4‑40 screw that holds it to the bottom of the Boe-Bot chassis. Set this screw and standoff aside as you will use them again in a moment.

4. The 1” standoff that mounts the CMUcam next to the servo connector requires a special assembly procedure, as it cannot be turned because it’s so close to the servo connector.

5. Get one of the 4-40 male/female standoffs included in the CMUcam box. The only way to install this standoff is to tighten the existing short standoff originally located between the Boe-Bot circuit board and the chassis while holding the male/female standoff in place. Do not allow the male/female standoff to turn as it will damage the servo connector on top of the circuit board due to the tight fit. Do not over-tighten.

6. Turn the Boe-Bot upside-down to reinstall the screw that holds the short standoff to the Boe-Bot chassis. Do not over-tighten.

7. Turn the Boe-Bot right side up and get the other 4-40 male/female standoff included in the CMUcam box. Screw the standoff in place of the 4​‑40 screw that you earlier removed from the side of the Boe-Bot circuit board without the servo connector. Do not over-tighten.

8. Use the two original 4-40 screws to attach the CMUcam bracket to the top of 1” standoffs on the front of your Boe-Bot as per the picture below.

[image: image4.png]'www.parallaxinc.com

PAALLAX 7

Wiring

The black wire is plugged into the “Vss” connector located on the front edge of the connector on the side of the breadboard. The red wire is plugged into the “Vdd” connector located on the front edge of the connector on the side of the breadboard. Be careful not to plug the red or black wire into any Vdd or Vss connections on the expansion connector located in the center of the Boe-Bot circuit board. Your CMUcam power connections will not work correctly from those connection points.

Be very careful when you plug the red and black power wires from the CMUcam into the Boe-Bot. You must be sure the power connections are not reversed or permanent damage will occur to your CMUcam.

You can plug the blue and white serial communication wires into any two unused I/O pins available on your Stamp. We recommend you plug the blue wire into P10 and the white wire into P9. This will allow you to run all of the included tutorial programs as written, without modification.

Double check that these power connections are correct before proceeding.

Connect power to your Boe-Bot and observe that the CMUcam red power LED turns on. If the CMUcam red power LED does not turn on disconnect the power immediately and double check your wiring.

[image: image5.png]Stave Mot Jumpert

Important Notes:

Battery Problems

If your CMUcam and Boe-Bot appear to work erratically chances are your batteries are discharged. The CMUcam consumes a hefty 200 ma of power from your Boe-Bot voltage regulator and batteries. This will make your batteries run down much sooner than before. Be sure and replace all four batteries at the same time with quality alkaline batteries.

You may wish to construct the Low Battery Indicator circuit from your Parallax Robotics Student Workbook chapter 2, activity 1. This can help diagnose intermittent low battery problems.

CMUcam tilt angle

[image: image6.jpg]

For typical applications you will want to adjust the mounting bracket so your CMUcam has a downward tilt angle similar to the picture below. This allows your Boe-Bot to see directly in front of it and a short distance forward and forward to the right and left. The pivot point on the mounting bracket uses knurled head nylon screws that you can loosen and tighten by hand. Be careful not to over tighten these screws as they are made of soft plastic and you can strip them. You can use the camera tilt angle as a way of fine tuning your programs forward / backward and right / left performance.

Lens focus

The lens comes pre-focused for close-up to moderate range viewing, which works best with your Boe-Bot for most applications. Once you are experienced using the CMUcam you may have an application that requires a farther distant focus and you can gently turn the lens housing in or out to adjust.

Caution: The focus on the CMUcam is very sensitive. It will function as is for most any application using the Boe-Bot. Be very careful when adjusting the focus to only change it in small increments. If it gets very far out of focus it will have difficulty identifying and tracking objects close up and far away.

You should also be aware of the fact that technically speaking the CMUcam is mounted upside down on its mounting bracket. This reverses the relationship of the X and Y data from the camera.

Serial Communication format

The serial communication parameters are as follows:

9600 Baud

8 Data bits

1 Stop bit

No Parity

No Flow Control (Not Xon/Xoff or Hardware)

All commands are sent using visible ASCII characters (123 is 3 bytes "123"). Upon a successful transmission of a command, the ACK string should be returned. If there was a problem in the syntax of the transmission, or if a detectable transfer error occurred, a NCK string is returned. After either an ACK or a NCK, a \r is returned. When a prompt ('\r' followed by a ':') is returned, it means that the camera is waiting for another command in the idle state. White spaces do matter and are used to separate argument parameters. The \r (ASCII 13 carriage return) is used to end each line and activate each command. If visible character transmission exerts too much overhead, it is possible to use varying degrees of raw data transfer. (See Raw Mode)

CMUcam color balance

Better Tracking with Auto-gain and White-balance

Auto-gain is an internal control that adjusts the brightness level of the image to best suit the environment. It attempts to normalize the lights and darks in the image so that they approximate the overall brightness of a hand adjusted image. This process iterates over many frames as the camera automatically adjusts its brightness levels. If for example a light is turned on and the environment gets brighter, the camera will try and adjust the brightness to dim the overall image.

White-balance on the other hand attempts to correct the camera’s color gains based on the ambient light conditions and the environment. The ambient light in your image may not be pure white. In this case, the camera will see colors differently. The camera begins with an initial guess of how much gain to give each color channel. If active, white-balance will adjust these gains on a frame-by-frame basis so that the average color in the image approaches a gray color. Empirically, this “gray world” method has been found to work relatively well. The problem with gray world white-balance is that if a solid color fills the camera’s view, the white-balance will slowly set the gains so that the color appears to be gray and not its true color. Then when the solid color is removed, the image will have undesirable color gains until it re-establishes its gray average.

To better identify and track colors, all of the tutorial programs begin by adjusting the auto-gain and white-balance to the environment in which you are operating your Boe-Bot. Once set they are turned off during operation. To properly set the auto-gain and white-balance place your Boe-Bot where you will be operating it without any objects in front of it. Connect the battery and press the Boe-Bot RESET button. You will notice that the green LED illuminates for 5 seconds. During this time the auto-gain and white-balance are being set. Once the LED goes off place the colored object you wish to track in front of the camera until the green LED comes on once again. The CMUcam is now ready to track your colored object.

Software - Getting Started

All the getting started tutorial programs are on the included CD-ROM so you can upload them to your Boe-Bot directly without having to type them into the editor.

Now that your CMUcam is mounted on your Boe-Bot and the power wires are correctly connected our first program will test to make sure the Boe-Bot Stamp 2 can communicate with the CMUcam.

Program 1

This program sets up a 9600-baud serial connection between the Stamp and the CMUcam. It then tells the CMUcam to blink its green LED. Do not proceed further into the tutorial until this program works successfully.

'{$STAMP BS2}

' CMUcam Boe-Bot Demo Program 1

' Copyright 2002 Seattle Robotics

' Basic Stamp 2

' CMUcam jumpered for Baud 9600 (BS2 code 84) - jumper 2 and 3 installed

' This program flashes the green tracking LED -

' on the CMUcam to show serial communication is OK

' Hardware setup:

' Wire 2 pin 10 to CMUcam TTL level serial Rcv pin on -

' the main 13 pin .100 header just past jumper 3 position

' Wire 2 pin 9 to CMUcam TTL level serial Xmt pin on -

' the main 13 pin .100 header just past jumper 3 position

' Wire 2 GND to CMUcam TTL level GND pin on -

' the main 13 pin .100 header just past jumper 3 position

' We only wait for the ":" character instead of the -

' entire "ACK:" (or "NACK:" if error) because the Stamp 2 is to -

' slow to receive - this works very well in practice

Main:

' Flash the tracking LED

' Send command - Turn on track LED

serout 10, 84, ["L1 1",CR]

serin 9, 84, [Wait (":")]

debug "LED on ACK: received OK",CR

' Wait 1/2 second

Pause 500

' Send command - Set track LED back to auto mode

serout 10, 84, ["L1 2",CR]

serin 9, 84, [Wait (":")]

debug "LED off ACK: received OK",CR

' Wait 1/2 second

Pause 500

Goto Main

CMUcam Calibration procedure - Important
To successfully identify and track colored objects using the CMUcam you must calibrate the CMUcam to the lighting environment in which it will be operating.

1. Place the robot on the floor of the area in which it will be operating with no objects in front of it.

2. Hold the Boe-Bot reset button down and release.

3. After about a one second delay the green LED on the CMUcam (next to the red power LED) will illuminate for 5 seconds while the CMUcam is calibrating to your lighting conditions.

4. When the green LED turns off you have 5 seconds to place your object to be tracked in front of the camera.

5. Hold the object to be tracked a few inches away and directly in front of the CMUcam until the green LED illuminates again. Please note - When locking onto the color to be tracked the CMUcam samples a small area in the center of the image. If you wish to track small objects smaller than 3” diameter it may take trial and error testing to determine exactly where to hold the object so the CMUcam will properly lock onto the objects color.

6. The CMUcam is now ready to track objects of that color.

7. This calibration method is used in programs 2 through 5. It is demonstrated in video “AutoAdjust.avi” found in the Videos directory on your included CD-ROM.

Program 2

The first data packet displayed by the Debug screen is the “S” Statistics packet which tells you the color of the object it is tracking. The Stamp then loops displaying on your PC debug screen The “M” Track Color (TC) packet once per second. You will want to move your object being tracked around and watch the PC debug screen. This will let you evaluate the ability of your camera to track an object. Try different color objects and different sizes to see the effects on the tracking data. This is an important program that you will re-use many times as you as you find more and more interesting things to do with your CMUcam and Boe-Bot. This program allows you to see and understand exactly what your Boe-Bot can see with its CMUcam. Remember to follow the “CMUcam Calibration Procedure” section or you will find the CMUcam does a poor job of locking on to your colored object.
'{$STAMP BS2}

' CMUcam Demo Program 2

' Copyright 2002, Seattle Robotics

' Basic Stamp 2

RcvData Var Byte(10)

' Pause 1 second for CMUcam startup

pause 1000

' Send "reset" to sync CMUcam and Stamp

serout 10, 84, ["RS", CR]

serin 9, 84, [Wait (":")]

pause 1000

' Green LED on

serout 10, 84, ["L1 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Turn on auto adjust for 5 seconds

serout 10, 84, ["CR 18 44",CR]

serin 9, 84, [Wait (":")]

pause 100

' Pause 5 seconds for CMUcam to auto adjust to lighting conditions

pause 5000

' Turn off auto adjust

serout 10, 84, ["CR 18 44 19 32",CR]

serin 9, 84, [Wait (":")]

pause 100

' Green LED auto mode

serout 10, 84, ["L1 2",CR]

serin 9, 84, [Wait (":")]

pause 100

' Give user time to place color target close in front of camera

pause 5000

' Send command - Set poll mode - only sends one return packet -

' of data after each command - reduces data flow

serout 10, 84, ["PM 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Send command - Set raw data mode - also suppress Ack:/Nak: to -

' further reduce serial data

serout 10, 84, ["RM 3",CR]

pause 100

' Track Window command looks at the center of CMUcam image -

' grabs the color information and sends to the Track Color function

' Send command - Track window

serout 10, 84, ["TW",CR]

' Display the S Statistics packet from TW command

serin 9, 84, [STR RcvData\8]

' Raw mode S packet data format:

' 0 Byte always 255

' 1 Byte always Character S

' 2 Byte Red Mean

' 3 Byte Green Mean

' 4 Left Blue Mean

' 5 Left Red Deviation

' 6 Right Green Deviation

' 7 Right Blue Deviation

' Display all returned camera S Statistics packet data to PC debug screen

debug "Red Mean ",DEC RCVData(2) ,CR

debug "Green Mean ",DEC RCVData(3) ,CR

debug "Blue Mean ",DEC RCVData(4) ,CR

debug "Red Deviation ",DEC RCVData(5) ,CR

debug "Green Deviation ",DEC RCVData(6) ,CR

debug "Blue Deviation ",DEC RCVData(7) ,CR

debug " ", CR

' Ignore the first M packet from TW

pause 2000

Main:

pause 1000

' Send command - Track color (with no arguments) -

' will track last color grabbed by TW command

serout 10, 84, ["TC",CR]

' Raw mode M packet data format:

' 0 Byte always 255

' 1 Byte always Character M

' 2 Byte Middle Mass X

' 3 Byte Middle Mass Y

' 4 Left corner X

' 5 Left corner Y

' 6 Right corner X

' 7 Right corner Y

' 8 Byte is Pixels

' 9 Byte is Confidence

serin 9, 84, [STR RcvData\10]

' Display all returned camera M Track Color packet data to PC debug screen

debug "Middle Mass X ",DEC RCVData(2) ,CR

debug "Middle Mass Y ",DEC RCVData(3) ,CR

debug "Left Corner X ",DEC RCVData(4) ,CR

debug "Left Corner Y ",DEC RCVData(5) ,CR

debug "Right corner X ",DEC RCVData(6) ,CR

debug "Right Corner Y ",DEC RCVData(7) ,CR

debug "Pixels ",DEC RCVData(8) ,CR

debug "Confidence ",DEC RCVData(9) ,CR

debug " ", CR

Goto Main

Program 3

See the movie “Program3.avi” located in the "videos" directory of your included CD-ROM.

This program demonstrates simple control of the Boe-Bot drive wheel servos and allows the robot to move forward, right and left while following an object placed in front of the robot. This program uses a very simple method to determine when the tracked object is close enough and when to stop the robot. The program looks at how large the tracked object is using the Pixels data from the CMUcam. The assumption is that when the Pixels value is large the object is close. Try different size objects and you will see the limitations of using this method to determine range. Notice the Confidence data is also checked before the robot moves. This is important to prevent erratic movement. The tracking data from the CMUcam is only reliable when the Confidence level is at least 20. Remember to follow the “CMUcam Calibration Procedure” section or you will find the CMUcam does a poor job of locking on to your colored object.

'{$STAMP BS2}

' CMUcam Boe-Bot Demo Program 3

' Copyright 2002, Seattle Robotics

' Basic Stamp 2

' CMUcam jumpered for Baud 9600

RcvData Var Byte(10)

n var byte

Confid var byte

' Pause 1 second for CMUcam startup

pause 1000

' Send "reset" to sync CMUcam and Stamp

serout 10, 84, ["RS",CR]

serin 9, 84, [Wait (":")]

pause 1000

' Green LED on

serout 10, 84, ["L1 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Turn on auto adjust for 5 seconds

serout 10, 84, ["CR 18 44",CR]

serin 9, 84, [Wait (":")]

pause 100

' Pause 5 seconds for CMUcam to auto adjust to lighting conditions

pause 5000

' Turn off auto adjust

serout 10, 84, ["CR 18 44 19 32",CR]

serin 9, 84, [Wait (":")]

pause 100

' Green LED auto mode

serout 10, 84, ["L1 2",CR]

serin 9, 84, [Wait (":")]

pause 100

' Give user time to place color target close in front of camera

pause 5000

' Send command - Set poll mode - only sends one return packet -

' of data after each command - reduces data flow

serout 10, 84, ["PM 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Send command - Set raw data mode - also suppress Ack:/Nak: to -

' further reduce serial data

serout 10, 84, ["RM 3",CR]

pause 100

' Track Window command looks at the center of CMUcam image -

' grabs the color information and sends to the Track Color function

' Send command - Track window

serout 10, 84, ["TW",CR]

' Ignore the S packet and M packet from TW

pause 2000

Main:

' Send command - Track color (with no arguments) -

' will track last color grabbed by TW command

serout 10, 84, ["TC",CR]

serin 9, 84, [STR RcvData\10]

Confid = RcvData(9)

' 45 is aprox H center

 If RCVData(2) > 65 And Confid > 20 Then Left

 If RCVData(2) < 25 And Confid > 20 Then Right

 If RCVData(8) < 150 And Confid > 25 Then Fwd

' Trim the pulsout numbers for your servos

Goto Main

Left:

for n = 1 to 10

pulsout 14,600 ' 600

pulsout 15,600 ' 600

next

Goto main

Right:

for n = 1 to 10

pulsout 14,850 ' 850

pulsout 15,850 ' 850

next

Goto main

Fwd:

for n = 1 to 10

pulsout 14,900 ' 900

pulsout 15,550 ' 550

pause 15

next

Goto main

Program 4
See the movie “Program4.avi” located in the "videos" directory of your included CD-ROM.
This program shows an important concept for using the CMUcam to determine the range and to track objects using the vertical “Y” coordinate and the “ground plane constraint”. The “ground plane constraint” simply means we are assuming the floor the robot is operating on is relatively flat. You want the CMUcam to be at a downward angle pointing toward the floor for the “ground plane constraint” effect to work well. When the CMUcam is angled down toward the floor we can determine the approximate range to the tracked object by the “Y” position data from the image. Remember to follow the “CMUcam Calibration Procedure” section or you will find the CMUcam does a poor job of locking on to your colored object.

'{$STAMP BS2}

' CMUcam Boe-Bot Demo Program 4

' Copyright 2002, Seattle Robotics

' Basic Stamp 2

' CMUcam jumpered for Baud 9600

RcvData Var Byte(10)

n var byte

Confid var byte

' Pause 1 second for CMUcam startup

pause 1000

' Send "reset" to sync CMUcam and Stamp

serout 10, 84, ["RS",CR]

serin 9, 84, [Wait (":")]

pause 1000

' Green LED on auto calibrate mode

serout 10, 84, ["L1 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Turn on auto adjust for 5 seconds

serout 10, 84, ["CR 18 44",CR]

serin 9, 84, [Wait (":")]

pause 100

' Pause 5 seconds for CMUcam to auto adjust to lighting conditions

pause 5000

' Turn off auto adjust

serout 10, 84, ["CR 18 44 19 32",CR]

serin 9, 84, [Wait (":")]

pause 100

' Green LED auto mode

serout 10, 84, ["L1 2",CR]

serin 9, 84, [Wait (":")]

pause 100

' Give user time to place color target close in front of camera

pause 5000

' Send command - Set poll mode - only sends one return packet -

' of data after each command - reduces data flow

serout 10, 84, ["PM 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Send command - Set raw data mode - also suppress Ack:/Nak: to -

' further reduce serial data

serout 10, 84, ["RM 3",CR]

pause 100

' Track Window command looks at the center of CMUcam image -

' grabs the color information and sends to the Track Color function

' Send command - Track window

serout 10, 84, ["TW",CR]

' Ignore the S packet and M packet from TW

pause 2000

Main:

' Send command - Track color (with no arguments) -

' will track last color grabbed by TW command

serout 10, 84, ["TC",CR]

serin 9, 84, [STR RcvData\10]

Confid = RcvData(9)

' 45 is aprox H center

' 70 is aprox V center

' Change these values to adjust the Left / Right performance

 If RCVData(2) > 65 And Confid > 25 Then Left

 If RCVData(2) < 25 And Confid > 25 Then Right

 If RCVData(7) > 120 And Confid > 25 Then Bwd

 If RCVData(7) < 60 And Confid > 25 Then Fwd

' ** Trim the pulsout numbers for your particular servos

Goto Main

Left:

for n = 1 to 10

pulsout 14,600 ' **

pulsout 15,600 ' **

next

Goto main

Right:

for n = 1 to 10

pulsout 14,850 ' **

pulsout 15,850 ' **

next

Goto main

Fwd:

for n = 1 to 10

pulsout 14,900 ' **

pulsout 15,550 ' **

pause 15

next

Goto main

Bwd:

for n = 1 to 10

pulsout 14,550 ' **

pulsout 15,900 ' **

pause 15

next

Goto main

Program 5
See the movie “Program5.avi” located in the "videos" directory of your included CD-ROM.
A fun way to learn how to use your CMUcam and Boe-Bot together is to try and program your robot to play a simplified version of a competition game like soccer. The first skill your Boe-Bot needs to play a game like soccer is the ability to find and then push a ball. This program does a very simple search by rotating in place until the ball is seen and then moving toward the ball and pushing it forward. This program stops the robot when the ball stops moving which should mean you have pushed the ball into an immovable object or wall. Remember to follow the “CMUcam Calibration Procedure” section or you will find the CMUcam does a poor job of locking on to your colored object.

'{$STAMP BS2}

' CMUcam Boe-Bot Demo Program 5

' Find and push the soccer ball

' Stop when the ball stops moving

' Copyright 2002, Seattle Robotics

' Basic Stamp 2

' CMUcam jumpered for Baud 9600

RcvData Var Byte(10)

MotionX var byte

MotionY var byte

Flag var byte

n var byte

Confid var byte

' Pause 1 second for CMUcam startup

pause 1000

' Send "reset" to sync CMUcam and Stamp

serout 10, 84, ["RS",CR]

serin 9, 84, [Wait (":")]

Pause 1000

' Green LED on auto calibrate mode

serout 10, 84, ["L1 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Turn on auto adjust for 5 seconds

serout 10, 84, ["CR 18 44",CR]

serin 9, 84, [Wait (":")]

pause 100

' Pause 5 seconds for CMUcam to auto adjust to lighting conditions

pause 5000

' Turn off auto adjust

serout 10, 84, ["CR 18 44 19 32",CR]

serin 9, 84, [Wait (":")]

pause 100

' Green LED auto mode

serout 10, 84, ["L1 2",CR]

serin 9, 84, [Wait (":")]

pause 100

' Give user time to place color target close in front of camera

pause 5000

' Send command - Set poll mode - only sends one return packet -

' of data after each command - reduces data flow

serout 10, 84, ["PM 1",CR]

serin 9, 84, [Wait (":")]

pause 100

' Send command - Set raw data mode - also suppress Ack:/Nak: to -

' further reduce serial data

serout 10, 84, ["RM 3",CR]

pause 100

' Track Window command looks at the center of CMUcam image -

' grabs the color information and sends to the Track Color function

' Send command - Track window

serout 10, 84, ["TW",CR]

' Ignore the S packet and M packet from TW

pause 2000

Main:

' Send command - Track color (with no arguments) -

' will track last color grabbed by TW command

serout 10, 84, ["TC",CR]

serin 9, 84, [STR RcvData\10]

MotionX = RCVData(2)

MotionY = RCVData(3)

Confid = RcvData(9)

' 45 is aprox H center

' 70 is aprox V center

Flag = 0

 If RCVData(2) > 65 And Confid > 25 Then Left

 If RCVData(2) < 25 And Confid > 25 Then Right

 If Confid > 20 Then Fwd

' If no ball seen rotate

If Flag = 0 Then Left

Goto Main

' ** Trim the pulsout numbers for your particular servos

Left:

for n = 1 to 10

pulsout 14,600 ' **

pulsout 15,600 ' **

next

Flag = 1

Pause 1000

Goto main

Right:

for n = 1 to 10

pulsout 14,850 ' **

pulsout 15,850 ' **

next

Flag = 1

Pause 1000

Goto main

Fwd:

for n = 1 to 10

pulsout 14,900 ' **

pulsout 15,550 ' **

pause 15

next

Flag = 1

' If the object being tracked stops moving we are stuck

' and we should stop the motors

serout 10, 84, ["TC",CR]

serin 9, 84, [STR RcvData\10]

If MotionX = RCVData(2) And MotionY = RCVData(3) Then Halt

Goto main

Halt:

' Blink green LED to signify stopping

serout 10, 84, ["L1 0",CR]

Pause 1000

serout 10, 84, ["L1 1",CR]

Pause 1000

serout 10, 84, ["L1 0",CR]

Stop

Basic Command Set

\r (the “enter” or “return” key)

This command is used to set the camera board into an idle state. Like all other

commands, you should receive the acknowledgment string "ACK” or the not

acknowledge string "NCK" on failure. After acknowledging the idle command the

camera board waits for further commands, which is shown by the ':' prompt. While in

this idle state a /r by itself will return an "ACK" followed by \r and : character prompt.

Example of how to check if the camera is alive while in the idle state

:

ACK

:

GM\r

This command will Get the Mean color value in the current image. As with the TC

command this function only operates on a selected region of the image. The mean

values will be between 16 and 240. It will also return a measure of the average absolute

deviation of color found in that region. The mean together with the deviation can be a

useful tool for automated tracking or detecting change in a scene. In YCrCb mode RGB

maps to CrYCb.

Type S data packet format

S Rmean Gmean Bmean Rdeviation Gdeviation Bdeviation\r

Example of how to grab the mean color of the entire window

:SW 1 1 40 143

ACK

:GM

ACK

S 89 90 67 5 6 3

S 89 91 67 5 6 2
L1 value\r

This command is used to control the green LED tracking Light. It accepts 0, 1 and 2 (default) as inputs. 0

disables the tracking light while a value of 1 turns on the tracking light. A value of 2 puts the light

into its default auto mode. In auto mode and while tracking, the light turns on when it detects the

presence of an object that falls within the current tracking threshold. This command is useful as a

debugging tool.

Example of how to toggle the Tracking Light on and then off

:L1 2

ACK

:L1 0

ACK
MM mode\r

This command controls the Middle Mass mode which adds the centroid coordinates to the normal

tracking data. A mode value of 0 disengages middle mass, a value of 1(default) engages middle

mass and a value of 2 engages the mode and turns on the servo PWM signal that tries to center the

camera on the center of color mass (see the Demo Mode Jumper description). This mode is good

if you want a single point representation of where the object is or if there is too much small

background noise to get a good bounding box. To switch the direction of the servo it is necessary

to set the 2nd bit (counting from 0 i.e. bit-wise OR in the value 4) of the mode value. If the 3rd bit

is set (bit-wise OR in the value 8), then tracking a color will return a type N packets that is identical

to a type M packet, only it contains the current servo position as its first return value (see Output

Data Packet Description section).

Example of how to disable Middle Mass mode

:MM 0

ACK

:TC

ACK

C 38 82 53 128 35 98

C 38 82 53 128 35 98

C 38 82 53 128 35 98

NF active\r

This command controls the Noise Filter setting. It accepts a Boolean value 1 (default) or 0. A

value of 1 engages the mode while a value of 0 deactivates it. When the mode is active, the

camera is more conservative about how it selects tracked pixels. It requires 2 sequential pixels for

a pixel to be tracked.

Example of how to turn off noise filtering

:NF 0

ACK

:

PM mode\r

This command puts the board into Poll Mode. Setting the mode parameter to 1 engages poll mode

while 0 (default) turns it off. When poll mode is engaged only one packet is returned when an

image processing function is called. This could be useful if you would like to rapidly change

parameters or if you have a slow processor that can't keep up with a given frame rate.

Example of how to get one packet at a time

:PM 1

ACK

:TC 50 20 90 130 70 255

ACK

C 38 82 53 128 35 98

:
RS \r

This command ReSets the vision board. Note, on reset the first character is a /r.

Example of how to reset the camera

:rs

ACK

CMUcam v1.12

:

SW [x y x2 y2] \r

This command Sets the Window size of the camera. It accepts the x and y Cartesian coordinates

of the upper left corner followed by the lower right of the window you wish to set. The origin is

located at the upper left of the field of view. SW can be called before an image processing

command to constrain the field of view. Without arguments it returns to the default full window

size of 1,1,80,143.

Example of setting the camera to select a mid portion of the view

:SW 35 65 45 75

ACK

:
TC [Rmin Rmax Gmin Gmax Bmin Bmax]\r

This command begins to Track a Color . It takes in the minimum and maximum RGB (CrYCb)

values and outputs a type M or C data packet (set by the MM command). The smaller type C

packet encodes a bounded box that contains pixels of the currently defined color, the number of

found pixels (scaled: actual value is (pixels+4)/8) that fall in the given color bounds and a

confidence ratio. The default type M packet also includes the center of mass of the object. The

resolution of the processed image is 80x143. The X values will range from 1 to 80 and the y

values will range from 1 to 143. A packet of all zeros indicates that no color in that range was

detected. The confidence value is a ratio of the pixels counted within the given range and the area

of the color bounding box. It returns a value which ranges from 0 to 255. Under normal

operations any value greater then 50 should be considered a very confident lock on a single

object. A value of 8 or lower should be considered quite poor. With no arguments, the last color

tracking parameters will be repeated.

Type M packet

M mx my x1 y1 x2 y2 pixels confidence\r

Type C packet

C x1 y1 x2 y2 pixels confidence\r

Example of how to Track a Color with the default mode parameters

:TC 130 255 0 0 30 30

ACK

M 50 80 38 82 53 128 35 98

M 52 81 38 82 53 128 35 98

M 51 80 38 82 53 128 35 98

TW \r

This command will Track the color found in the central region of the current Window. After the

color in the current window is grabbed, the track color function is called with those parameters

and on the full screen. This can be useful for locking onto and tracking an object held in front of

the camera. Since it actually calls track color, it returns the same type of C or M color packet.

Note, your set window will only be used for grabbing the color to track and then the window will

return to 80x143.

Example of how to use Track Window:

:TW

ACK

S 240 50 40 12 7 8

C 2 40 12 60 10 70

C 3 41 12 61 11 70

C 2 40 12 60 13 70

C 3 42 12 62 9 70

C 4 45 12 60 8 70
Output Data Packet Descriptions - Basic

All output data packets are in ASCII viewable format.

ACK

This is the standard acknowledge string that indicates that the command was received and

fits a known format.

NCK

This is the failure string that is sent when an error occurred. The only time this should be

sent when an error has not occurred is during binary data packets.

Type C packet

This is the return packet from a color tracking command.

x1 - The left most corner's x value

y1 - The left most corner's y value

x2 - The right most corner's x value

y2 -The right most corner's y value

pixels –Number of Pixels in the tracked region, scaled and capped at 255: (pixels+4)/8

confidence -The (# of pixels / area)*256 of the bounded rectangle and capped at 255

C x1 y1 x2 y2 pixels confidence\r

Type M packet

This is the return packet from a color tracking command with Middle Mass mode on.

mx - The middle of mass x value

my - The middle of mass y value

x1 - The left most corner's x value

y1 - The left most corner's y value

x2 - The right most corner's x value

y2 -The right most corner's y value

pixels –Number of Pixels in the tracked region, scaled and capped at 255: (pixels+4)/8

confidence -The (# of pixels / area)*256 of the bounded rectangle and capped at 255

M mx my x1 y1 x2 y2 pixels confidence\r

Type S data packet format

This is a statistic packet that gives information about the camera's view

Rmean - the mean Red or Cr (approximates r-g) value in the current window

Gmean - the mean Green or Y (approximates intensity) value found in the current window

Bmean - the mean Blue or Cb (approximates b-g) found in the current window

Rdeviation - the *deviation of red or Cr found in the current window

Gdeviation- the *deviation of green or Y found in the current window

Bdeviation- the *deviation of blue or Cb found in the current window

S Rmean Gmean Bmean Rdeviation Gdeviation Bdeviation\r

*deviation: The mean of the absolute difference between the pixels and the region mean.

Information for advanced users

Servo Port

This is the output for the servo. The positive signal does not go through a regulator from the board’s power

input. Do not use a servo with the board if the board is being run off of more than 6 volts.

[image: image7.jpg]

Parallel Processing in Slave Mode

The CMUcam supports a mode of operation that allows multiple boards to process data from the same

camera. If a PC104 style pass-through header is used instead of the standard double row female header, it

is possible to rack multiple boards along the same camera bus. Upon startup, if jumper 1 is set, the camera

becomes a slave. Slave mode stops the camera board from being able to configure or interfere with the

CMOS camera’s settings. Instead it just processes the format setup by the master vision board. When

linking the buses together you must only have one master; all other boards should be setup to be in slave

mode. In this current version of the system there is no message passing between boards other than the

image data from the camera bus. This means you have to communicate to each slave board via a separate

serial link. This communication to the board should be identical to using a single CMUcam. For example,

you could have the master board tracking some color while the slave board could be told to get mean color

data. Each board runs independently of one another and only the master can control camera registers.

[image: image8.jpg]/“. EEX TR
s 3

. # '__}jv
oy 7T T T3 £t AV APPSR
- '4-- - - ~
. - '/ 7

L ;‘.....“.....\‘

.

N\ v’
”

Advanced Command Set

CR [reg1 value1 [reg2 value2 ... reg16 value16]]\r

This command sets the Camera's internal Register values directly. The register locations and

possible settings can be found in the Omnivision documentation. All the data sent to this

command should be in decimal visible character form unless the camera has previously been set

into raw mode. It is possible to send up to 16 register-value combinations. Previous register

settings are not reset between CR calls; however, you may overwrite previous settings. Calling

this command with no arguments resets the camera and restores the camera registers to their

default state.

Useful Settings:

Register

Values

3 Saturation

0-255 (default = 128)

5 Contrast

0-255 (default = 72)

6 Brightness

0-255 (default = 128)

17 Clock Speed

2
17 fps (default)

3
13 fps

4
11 fps

5
9 fps

6
8 fps

7
7 fps

8
6 fps

10
5 fps

12
4 fps

18 Color Mode

0 YCrCb*, AGC off, Auto White-balance Off

4 YCrCb*, AGC off, Auto White-balance On

32 YCrCb*, AGC on, Auto White-balance Off

36 YCrCb*, AGC on, Auto White-balance On

8 RGB, AGC off, Auto White-balance Off

12 RGB, AGC off, Auto White-balance On

40 RGB, AGC on, Auto White-balance Off (default)

44 RGB, AGC on, Auto White-balance On

> Turns off or on both the Auto White-balance and Auto-gain Controls

19 Auto Adjust

32 Auto Adjust Off

33 Auto Adjust On (default)

> Use the Band Filter with Fluorescent lighting

45 Band Filter

3 Band Filter Off (default)

7 Band Filter On

Example of decreasing the internal camera clock speed (default speed is 2)

:CR 17 5

ACK

:

*The red channel becomes Cr which approximates r-g, The green channel becomes Y which approximates

intensity, the blue channel becomes Cb which approximates b-g

RGB -> CrYCb

Y=0.59G + 0.31R + 0.11B

Cr=R-Y

Cb=B-Y
DF\r

This command will Dump a Frame out the serial port to a computer. This is the only

command that will by default only return a non-visible ASCII character packet. It dumps

a type F packet that consists of the raw video data column by column with a frame

synchronize byte and a column synchronize byte. (This data can be read and displayed

by the CMUcam GUI Java application.) Since the data rate required to send the raw video

greatly exceeds the maximum serial port speed, only one column per frame is sent at a

time. This allows you to see a slowly updating view of what the camera sees. To get the

correct aspect ratio, double each column of pixels. The camera is able to dump a full

resolution frame at full speed (17 columns per second) only at 115,200 baud. At lower

baud rates, or 115,200 baud with added delays the frame rate must be decreased in order

to see a full resolution image. With auto-gain on and at lower frame rates, the image at

first may appear much brighter than usual. This is because the camera is getting frames

slower than usual and takes longer to adapt. Try manually setting the brightness and

contrast.

Type F data packet format

1 - new frame

2 - new col

3 - end of frame

RGB (CrYCb) ranges from 16 - 240

1 2 r g b r g b ... r g b r g b 2 r g b r g b r ... r g b r g b ...

Example of a Frame Dump from a terminal program

(WARNING: This may temporarily interfere with a terminal program by sending nonvisible

characters)

:DF

ACK

maKP(U A$IU AL<>U A$L*YL%*L L (G AUsonthAYA(KMAy098a34ymawvk....

DM value\r

This command sets the Delay before packets that are transmitted over the serial port. The value

should be set between 0 and 255. A value of 0 (default) has no delay and 255 sets the maximum

delay. Each delay unit correlates to approximately the transfer time of one bit at the current baud

rate.

GV\r

This command Gets the current Version of the firmware from the camera. It returns an

ACK followed by the firmware version string.

Example of how to ask for the firmware version

:GV

ACK

CMUcam v1.12

HM active\r

This command puts the camera into Half-horizontal resolution Mode for the DF command and the

LM command when dumping a bitmap image. An active value of 1 causes only every odd column

to be processed. The default value of 0 disables the mode.

I1 \r

This command uses the servo port as a digital Input. Calling I1 returns either a 1 or 0 depending

on the current voltage level of the servo line. The line is pulled high; because of this it is only

required to pull it low or let it float to change it’s state. The servo line can also be used as a digital

output. (See S1 command)

Example of how to read the digital value of the servo line

:I1

ACK

1

LM active\r

This command turns on Line Mode which uses the time between each frame to transmit more

detailed data about the image. It adds prefix data onto either C, M or S packets. This mode is

intended for users who wish to do more complex image processing on less reduced data. Since the

frame rate is not compromised, the actual processing of the data put out by the vision system must

be done at a higher rate. This may not be suitable for many slower microcontrollers.

Line mode’s effect on TC and TW:

When line mode is active and TC or TW is called, line mode will send a binary bitmap of

the image as it is being processed. It will start this bitmap with an 0xAA flag value (hex value AA

not in human readable form). The value 0xAA will not occur in the data stream. This is followed

by bytes each of which contains the binary value of 8 pixels being streamed from the top-left to

the bottom-right of the image. The vertical resolution is constrained by the transfer time of the

horizontal data so lines may be skipped when outputting data. In full resolution mode, the

resulting binary image is 80x48. The binary bitmap is terminated by two 0xAA’s. This is then

followed by the normally expected standard C or M data packet (processed at that lower

resolution).

Example of TC with line mode on

:LM 1

:TC

(raw data: AA XX XX XX …. XX XX XX AA AA) C 45 72 65 106 18 51

(raw data: AA XX XX XX …. XX XX XX AA AA) C 46 72 65 106 18 52

Line mode’s effect on GM:

When line mode is active and GM is called, line mode will send a raw (not human

readable) mean value of every line being processed. These packets are started with an 0xFE and

terminate with an 0xFD. Each byte of data between these values represents the corresponding

line’s mean color value. Similarly to the bitmap mode the vertical resolution is halved, because of

the serial transfer time. At 17 fps 115,200 baud every other line is skipped. At any slower frame

rate (still 115,200 baud) no lines will be skipped.

Example of GM with line mode on

:LM 1

:GM

(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8

(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8
RM bit_flags\r

This command is used to engage the Raw serial transfer Mode. It reads the bit values of the first 3

(lsb) bits to configure settings. All bits cleared sets the default visible ASCII mode. If bit 0 is set,

then all output from the camera is in raw byte packets. The format of the data packets will be

changed so as not to include spaces or be formatted as readable ASCII text. Instead you will

receive a 255 valued byte at the beginning of each packet, followed by the packet and the packet

identifying character (i.e. C for a color packet). There is no \r sent after each packet, so you must

use the 255 to synchronize the incoming data. Any 255 valued bytes that may be sent as part of

the packet are set to 254 to avoid confusion. If bit 1 is set, the “ACK\r” and “NCK\r”

confirmations are not sent. If bit 3 is set, input will be read as raw byte values, too. In this mode,

after the two command byte values are sent, send 1 byte telling how many arguments are to

follow. (i.e. DF followed by the raw byte value 0 for no arguments) No \r character is required.

If bit 0 is enabled, then output to the camera is in raw bytes

If bit 1 is enabled, then the “ACK\r” and “NCK\r” confirmations are suppressed

If bit 2 is enabled, then input to the camera is in raw bytes

Example of the new packet for Track Color with Raw Mode output only

(WARNING: This may temporarily interfere with a terminal program by sending non

visible characters)

:RM 1

ACK

:TC 50 20 90 130 70 255

ACK

C>%k(ai Ck$&,.L

S1 position \r

This command lets you Set the position of servo 1. 0 turns the servo off and holds the line low. 1-

127 will set the servo to that position while it is tracking or getting mean data. Any value 128 and

higher sets the line high. In order for the servo to work, the camera must be in either a tracking

loop or mean data gather loop. Values 0 and 128 can be useful if you wish to use the servo port as

a digital output. The port can also be used as a digital input (see I1 command). The “MM”

command can enable or disable the automatic servo tracking.

SM value \r

This command is used to enable the Switching Mode of color tracking. When given a 0 it is in it's

default mode where tracking will return its normal C or M color packet. If the value is set to 1, the

tracking commands will alternate each frame between color packets and S statistic packets. Each

statistic packet is only being sampled from an area one quarter the size of the bounded area

returned from the tracking command. If no object was bounded, then no S statistic packets are

returned. This can be useful for adaptive tracking or any type of tracking where you would like to

get feedback from the currently bound target. After the first tracking packet is returned, the

window gets set back to full size for all future packets. Note, you will get only half the number of

actual color packets per time interval.

Example of how to Track Color with SM

:SM 1

ACK

:TC 200 255 0 30 0 30

ACK

C 2 40 12 60 10 70

S 225 20 16 2 3 1

C 5 60 20 30 12 100

S 225 19 17 1 2 1

C 0 0 0 0 0 0

C 0 0 0 0 0 0

C 0 0 0 0 0 0

C 5 60 20 30 12 100

S 225 19 17 1 2 1

Output Data Packet Descriptions - Advanced

All output data packets are in ASCII viewable format except for the F frame and prefix packets.

ACK

This is the standard acknowledge string that indicates that the command was received and

fits a known format.

NCK

This is the failure string that is sent when an error occurred. The only time this should be

sent when an error has not occurred is during binary data packets.

Type N packet

This is identical to a type M packet with an added value for the servo position.

spos – The current position of the servo

N spos mx my x1 y1 x2 y2 pixels confidence\r
Binary bitmap Line Mode prefix packet

This packet is in raw byte form only. It starts off with the hex value 0xAA and then streams bytes,

with each byte containing a mask for 8 pixels, from the top-left to the bottom-right of the image.

(Each binary bit in the byte represents a pixel) The bitmap is then terminated with two 0xAAs.

0xAA is never transmitted as part of the data, so it should be used to signify termination of the

binary bitmap. After the binary bitmap is complete, a normal tracking packet should follow.

(raw data: AA XX XX XX …. XX XX XX AA AA) C 45 72 65 106 18 51

(raw data: AA XX XX XX …. XX XX XX AA AA) C 46 72 65 106 18 52

Get mean Line Mode prefix packet

This packet prefix outputs the mean color of each row being processed. These packets are started

with an 0xFE and terminate with an 0xFD. Each byte of data between these values represents the

corresponding line’s mean color value. Due to the serial transfer time, the vertical resolution is

halved. After all rows have been completed, a normal tracking packet should follow.

(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8

(raw data: FE XX XX XX … XX XX XX FD) M 45 56 34 10 15 8
Type F data packet format

1 - new frame 2 - new col 3 - end of frame

RGB (CrYCb) ranges from 16 - 240

RGB (CrYCb) represents a two pixels color values. Each pixel shares the red and blue.

176 cols of R G B (Cr Y Cb) packets (forms 352 pixels)

144 rows

To display the correct aspect ratio, double each column so that your final image is 352x144

It does not begin with an “F” and only sends raw data!

1 2 r g b r g b ... r g b r g b 2 r g b r g b ... r g b r g b ...

1
Boe-Bot CMUcam Manual v1.1
Page 22 of 1
November 12, 2002

