
Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 195

Column #114 October 2004 by Jon Williams:

Measuring Up – Up to 80 Centimeters, That
Is

Add a bit of intelligence to your Halloween displays with IR distance measuring.

The night is drawing closer ... my favorite night of the whole year: Halloween. I love
Halloween; the costumes, haunted houses, parties, friendly exchanges with trick-or-treaters –
Halloween is the best. When I have the chance something I like to do is build Halloween-
oriented props and decorations, and when I do you can bet that many of those props get some
sort of automation via the BASIC Stamp microcontroller.

Good Halloween props add an element of surprise which, of course, intensifies the fright –
and that's the most fun about Halloween, right? The only problem is that as a society we are
far more sophisticated than in the past (especially the teenagers). We can easily see through a
cheesy effect and find the trigger, which ruins the effect for those that immediately follow.

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 196 • The Nuts and Volts of BASIC Stamps (Volume 5)

Instead of using a fixed-point trigger for an automated prop, what if we used a distance
measuring device so that we could select a random trigger point? That would keep 'em
guessing, wouldn't it? You bet. We've used sonic measuring devices in the past (SRF-04 and
SRF-08), this time we'll do it with infrared. The device we're going to use is the low-cost
Sharp GP2D12.

Read Volts, Get Distance

There is no great mystery to using the GP2D12: we simply connect it to an appropriate
analog-to-digital converter and read the output voltage. The voltage is then converted to
distance.

The first part is very easy. For this project we'll use the ADC0831 analog-to-digital
converter, a part we've used before and should have no troubles with. In order to simplify the
project code, we'll connect the wiper of a mutli-turn pot to the Vref input of the ADC0831 and
set this to 2.55 volts. What this does for us is set each output count to be equal to 0.01 volts
(255 [max count] divided by 2.55 [Vref] = 0.01 volts / count). Figure 114.1 shows the
schematic for the project.

Figure 114.1: ADC0831 to GP2D12 Schematic

Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 197

Let's have a look at the code that reads the voltage from the ADC0831:

Read_0831:
 LOW AdcCS
 SHIFTIN AdcDta, AdcClk, MSBPOST, [result\9]
 HIGH AdcCS
 RETURN

This code is straightforward, but if you haven't used the ADC0831 before you may be
wondering why we need nine clocks for an eight-bit value. As always, you should download
the documentation for any part you're working with, and when you look at the ADC0831
timing chart you'll see that the ADC conversion is started by bringing the CS (chip select) line
low, then putting a pulse on the clock line – here's where we get the extra clock pulse. The
value bits are clocked out, MSB to LSB, with the following eight clock pulses. Each ADC bit
is valid after the falling edge of the clock, so we use MSBPOST to read the bits. Once all the
bits are clocked in the device is deselected by bringing the CS line back high.

Okay, that's done, but what we're likely to run into is a bit of jitter in actual application. An
easy way to smooth this jitter is to take the average of multiple readings. Let's do it:

Read_GP2D12:
 cVolts = 0
 FOR idx = 1 TO 3
 GOSUB Read_0831
 cVolts = cVolts + result
 PAUSE 30
 NEXT
 cVolts = cVolts / 3
 RETURN

We start by clearing the old cVolts value and then with a loop, take three readings of the
ADC0831 and accumulate them. Keep in mind that we will need to use a Word-sized
variable for cVolts, otherwise we'd likely get a roll-over error after the second reading. At the
end of the loop we divide the accumulation by the number of loop iterations to get the average
value.

What happens, though, when we're in a pinch for variable space? One way around this –
though likely to be slightly less accurate than the method above, is to divide each reading
before accumuating. Keep in mind that the lower the reading and the larger the divisor means
a greater likelihood for error. If you keep the divisor small, this shouldn't become too much
of a problem. Here's the code for the alternate version:

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 198 • The Nuts and Volts of BASIC Stamps (Volume 5)

Read_GP2D12_Alternate:
 cVolts = 0
 FOR idx = 1 TO 3
 GOSUB Read_0831
 cVolts = cVolts + (result / 3)
 PAUSE 30
 NEXT
 RETURN

Straightening the Curve

Now comes the tricky part – converting the voltage output of the GP2D12 to a distance value.
Have a look at Figure 2 and you'll see why I say this is tricky. Over the entire measurement
range, the output from GP2D12 is not at all linear in respect to distance, so a simple mx + b
equation is just not going to work. I plugged the data into a curve fitting program and found
that it takes a fourth-order equation to get anywhere close to the data set. Applying a fourth-
order equation with 16-bit integer-only math is just not very practical.

There are are interesting solutions to this dilema, but most of them were more than I wanted
to wrap my brain around so I decided simple is better than interesting (my middle name,
afterall, is "Simple"). Looking at the graph again we can see that the segments between data
points are not far from the curve that would fit between those same points. What I decided to
do then, is to calculate the slope between data points and interpolate from there. I felt like this
was an acceptable solution given the slighty loose specifications of the GP2D12 (it is a low-
cost device).

First things first – that curve in Figure 114.2 actually came from my sensor bounced of an
18% gray card (something phographers use). Using some cardboard and foam blocks, I setup
and marked a test jig at five centimeter intervals, then measured the voltage at each interval
from 10 to 80 centimeters using the code we've developed thus far.

Now what? As I just mentioned, the segments between data points can be treated as a line, so
what we can do is find the data points that surround our current reading, calculate the slope of
the line between them, and then interpolate the distance. Let's have a look at the code that
does this then work our way through.

Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 199

Figure 114.2: GPD212 Distance v. Voltage

Here's the table of distance readings from my test setup:

Vout DATA 251, 179, 139, 114, 97
 DATA 85, 76, 67, 62, 57
 DATA 53, 50, 48, 46, 43
 DATA 0

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 200 • The Nuts and Volts of BASIC Stamps (Volume 5)

And now the code that uses the table and the current voltage reading:

Estimate_Cm:
 FOR idx = 0 TO 15
 READ (Vout + idx), test2
 IF (test2 <= cVolts) THEN EXIT
 NEXT

 SELECT idx
 CASE 0
 cm = 10

 CASE 1 TO 14
 cm = 10 + (5 * idx)
 IF (test2 <> cVolts) THEN
 READ (Vout + idx - 1), test1
 slope = (test1 - test2) * 10 / Xspan
 cm = cm - ((cvolts - test2) * 10 / slope)
 ENDIF

 CASE 15
 cm = 80
 ENDSELECT
 RETURN

The first part of the process is locating the position of the current reading vis-à-vis the table
values from our test setup. Since the table is very small the simplest method is to loop
through the possible values until we find the test point that is less than or equal to our current
voltage reading. We can use EXIT to terminate the loop early when we find a match.

On the extremes – when idx is either 0 or 15 – we simply set the distance reading to the
minimum or maximum values. When I first stared working with the code I tried to provide an
"out of range" calculation but the way the output falls on the data points, this just didn't work
out very well. So keep this in mind when using the GP2D12 with this code: a reading of 10
cm actually means ten centimeters or less; a reading of 80 cm means 80 centimeters or
greater.

Things get interesting when idx is between one and 14. The first step is to calculate the rough
distance using idx. Next we check to see if the value of test2 is not equal to cVolts, because if
it is we're done and have the distance value in hand. Most of the time, test2 will be less than
cVolts so we'll find the other value that borders (is greater than) our current reading and
interpolate from there.

Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 201

At this point we already have the table value lower than cVolts, what we do next is subtract
one from idx and read the value that is greater than cVolts – we'll put this value in test1. Now
that we have the table values surrounding our input from the GP2D12, we can calculate the
slope between them be taking the difference and dividing by the span between these points (5
centimeters in our test data). Since we're doing a division and the values on the outer end of
the range get very small, we'll multiply the difference by 10 before dividing. This will
prevent us from getting a slope value of zero.

We're almost done. The final step is to divide the difference between our current reading
(cVolts) and test2 by the slope, then subtract that from the rough calculation of distance.
Again we'll multiply the difference value by 10 – this time to remove the offset introduced by
the way we calculated the slope.

Just to make things crystal clear, let's work through a set of numbers. We'll start with an input
voltage of 2.10 volts. The table search will set idx to one as this entry (179) is the fist value
less the current value of cVolts. Our rough calculation of distance, then, is 15 centimeters. At
this point test2 is indeed less than cVolts so we have to read the next lower table value (251)
and place this into test1. Using 251 and 179 for test1 and test2 we get a slope value of 144 (at
this point slope is in millivolts per cm). Using the BASIC Stamp's integer math, the
difference from our rough distance calculation works out like this:

 ((210 – 179) * 10 / 144 = 2

When we subtract two from our rough calculation we end up with a distance reading of 13
centimeters.

Okay, so much for the theory, how does it work in practice? I marked up my test rig at one
centimeter intervals and found that it worked pretty well – the readings across the range were
within a centimeter of the actual distance to my target. I found this perfectly acceptable given
the [slightly loose] specifications of the GP2D12.

The reason I developed the code that I did is that it's very easy to plug in different sensor
values. And I elected to use a DATA table instead of LOOKUP so that the program can be
more easily expanded with more table entries (LOOKUP tables beyond a few values can get
unwieldy). If you'd like to find a way to plug the voltage value into a formula in order to get
the distance value, I encourage you to visit the Acroname web site and look at their
application note on the GP2D12. That note goes into a very detailed discussion of finding
slope and offset points to linearize the output from the GP2D12. It's a little bit complicated
and requires some experimentation, but you may find this method valuable.

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 202 • The Nuts and Volts of BASIC Stamps (Volume 5)

Scare 'Em, Danno

Before we head out, let's chat a bit about using the sensor as I suggested at the beginning of
the article. As I've frequently mentioned in the past, we can learn a lot by mimicing what pros
have already done. I was in a public washroom a few days ago and the sinks had automated
faucets. When one places their hands about six inches from the nozzle the water starts
running.

How would you program the BASIC Stamp to mimic the faucet control (to apply it to a
Halloween display)? This would be my strategy:

1. Measure distance to target.
2. Is distance less than threshold?
3. If no, go back to Step 1.
4. If yes, check several more times with a delay in between.
5. If target stays in range, trigger the device.
6. Add a [random] delay allow the prop to run and reset.
7. Go back to Step 1.

Can you do it? Of course you can – you're a BASIC Stamp programmer!

Have a safe and happy Halloween. Until next time, Happy Stamping.

Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 203

' ===
'
' File...... GP2D12.BS2
' Purpose... Read voltage from GP2D12 and estimate object distance
' Author.... Jon Williams
' E-mail.... jwilliams@parallax.com
' Started...
' Updated... 16 AUG 2004
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---
'
' Uses ADC0831 ADC to read voltage output from GP2D12 range sensor. Note
' that the Vref input of the ADC0831 is set to 2.55 vdc, giving 0.01 volts
' per count.
'
' Output is to a SEETRON serial LCD set at 9600 baud.

' -----[Revision History]--

' -----[I/O Definitions]---

Lcd PIN 0 ' serial out to LCD

AdcDta PIN 15 ' ADC data line
AdcClk PIN 14 ' ADC clock
AdcCS PIN 13 ' ADC chip select

' -----[Constants]---

Xspan CON 5 ' 5 cm per data point

LcdI CON $FE ' lcd command instruction
LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdDDRam CON $80 ' Display Data RAM control
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 204 • The Nuts and Volts of BASIC Stamps (Volume 5)

 T1200 CON 813
 T2400 CON 396
 T4800 CON 188
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T4800 CON 500
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
#ENDSELECT

Inverted CON $4000
Open CON $8000

LcdBaud CON T9600 + Inverted ' for SEETRON LCD

#DEFINE __Has_LCD = 1 ' set to 0 for DEBUG

' -----[Variables]---

result VAR Byte ' adc result
cVolts VAR Word ' 0.01 volts
cm VAR Byte ' centimeters
idx VAR Nib

test1 VAR Byte ' test values for
test2 VAR Byte ' interpolation
slope VAR Word ' mV/cm between test points

' -----[EEPROM Data]---

Vout DATA 251, 179, 139, 114, 97
 DATA 85, 76, 67, 62, 57
 DATA 53, 50, 48, 46, 43
 DATA 0

' -----[Initialization]--

Reset:
 HIGH AdcCS
 #IF __Has_LCD #THEN
 PAUSE 500
 SEROUT Lcd, LcdBaud, [LcdI, LcdCls]

Column #114: Measuring Up – Up to 80 Centimeters, That Is

The Nuts and Volts of BASIC Stamps (Volume 5) • Page 205

 PAUSE 1
 SEROUT Lcd, LcdBaud, [LcdI, LcdLine1+3, "* GP2D12 *"]
 PAUSE 3000
 SEROUT Lcd, LcdBaud, [LcdI, LcdCls]
 PAUSE 1
 #ELSE
 DEBUG CLS, "GP2D12 Demo"
 #ENDIF

' -----[Program Code]--

Main:
 GOSUB Read_GP2D12 ' read sensor
 GOSUB Estimate_Cm ' estimate distance

 #IF __Has_LCD #THEN
 SEROUT Lcd, LcdBaud, [LcdI, LcdHome]
 PAUSE 1
 SEROUT Lcd, LcdBaud, [DEC cVolts / 100, ".", DEC2 cVolts]
 SEROUT Lcd, LcdBaud, [LcdI, LcdLine2, DEC cm, " cm"]
 #ELSE
 DEBUG CRSRXY, 0, 2,
 DEC cVolts / 100, ".", DEC2 cVolts,
 TAB, "volts", CR,
 DEC cm, TAB, "cm"
 #ENDIF

 PAUSE 100
 GOTO Main
 END

' -----[Subroutines]---

Read_0831:
 LOW AdcCS ' enable ADC0831
 SHIFTIN AdcDta, AdcClk, MSBPOST, [result\9] ' read the voltage
 HIGH AdcCS ' disconnect ADC0831
 RETURN

Read_GP2D12:
 cVolts = 0 ' reset reading
 FOR idx = 0 TO 2 ' three reads (to filter)
 GOSUB Read_0831 ' get the voltage
 cVolts = cVolts + result ' accumulate
 PAUSE 30
 NEXT
 cVolts = cVolts / 3 ' average the readings
 RETURN

Column #114: Measuring Up – Up to 80 Centimeters, That Is

Page 206 • The Nuts and Volts of BASIC Stamps (Volume 5)

Estimate_Cm:
 FOR idx = 0 TO 15 ' search table for location
 READ (Vout + idx), test2 ' read table value
 IF (test2 <= cVolts) THEN EXIT ' found position
 NEXT

 SELECT idx
 CASE 0
 cm = 10 ' fix to minimum range

 CASE 1 TO 14 ' calculate range
 cm = 10 + (5 * idx)
 IF (test2 < cVolts) THEN ' estimate through
interpolation
 READ (Vout + idx - 1), test1 ' get other border value
 slope = (test1 - test2) * 10 / Xspan ' determine slope between
points
 cm = cm - ((cvolts - test2) * 10 / slope)
 ENDIF

 CASE 15
 cm = 80 ' fix to maximum range
 ENDSELECT
 RETURN

