
Chapter #9: A Mazing Things

A Mazing Things

Mobile robots can do many things

but one of the most basic is to

move between two points while

avoiding obstacles. The programs

used with the J-Bot thus far have

been relatively simple. They use the various sensors to avoid an

obstacle but they will not traverse a complex set of obstacles

such as walls that make up a maze.

In this chapter we examine some basic maze traversal algorithms.

The J-Bot will use the infrared detectors configured and tested

in prior chapters to help it traverse a maze without bumping into

a wall. For our purposes, a wall will be considered a boundary

that the J-Bot should not cross. We do this because the J-Bot can

be setup to detected either a vertical wall in front of it or a

virtual wall created by some black tape like that used for the

line follower experiment. In the latter case, the J-Bot’s

infrared sensors will be aimed at the floor. The floor should be

a color that reflects the infrared light. Typically a white floor

will be suitable. The J-Bot can detect the difference between the

white floor and the black tape designed to be the wall.

Two sensor classes are already defined to handle the two types of

maze walls. The IrRangeSensor is used to detected walls while the

IrRangeDropOffSensor is used to detect virtual walls implemented

using black tape on a white floor. Either sensor can be used with

the applications presented in this chapter. The one you use will

depend upon the type of maze that is constructed for the J-Bot.

Maze exploration can get very elaborate. It is possible to have

start and stop points but this requires additional recognition by

the J-Bot. The J-Bot can easily handle additional sensors to

detect when it exits a maze. For example, an IR sensor could be

aimed up to detect when the J-Bot passes through an arch. In this

chapter we forego the stop point detection and simply let the J-

Bot run forever. It a maze contest is being run then the J-Bot

can simply be picked up once it exits the maze or crosses the

stop point.

There are a number of different ways to navigate through a maze.

Three are presented in this chapter including:

Random Walk

Right Hand Rule

Basic Backtracking

The Random Walk is similar to the normal obstacle avoidance

programs used earlier in this book with a minor change so that

the J-Bot will turn in a random direction if an obstacle is found

in front of it. In theory, the J-Bot should will eventually find

Chapter #9: A

Mazing Things

Chapter #9: A Mazing Things

its way out of a maze but it may take a very long time since it

will cover the same area many times.

The Right Hand Rule approach uses a simple mechanism for finding

a way out of a maze. It is called the right hand rule because the

a person could find their way out of a maze by walking so their

right hand could touch the wall. This method always works if the

maze does not have any cycles. A cycle occurs when there is a

wall does not come in contact with a wall that forms the maze

exterior. A maze without a cycle is often called a simple maze. A

maze with one or more cycles is called a complex maze. The right

hand rule will get the J-Bot out of any simple maze. It will get

the J-Bot out of a complex maze if it starts next to the exterior

wall. If the J-Bot starts next to a wall that is not the exterior

wall it will follow the wall forever. The Right Hand Rule is

simple to implement and it will normally get the J-Bot out of a

simple maze faster than the random walk.

The Random Walk and the Right Hand Rule approach do not keep

track of where the J-Bot has been. The J-Bot does not know if it

winds up in the same spot more than once because the algorithms

do not incorporate any form of memory. The J-Bot simply responds

to immediate feedback.

The Basic Backtracking approach brings memory into play. It keeps

track of where the J-Bot has been and where it should look next

if a particular path does not lead out of the maze. The Random

Walk and Right Hand Rule do not require precise movements but the

Basic Backtracking approach does because the J-Bot will need to

backup to a point where it can continue to explore if a

particular path results in a dead end.

Activity #1: Random Walk

The Random Walk approach utilizes a task to control movement and

a sensor object to detect obstacles. As mentioned earlier, the

IrRangeSensor and IrRangeDropOffSensor classes can be used. The

sample program in this activity utilizes the IrRangeSensor.

The theory behind the Random Walk maze exploration approach is

that random movements when an obstacle is encountered

The RandomWalkTask class file below is very similar to the

AvoidObstacleTask class used earlier in the book.

There are three major differences between the RandomWalkTask

class and the AvoidObstacleTask class definitions. First, the

RandomWalkTask does not check the distance to an obstacle. This

Chapter #9: A Mazing Things

is done so either type of the aforementioned sensors can be used.

Remember, the floor looking sensors do not provide a good

distance result so an obstacle distance will always be reported

as zero.

The second difference is that most movements are chosen randomly

when an obstacle is encountered. The exception is when an

obstacle is detected only to the left or right. This is where the

randomness comes into play. The flipCoin method uses a Random

object to generate a result. The Random.next method returns a

number between 0 and MAX_RAND. If the object generates a truly

random sequence of numbers then half will be above MAX_RAND/2 and

half will be below this value. This is essentially the same as

flipping a coin to see if it lands showing heads or tails.

The third difference is minor. In the initialState in the execute

method, there is only one call to the nextState method. This is

because the extra calls in the AvoidObstacleTask’s execute method

were not really needed since the state remains the same unless

changed. Changing it to the same state has no affect on the

operation of the method.

The test program, RandomWalkTest1, is relatively simple since all

the work is done by the sensor object and RandomWalkTask.

The TaskManager method should not terminate since the

RandomWalkTask task will never terminate. If the RandomWalkTask

class is altered so it can check when the J-Bot exits the maze

then the TaskManager method to return.

The program begins running as soon as power is applied. Watch the

J-Bot as it moves through the maze. It should not come in contact

with the walls. If it does, try turning the IR LED and sensor on

each side towards the outside so it will detect obstacles to the

side sooner.

Keep in mind that the J-Bot may collide with a wall when moving

backwards since it has no sensors there. The J-Bot will not have

a problem if the maze provides enough room within a corridor. The

J-Bot will not be able to navigate corridors that are only

slightly larger than its width. In general, obstacles should be

at least one foot apart if the J-Bot is to pass between the

obstacles.

Your Turn

� The range sensor has not been optimized. It always checks all

16 distances. Is this necessary for this activity or is it

possible to check for the maximum distance first? Do closer

Chapter #9: A Mazing Things

distances need to be checked if a greater distance is

detected?

� The distance result from the range sensor is not used. What

would the difference be in the J-Bot’s movement be if the

distance result was checked to allow the J-Bot to get closer

to a wall? If the downward looking IR range sensor were used

instead, how could distance be judged?

Activity #2: Right Hand Rule

A simple maze actually consists of a single line that has been

bent at various points. Getting out the J-Bot of a maze of this

type is then a simple matter of following the line until the J-

Bot exits the maze.

The RightHandRuleTask class defined next handles the movement of

the J-Bot based on feedback from the sensor.

The waitNextState and waitSensorNextState methods are included

because these short sequences of method calls to change the state

variable and suspend the task are used often within the execute

method. Essentially the task runs, starts the sensor, suspends,

is resumed by the sensor when data is ready and the execute

method then determines what to do based on the sensor results.

The same process is used for movement that is initiated by the

sensor results. In this approach, only one task will actually be

running at any time. In general the execution sequence that is

done repeatedly is this task, the sensor task, this task, and

then the J-Bot movement task.

FYI

The Task resume method does not change the current

state. The stop method changes the state to stopped.

This is why the resume method must be used in the

waitNextState method definition.

The task cycling does lead to a start-stop movement of the J-Bot

because the sensors take a noticeable amount of time to get the

range of an obstacle. It is only a fraction of a second but

enough so that the movement of the J-Bot is not smooth. There are

tradeoffs compared to the approach taken in Activity #1. In

Activity #1, the J-Bot moves continuously but its sensor readings

are not as accurate because the J-Bot is moving so its movement

control is not that accurate. In this activity, the movement is

very accurate but the movement is not continuous.

Chapter #9: A Mazing Things

The execute method is where the task control is handled. The task

starts in the initialState where it starts the sensor using

waitSensorNextState. The execute method will be called again when

the sensor has obtained its results and notified this task so it

will enter the checkForObstacle clause of the switch statement.

The results of the sensor are tested and the J-Bot movement

control is initiated via the jbot object. The next state will be

initialState or doneWallToRight depending upon the sensor

results. If the next state is initialState then the J-Bot will

have moved forward one inch. This distance can be greater

depending upon the distance to an obstacle obtained from the

sensor but this is not checked in this version of the program. If

it were then the J-Bot could be instructed to move forward a

greater distance without colliding with an obstacle.

There are two logical, high level cases that this task can be in.

The first is where the J-Bot does not know where the wall is. The

second is where the J-Bot thinks the wall is to its right. In the

first case, the J-Bot moves forward until a wall is detected. It

then turns so the wall will be to its right that is the second

case. In the second case, the J-Bot moves forward a short

distance, turns right to check if the wall is still there. If it

is, the J-Bot turns left and moves forward trying to move along

the wall. If not, it assumes there is a turn and the J-Bot moves

forward assuming the wall is now to the right. It will know if

this assumption is correct after the initial movement.

The test program is relatively simple since most of the work is

done by the RightHandRuleTask.

The try/catch/finally method was added to this test program

because making changes in the tasks can result in some strange

errors. This allows the system to shut down gracefully. The main

method is not much different than in Activity #1. The range

sensor is created and passed to the newly created task object

that starts everything running. In theory, the Task.TaskManager

should never terminate because there is no maze exit detection

mechanism.

The J-Bot will require walls that are relatively far apart as in

Activity #1. It should be able to go down a corridor that is at

least one foot wide. In most cases, the wider the better.

The RightHandRuleTask has some deficiencies. It could allow the

J-Bot to get closer to a wall. It only moves one inch forward at

time, and it performs 90 degree turns when a 45 degree turn may

be sufficient. Correcting these deficiencies will make the

program more complicated but the new program will improve the way

the J-Bot operates. In particular, allowing the J-Bot to get

Chapter #9: A Mazing Things

closer to a wall will mean that it can traverse an area where the

walls are closer together.

The range sensor has not been optimized as noted in Activity #1.

Improving the response time for the sensor will minimize the

jerky movements associated with this application.

Activity #3: Basic Backtracking

The prior activities move around a maze but they do not take

advantage of the information to be gained by keeping track of

where the robot has gone. This activity takes a different

approach. Now the JBot maintains a map of the area it has

traveled in and uses that information to determine where it

should explore. The type of mapping and backtracking is just one

way to implement a more intelligent maze exploration program.

The JBot needs to operate on batteries, unattached to the PC.

Still, it is useful to let the JBot show you what it has been up

to. Short of using a wireless link (a good alternative when extra

hardware is added), the JBot can store the map it makes so it can

be printed when the JBot is reattached to the PC. This will look

something like the following captured from the Message window.

Stored map

Y range -1 2

X range -1 2

 2: . O . .

 1: O + O .

 0: O[+]+ O

-1: . O O .

In the example, there is a 4 x 4 element array. The unexplored

areas are noted by periods (.) and the obstacles are noted by the

letter O. The area traveled by the JBot is indicated by the plus

sign (+) and the starting position is in brackets ([]).

To do this, we need a few things. First is the main exploration

program, MazeMapTaskTest1. This will move the JBot through the

maze and create the map. The map will then be stored in the

JBot’s EEPROM when exploration is complete. The second program,

DumpMazeMapTaskTest1, is loaded after the JBot runs through the

maze. It reads the EEPROM and displays the information shown in

the Message window example just given. The EEPROM area is shared

by the programs and this data but there is more than enough space

for both. Downloading a new program does not overwrite the data

area allowing this approach to work.

The MazeMapTaskTest1 program is tested in the following fashion.

The program is downloaded from the PC to the JBot. The power and

PC cables are then disconnected from the JBot. The program is

stored in the EEPROM at this point. The JBot must have its

Chapter #9: A Mazing Things

batteries installed. The JBot is then placed in the maze and

battery power is applied by connecting the power cable to the

JBot. The JBot then moves through the maze mapping as it goes.

Once it thinks it has explored the entire maze the buzzer will

sound. The map is stored in EEPROM at this point.

The JBot is then reattached to the PC and the

DumpMazeMapTaskTest1 program is downloaded and run. The map

results are displayed and can be compared to the actual maze. To

repeat this scenario, the MazeMapTaskTest1 must be again

downloaded since the JBot will have the DumpMazeMapTaskTest1 in

memory at this time.

How It Works

There are a couple of classes that are needed to make things

work. These are covered in more detail later in the activity. The

main task is covered in The Mapping Task section that comes next.

The other classes are found in the Supporting Classes section. If

you are interested in the details then check out all the

sections. If you want to forego some of the details and

concentrate on what makes things move then you can leave the

Supporting Classes section till some later date.

The two main programs, MazeMapTaskTest1 and DumpMazeMapTaskTest1,

are covered in this program. They are relatively short since with

utilize existing classes or ones covered in this activity. The

MazeMapTaskTest1 is modular like the prior examples so it is

possible to replace the sample objects with almost any compatible

object. For example, the MazeMapTaskTest1 uses the IR detector

sensor class, IrRangeSensor. This can be replaced by any

compatible sensor like the whisker sensor class covered earlier

in the book. Likewise, the JBot movement support can be replaced

as well. The MazeMapTaskTest1 use the wheel encoder support

covered in the last chapter to keep a more accurate track of the

JBot’s movements.

The MazeMapTaskTest1 makes a couple of assumptions. First, the

sensors range is at least two inches. If this is not true, as

with the whisker sensors, then a minor adjustment to the mapping

task needs to be made to prevent the JBot from running into an

obstacle. Second, the JBot moves in fixed increments. This makes

control and mapping easier. It is possible to run the JBot so its

movements are continuous but this is a more difficult problem to

tackle. Finally, the program assumes that the areas that the JBot

will be able to explore are within its limitations. For example,

the corridors of the maze should be about 12 inches wide. The

JBot is assumed to occupy a 6 x 6 inch area that easily fits

within a 12-inch corridor. It will assume that an opening that is

too narrow for it as an obstacle. This of course depends upon the

sensors employed but it is best if the maze is setup so the JBot

can navigate it easily. This implies that the edge of a narrow

Chapter #9: A Mazing Things

wall should not be exposed since the JBot’s sensors may miss it

or improperly interpret the sensor results. In general, it is

best to make a maze where all exposed walls are at least 12-

inches.

The best way to make a maze for the IR detectors is to use a

bunch of white boxes that are at least 4-inches high, at least 6-

inches wide and 12-inches long. These can be placed next to each

other to create a maze that can be easily reconfigured. They also

move if the JBot accidentally runs into a box.

Now onto MazeMapTaskTest1. It is shown in the following listing:

The main method creates a printableMazeMap and a MapMazeTask. The

latter uses the map along with a JBotInterface that is a new

RampingJBot. The 2nd parameter of the constructor specifies the

range value that indicates an obstacle is within 1- to 2-inches

in front of the JBot.

The printableMazeMap constructor takes two parameters. These are

the y and x map dimensions. In this case there will be a map with

400 elements created. Each element corresponds to a 6-inch square

that the JBot can occupy. This means the map can represent an

area that is 10 feet on a side.

Before you go out and create a giant maze, keep a couple of

things in mind. First, it is a lot of work. Second, the JBot will

not be able to accurately navigate this are as you might think.

Remember, when the JBot moves or rotates, its movement is not

exactly what you may desire. For example, if the JBot turn’s to

the right the actual amount of rotation may be anywhere from 85

or 95 degrees instead of exactly 90 degrees. This may appear to

be a minor difference and may not even be noticeable but this

error can be a problem. This is because cumulative error results

from the combination of multiple movements with a small amount of

error. Let the JBot turn half a dozen times and it can be off by

more than 45 degrees.

For this reason, the size of the test maze should not be too

large. A few feet on a side is more than enough for

experimentation. The JBot can navigate through a large maze but

the Jbot’s map may not give the desired results.

<<ed note: it would help to reference Laura Wong’s 2002 ISEF

paper here>>

Chapter #9: A Mazing Things

The MapMazeTask runs with the sensor and JBot tasks when the

Task.TaskManager method is called. These tasks move the JBot

around the maze. All tasks stop when the program determines that

the maze has been explored to the best of its ability. The

Task.TaskManager method then returns and the map.save method is

called. This stores the current map in EEPROM. A FREQOUT object

is created to sound a one second tone indicating that exploration

is complete and the map has been save. The power can then be

disconnected so the JBot can be reconnected to the PC.

Next the following DumpMazeMapTaskTest1 program is loaded.

There are actually more comment lines than anything else. The

class method, load, is used to read EEPROM memory and create a

printableMazeMap that is identical to the one used by the

MazeMapTaskTest1 program. The print method will display the map’s

contents in the Message window.

A simple way to test these programs while leaving the JBot

connected to the PC is to put the JBot on a small box or object

so the wheels do not touch. Note, detaching the servo cables will

not work because the wheel encoders only work if the wheels

actually move. An obstacle is placed in front of the JBot.

Running the MazeMapTaskTest1 program should result in a map with

one traveled cell, where the JBot starts, with obstacles all

around it. You can watch the wheels move while the program runs

and you can add System.out.println method calls to print status

information. Of course, things get more interesting when the JBot

is running unencumbered.

The next section takes a look at the mapping task that actually

handles most of the work.

The Mapping Task

The MapMazeTask is the main task that controls the JBot and

records its movements in a printableMazeMap covered in the next

section. The MapMazeTask extends the Task class. Its execute

method is called repeatedly by the Task.TaskManager in the main

program, MazeMapTaskTest1, discussed in the prior section. The

following is the MapMazeTask class file.

The MapMazeTask consists of two methods, the constructor and the

execute method. The constructor saves off the parameters. It

Chapter #9: A Mazing Things

creates a character array for the backtracking path and sets the

direction of the JBot to north. Now this direction is strictly

for mapping purposes and does an correspond to magnetic north.

This would require the use of a compass like the Parallax Compass

Appmod.

The MapMazeTask only moves the JBot along straight lines and only

pivots the JBot at 90 degree angles. This greatly simplifies the

mapping and backtracking process. It does mean that movement

along a corridor that is not at a 0 or 90 degree angle with

respect to the initial JBot position will be explored in a stair

step fashion.

The execute method is divided into three states:

initialState

computePath

followPath

The initialState checks the sensors to see if an obstacle is in

front of JBot. It does not matter whether it is directly in front

or only to one side. Because of the granularity of the system, an

obstacle that partially blocks the JBot is assumed to be the same

width as the mapping cell’s logical size that is 6-inches.

The JBot moves forward in short steps of 2-inches since this is

assumed to be the maximum distance the sensors can detect. Some

sensors may provide a longer range and the movement can be

adjusted by changing the stepDistance value used in the jbot.move

method call. The checkingOffset variable is used to keep track of

now far JBot inches forward. If the JBot gets partway into the

next 6-inch square and detects an obstacle then the JBot backs

out, using the checkingOffset value, of the logical map cell and

marks it as an obstacle. This means that a JBot moving down the

middle of a 12-inch corridor will mark it as a 6-inch corridor, a

one cell map width, even though there is actually more space than

the map indicates.

The area traveled by the JBot is saved in the map calling

map.markTraveled. This occurs when the checkingOffset hits 6-

inches. The logical position in the map is adjusted using the

map.move method. The direction variable, facing, is used to keep

track of the logical direction the JBot is facing.

The fuzziness of the map is actually for the JBot’s benefit. It

allows the JBot to move through an area that it has traveled

before without having to worry how close it is to an obstacle. It

will be at least one inch away if not more.

The computePath state marks the explored area as an obstacle

using map.markObstacle. It then obtains a path to a new

exploration area by calling map.computeBacktrackPath. The path is

Chapter #9: A Mazing Things

placed in the backtrackPath array. Each element of the array is

the direction the JBot needs to move, starting from its current

location, to get to an unexplored area. The result of this call

is the number of directions placed in the array. If the number is

0 then all areas accessible by the JBot have been explored. The

task is and servos are stopped and the Task.TaskManager method,

discussed in the prior section, will return.

The followPath state is used to move the JBot along the backtrack

path. The last step in the path is used to position the JBot but

the JBot will not move into the area. Instead, the initialState

will be entered at this point and the JBot will use the sensor to

see if the unexplored area is open and can be traveled in or if

it contains and obstacle.

The followPath state compares the current direction of the JBot

with the desired direction. It turns the JBot to the desired

direction if necessary. The use of the dir variable is an

optimization. The initial turn computation can result in a 270

degree turn that is the same as a 90 degree turn. The latter is

more efficient and accurate. This code means the JBot will only

be executing left and right 90 degree turns or 180 degree turns.

It then moves the JBot 6-inches in the desired direction assuming

that the path step is not the last one. The map.move method call

changes the logical position within the maze map. The

map.markTraveled method call is actually redundant because the

path will always be over a traveled area.

That’s it. The logic is relatively simple but getting to this

design takes a good bit of thought. This is one of the simpler

methods for using a map. As you can see, making things more

complex is no easy chore but it is a good challenge.

Supporting Classes

The printableMazeMap is used by the MapMazeTask. It is based on

the following class hierarchy.

charArray

 charMap

 mazeMap

 printableMazeMap

The classes serve two purposes. The charArray class is needed

because the Javelin implements only one dimensional arrays and

our map is a two dimensional array. The chapMap is used to

provide a more dynamic use of the array since arrays are normally

accessed from 0 to N where there are N+1 elements. The charMap

allows negative indices to be used. The map grows as it is

accessed to the maximum size used to create it. This is very

Chapter #9: A Mazing Things

handy for our mapping because the JBot can be logically started

at 0,0 and moved in any direction based upon its exploration. A

conventional map would have to be four times the size to provide

similar coverage.

The mazeMap adds backtracking capabilities as well as constant

definitions for the values that are used and stored in the map.

The printableMazeMap extends this class by providing EEPROM

storage methods and System.out.println status reports. It does

not provide any additional mapping or backtracking capabilities.

The following is the charArray class definition. It maps a 2-

dimensional array onto a 1-dimensional character array. The same

approach can be used for arrays of any type. The methods like

xLow provide a consistent way to determine the size of an array

that can take into account the dynamic nature of the subclasses.

The class throws the IndexOutOfBoundsException exception if the

array is addressed improperly.

The charMap class presented below maps a logical array with

bounds that can be negative on a conventional array that uses

only positive array indices. This is handled by redefining the

getIndex used by the charArray. The class maintains the high and

low map ranges and provides public methods for their access.

The mazeMap class, shown below, builds on the charMap. It

populates it with values like obstacle and traveled and uses the

path value when searching for a backtracking path. It maintains a

logical position in the y and x variables. These are changed

using the move method. It assumes logical directions based on

north, east, south and west that match the movements the JBot can

perform. The markTraveled and markObstacle methods are used to

populate the map based upon the information the JBot can garner

regarding its surroundings.

The computeBacktrackPath searches for a path to an unexplored

area using and modifying the current map contents. The map was

initialized to unknown (or unexplored) and the method looks for a

path from the current logical position (y,x) to a cell marked

unknown. The search proceeds by changing traveled cells to path

Chapter #9: A Mazing Things

cells as a path is created. Cells marked as part of the path are

left in that state until the method returns at which point these

points are changed back to traveled leaving the map in its

original position. This is done so the method can determine

whether it has already looked at a cell for a path. If this is

not done then a circular search can result in an infinite loop.

The method does not try to find the closest unexplored area. It

simply tries to find one using a simple algorithm. It starts

looking north. If it cannot find a path in that direction it

moves around the cell to the right ending in a westerly

direction. This means it will find the first unexplored area to

the north 10 cells away even if there is an unexplored cell

immediately to the west.

Note how the direction of the search is changed as the path is

cut back. The path consists of as set of directions from the

logical position (y,x) to an unexplored cell.

There are many ways to search a map. This is simply an approach

that is easy to implement. It also uses no additional space. This

can be critical in tight memory environments like the Javelin.

The printableMazeMap, shown below, adds a EEPROM methods and

System.out.println oriented methods that provide a way to save,

restore and display the contents of a mazeMap. The load method is

a static class method that returns a new printableMazeMap object.

The contents of the map are stored at the beginning of the EEPROM

area. A more sophisticated version would allow the map to be

positioned elsewhere in the EEPROM area. The save method stores

an existing map object in EEPROM.

The print and printPath methods display the map and the current

search path respectively. They convert the binary values used in

the map and path array to more friendly output.

The printableMazeMap class is used in the mapping application but

it was developed using the MazeMapTest1 program shown below. This

allows a map to be populated and the path creation method to be

tested without having the JBot traveling all around a maze. This

class is not necessary for the exploration and result

applications already defined but it is invaluable when trying to

develop new path search algorithms.

Chapter #9: A Mazing Things

Your Turn

� The computeBacktrackPath method does a depth first search. Try

implementing other search algorithms. For example, a breadth

first search is more complicated but will provide different

results. A greedy search should find the closest unexplored

area.

Chapter #9: A Mazing Things

This chapter addresses navigation through

a maze. It utilizes the J-Bot control

and obstacle classes defined in previous

chapters. Three maze navigation methods

were presented: Random Walk, Right Hand

Rule and Basic Backtracking. The Random

Walk presented in Activity #1 used a

continuous movement mechanism while sacrificing sensor accuracy.

The other methods alternated between sensor and movement actions

that were more accurate but more jerky in the J-Bot’s movement.

The basic backtracking method improved upon the Right Hand Rule

method allowing the J-Bot to keep track of the areas already

explored thereby allowing it to navigate through a complex maze.

Real World Example

Mobile robots that avoid obstacles and explore are used in a

variety of areas. The most notable is the Sojourner robot that is

still up on Mars. Although it was similar to a remote control

vehicle, Sojourner was a true robot. It needed the ability to

navigate by itself because the time needed to send a signal from

Mars and back again is measured in minutes. This delay is too

long for safe control of the robot. The robot could easily run

into a rock before the human controller on Earth signaled the

robot to stop.

Instead, Sojourner was programmed to move from one point to

another. The robot was responsible for moving between the two

points while avoiding obstacles that were in the way.

The maze exploration programs presented in this chapter are

slightly different from the programs used with Sojourner because

the J-Bot had no final fixed destination. Instead, the J-Bot

would explore the maze.

Questions and

Projects

Questions

1. What is a cycle within a maze? This is the same thing as a

circular path.

2. What is a simple and complex maze?

3. Why would the J-Bot fail to exit a maze when using the

Right Hand Rule?

Summary

and

Applicati

ons

Chapter #9: A Mazing Things

4. How does sensor detection delays impact algorithms and

movement?

Exercises

1. Change the Right Hand Rule in Activity #2 to the Left Hand

Rule approach.

2. Modify the maze exploration programs so they record in

EEPROM the path followed by the J-Bot. Write a program that

displays this information in the Message window. Remember,

the J-Bot needs to be connected to the PC for the latter.

Projects

1. The RandomWalkTask in Activity #1 polls the sensor to see

when an obstacle range is available. Polling adds overhead

so other tasks like the sensor task and servo task have

less time to run. Use the setEvent support within the

BasicSensor class so that the RandomWalkTask can suspend

itself while the sensor task does its job. Does this change

improve the J-Bot’s response time when detecting an

obstacle? It should.

2. The IR sensor classes return an obstacle distance from 1 to

16. The default implementation checks the sensor 16 times

regardless of the distance detected. If the maximum

distance to an obstacle before an action is taken is

greater than 1 then the sensor class does not have to check

any values between 1 and the maximum distance - 1. Modify

the sensor class so it only checks between a range of

values. Does this change improve the J-Bot’s response time

when detecting an obstacle? It should.

3. Having the JBot detect walls is easy but accurately turning

the JBot can be a problem. One way around this difficulty

is to simplify the problem and place the accuracy of

movements on the maze instead. This can be done by using

line following and clearly marking the intersections. An

obstacle is considered to be a line that simply ends.

Create the maze using lines of tape making sure the

intersections are marked every six inches. The JBot should

be programmed to follow each line until it ends as noted

above. The Jbot does not have to worry about accurate

rotation because the line following program should make the

minor adjustments to follow the line.

