Chapter #8: Tracking Distance Traveled

Tracking Distance Traveled

Chapter #38:
Tracking Farlier we mentioned that the J-
. Bot wheel servo control operated
Distance without feedback. The Javelin can
Traveled set the PWM object to generate
pulses to move the wheel Dbut
sending the same pulse width to different servos will result in
slightly different rotation speeds. This shows up in forward
movements where the J-Bot drifts to one side or the other.
Normally the J-Bot will continue drifting to one side.

If you J-Bot runs straight and true then you are lucky. Try
running the J-Bot for fifteen or twenty feet to be sure. More
than likely the J-Bot will drift at least an inch to one side or
the other.

So what is a programmer to do? Resort to a closed feedback loop.

Actually, you have already encountered a closed feedback loop.
The use of wvarious sensors provides a way for the J-Bot to get
feedback about its surroundings so the program can adjust the
movements of the J-Bot. This is the same thing that will be done
in this chapter except that the feedback is related to the wheel
rotation.

Introduction to Encoders

You may have wondered why the J-Bot’s wheels are white and have
slots and spokes. It is not because they look nice. The color and
configuration allow the wheels to work with the QRB1113 infrared
reflective object sensors. The sensors consist of an infrared LED
and detector similar to the ones used in the prior chapter except
that these sensors do not need a modulated signal for the LED.
One reason this can be done is the way sensor is constructed.

The reflective sensors are designed to operate very close to the
object being detected, in this case the wheel. The distance
between the sensor and the wheel will be about % inch. If you
look closely at the sensor you will see that the LED and detector
are angled towards each other. If you draw a triangle near the
tip with edges parallel to the edges of the sensor then endpoint
will be about % inch away. Don’t know which is the LED and which
is the sensor? We’ll take a look at these details in the next
section.

The term encoder is used because the reflective sensors are used
to encode information about the wheel movement into a binary form
that the Javelin can use. Some wheel encoders can determine the
absolute wheel position Dbut this is not required for our
application. We simply need to know the relative position so the

Chapter #8: Tracking Distance Traveled

wheel rotation speed can be adjusted to keep both wheels moving
at the desired rate.

The sensors will keep track of the wheel rotation by tracking the
open slots in the wheels. The infrared LED 1light will be
reflected back to the detector when the spoke is in front of the
sensor. The light will not be reflected when a slot is in front
of the sensor.

A quadrature wheel encoder uses two sensors per wheel. This
architecture can determine direction in addition to position and
rotation. This is not necessary with the J-Bot because it
controls the direction of the wheel.

Activity #1: Building and Testing the Encoders

The infrared reflective sensors are mounted on the J-Bot’s frame
underneath the JIDE as shown 1in Figure 8.1. To install the
sensors 1t 1s necessary to remove the board. It may also be
necessary to remove wheel servos as well. In this case, the
position of the sensors should be noted using a permanent marker
before removing the wheels and servos.

The sensors are delivered with four long leads that extend past
the end of the plastic housing. The leads should be cut so they
are about % inch long. The leads will then be in line with the
end of the plastic housing. The leads should now be the proper
length allowing the supplied cabling to be connected so most or
all of the lead is covered.

The sensors are mounted so the label information is face up. This
information will be needed when connecting the wires to the
sensors. The sensors are mounted using a single screw, a nut and
lock washer. The sensor should be placed close to the wheel but
not touching it. Note that the wheels have a ridge on the rim.
Try to place the edge of the sensor in line with the edge of the
rim.

Chapter #8: Tracking Distance Traveled

Figure 8.1: Remove
the circuit board
from the J-Bot. It is
possible to assemble
the infrared
reflective sensors
without removing the
wheel servos but it
is easier to do with
the servos removed as
well. If the servos
will be removed then
mark where the
sensors will be
placed. Attach the
sensors to the J-Bot
frame using a nut,
lock washer and bolt.
The S and E labels on
the sensor should be

Figure 8.1

face up.
Vidd ve= Black Wires
to Sensors
2x
10K
m LIS
Left My P11 4l B
Sensor |-k JhcmoU Lo
Soocc | |Eoaas | e e
Riaht | Rd ooooo | | ooooty:. o Rght Sensor
oht b 2 S| e
Sensor Ji ooooo | |ooooo
Oooooo | | ooooo
OOOooo — oooog
— \Vss ooooo ooodo
Figure 8.2a Figure 8.2b

The wheel encoder circuit always keeps the infrared LEDs on. This
conserves Javelin output pins. The LED will not interfere with
the other sensor Dbecause they are pointing 1in opposite
directions. Likewise, they cannot interfere with the IR range
finder that operates with a modulated 38.4 kHz infrared signal.
This reduces the number of I/0 pins needed to two. One input pin
for each sensor, CPU.pinl0 for the right wheel and CPU.pinll for
the left.

It is possible to install the infrared reflective sensors when
initially building the J-Bot. They can be left disconnected

FYTI until the wheel encoder support needs to be activated. It is
relatively easy to install the wires on the sensors with the
JIDE removed.

Chapter #8: Tracking Distance Traveled

Build It!
O Construct the circuit shown in Figure 8.2a.
O Connect the sensors to the wheel encoder circuit on the JIDE.

O Replace the JIDE board.

Programming the Wheel Encoder

Testing the wheel encoders is relatively easy. Turn the wheels
and check the inputs. The inputs should change as the path of the
infrared 1light changes from being reflected by a spoke to not
being reflected by an open slot. We use the FixedMovementJBot
object to drive the wheels. In theory, this class was modified so
the J-Bot should move forward in a straight line. We will take
advantage of this in the next test.

O Enter WheelEncoderTestl program.
O Lift the J-Bot so the wheels are not touching the ground.
O Run WheelEncoderTestl program.

O This program makes use of the Message window, so leave the
serial cable connected to the JIDE while program is running.

Chapter #8: Tracking Distance Traveled

How the Wheel Encoder Program Works

The jbot object will start the wheels running when the forward
method 1is called. They run continuously until the Javelin 1is
reset using the Reset button in the debugger or the power 1is
removed from the J-Bot.

As the wheels turn, the slots and spokes move past the reflective
sensors. The sensor outputs will be low, a logical 0, if light is
detected as when the spoke is in front of the sensor. The value
will be high, a logical 1, if no light is detected as when the
slot is in front of the sensor.

The sensors and the Javelin operate faster than the wheels move.
This means the numbers printed on the Message window will not
toggle between 1 and 0 on every line but every few lines. Also,
the left and right wheels are independent so the transitions will
probably not be in synch.

Your Turn

O If the wheels are turning but the output values for one or
both sensors remain constant then check the sensor position,
wiring, and circuitry. A typical problem is the connections to
the sensors.

O See 1if the transitions between 0 and 1 are occurring at
regular intervals. The difference should be one or two
iterations at most.

Seeing If Wheels Are Going Straight

The last program shows that the sensors and circuitry are working
properly. A few minor changes to the program allows the Javelin
to count the number of transitions. If the values remain in synch
then the J-Bot will be moving forward. If one side 1is going
faster then its count will be higher and the J-Bot will drift to
the opposite side assuming the J-Bot is placed on the ground.

The following program counts the number transitions that are
detected on both wheels.

The state of each pin is recorded and the counter associated with
the pin is incremented when a change is detected.

Your Turn

Chapter #8: Tracking Distance Traveled

The output may Dbe scrolling too quickly to recognize the
numbers. The output on the Message window can be stopped but
it can be reduced in the program as well. Modify the program
so it prints the counters every 10" count on the right wheel.

Check and see if the wheels are moving consistently. Reset the
counters when the left counter hits 100. Is the right counter
value the same each time? Is it 100? If not, which way will
the J-Bot drift?

Chapter #8: Tracking Distance Traveled

Activity #2: Going Straight

The prior activity shows how the wheel encoder hardware is used
to track the movement of the J-Bot. It 1s now possible to
numerically determine how straight the J-Bot will go using the
non-feedback settings. In this case, the rightCount and leftCount
values can be compared. These are essentially odometer values
indicating the distance traveled.

Keep in mind that the odometer values are only as accurate as
the wheel rotation is with respect to the surface it is running
on. If the wheels slip then the odometer readings will be more

FYI than the actual distance traveled. This can occur if the J-Bot
is running on a thick carpet where the wheels do not have good
traction. This is no different than a moving car slipping on a
gravel road. Still, overall, the car’s odometer is a fairly good
approximation of the distance the car is driven.

In this activity the information from the wheel encoder hardware
is used to keep the J-Bot moving in a straight line. This is done
by comparing the distance traveled by each wheel based on the
wheel encoder result. The speed of the wheels is adjusted if one
is covering more distance than the other.

Compare this to the way a person keeps a car going straight. In
this case, the wheels can be turned which has the effect of
making the car turn as it moves forward. The J-Bot'’s wheels do
not turn but as we have seen in prior chapters the same effect
occurs by using different speeds for each wheel. Therefore,
changing the speed of the J-Bot’s wheels in response to changes
in the distance traveled, courtesy of the wheel encoder feedback,
results in the J-Bot making a very minute turn.

The end result is a J-Bot that moves forward in a relatively
straight line. In actuality, it is weaving side to side but the
turns are difficult to see. If the J-Bot winds up going perfectly
straight then the adjustments will not have to be made and the J-
Bot will not weave. In practice, the J-Bot will always deviate
but the amount of deviation will wvary based on the initial
estimates made in driving the servos. The advantage of the
feedback system is the J-Bot will go relatively straight even if
the initial wvalues are off considerably. Of course, excessive
differences, such as wusing pivot values instead of forward
movement values, will be very difficult 1f not impossible to
correct using the program presented here.

We start with a relatively complete implementation instead of
making incremental improvements. Instead, you can experiment by
modifying the program to disable or adjust various parameters and
algorithms to see how they affect the operation of the system.

O Enter the WheelEncoderTest3 program shown below.

Chapter #8: Tracking Distance Traveled

Before getting into the algorithm, we take a 1look at the
variables used as shown in the following table.

Variables Description
transition Indicates that an encoder
transition has occured
leftState, Last input wvalues from wheel
rightState encoder hardware
leftCount, Wheel encoder counters
rightCount
leftRatio, Number of steps that should be
rightRatio taken with respect to the other
side

leftSpeed, Speed percentage (-100% to
rightSpeed 100%)

leftAdjust, Speed adjustments

rightAdjust
LeftStep, Increment for speed adjustments
rightStep
leftLimit, Maximum speed adjustments
rightLimit

leftOdometer, Odometer counters

rightOdometer

The odometer counters keep track of the distance actually
traveled by each while the leftCount and rightCount wvariables
keep track of the relative difference in the distance traveled.
The actually wvalues are controlled by the leftRatio and
rightRatio and the wheel encoder hardware input. The wvalues in
the leftCount and rightCount wvariables are relative odometer
readings. Their use will become more apparent in the algorithm
description.

The leftSpeed and rightSpeed values are the desired speed in
percentages used 1in prior J-Bot wheel control classes. The
leftAdjust and rightAdjust variables keep track of any percentage
changes that should be made to the full speed settings. These
values are changed when either the left or right wheel is falling
behind. The wvalues in these variables are changed in increments
of leftStep and rightStep respectively. The maximum wvalues for
the adjustment variables are in the leftLimit and rightLimit
variables.

The algorithm is implemented in the runTest method. The method
keeps track of the number of transitions and exits when a limit,
200 in the 1listing, 1is exceeded. This will allow us to examine
the output of the test that otherwise would continue forever.

Chapter #8: Tracking Distance Traveled

This number of transitions is usually sufficient to show how the
algorithm works. In a more practical implementation, movement
would be stopped or changed when an external event occurred, such
as the detection of an obstacle, or after a certain amount of
time has elapsed or a specified distance covered as noted by the
odometer values.

The main loop starts with a check of the right and left wheel
encoder output pins as shown below.

if (rightState != CPU.readPin(rightPin)) {
transition = true ;
rightState = ! rightState ;
—— rightCount ;
++ rightOdometer;

}

The condition compares the current wheel encoder output with the
prior state. This allows the J-Bot to detect both edges of a
spoke or hole in the wheel. This doubles the number of
transitions detected compared to just checking for a spoke or
hole. The transition wvariable is set so that both wheel encoder
outputs can be checked. The loop continues if a transition is not
detected on either input.

The state variable is toggled each time using !, the logical NOT
operator. The rightCount value is decremented while the odometer
variable is incremented.

The method behind this madness 1is that the rightCount and
leftCount variables track the relative difference between number
of transitions that are detected on each wheel. We could use the
odometer variables but there is a drawback. First, the odometer
values have an upper limit. It 1is large but it can affect
calculations that would be necessary to compare the wvalues.
Second, the calculations are more complex and this takes time.
The operations performed on the counter variables are simple
comparisons, assignments and decrement operations. It 1is also
easier to see the algorithm works.

If you look at the code before the main loop you will see that
the rightCount and leftCount are set to the rightRatio and
leftRatio respectively. These are positive values so eventually
one of the two counters will be decremented to zero.

Things happen when one or both of the counters hit zero. Although
it happens at then end of the code block, the one thing you can
count on 1s the counters will be reset. In essence, both counters
have their respective ratio values added to them but because the
programmer already knows that one of the wvalues will be zero a
more efficient assignment statement can be used instead.

Chapter #8: Tracking Distance Traveled

The reason the updates occur at the end is because the values
need to be compared against the ratio values as shown in the next
code snippet.

// Left side may be behind right
if (leftCount >= leftRatio) {
// Adjust: left wheel is behind
if (leftAdjust == 0) {
// No left adjustment. Slow right wheel
if (rightAdjust < rightLimit) {
rightAdjust += rightStep ;
}

} else {
// Left wheel has adjustment. Reduce it
leftAdjust —-= leftStep ;

}
// Set new speed

}

setSpeed (leftSpeed - leftAdjust, rightSpeed - rightAdjust) ;
// Reset counters

leftCount += leftRatio ;

rightCount = rightRatio ;

If the counter value is less than the ratio wvalue then nothing
changes. This is akin to both counters reaching zero at the same
time. It means that the wheels are exactly (when both wvalues are
zero) or close in synch or almost in synch within the limits of
the ratios. A <closer 1look shows that a ratio of 1:1 1is
essentially the same as 2:2 except in this algorithm the 2:2 will
be less sensitive to small variations whereas a 1:1 setting, used
in the example, will react more quickly to changes that occur.

If the counter value greater or equal to its respective ratio
then it 1is time to make an adjustment to one of the wheels
because one is going to faster than the other. One of two changes
can be made. Either the slower wheel can be run faster or the
faster wheel can be slowed down. The code checks for Dboth
conditions and determines which to do based on the current
adjustment wvariable (leftAdjust or rightAdjust) wvalues. This is
done because we assume the maximum speed of a servo is 100%.

In the code listing shown above, the leftAdjust value is tested
when the left wheel is going slower. If the leftAdjust wvalue is
not zero then it has been slowed prior to this point. Decreasing
its wvalue by subtracting the step value from it will result in
the servo speeding upon when the setSpeed method is called.
Otherwise, the right wheel must be slowed down by increasing its
adjustment value. This is where a major optimization is included.

Note that the rightAdjust wvalue is only changed if it 1is less
than rightLimit. This prevents servo from going slower than the
specified limit, otherwise the speed could be reduced to zero or
even go negative in which case the wheel would be going backward!

Chapter #8: Tracking Distance Traveled

Slowing the servo too much will cause the other wheel to catch up
but it turns the J-Bot too quickly. This over steering will very
quickly cause the J-Bot to require compensation in the opposite
direction. The result 1is a J-Bot that weaves drastically from
side to side.

The prevention of these drastic actions 1is called damping.
Limiting how slow a wheel will be adjusted provides the damping.

O Raise the J-Bot so the wheels do not touch the floor and run
the program with the serial cable attached. The Message window
should show the state of various variables including the speed
of both wheels. Notice how the wheel speeds are changed in
response to differences in transition detected.

O Remove the PC cable and run the J-Bot using batteries. Place
the J-Bot on the floor and see if it runs straight. Remember,
it may waver side-to-side slightly.

Your Turn

O The program is designed to run the J-Bot in a straight line in
a forward direction. Change the program so it will run the J-
Bot in a Dbackward direction instead. Hint: Change the
percentage variables but not the transition counter variables.
Remember, the spoke and hole transitions are detected in the
same fashion regardless of the direction the wheel is turning.

O Make the same kind of change except allow J-Bot to pivot right
or left. Remember that pivoting is done by running the wheels
in opposite directions.

O The test program counts the number of transitions and
terminates after a fixed wvalue. Change the termination
condition so it is based on the number of transitions detected
on a particular wheel. This essentially controls the distance
traveled. How does this approach differ from the initial test
program?

Chapter #8: Tracking Distance Traveled

Activity #3: Wheel Encoder Class

Activity #2 presented a mechanism for running the J-Bot in a
straight line. The additional experiments allowed for backward
and pivot movements. These can be combined into a class that can
be used to control the J-Bot in a single tasking environment. It
is a more complex task to create a control system that will
operate with the multitasking system but that is what will be
done in this activity.

As you might expect, this wheel <control <class will Dbe
significantly more complex than the other classes defined in
prior chapters. It actually requires two classes because a task
is needed to monitor the wheel encoder hardware. The task will be
hidden behind the wheel encoder class that inherits its interface
from JBotInterface.

The two class architecture is similar to the ones used with the
multitasking sensor systems used to support the photoresistor and
infrared range finder hardware. The application interfaces with
the main object and a second object, usually based on a Task
class, operates in the background.

The main class for wheel encoder system is the WheelEncoderJBot
class. The other class is the WheelEncoderTask. One object from
both classes will be created and these two objects will interact
to control the J-Bot servos. An application will interface with
the WheelEncoderJBot object. The WheelEncoderTask only needs to
run when the wheels are moving. The WheelEncoderJBot class will
also provide odometer methods that could not be done using prior
JBotInterface-based classes.

A slightly different interface 1is provided to <control the
WheelEncoderdBot class. This interface is based on the Event
class. The WheelEncoderJBot class will call the event’s notify
method when a movement has been completed. This allows the event
to immediately initiate another movement if necessary. This
provides a mechanism for continuous servo control without
requiring another task that will poll the status of the
WheelEncoderdBot. Polling is still possible but less efficient.

The starting point 1is the WheelEncoderJBot class shown in the
following listing.

The WheelEncoderJBot class starts with a number of constant
definitions. These control the movement of the servos based on
the wheel configuration. Use a wheel that is a different size or
has a different number of holes and spokes and these numbers may

Chapter #8: Tracking Distance Traveled

have to change. Keeping the constant definitions together make it
easier to locate them when changes are necessary.

The WheelEncoderJBot constructor is relatively simple. It lets
the superclass store the startEvent. This 1s typically a
FixedMovementJBot or MultitaskingJBot event object.

The basic movement control methods, movementDone and stop, are
available to an application along with a host of movement methods
including move, pivot and so on. These are essentially identical.
They setup the wheel encoder support and then call the matching
superclass support. Note that the parameter passed to the
superclass 1s increased. This is so the movement will continue
passed the expected stop point allowing the wheel encoder support
to mark the end of the movement. This also prevents the J-Bot
from running forever should the wheel encoder hardware work
improperly or if the wheels are slipping for some reason.

The new methods not required by the JbotInterface class include
the odometer methods. The odometer operation 1is relatively
simple. The odometer can be reset to 0 and the wvalues can be
obtained. The left and right values are available independently.

The bulk of the work is done in the movementDone method. This
method will be called periodically by the startEvent. It will
check the wheel encoder hardware and keep track of the
transitions detected adjusting the speed as necessary. The
setRealSpeed method is used so any changes made by the ramping
support via the setSpeed method will not be affected.

To test the WheelEncoderJBot and WheelEncoderTask classes using
the following program.

The WheelEncoderTest4 class may be a bit of a surprise since it
is based on the Event class and not the Task class. This 1is
because only one task is necessary at this point, the background
MultitaskingJBot.

The main method starts by creating a WheelEncoderTest4 event
object. An object wvariable, jbot, 1is assigned a reference to a
new WheelEncoderJBot object that in turns creates a

MultitaskingdBot object. This is the task that will actually be
run by the Task.TaskManager method call.

Hopefully this will not get too convoluted so follow along
closely. The constructor method creates the appropriate objects
as just mentioned. The constructor then calls the jbot’s setEvent
method and passes a reference to the WheelEncoderTest4d event
object. Since the task is not running (remember, its constructor

Chapter #8: Tracking Distance Traveled

will stop it) the call to the setEvent method will cause a
subsequent call to the event’s notify method. It is important to
set the i and state wvariables before the setEvent call because
these variables must be initialized before the notify method 1is
called.

The notify method is simple because the path being followed by
the J-Bot is a square. All four sides of the square require the
same actions to be performed: move forward and pivot. In this
case there are two states that the handle these actions:
moveForward and pivotLeft. These names do not conflict with the
ones used 1n other classes because they are specific to the
WheelEncoderTest4 class.

The jbot methods are called to initiate each movement. The states
change to the other state after initiating the movement. Unlike
the task execute method that 1is called repeatedly by the
TaskManager method, the notify method will only be called when a
movement has completed.

The moveForward state in the notify method will be called 4 times
to traverse the square. Two squares will be traversed by keeping
track of the number of times the state is entered and by exiting
after 8 iterations.

And that’s it. Once the notify method is called 8 times it will
not call the jbot.forward method. The background task will remain
stopped so the Task Manager method will eventually return so the
final “All Done” text can be printed using the System.out.println
method call in the main method.

O Connect the PC cable and raise the J-Bot so the wheels do not
touch the floor. Run the program and watch the wheels to see
if they rotate as anticipated.

O Remove the PC cable and run the J-Bot using batteries. Place
the J-Bot on the floor and see if it runs around in a square,
twice. Remember, it may waver side-to-side slightly.

So what needs to be changed if the J-Bot will follow a more
complex path? The WheelEncoderJBot and WheelEncoderTask classes
should remain intact. The event class can be changed to make
different movement calls.

Your Turn
O The program moves in a simple square. Change the figure to a
rectangle so one pair of sides is twice that of the other

sides.

O Run the figure in the reverse direction. This means going
backwards and pivoting to the right.

Chapter #8: Tracking Distance Traveled

The Task class 1is a subclass of Event so it can be passed to
the WheelEncoderJBot's setEvent method. Implement the
WheelEncoderTest4 class by extending Task instead of Event.
Keep in mind that the default Task action for notify is to
start the task. This means the task’s execute method should
start a movement and then stop. It will be restarted when the
movement is done in the state set before the stop method 1is
called.

Chapter #8: Tracking Distance Traveled

Summary and This chapter makes use of infrared
reflective sensors to keep the J-Bot
on the straight and narrow. They are
used to implement a wheel encoder
class that can be used to track how
far the J-Bot travels as well as
when to adjust movements to keep the
J-Bot moving in the desired direction.

Applications

Odometer support is also provided. This 1is an offshoot of the
sensor system used to provide feedback for controlling the J-Bot
servos. Odometer readings provide significantly more accurate
movement information than is possible using an open feedback loop
as in prior chapters.

Knowing where the J-Bot moves and moving in prescribed directions

will be important to solving many problems such as mapping and
maze traversal.

Real World Example

Feedback systems are used almost everywhere computers are used.
Wheel encoders, also called shaft encoders, are used in a variety
of areas. They are used 1in robotics to control wheels. The
technology can also be used with servo control of robotic arms.

Encoders are used to track movements that may be generated from
other sources. For example, an automobile’s speedometer and
odometer wuses wheel encoder technology. The wheels drive a
flexible speedometer shaft. The number of turns corresponds to
the distance traveled.

Questions and
Projects

Questions
1. What components are in the infrared reflective sensors?
2. How does the infrared reflective sensors work?

3. What would happen if the white wheel was replaced with a
black wheel?

4, How can a black wheel be modified so it would work with the
wheel encoder hardware?

Chapter #8: Tracking Distance Traveled

Exercises

. Activity #2 introduced feedback control of the J-Bot

servos. Describe what damping is and how it was utilized in
the sample program and what happens when this support 1is
removed.

. Develop a single tasking class based on the JBotInterface

that uses polling instead of the multitasking system used
in Activity #3. Examine the CheckForWait and movementDone
methods.

Projects

1.

The wheel encoder object can be used to keep the J-Bot
going straight or turning as desired but it helps if these
operations are started with values that are very close to
the optimum values. The J-Bot servo control classes were
calibrated manually in prior chapters.

O Create a program to calibrate the J-Bot’s forward
movement using the wheel encoders.

O Create a similar program for turns and pivots.

O It is possible to create a self calibrating program. Do
so 1f the prior programs require user intervention.

. The event mechanism was used to traverse simple path using

a fixed set of movement calls. Create an event class that
can be passed a set of movements in a string or array. This
class will be more useful it is also has a method, like
setEvent, that takes a reference to an event. This event
should be notified when all the movements in the array or
string have been performed. Keep in mind that a task is a
subclass of Event so a typical implementation has a task
that will use this new movement event. The task will sleep
after initiating a sequence of movements.

