Chapter #7:

Object Detection Using Infrared

Object

Using
Infrared

wireless remotes let us
widely available parts,
and detector to detect

traveling J-Bot.

Chapter #7

Detection

Infrared

Infra means Dbelow, so
Infra-red is 1light (or
electromagnetic

radiation) that has
lower frequency, or
longer wavelength than
red light. Our IR LED
and detector work at 980
nm. (nanometers) which
is considered near
infrared. Night-vision
goggles and IR
temperature sensing use

far infrared wavelengths

of 2000-10,000 nm.,
depending on the
application.
Approximate
Color Wavelength
Violet 400 nm
Blue 470
Green 565
Yellow 590
Orange 630
Red 780
Near infra-red 800—
1000
Infra-red
1000-2000
Far infra-red

2000-10, 000nm

your body guide the car accordingly.
LEDs for headlights as shown in Figure 7.1.
the infrared reflects off objects,
back in the direction of the J-Bot.
the infrared detectors.

indicating
reflected off an object.

and in some cases,

the Javelin

Using Infrared Headlights to See the
Road

Today's hottest products seem to have
one thing in common: wireless
communication. Personal organizers
beam data into desktop computers, and
channel surf. With a few inexpensive and
the Javelin can also use an infrared LED
objects to the front and side of your

Detecting obstacles doesn’t require
anything as sophisticated as machine
vision. A much simpler system will
suffice. Some robots use RADAR or SONAR

(sometimes called SODAR when used in air
instead of water). An even simpler system
is to use infrared light to illuminate the
robot’s path and determine when the light

reflects off an object. Thanks to the
proliferation of infrared (IR) remote
controls, IR illuminators and detectors

are easily available and inexpensive.

The J-Bot infrared object detection scheme
has a variety of uses. The J-Bot can use
infrared to detect objects without bumping

into them. As with the photoresistors,
infrared can be used to detect the
difference between black and white for

line following. Infrared can also be used
to determine the distance of an object
from the J-Bot. The J-Bot can use this
information to follow objects at a fixed
distance, or detect and avoid high ledges.

Infrared Headlights

The infrared object detection system we’ll
build on the J-Bot 1is 1like a «car’s
headlights in several respects. When the
light from a car’s headlights reflects off
obstacles, your eyes detect the obstacles
and your brain processes them and makes
The J-Bot uses infrared
They emit infrared,
and bounces
The eyes of the J-Bot are
The infrared detectors send signals to
whether or not they detect infrared

The brain of the J-Bot, the Javelin,

Chapter #7: Object Detection Using Infrared

makes decisions and operates the servo motors based on this
input.

The IR detectors have built-in optical
filters that allow very 1little 1light Object
except the 980 nm. infrared that we
want to detect onto its internal
photodiode sensor. The infrared
detector also has an electronic filter
that only allows signals around 38.5
kHz to pass through. In other words,
the detector is only 1looking for
infrared flashed on and off at 38,500
times per second. This prevents
interference from common IR
interference sources such as sunlight
and indoor 1lighting. Sunlight is DC
interference (0 Hz), and house
lighting tends to flash on and off at
either 100 or 120 Hz, depending on the
main power source in the country where
you reside. Since 120 Hz 1is way
outside the electronic filter’s 38.5
kHz band pass frequency, it 1is, for
all practical purposes, completely
ignored by the IR detectors.

Figure 7.1: Object detection
with IR Headlights.

The Frequency Trick

Since the IR detectors only see IR signals in the neighborhood of
38.5 kHz, the IR LEDs have to be flashed on and off at that
frequency. The actual frequency will be 38.4 kHz since this is a
frequency that the J-Bot can generate. A 555 timer can be used
for this purpose, but the 555 timer circuit is more complex and
less functional than the circuit we will use in this and the next
chapter. For example, the method of IR detection introduced here
can be used for distance detection; whereas, the 555 timer would
need additional hardware to do distance detection.

A pair of J-Bot enthusiasts found an interesting trick that made

the 555 timer scheme unnecessary. This scheme uses the PWM object
without the RC filter that’s normally used to smooth the signal
into a sine-wave. Even though the highest frequency PWM is

designed to transmit is 57.6 kHz, the unfiltered PWM output can
generate a 38.4 kHz signal with useful properties for a 38.5 kHz
IR detector.

Those familiar with the Basic STAMP-based BOEBOT will know that
the IR detection was done by varying frequency sent by the IR
LED. The IR detector responds to the different frequencies based
upon the distance to an obstacle. This approach will not work
with the J-Bot because the Javelin STAMP cannot generate pulses

Chapter #7: Object Detection Using Infrared

fast enough or accurately enough. On the other hand, the J-Bot
has a better way of doing things.

To start with, the Javelin has a digital-to-analog (DAC) virtual
peripheral. This can generate voltages between 0 and 5 volts in a
stepped fashion (see Fig. 7.2a). Attach an IR LED to the DAC
output and the output intensity of the LED will wvary depending
upon the voltage. Combine the DAC/IR LED combination with a 38.4
kHz PWM output (see Fig. 7.2b) and the J-Bot can generate a
modulated output of varying intensity (see Fig. 7.2c). Add in the
IR detector and objects can be detected based on their distance
from the IR LED/detector. An object that is very close to the J-
Bot will be detected regardless of the amount of light being
emitted by the LED. An object father away will only be detected
when the light is more intense.

Volts, V Volts, V
- +1.25 7
+5 700 1] 1 [M] TS
‘ /
0 f \\\\‘ f ////
1 - 1-25J 0 Time, us : 37
(b) PWM 38.4 kHz output
+ 1.25‘(
= - - ;\ 1 'I// - \\I
0 + } ~ /,/ﬂ }
0 f . f } ! -
0 Time, us 37 -1.25+ 0 Time, us 37
Figure 7.2: (a) Stepped DAC output (c) Stepped 38.4 kHz output

The DAC circuit uses a 1K Q resistor and a 10uf capacitor. The
resistor is connected to the DAC virtual peripheral output pin.
The other end of the resistor is connected to the capacitor which
is in turn connected to ground. The DAC virtual peripheral
charges the capacitor to the desired voltage using pulses. The IR
LED is connected to the resistor and capacitor. The other end of
the LED is connected to the 220 Q resistor which is connected to
the PWM output pin. The circuit is shown in figure 7.4.

1 D
2
Parts 3

wn =

(2) Shrink wrapped IR LEDs

(2) IR detectors

(2) 220 Q resistors 1

2) 10uf it IR

(2) u capa.c1 ors LED*\]

(2) 1K Q resistors X J K\

(misc) wires 2 ?wn
€9

Figure 7.3: IR detector schematic

symbol and part on top row and IR LED
schematic symbol and part on bottom
row.

Chapter #7: Object Detection Using Infrared

Activity #1: Building and Testing the New IR Transmitter/Detector

Build It!

To
Vi
Ydd Servos Q
15 14 N\

) T @-m]@

P7 D MV
220 Q
IR
R
P2 D LED %
Vss

Piezo e

= www.stampsinclass.com
Vss (916) 624-8333
P1 D MWV
220 Q
IR
LED §
Vss
O
vd
O
Vss
Figure 7.4: IR headlights (a) Schematic (b) wiring diagram.

Two circuits will be used by the IR obstacle detection object
defined later in this chapter. The circuits are identical as in
the prior chapter where a pair of photoresistors was used.

Testing the IR Pairs

The key to making each IR pair work is to modulate DAC output at
38.4 kHz. Only one IR LED and its matching detector will be used
at a time to prevent interference with 1light from the other

circuit.

Chapter #7: Object Detection Using Infrared

O Enter and run the IrRangeTestl.

O This program makes use of the Message window, so leave the
serial cable connected to the JSDB while the IrRangeTestl
program is running.

O While the program is running, point the IR detectors so
nothing nearby could possibly reflect infrared back at the
detectors. The best way to do this is to point the J-Bot up
at the ceiling. The Message window output should display both
left and right values as equal to “15.”

O By placing your hand in front of an IR pair, it should cause
the Message window display for that detector to change from
“15” down to “0.” Removing your hand should cause the output

for that detector to return to a “15” state. This should work
for each individual detector, and you also should be able to
place your hand in front of both detectors and make both

their outputs change from “15” to “0.”

O If the IR Pairs passed all these tests, you’re ready to move
on; otherwise, check your program and circuit for errors.

How the IR Range Detection Program Works

The main method allocates the wvirtual peripherals but stops each
before allocating the next wvirtual peripheral. This 1s because
the constructor for the wvirtual peripherals starts the virtual
peripheral.

The Javelin STAMP can only have 6 active virtual
peripherals at one time. Stopping a virtual
peripheral makes it inactive. Starting one makes it
active.

FYI

The while loop in the main method repeats forever so it is best
to run the program using the debugger. The method repeatedly
prints out the range results for each DAC/PWM pair. The work
determining the range is done by the getRange class method. We do
not have to create our own objects at this point so we will stick
with class methods.

The getRange method starts both virtual peripherals at the
beginning of the method and stops both when the method is done.
This means only two virtual peripherals will be active at one
time. The for loop repeats sixteen times (0 to 15) and generates

Chapter #7: Object Detection Using Infrared

a voltage using the DAC. A dac.update value of 255 corresponds to
5 volts. This means the voltage will start at 5 wvolts and step
down. The minimum value will be 60 (255 - (13*%15)) or about 1
volt. The IR LED will generate any light if the value 1is below
this point. Even at this point the amount of light is very small.

There 1is a small delay after the LED starts emitting the
modulated signal. This allows the modulation to start since
updating the PWM frequency does not cause the PWM object to
change its frequency immediately. Likewise, the delay allows the
IR detector to respond to the reflected infrared light.

The loop checks the IR detector response on each iteration. In
theory, the transition from not detecting an obstacle to
detecting one will occur consistently but in practice there are
fluctuations in the signals from the IR detector. By counting the
IR detector responses the results will typically vary only by one
or two units.

Your Turn

O Experiment with different ranges instead of the 0 to 15 used
in the example. Keep in mind that vyou must change the
multiplier in the dac.update call. Does a finer granularity
provide more information or do the results fluctuate too much
to make a difference in accuracy?

QO Try different color objects when testing the range
capabilities. Do different colors or textures generate the
same range results?

Chapter #7: Object Detection Using Infrared

Activity #2: Detection Class — Infrared

The infrared sensor class uses the same BaseSensor class as the
photoresistor example in the previous chapter. The task/sensor
object architecture 1is repeated here to take advantage of the
delays required for the DAC output voltage to settle and for the
IR detector to recognize any reflected light from the LED. This
infrared system actually works better with the multitasking
system because virtual peripherals handle all the background
operations and timing is not critical.

The following file shows IrRangeSensor class.

The IrRangeSensor class very similar to the PhotoresistorSensor
class. The last obstacle detected information is maintained in
object wvariables that are wupdated by the IrRangeSensorTask
calling the sensor’s saveResults method. The noObstacle constant
definition is used to determine when no object is detected. The
value is 15 which will be the distance returned by the task if no
modulate IR light is detected by the IR detector. This also means
that 1if an obstacle is detected then the range value will be
between 0 and 14.

The range 1is in no particular units but a 0 distance means that
an obstacle is very close or in contact with the J-Bot. As in the
prior chapter, the deadband value is used to determine whether an
object is in front of the J-Bot when the range values from the
left and right detector are close.

The IrRangeSensor constructor creates and starts the
IrRangeSensorTask. The IrRangeSensorTask constructor requires the
six pins used for each pair of DACs, PWMs and IR detector inputs.
Of course, the task needs the reference to the sensor object as
well.

The following is the IrRangeSensorTask class definition.

The IrRangeSensorTask constructor allocates the virtual
peripherals in the same fashion as the prior section so the DAC
and PWM objects are stopped. They will be restarted as needed.

The dac, pwm and detectorPin variables will contain the currently
active DAC, PWM, and detector pin values since these are
maintained while the task checks the range for one side or the
other. These variables are used by the changeVoltage, startPulse

Chapter #7: Object Detection Using Infrared

and checkRange methods. If the object variables were not used
then these methods would need a corresponding set of parameters.

Skip to the execute method. This has a structure similar to the
PhotoresistorSensorTask in the last chapter. The initialState
stops the task which will be restarted by the IrRangeSensor the
checkSensors method. The startChecking state will be entered when
the checkSensors method restarts the task. This state calls the
startPulse method that clears the range and iteration counters,
sets the dac, pwm and detectorPin variables, starts the PWM and
DAC objects, sets the DAC voltage and will cause the task to
sleep until things have stabilized. When this method returns the
virtual peripherals are configured to send modulated IR light via
the IR LED.

The checkLeftPin state will be entered when the task is done
sleeping. The task remains in the checkLeftPin state and calls
the checkRange method repeatedly wuntil the IR LED has been
operated in all 16 voltage levels. The checkRange method checks
the IR detector pin and updates the range counter if 1light is
detected. The iteration variable is incremented. The checkRange
method will return true when all iterations have been performed
and the DAC and PWM have been turned off. This result is used to
determine when the next side is to be checked. The startPulse
method for the right side is called in the execute method at this
point after the range value is saved.

The process 1s repeated for the right side. Note that the
checkRightPin state uses the checkRange method but the layout is
slightly different to allow the initialState’s stop task method
call to do double duty and stop the task after checkRange returns
false. At this point the sensor’s saveResults method is called
using the saved leftResult and the current range from the right
side.

Testing the IR range sensor object is relatively easy using the
following program.

The test program creates a task that in turns creates an IR
sensor with 1its task. The IrRangeSensorTestl execute method
simply polls the sensor and prints the current status. If the
information is being displayed too quickly then an additional
state can be added and the task can sleep before or after the
status is printed.

Chapter #7: Object Detection Using Infrared

Activity #3: Object Detection and Avoidance

An interesting thing about the IR detectors is that their outputs
are Jjust like the whiskers. The main difference 1is that the
whiskers only indicate contact with an obstacle whereas the IR
range finder determines distance allowing the J-Bot to avoid
obstacles before coming in contact with them.

Converting the Whiskers Program For IR Object Detection/Avoidance

Changing the whisker obstacle avoidance program,
AvoidObstacleTaskWhiskerTestl, to work with the IrRangeSensor 1is
extremely easy since all the work 1s already handled by the
AvoidObstacleTask. This object takes a sensor object as a
constructor parameter. It is a matter of filling in the blanks to
make things work.

How the Roaming with Whiskers Adjusted for IR Pairs Program Works

Actually there is not much to this change. The AvoidObstacleTask
starts up with the newly created IR range sensor object. This is
polled to determine when an object has been detected otherwise
the J-Bot continues moving forward. The task already handles all
the movement control.

It is possible to adjust the deadband value. Setting the value to
0 will mean that the J-Bot will only backup if it detects an
object directly in front. That is, both sensors return the same
range. Increasing the value to 2 makes the J-Bot a little less
sensitive so head on detection is more forgiving.

Activity #4: The Drop-off Detector

The IR detector and LEDs were aimed parallel to the floor. This
allows the J-Bot to detect objects directly in front and slightly
to the sides. Aiming these down towards the floor allows the J-
Bot to determine when there is a drop-off such as the edge of a
table.

There are a number of approaches that can be used to replicate
the operation of the AvoidObstacleTask in avoiding obstacles to
avoiding drop-offs. One 1is to come up with a new class 1like
AvoidObstacleTask that works in a slightly different way. It
moves forward while an obstacle is detected in front.

Another method 1s to come up with a new sensor object that
indicates a drop off as an obstacle. We take this approach
because changing the AvoidObstacleTask would be a 1little more

Chapter #7: Object Detection Using Infrared

difficult. Also, creating the new sensor object 1is simply a
matter of extending the IrRangeSensor object.

Combine this object with the usual AvoidObstacleTask object as in
the following program and everything works.

The AvoidObstacleTask object wuses the new IrRangeDropOffSensor
object. The sensor indicates it has detected an obstacle when the
IrRangeSensor detects nothing. This will occur when a drop-off is
located.

Your Turn

O The approach presented does not detect minor vertical
differences that would occur 1if the J-Bot 1is running on a
table that has a lower ledge around its perimeter. How could
this Dbe handled? Hint: Write a new class to replace the
AvoidObstacleTask class that checks for changes in distance.

O Using the new class, check for both drop-offs and obstacles.
Hint: drop offs will occur when the change in distance 1is
positive. Obstacles can be detected when the change 1is
negative.

Chapter #7: Object Detection Using Infrared

summary and This chapter covered a unique
Applications technique for infrared object
detection. By shining infrared

light into the J-Bot’s path and
looking for its reflection, object
detection can be accomplished.
Infrared LED circuits are used to send a 38.4 kHz signal by using
a DAC and PWM virtual peripheral objects.

Building on the BaseSensor class, the IrRangeSensor class was
created. This was wused in conjunction with the existing
AvoidObstacleTask to allow the J-Bot to navigate around
obstacles.

By tilting the IR LED and detectors toward the floor the J-Bot

can detect drop-offs such as the edge of a table. This was
accomplished by extending the IrRangeSensor in a novel fashion.

Real World Example

Infrared is one of the more popular amenities on electronic
products. TV remotes, palmtop computers, and fancy calculators
all use infrared for communication. A variety of communication
schemes exist for transmitting data. A TV remote control, for
example, sends a high signal by flashing its IR transmitter at
38.5 kHz. A low signal is no IR. The detectors in some TVs,
VCRs, etc. are identical to the receiver used in the J-Bot.

The detection scheme in the automatic door openers common in
convenience and grocery stores relies on the same theory of
operation for object detection used by the J-Bot. Whenever you
trigger one of these door openers, it’s because you walked into
and broke the IR beam being reflected back at the receiver.
Infrared detectors also are mounted on many different conveyer
belts. Factories use them to count products as they fly by, and
grocery stores use them to detect when the groceries have reached
the end of the conveyer belt. In grocery stores, these belts
automatically move the groceries forward so the checker can reach
them. To prevent the conveyer belt from piling groceries on the
scanner, an IR detector is mounted at the end of the conveyer
belt. When the Twix candy bar interrupts the IR beam shining
across the conveyer belt, the IR detector’s output changes. When
this change is detected by a microcontroller, it stops the motor
that runs the conveyer belt.

J-Bot Application

The unique thing about IR detectors is that they allow the J-Bot
to detect objects without actually touching them. In maze

Chapter #7: Object Detection Using Infrared

competitions where you lose points by touching the walls, this is
a real plus.

Questions and
Projects

Questions

. What does infrared mean? How does infrared differ from

near infrared?

2. What are the two kinds of filters Dbuilt into the IR
detectors in the J-Bot Kit? What does each do?

3. Describe what each of the two IR detector outputs mean.

4. Why is a DAC and a PWM virtual peripheral used to build an
infrared range finder?

Exercises

1. Modify IrRangeSensor so that the right IR pair is checked
before the left pair.

2. Modify the AvoidObstacleTask so that it makes the J-Bot
follow objects instead of avoiding them. Describe the
problems you encounter, if any.

Projects

1. The IR range finder sensor object is not calibrated in
terms of inches.

O Create a program that translates the 0-15 values from the
infrared detection system so it returns results in terms
of inches.

O Modify the obstacleDistance method so it returns values
in inches.

2. One of the shortcomings of IR object detection is that the

J-Bot’s IR detectors do not detect black. That’s because
black absorbs IR instead of reflecting it. The J-Bot tends
to run into black objects when roaming with IR because it
doesn’t see them. Add whiskers to your breadboard and
create a sensor class that extends BaseSensor and uses an

Chapter #7: Object Detection Using Infrared

IrRangeSensor object and a WhiskerSensor object. Hint: the
new sensor class object methods will check the whisker
sensor first and then the IrRangeSensor.

electrical tape that could come into contact with

j Remember: Wrap the portions of the whiskers with
circuits other than the whisker contact posts.

