
Chapter #6: Light Sensitive Navigation with Photoresistors

Chapter #6: Light Sensitive

Navigation with Photoresistors

The photoresistors in your kit

can be used to make your J-Bot

detect variations in light level.

With some programming, your J-Bot

can be transformed into a

photophile (a creature attracted to light), or a photophobe (a

creature that tries to avoid light).

To sense the presence and intensity of light you’ll build a

couple of photoresistor circuits on your J-Bot. A photoresistor

is a light-dependent resistor (LDR) that covers the spectral

sensitivity similar to that of the human eye. The active

elements of these photoresistors are made of Cadmium Sulfide

(CdS). Light enters into the semiconductor layer applied to a

ceramic substrate and produces free charge carriers. A defined

electrical resistance is produced that is inversely proportional

to the illumination intensity. In other words, darkness produces

high resistance, and high illumination produces very small

amounts of resistance.

The specific photoresistors included in the J-Bot kit are EG&G

Vactec (#VT935G). If you need additional photoresistors they are

available from Parallax as well as from many electronic component

suppliers. See Appendix A: J-Bot Parts Lists and Sources. The

specifications of these photoresistors are shown in Figure 6.1:

Figure 6.1: EG&G

Vactec

Photoresistor

Specifications

Illuminance is a scientific name for the measurement of incident

light. The unit of measurement of illuminance is commonly the

"foot-candle" in the English system and the "lux" in the metric

system. While using the photoresistors we won't be concerned

about lux levels, just whether or not illuminance is higher or

lower in certain directions. The J-Bot can be programmed to use

the relative light intensity information to make navigation

decisions. For more information about light measurement with a

microcontroller, take a look at Earth Measurements Experiment #4,

Light on Earth and Data Logging.

Chapter #6:

Light

Sensitive

Navigation

with

Photoresistors

Chapter #6: Light Sensitive Navigation with Photoresistors

Activity #1: Building and Testing Photosensitive Eyes

Parts

Figure 6.2 shows the new

parts introduced in this

experiment along with

their schematic symbols.

Below is a list of the

parts you’ll need. Both

parts types of parts are

nonpolar, meaning that

terminals 1 and 2 as shown

may be swapped without

affecting the circuit.

(1) Piezoelectric speaker

(2) Photoresistors

(2) 0.1 µF capacitors

(2) 0.01 µF capacitors

(2) 220 Ω resistors
(misc.) jumper wires

1

2

1

2

1
2

.1 µF

2

1

1
2

.01 µF

2

1

Figure 6.2: Photoresistor and capacitor

circuit symbols and parts.

Build It!

Figure 6.3 shows (a) the resistor/capacitor (RC) circuit for each

photoresistor and (b) a breadboard example of the circuit. A

photoresistor is an analog device. Its value varies continuously

as illuminance, another analog value, varies. The

photoresistor’s resistance is very low when it’s light-sensitive

surface is placed in direct sunlight. As the light level

decreases, the photoresistor’s resistance increases. In complete

darkness, the photoresistor’s value can increase to more than 1

MΩ. Even through the photoresistor is analog, its response to
light is nonlinear. This means if the input source (illuminance)

varies at a constant rate, the photoresistor’s value does not

necessarily vary at a constant rate.

Chapter #6: Light Sensitive Navigation with Photoresistors

P3

P5

220 Ω

220 Ω

.01 µF

Vdd

Vss

Vdd

Vss

P2

Vss

Piezo

.01 µF

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Red

X4 X5

15 14 13 12

Black

To
Servos

(a) (b)

Figure 6.3: (a) Two photoresistor RC circuits for measurement of resistance that

varies with light, and (b) breadboard example of the circuit.

TIP

Remember: The servo circuits are not shown in the

schematics any more, but they are still shown in the

breadboard diagrams. All activities from Chapter #2

onward are designed so that the servos’ headers can

remain plugged into servo ports 12 and 13 at all

times.

Programming to Measure the Resistance

The circuit in Figure 6.3 (a) was designed for use with the JAVA

CPU.rcTime method. This command can be used with an RC circuit

where one value, either R or C, varies while the other remains

constant. The CPU.rcTime method lends itself to measuring the

variable values because it takes advantage of a time varying

property of RC circuits. The time it takes for the voltage on an

RC circuit to change voltage depends on R × C, the RC time

constant. The RC time constant is often denoted by the Greek

letter Tau (τ).

For one of the RC circuits shown in Figure 6.3 (a), the first

step in setting up the CPU.rcTime method measurement is charging

the lower plate of the capacitor to 5 V. Setting the I/O pin

connected to the lower capacitor plate by the 220 Ω resistor high
for a few ms takes care of this. Next, the CPU.rcTime method can

be used to take the measurement of the time it takes the lower

plate to discharge from 5 to 1.4 V. Why 1.4 V? Because that’s

Chapter #6: Light Sensitive Navigation with Photoresistors

the Javelin I/O pin’s threshold voltage. When the voltage at an

I/O pin set to input is above 1.4 V, the value in the input

register bit connected to that I/O pin is “1.” When the voltage

is below 1.4 V, the value in the input register bit is “0.”

The CPU.rcTime method for the circuit shown in Figure 6.3 measures

how long it takes for the voltage at the lower plate of the

capacitor to fall from 5 to 1.4 V. This time varies according to

the formula:

)1.4(sR1027.1t

s1001.0Rln(3.57)t

s)
 V1.4

 V5
ln(

1001.0R

t

)
V

V
ln(

CR

t

8

6

6

final

initial

××=

×××=

=
××

=
×

−

−

−

Equation 4.1 indicates that the time it takes the voltage at the

lower plate of the capacitor in one of the Figure 4.3 (a) RC

circuits to drop from 5 to 1.4 V is directly proportional to the

photoresistor’s resistance. Since this resistance varies with

illuminance (exposure to varying levels of light), so does the

time. By measuring this time, relative light exposure can be

inferred.

The CPU.rcTime method changes the I/O pin from output to input. As

soon as the I/O pin becomes an input, the voltage at the lower

plate of the capacitor starts to fall according to the time

equation just discussed. The Javelin starts counting in 8.68 µs
increments until the voltage at the capacitor’s lower plate drops

below 1.4 V.

TIP
For Best Results: Eliminate direct sunlight; it’s too

bright for the photoresistor circuits.

� Run Photoresistor1.java. It demonstrates how to use the

CPU.rcTime method to read the photoresistors. It uses the

Photoresistor class defined first.

� This program makes use of the Message window and the debugger,

so leave the serial cable connected to the JSDB while

Photoresistor1.java is running.

package JBot ;

Chapter #6: Light Sensitive Navigation with Photoresistors

import stamp.core.*;

/**

 * Basic Photoresistor Class

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class Photoresistor {

 public int pin ;

 public int timeout ;

 public int chargeTime ;

 public int bias ;

 public boolean state ;

 /**

 * Gets RC time value in 8.68us units

 *

 * @param pin CPU.pin to use

 * @param state initial RC state

 * @param timeout maximum rcTime return value

 * @param chargeTime msec to charge/discharge RC circuit

 */

 public Photoresistor (int pin, boolean state, int timeout, int chargeTime,

int bias) {

 this.pin = pin ;

 this.timeout = timeout ;

 this.chargeTime = chargeTime ;

 this.state = state ;

 this.bias = bias ;

 }

 /**

 * Gets RC time value in 8.68us units

 *

 * @returns RC time

 */

 public int rcTime() {

 // Measure RC time for photoresistor.

 CPU.setOutput (pin) ;

 CPU.writePin (pin, state) ; // setup to charge circuit

 CPU.delay (chargeTime * 10) ; // charge circuit

 int result = CPU.rcTime (timeout, pin, ! state) ;

 return (result > 0) ? (result - bias) : bias ;

 }

}

The Photoresistor class handles most of the work. Each object

handles one pin. The constructor saves the details such as the

pin number. The work is done by the rcTime method. Normally the

RC circuit is the same so setting the parameters once is

sufficient. The rcTime method initially charges the capacitor

circuit and then uses the CPU.rcTime method to determine how

quickly the circuit recovers.

Chapter #6: Light Sensitive Navigation with Photoresistors

The bias value will be 0 in the first example, Photoresistor1.

The value may change for the second example, Photoresistor2. The

reason for the difference is that the components are may not be

identical. For example, the resistors may be rated at 220 ohms

but this value is actually the desired value. The actual value

can be with 5% to 20% depending upon the part used. The same is

true for the other components like the photoresistors and

capacitors. The bias value will allow the program to take these

differences into account. This is similar to the calibration of

the servos done in earlier chapters.

The Photoresistor1 class file simply uses the Photoresistor class

for each input pin.

import stamp.core.*;

import JBot.* ;

/**

 * Basic Photoresistor Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class Photoresistor1 {

 public static void main() {

 Photoresistor leftPhoto = new Photoresistor (CPU.pin5, true, 250, 2, 0) ;

 Photoresistor rightPhoto = new Photoresistor (CPU.pin3, true, 250, 2, 0) ;

 while (true) {

 // Measure RC time for right photoresistor.

 // Display RC time measurements

 System.out.print ("L ") ;

 System.out.print (leftPhoto.rcTime()) ;

 System.out.print (" R ") ;

 System.out.println (rightPhoto.rcTime()) ;

 }

 }

}

How The Photoresistor Display Works

The Photoresistor1 program creates a pair of Photoresistor

objects. It then repeatedly prints out the results of the rcTime

method calls.

FYI A result of –1 indicates that the result is out of

range. The timeout value (250) can be increased in

which case the out of range value may show up less

often although the default value used in the program

Chapter #6: Light Sensitive Navigation with Photoresistors

should be sufficient for the experiments and hardware

used in this chapter.

One thing you may notice about the results displayed by the

program is that the values may be quite different even if the

photoresistors are aimed in the same direction. A variable

resistor or capacitor could be used to adjust the values for each

sensor so they are the same for similar light conditions but this

tends to be expensive and hard to do. What we do instead is use

the bias value in the Photoresistor class.

The differences between the left and right values tend to be off

by the same relative amount. Keep in mind that there will always

be some difference because making lighting conditions identical

is actually very difficult. Still, it should be relatively

apparent what the difference values are.

Your Turn

� Try determining the bias value by viewing the results printed

by the Photoresistor1 program. The bias value is the absolute

difference between the two sensors under the same lighting

conditions. The bias value should be applied to the sensor

that has the higher value.

� Modify the Photoresistor1 program so the bias value is printed

at the end of the line showing each sensor result. Hint: Store

the rcTime results in integer variables left and right.

Photoresistor Bias

The Photoresistor2 program, shown below, makes minor changes to

the Photoresistor1 program.

import stamp.core.*;

import JBot.* ;

/**

 * Basic Photoresistor Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class Photoresistor2 {

 public static void main() {

 Photoresistor leftPhoto = new Photoresistor (CPU.pin5, true, 250, 2, 0) ;

 Photoresistor rightPhoto = new Photoresistor (CPU.pin3, true, 250, 2, 30)

;

Chapter #6: Light Sensitive Navigation with Photoresistors

 while (true) {

 // Measure RC time for right photoresistor.

 // Display RC time measurements

 System.out.print ("L ") ;

 System.out.print ((leftPhoto.rcTime()+5)/10) ;

 System.out.print (" R ") ;

 System.out.println ((rightPhoto.rcTime()+5)/10) ;

 }

 }

}

The first change is to the bias value. In this case the bias

value is 30 and applied to the right sensor. During the tests

the right sensor generated a value of 61 while the left sensor

generated a 31 under the same conditions.

The second change occurs where the rcTime results are printed.

The equation used divides the results by 10. Adding 5 rounds the

result up. For example, a result of 15 prints as 2 while 12

prints as 1.

FYI
The Photoresistor2 program rounding does not take in

account the out of range value of –1.

The reason for reducing the magnitude of the rcTime result is

that the accuracy of hardware is limited. Dividing the result by

10 reduces the number of significant digits by 1. One thing that

you will notice is that the change in results occur less often as

small changes are made to the lighting conditions. This can be

done by moving the light source or putting an obstacle in the way

to cast a shadow over the sensors.

Where the original program would print out a range of values for

a particular lighting condition, such as 157 to 161, the new

program would consistently print a value of 16. Differences for

minor changes in lighting conditions would be a difference of 1

or 2 instead of a difference of 1 to 24.

Reducing the sensor variance for minor changes in lighting

conditions is critical. Otherwise the J-Bot will react too often

to minor changes. Reducing the variance within the sensor code

will isolate such differences from the main program that utilizes

the sensors.

Your Turn

Chapter #6: Light Sensitive Navigation with Photoresistors

� Fix Photoresistor2 so it retains the out of range value (-1).

Hint: Create a method that performs the rounding so the code

does not have to be replicated for each sensor.

� Determine an upper threshold value that the sensors return

when aimed at a bright light. This value should be low enough

that it will always be below either sensor result. For

example, if the left result varies from 21 to 24 and the right

result is 19 to 22 then the threshold should be 18 or 19.

� Try replacing one of the 0.01 µF capacitors with a 0.1 µF
capacitor. Which circuit fares better in bright light, the

one with the larger (0.1 µF) or the one with the smaller (0.01

µF) capacitor? What is the effect as the surroundings get
darker and darker? Do you notice any symptoms that would

indicate that one or the other capacitor would work better in

a darker environment? Did you have to change the charge or

timeout values?

� Make sure to restore your circuit to its original state before

moving on to the next activity.

Activity #2: Sensor Class – Photoresistors

The problem with Photoresistor class is that utilizes CPU.delay.

Although it uses a small delay value it can impact other tasks in

a multitasking system. Unfortunately, using the rcTime method

will also impact other tasks but its delay is less than the

charge time. It would be nice to have background virtual

peripheral support but that is not part of the Javelin’s

repertoire.

The PhotoresistorSensor needs a multitasking component,

PhotoresistorSensorTask, to reduce its overhead. The two work in

concert allowing another task to poll each photoresistor sensor.

The sensor object works in a slightly different fashion than the

whisker sensor because the photoresistor does not determine the

range to an object or a light source but rather the intensity.

For our purposes, we assume that the light intensity will be used

to simulate an obstacle. A dark area will be closer to an

obstacle while a bright area will be considered an open area.

Subsequent example programs will try to move the J-Bot toward the

light which would be the same as moving away from an obstacle.

Therefore a bright area should not indicate an obstacle. We will

have to come up with a threshold value which will be done using

the test program that utilizes the PhotoresistorSensor object.

In essence, the high values from the rcTime method will have to

be inverted since a low value would indicate a close obstacle

versus a brigher/higher rcTime value that indicates no obstacle

or one that is farther away.

Chapter #6: Light Sensitive Navigation with Photoresistors

We start our class definitions with the PhotoresistorSensor class

based on the BaseSensor class already presented and used.

package JBot ;

import stamp.core.*;

import java.lang.Math.* ;

/**

 * Photoresistor Sensor Class

 * <p>

 * Tests the photoresistor sensors using PhotoresistorTask.

 * Indicates there is no obstacle if light intensity is below a threshold.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class PhotoresistorSensor extends BaseSensor {

 protected PhotoresistorSensorTask sensorTask ;

 protected int direction ;

 protected int distance ;

 protected boolean obstacleDetected = false ;

 protected int lowerLimit ;

 protected int deadband ;

 /**

 * Create photoresistor sensor object and support task

 *

 * @param leftPin CPU.pin to use

 * @param rightPin CPU.pin to use

 * @param state initial RC state

 * @param timeout maximum rcTime return value

 * @param chargeTime msec to charge/discharge RC circuit

 * @param bias offset, subtract from left side >0, right <0

 * @param lowerLimit lowest distance value for no obstacle

 */

 public PhotoresistorSensor (int leftPin

 , int rightPin

 , boolean state

 , int timeout

 , int chargeTime

 , int bias

 , int lowerLimit

 , int deadband) {

 sensorTask = new PhotoresistorSensorTask

 (this

 , leftPin

 , rightPin

 , state

 , timeout

 , chargeTime

 , bias) ;

 this.lowerLimit = lowerLimit ;

 this.deadband = deadband ;

 }

 /**

 * Indicate whether an obstacle has been detected.

Chapter #6: Light Sensitive Navigation with Photoresistors

 * Normally used when polling versus using an event.

 *

 * @returns obstacle detected

 */

 public boolean obstacleDetected () {

 sensorTask.checkSensors() ;

 return obstacleDetected ;

 }

 /**

 * Indicate initial obstacle position.

 * For simple detection systems the detection of an object

 * on the right and left will return front.

 *

 * @returns obstacle's relative direction (left, right, etc.)

 */

 public int obstacleDirection () {

 return direction ;

 }

 /**

 * Get the distance to an obstacle in the specified direction.

 * A value of <code>none</code> indicates no object detected.

 *

 * @param direction to get range for

 *

 * @returns distance to an obstacle for the specified direction

 */

 public int obstacleDistance (int direction) {

 return distance ;

 }

 /**

 * Update results based on sensor information.

 * Called by sensor task when results available.

 *

 * @param resultLeft photoresistor rcTime result

 * @param resultRight photoresistor rcTime result

 */

 protected void saveResults (int resultLeft, int resultRight) {

 // Current results are valid

 // Save obstacle status

 switch (((resultLeft > lowerLimit) ? 1 : 0)

 + ((resultRight > lowerLimit) ? 2 : 0)) {

 default:

 case 0:

 obstacleDetected = false ;

 break;

 case 1:

 direction = left ;

 distance = resultLeft ;

 obstacleDetected = true ;

 break;

 case 2:

 direction = right ;

 distance = resultRight ;

 obstacleDetected = true ;

 break;

 case 3:

Chapter #6: Light Sensitive Navigation with Photoresistors

 // Both sensors indicate an obstacle

 if (Math.abs (resultLeft - resultRight) < deadband) {

 // Both distances are close together

 direction = front ;

 distance = (resultLeft > resultRight) ? resultLeft : resultRight ;

 } else if (resultLeft > resultRight) {

 // Left sensor has a higher value

 direction = left ;

 distance = resultLeft ;

 } else {

 // Right sensor has a higher value

 direction = right ;

 distance = resultRight ;

 }

 obstacleDetected = true ;

 break;

 }

 }

}

This class creates an object that maintains details about the

last obstacle reading. It creates a PhotoresistorSensorTask using

the parameters passed to the constructor so the object that

creates the PhotoresistorSensor object only needs to deal with

one object. The task remains hidden.

The BaseSensor abstract methods are defined here and simply

return the last obstacle readings. The obstacleDetected method

also calls the task’s checkSensors method. From the sensor

object’s standpoint, the method does something but what is does

is irrelevant. In reality the method makes sure the task is

working to generate new obstacle information.

The saveResults method is used by the task to set the latest

values. The results are already adjusted for bias and rounding so

the method only needs to contend with out-of-range results and

the brightness threshold.

The PhotoresistorSensorTask class definition follows.

package JBot ;

import stamp.core.*;

import stamp.util.os.* ;

/**

 * Photoresistor Sensor Class

 * <p>

 * Supports PhotoresistorSensor.

 * Should not be called directly by another other object.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class PhotoresistorSensorTask extends Task {

Chapter #6: Light Sensitive Navigation with Photoresistors

 protected PhotoresistorSensor sensor ;

 protected int leftPin ;

 protected int rightPin ;

 protected int timeout ;

 protected int chargeTime ;

 protected boolean pinState ;

 protected int resultLeft ;

 protected int bias ;

 final static int startChecking = 1 ;

 final static int startLeftPin = 2 ;

 final static int startRightPin = 3 ;

 protected PhotoresistorSensorTask

 (PhotoresistorSensor sensor

 , int leftPin

 , int rightPin

 , boolean pinState

 , int timeout

 , int chargeTime

 , int bias) {

 this.sensor = sensor ;

 this.leftPin = leftPin ;

 this.rightPin = rightPin ;

 this.timeout = timeout ;

 this.chargeTime = chargeTime ;

 this.pinState = pinState ;

 this.bias = bias ;

 }

 /**

 * Check sensors if not already doing so

 */

 protected void checkSensors() {

 if (state == stopped) {

 // Task was done. Start it again.

 nextState (startChecking) ;

 start () ;

 }

 }

 /**

 * Check photoresistor sensor.

 * Round and adjust for bias.

 * Handless out of range condition.

 *

 * @param pin pin to check

 * @param bias bias value to be subtracted if positive

 *

 * @result adjusted rcTime result (-1 is out of range)

 */

 protected int rcTime (int pin, int bias) {

 int result = CPU.rcTime (timeout, pin, ! pinState) ;

 // Handle out of range condition. Time exceeds timeout.

 if (result == -1) {

 result = timeout*2 ; // use big number

 } else if (bias > 0) {

 // Adjust bias if value is positive

 result -= bias ;

 }

Chapter #6: Light Sensitive Navigation with Photoresistors

 return (result+5)/10 ;

 }

 /**

 * Multitasking support

 */

 public void execute () {

 switch (state) {

 case startChecking:

 // Setup to charge circuit

 CPU.setOutput (leftPin) ;

 CPU.setOutput (rightPin) ;

 CPU.writePin (leftPin, pinState) ;

 CPU.writePin (rightPin, pinState) ;

 // Setup delay for charging circuit

 sleep(chargeTime,startLeftPin);

 break;

 case startLeftPin:

 // Measure RC time for photoresistor.

 resultLeft = rcTime (leftPin, -bias) ;

 nextState(startRightPin);

 break;

 case startRightPin:

 // Post results

 sensor.saveResults (resultLeft, rcTime (rightPin, bias)) ;

 // Falls through for stop()

 default:

 case initialState:

 stop() ;

 break;

 }

 }

}

The constructor saves off the parameters including the matching

PhotoresistorSensor object. The sensor object also maintains a

reference to the task so the two can interact with each other.

The task has three methods: checkSensors, execute and rcTime. The

checkSensors method is called periodically by the matching

PhotoresistorSensor object when the sensor object is polled using

the obstacleDetected method. The checkSensors method restarts the

task in the startChecking state.

The execute task is where the task runs. The initialState stops

the task. It is restarted in the startChecking state by the

checkSensors method. This state sets the pins used with the

photoresistor circuits so they charge the capacitor. There is a

delay while the charging occurs but instead of bring the Javelin

to a halt, the multitasking system allows other tasks to run. The

charging may run longer than necessary but that does not really

matter since the capacitor cannot be overcharged.

Chapter #6: Light Sensitive Navigation with Photoresistors

The startLeftPin state is executed when the sleep timeout occurs.

The rcTime method is called to check the left sensor pin. The

task then yields control and will execute the startRightPin state

after any other tasks have had a chance to run. At this point the

right sensor pin is monitored and the results from both sensors

are given to the sensor object by calling the saveResults method.

The task then stops. Note that the switch case “falls through” to

the initialState case where the stop method is actually called.

The task object is periodically started by the sensor object but

the task only runs long enough to generate one set of results.

This allows the J-Bot program to perform major actions in

response to sensor changes without the overhead to check the

photoresistor sensors if the sensor object is not used by these

actions.

There is a significant amount of complexity using the two object,

multitasking approach. Still, the overhead is on par with the

Photoresistor class that uses CPU.delay except that the

PhotoresistorSensor works nicely in a multitasking environment.

It also works well with the BaseSensor interface that can be used

with various multitasking J-Bot applications presented in this

book.

Two parameters to the PhotoresistorSensor constructor control the

sensitivity of the system. These are the lowerLimit and the

deadband parameters. The lowerLimit sets the boundary between no

obstacle and an obstacle being detected. The deadband controls

the sensitivity between a left and right obstacle indication or a

front obstacle indication. The higher the value, the more likely

an obstacle detection will be indicated in the front instead of

one of the sides.

To test these two classes we use the PhotoresistorSensor1 class

file presented next.

import stamp.core.*;

import stamp.util.os.* ;

import JBot.* ;

/**

 * Basic Photoresistor Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class PhotoresistorSensor1 extends Task {

 PhotoresistorSensor sensor =

 new PhotoresistorSensor (CPU.pin5 // left pin

 , CPU.pin3 // right pin

 , true // pin state

 , 250 // rcTime limit

Chapter #6: Light Sensitive Navigation with Photoresistors

 , 2 // timeout

 , 30 // bias

 , 3 // lower limit

 , 5) ; // deadband

 public void execute() {

 // Only uses one state

 if (sensor.obstacleDetected ()) {

 System.out.print ("Dir=") ;

 System.out.print (sensor.obstacleDirection()) ;

 System.out.print (" Dist=") ;

 System.out.println (sensor.obstacleDistance(sensor.obstacleDirection())) ;

 } else {

 System.out.println (".") ;

 }

 }

 public static void main() {

 new PhotoresistorSensor1 () ;

 Task.TaskManager () ;

 }

}

As with prior multitasking applications, this class definition

combines a Task class and a main method that runs the

Task.TaskManager. The execute method for the task is very simple.

It checks to see if an obstacle is detected and prints out the

current status. The PhotresistorSensor1 task object has one

object variable, sensor.

Your Turn

� You will need an area that is well lit and where you can cast

a shadow over the photoresistors. This is necessary to test

the program properly. Start the program and watch how the

display information changes as you cast a shadow with your

hand over one or both of the sensors.

� Make a record of the direction and approximate distance

results as you adjust the amount of light falling on each

sensor. The distance value will be higher when the amount of

light falling on the sensor is low.

� Make sure the left and right sensors are setup properly. If

the left sensor is in the shadows and the left is not then the

obstacle direction will be 45 degrees. If both sensors are in

the shadows then the angle will be 90 and if the right sensor

is in the shadows and the left is not then the angle is 135.

No other values will be presented since the sensor object only

returns these fixed values.

Activity #3: A Light Compass

Chapter #6: Light Sensitive Navigation with Photoresistors

If you focus a flashlight beam in front of the J-Bot, the circuit

and programming techniques just discussed can be used to make the

J-Bot turn so that it’s pointing at the flashlight beam. Make

sure the photoresistors are pointed so that they can make a light

comparison. Aside from each being pointed 45° outward from the
center-line of the J-Bot, they also should be oriented so they

are pointing 45° downward from horizontal. In other words, point
the faces of the photoresistors down toward the table top. Then,

use a bright flashlight to make the J-Bot track the direction of

the light.

Programming the J-Bot to Point at the Light

Getting the J-Bot to track a light source is a matter of

programming it to compare the value measured at each

photoresistor. Remember that as the light gets dimmer, the

photoresistor’s value increases. So, if the photoresistor value

on the right is larger than that of the photoresistor on the

left, it means it’s brighter on the left. This comparison is

already done by the PhotoresistorSensor object. It will indicate

an obstacle direction of 45 degrees if there is more light on the

right side than the left. Likewise, there is more light on the

left side if the obstacle direction is 135 degrees. The object

also has a deadband when it reports an obstacle directly in

front, or 90 degrees. In this case both sensors must detect light

but they do not have to be identical.

� Enter and run PhotoCompass1 program.

� Shine a bright flashlight in front of the J-Bot. When you

move the flashlight, the J-Bot should rotate so that it’s

pointing at the flashlight beam.

� Instead of using a flashlight, use your hand to cast a shadow

over one of the photoresistors. The J-Bot should rotate away

from the shadow.

import stamp.core.*;

import stamp.util.os.* ;

import JBot.* ;

/**

 * Basic Photoresistor Compass Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class PhotoCompass1 extends Task {

 protected JBotInterface jbot = new BasicJBot (new MultitaskingJBot()) ;

 protected PhotoresistorSensor sensor =

Chapter #6: Light Sensitive Navigation with Photoresistors

 new PhotoresistorSensor (CPU.pin5 // left pin

 , CPU.pin3 // right pin

 , true // pin state

 , 250 // rcTime limit

 , 2 // timeout

 , 30 // bias

 , 3 // lower limit

 , 5) ; // deadband

 public void execute() {

 // Only uses one state

 if (sensor.obstacleDetected ()) {

 if (sensor.obstacleDirection() <= 45) {

 // Obstacle to the left, turn right

 jbot.pivot(jbot.continuousRight) ;

 } else if (sensor.obstacleDirection() >= 135) {

 // Obstacle to the right, turn left

 jbot.pivot(jbot.continuousLeft) ;

 } else {

 // Directly in front

 jbot.stop() ;

 }

 } else {

 // No obstacle located

 jbot.stop() ;

 }

 }

 public static void main() {

 new PhotoCompass1 () ;

 Task.TaskManager () ;

 }

}

How the Light Compass Works

The PhotoCompass1 program utilizes the multitasking system but

not the AvoidObstacleTask used earlier. This is because the

AboidObstacleTask uses fixed movements while the PhotoCompass1

task uses fine grain movements that are not part of an integral

rotation. The PhotoCompass1 task still uses the

PhotoresistorSensor object but adds the BasicJBot object for

motor control.

The execute method handles the interface between the

PhotoresistorSensor and the BasicJBot objects. The execute method

does not use the state variable since it remains in one state

forever so the initialState works just fine.

The execute method checks to see if an obstacleDetected returns

true. It then checks to see if the obstacle is located in front,

to the left or to the right. In this case the obstacle is where

it is darker. If the obstacle is not in front then the J-Bot

pivots in the opposite direction. It stops when no light is

detected or the light is directly in front.

Chapter #6: Light Sensitive Navigation with Photoresistors

The pivotLeft and pivotRight methods start the J-Bot turning in

the respective direction. It does not stop until it detects no

light or the light is directly in front so usually the J-Bot does

not pivot indefinitely. Note that calling either method will not

cause a pulse to be generated. Instead the underlying PWM object

will be generating the pulses based on the last setting.

Resetting the values only causes the values to be used when the

next pulse will be generated. All this is hidden by the BasicJBot

class.

Your Turn

In a darker area, not only will the photoresistor values be

larger, so will the difference between them. The sensitivity of

the PhotoresistorSensor object is based on the lowerLimit

parameter. It is possible to raise and lower this value.

The lowerLimit value is currently set to “3” in

PhotoresistorSensor constructor.

� Experiment with different ambient light levels and their

effect on lowerLimit by trying this experiment in lighter and

darker areas. In lighter areas, the lowerLimit value can be

made smaller, even zero. In darker areas, the lowerLimit value

should be increased.

� Swap the pivotLeft and pivotRight method calls in the

PhotoCompass1 program. Then re-run the program. Now your J-

Bot points away from the light.

Activity #4: Follow the Light!

Simply by adding some forward motion to your J-Bot, you can turn

it into a light-seeking robot, a photophile. An interesting

experiment to try is to program the J-Bot to move forward and

seek out light. Then, take it into a dark room with the door

open to a brighter room. Assuming there are no obstacles in its

way, the J-Bot will make its way to the door and exit the dark

room.

Chapter #6: Light Sensitive Navigation with Photoresistors

Programming for Light Following

Programming the J-Bot to follow light requires that only a few

modifications to the PhotoCompass1 class be made. The two

changes occur where the jbot object was stopped. Let’s see how it

works.

import stamp.core.*;

import stamp.util.os.* ;

import JBot.* ;

/**

 * Basic Photoresistor Compass Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class PhotoCompass2 extends Task {

 protected JBotInterface jbot = new BasicJBot (new MultitaskingJBot ()) ;

 protected PhotoresistorSensor sensor =

 new PhotoresistorSensor (CPU.pin5 // left pin

 , CPU.pin3 // right pin

 , true // pin state

 , 250 // rcTime limit

 , 2 // timeout

 , 30 // bias

 , 3 // lower limit

 , 5) ; // deadband

 public void execute() {

 // Only uses one state

 if (sensor.obstacleDetected ()) {

 if (sensor.obstacleDirection() <= 45) {

 // Obstacle to the left, turn right

 jbot.pivot(jbot.continuousRight) ;

 } else if (sensor.obstacleDirection() >= 135) {

 // Obstacle to the right, turn left

 jbot.pivot(jbot.continuousLeft) ;

 } else if (sensor.obstacleDistance (90) > 20) {

 // Too dark. Just stop and wait

 jbot.stop() ;

 } else {

 // Directly in front

 jbot.move(jbot.continuousForward) ;

 }

 } else {

 // No obstacle located

 jbot.move(jbot.continuousForward) ;

 }

 }

 public static void main() {

 new PhotoCompass2 () ;

 Task.TaskManager () ;

 }

}

Chapter #6: Light Sensitive Navigation with Photoresistors

How the Light Follower Program Works

First the easy one. The jbot.stop() method for the else clause of

the initial obstacleDetected call is replaced by a jbot.forward()

call. This allows the J-Bot to move forward when there is a

bright light in front of it.

The second change provides a bit more control. In this case, the

sensor.obstacleDistance method is called when the

obstacleDirection is 90 (actually not under 45 or over 135

degrees). The if statement that checks the distance either stops

the J-Bot or has it move forward. The distance threshold allows

the J-Bot to stop when it reaches an area that is too dark. The

condition can be eliminated and only the jbot.forward call used

if the J-Bot should not stop moving. Changing the distance

threshold controls when the J-Bot will stop.

FYI
The PhotoCompass programs can be tested with the J-

Bot tethered to the PC if it is raised so the wheels

do not touch the ground.

Your Turn

� Repeat the previous Your Turn exercise. You can now lead your

J-Bot around with a flashlight.

� Instead of pointing the photoresistors at the surface directly

in front of the J-Bot, point them upward and outward as shown

in Figure 4.3 on Page xxx. With the photoresistors adjusted

this way, the J-Bot will roam on the floor and try to always

find the brightest place.

Activity #5: Line Following

If the J-Bot can be programmed to follow a flashlight beam

focused in front of it, why can’t it follow a white stripe on a

black background? The answer is, there’s no good reason. The J-

Bot can follow a white stripe on a black background, and it’s a

project in this chapter’s Projects section. By the same token,

the J-Bot should be able to follow a black stripe on a white

background. Regardless of the color of the stripe, this activity

is generically referred to as “line following.”

The recommended width for the black stripe is about 5 cm. Either

construction paper or electrical tape works fine. With some

calibration along with controlled lighting conditions, the J-Bot

is a very faithful stripe follower.

Chapter #6: Light Sensitive Navigation with Photoresistors

� Shadows and bright lights can be misleading, so try to keep

the lighting as uniform as possible. For example, overhead

fluorescent lights with no light from windows will work well.

� Also, make sure to bend the photoresistors as far over the

front of the J-Bot as possible. In other words, readjust the

photoresistors from flashlight beam following.

Programming for Line Following

By changing various parameters from the previous example program,

the J-Bot can now follow bold, black stripes on a white

background. The LineFollower1 program demonstrates this. The

lowerLimit and deadband parameters for the PhotoresistorSensor

constructor were reduced. When the difference is larger, the

deadband will have to be increased for better performance. In

some instances, the sensitivity reduction done within the

PhotoresistorSensor class may have to be increased so the

lowerLimit and deadband parameters provide more control.

TIP

In brightly lit rooms, decreasing the deadband

value may not be enough. The 0.1 µF capacitors can

be substituted for the 0.01 µF capacitors in the J-
Bot’s RC circuits. This will increase the RC times

by a factor of 10. Keep this in mind when

adjusting the deadband.

import stamp.core.*;

import stamp.util.os.* ;

import JBot.* ;

/**

 * Basic Photoresistor Compass Test Program

 * <p>

 * Tests the photoresistor circuits using CPU.rcTime.

 *

 * @version 1.0 10/2/02

 * @author Parallax, Inc.

 */

public class LineFollower1 extends Task {

 protected JBotInterface jbot = new RampingJBot (new MultitaskingJBot ()) ;

 protected PhotoresistorSensor sensor =

 new PhotoresistorSensor (CPU.pin5 // left pin

 , CPU.pin3 // right pin

 , true // pin state

 , 250 // rcTime limit

 , 2 // timeout

 , 30 // bias

 , 1 // lower limit

 , 2) ; // deadband

 public void execute() {

 // Only uses one state

Chapter #6: Light Sensitive Navigation with Photoresistors

 if (sensor.obstacleDetected ()) {

 if (sensor.obstacleDirection() <= 45) {

 // Obstacle to the left, turn right

 jbot.pivot(jbot.continuousRight) ;

 } else if (sensor.obstacleDirection() >= 135) {

 // Obstacle to the right, turn left

 jbot.pivot(jbot.continuousLeft) ;

 } else if (sensor.obstacleDistance (90) > 20) {

 // Too dark. Just stop and wait

 jbot.stop() ;

 } else {

 // Directly in front

 jbot.move(jbot.continuousForward) ;

 }

 } else {

 // No obstacle located

 jbot.move(jbot.continuousForward) ;

 }

 }

 public static void main() {

 new LineFollower1 () ;

 Task.TaskManager () ;

 }

}

How the Black Stripe Follower Program Works

The line follower program just required changes to the

sensitivity because the actions being performed by the photo

compass programs were already correct. The main difference was

the intensity of the light being used, or, in this case, the

difference in the amount of light being reflected from the floor.

If you turn the lights out the J-Bot should stop. This is because

of the range test when an obstacle is detected in front. This can

be used to stop the J-Bot when it reaches the end of a path. You

may have to adjust the value in the range test depending upon the

light conditions.

Your Turn

Try a black stripe with a 45° turn in the middle of it.

Try a black strip with a 90° turn in it, and see if you can pick
a deadband that will navigate it.

Remember, you may need to adjust your deadband to succeed in

these maneuvers.

Chapter #6: Light Sensitive Navigation with Photoresistors

For either or both of the maneuvers above, find the upper and

lower limits of deadband values with which the J-Bot still can

successfully navigate.

Chapter #6: Light Sensitive Navigation with Photoresistors

This chapter focused on measuring the

difference in light intensity and using

it as a guide for the J-Bot. The JAVA

CPU.rcTime method was used in conjunction

with an RC circuit to measure each

photoresistor. The exact resistance

value of each photoresistor was

disregarded in favor of the relative difference between the two

values. This difference is a simple subtraction problem, but it

can be used to gage which direction is brighter.

Real World Example

Light has many applications in robotics and industrial control.

Some examples include sensing the edge of a roll of fabric in the

textile industry, determining when to activate streetlights at

different times of the year, when to take a picture, or when to

deliver water to a crop of plants.

Deadband is often a problem in navigation control systems. In

terms of tracking and controlling machinery, deadband can result

from the uncertainty in measurements due to mechanical

connections. The result is that deadband is the area you don’t

know about and try to develop creative ways of dealing with it.

On the other hand, deadband is also the way a thermostat works.

In the context of maintaining temperature, differential gap

control uses a built-in deadband region where no correction is

made to the temperature.

J-Bot Application

As you can see, the J-Bot can do an interesting variety of tricks

with a pair of photoresistors as its guide. It can point at

light, move itself from a dark place into a light place, follow a

guiding flashlight beam and follow a black stripe with turns in

it on a white piece of paper. That’s not bad for some

inexpensive photoresistors, capacitors and resistors.

Summary

and

Applicati

ons

Chapter #6: Light Sensitive Navigation with Photoresistors

Questions and

Projects

Questions

1. Name and describe the element in the photoresistors that

changes resistance in response to illuminance.

2. What does the Javelin measure to infer the resistance in an

RC circuit? What value must remain fixed in an RC circuit

to infer a variable resistance? Why?

3. What are the increments of the CPU.rcTime measurement?

4. When the value of a photoresistor increases, what does that

indicate?

5. How does the program for a light following J-Bot differ

from that of a dark following J-Bot?

6. What role does deadband play in the J-Bot’s tendency to

move forward? What role does it play in the J-Bot’s

tendency to change direction?

Exercises

1. If you have a 10 µF capacitor and your CPU.rcTime value is
150, what is the resistance of the photoresistor? Hint:

Use equation 4.1.

2. Re-derive Equation 4.1 using a 0.1 µF capacitor. What kinds

of problems arise if the 0.1 µF capacitors replace the 0.01

µF capacitors? What effect does the increased RC value have
on the measurement time? What effect does the measurement

time have on servo performance?

Projects

1. Add sound to the J-Bot PhotoCompass2 program so a tone is

sounded for a fixed duration after the J-Bot has been

moving forward for at least one second. Use the

TaskToneGenerator class to generate a half second tone.

The PhotoCompass2 task timer can be used since there are no

sleep methods called that utilize the timer. Hint: Call

timer.mark() when the J-Bot moves forward. A

Chapter #6: Light Sensitive Navigation with Photoresistors

timer.timeoutSec(1) will indicate when at least one second

has elapsed.

Use boolean variables to keep track when the timer is

running and a tone has occurred.

This program should never generate a continuous tone. Why?

Hint: Consider the tone and the timeout duration.

2. Implement the previous exercise using different states

instead of boolean variables to keep track of when forward

movement is being tracked and if a tone has been played.

3. Add Whiskers to the J-Bot. Develop a line following track

with obstacles placed in the way. Program the J-Bot to

follow the line and also to check the whiskers to monitor

for obstacles. Develop routines that guide the J-Bot

around obstacles and back to the line.

TIP

Make sure to wrap each whisker with electrical

tape around any part that might contact other

circuits. The only things a whisker should be

allowed to touch are obstacles and its own

three-pin header post.

4. One of the interesting facets of relying on deadband for

line following is that it can be adjusted purely in

software. This project explores the relationship between

deadband settings and stripe width.

Repeat the Your Turn exercises in Activity #4 with a 3.75

cm. wide black stripe. Do not adjust the width of your

photoresistors; just the deadband settings. Repeat this

activity again for a 2.5 cm. wide stripe. Make notes on

the upper and lower deadband limits for each stripe width.

In other words, find the highest and lowest deadband

settings that work for successful stripe following. Graph

your results. Is there any apparent mathematical

relationship between deadband and stripe width? Use the

graph to approximate a linear relationship, and develop a

deadband equation. Test the equation on a 4.4 cm. wide

stripe.

