
Chapter #2: Writing Programs to Control the J-Bot’s Servos

Chapter #2: Writing Programs to

Control the J-Bot’s Servos

The J-Bot’s servos are attached to

wheels that drive the J-Bot. J-Bot

applications can control the wheels to

move the J-Bot in any direction or

have the J-Bot pivot or turn in any

direction. How the servos are

controlled dictate how the J-Bot moves.

This chapter addresses how the servos work and how to calibrate

them for use in subsequent chapters. Those who have already done

this type of work, possibly using PBasic and a BOEBOT, may want

to skip to Activity #5 that deals with servo calibration. The

other activities provide a step-by-step introduction to servo

operation and calibration. An interactive calibration program is

used in Activity #5 that allows you to get the J-Bot configured

quickly.

The J-Bot comes with a special modified servo that allows the

wheel to turn continuously. This is different than normal hobby

servos.

Normal (un-modified) hobby servos are very popular for

controlling the steering systems in radio-controlled cars, boats,

and planes. These servos are designed to control the position of

something such as a steering flap on a radio-controlled airplane.

Their range of motion is typically 90° or 180°, and they are great
for applications where inexpensive, accurate high-torque

positioning motion is required. The position of these servos is

controlled by an electronic signal called a pulse train, which

you’ll get some first hand experience with shortly. An un-

modified hobby servo has built-in mechanical stoppers to prevent

it from turning beyond its 90° or 180° range of motion. It also
has internal mechanical linkages for position feedback so that

the electronic circuit that controls the DC motor inside the

servo knows where to turn to in response to a pulse train.

A Parallax pre-modified servo

does not have the position

feedback and mechanical

stoppers you find in normal

hobby servos. You can send the

same electronic signals (a

pulse train) to a Parallax pre-

modified servo as you would

normally send to a hobby servo.

In a hobby servo, a given pulse

Chapter #2:

Writing

Programs to

Control the

J-Bot’s

Servos

Red

Black

Servo

White

Vin

Vss

P12

Figure 2.1: Servo connection

schematic.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

train makes it turn to a certain position and stay there. The

same pulse train causes a Parallax pre-modified servo to turn

continuously. The pulse train also sets the pre-modified servo’s

speed and direction. So, instead of controlling airplane flaps,

the Parallax pre-modified servos are used as Javelin controlled

motors that make the J-Bot’s wheels turn.

Figure 2.1 shows the circuit that is established when a servo is

plugged into the servo port labeled 12 on the BOE’s Rev B’s top

right corner. The red and black wires connect to the servo’s

power source, and the white (or sometimes yellow) wire is

connected to a signal source. When a servo is plugged into servo

port 12, the servo’s signal source is Javelin I/O pin P12.

!
Only use the Vdd sockets above the BOE’s breadboard

for the Activities in this workbook. Do not use the

Vdd on the 20-pin app-mod header.

Activity #1: Connecting and Testing The Servos

The control signal the Javelin sends to the servo’s control line

is called a “pulse train,” and an example of one is shown in

figure 2.2. If this looks familiar it is because it is the same

pulse width modulation (PWM) support presented in the prior

chapter.

The Javelin can be programmed to produce this waveform using any

of its I/O pins. In this activity, we’ll start with I/O pin P12,

which is already connected to servo port 12 by a metal trace

built into the Board of Education. First, the Javelin sets the

voltage at P12 to 0 V (low) for 20 ms. Then, it sets the voltage

at P12 to 5 V (high) for 1.0 ms. Then, it starts over with a low

output for another 20 ms, and a high output for another 1.0 ms,

and so on.

Vdd (5 V)

Vss (0 V)

1.0 ms 1.0 ms

20 ms

Figure 2.2: Pulse train.

This pulse train has a 1.0 ms high time and a 20 ms low time.

This differs from the symmetrical pulse train used for the tone

generator in Chapter 1. In that case, the object was to simulate

a sine wave that is typically used to generate a tone.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

In this case, the high time is the main ingredient for

controlling a servo’s motion, and it is most commonly referred to

as the pulse width. In this example, we are working with 1 ms

wide pulses. Since these pulses go from low to high (0 V to 5 V)

for a certain amount of time, they are called positive pulses.

Negative pulses would involve a resting state that’s high with

pulses that drop low. Pulse trains have some other technical

descriptions such as duty and duty cycle. These are described in

BASIC Analog and Digital, Experiment #6.

Remember

Pulse width is what controls the servo’s motion.

The low time between pulses can range between 10

and 40 ms without adversely affecting the servo’s

performance.

A pre-modified servo can be pulsed to make its output shaft turn

continuously. The pulse widths for pre-modified servos range

between 1.0 and 2.0 ms for full speed clockwise and

counterclockwise respectively. If you give a pre-modified servo

1.25 ms pulses, it will turn clockwise at roughly half of full

speed. If you give a pre-modified servo 1.90 ms pulses, the

servo will turn at almost full speed counterclockwise. The

“center pulse width” is 1.5 ms, and that makes the servo stay

still. If the servo turns very slowly in response to 1.5 ms

pulses, you will learn how to adjust the servo to stay still

using a JAVA program in Activity #1.

 Front

Forward

Backward

Left

Right

 Back

Figure 2.3: J-Bot from the driver’s seat.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Figure 2.3 shows the J-Bot’s front, back, left and right. Use

this diagram as your guide when you see instructions about making

the J-Bot move forward/backward, examining the right or left

wheels, etc.

 Converting Instructions to Motion Using the PWM Virtual

Peripheral

Let’s start by programming the J-Bot’s right wheel to turn full

speed ahead. For the right side of the J-Bot, this means the

wheel has to turn clockwise, which means it needs to receive 1 ms

pulses every 20 ms or so.

� You may want to set the J-Bot on something to keep it’s wheels

from touching the ground during these tests. Otherwise, you

will see the J-Bot spin around in circles since only one wheel

is turning.

� Enter JbotServo1.java listing into the Javelin IDE.

import stamp.core.*;

/**

 * Drives right servo at high speed

 *

 * @version 1.0 5/7/02

 * @author Parallax, Inc.

 */

 public class JBotServo1 {

 static PWM pwmR = new PWM(CPU.pin12); // create right servo

 public static void main() {

 pwmR.update (110, 2000) ;

 pwmR.start () ;

 CPU.delay(10000); // run for one second

 pwmR.stop () ;

 }

}

� Save the program using as JbotServo1.java. You can do this by

clicking the File Manu and selecting Save (or Save As... if

you are renaming the file). Then enter the “JbotServo1” into

the File name: field, and make sure that the Save as type:

field is set to “Java source (*.java)”.

� Make sure the J-Bot has power and the serial cable is

connecting the PC to the J-Bot. Run the program by clicking

Project and selecting Program.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

� Verify that, as you’re looking at the wheel from the J-Bot’s

right side that it is turning clockwise fairly rapidly (about

37 RPM).

How the Right Wheel Full Speed Ahead Program Works

As with previous program examples, the first line of the program

imports class definitions for objects that will be used in the

program. In this case it is the PWM class. This is followed by a

comment that describes the program. We forego major comments in

the rest of the program because it is so short and it will not be

reused.

The main static method is required for a Java program. It is

contained within the JbotServo1 class definition. The first line

in the class definition is a static variable, pwmR. That’s an

abbreviation of pulse width modulation right (wheel). The

variable is a PWM reference used to keep track of the new PWM

object that is created in the same line. The object is setup to

use pin 12 by passing the CPU.pin12 parameter to the PWM

constructor.

FYI

Do not use integer values where a pin ID is

required as an argument. For example, use CPU.pin12

for the PWM constructor as in new PWM(CPU.pin12)

instead of new PWM(12). The latter will not work

because CPU.pin12 does not convert to a number 12.

It is possible to put the variable definition within the main

method but this would restrict its access to that method. This is

possible here but not typically done in the rest of the book

where other methods would have to access the variable. The

variable is static so it can be accessed by the static methods.

If this class definition were to be used by other classes then it

would be a better idea to use object methods and object

variables. This is what will be done later in this book.

The creation of the PWM object simply sets up the virtual

peripheral object. It does not start sending a pulse train to the

servo. This is done using the update method and the pwmR object

within the main method. The parameters to the update method are

the length of time that the pulse should be high followed by the

length of time the pulse should be low. The high voltage is Vdd,

5 volts, while the low voltage is Vss, 0 volts.

The update method starts the PWM virtual peripheral sending a

series of pulses . These pulses will continue until the stop

method is called. The pulse train can also be changed with a

subsequent update method call.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

The CPU.delay (10000) method utilizes the CPU class’ to pause the

program for 1 second otherwise the program would immediately call

the PWM object’s stop method and the wheel would not turn much

since only one or two pulses may be sent. The PWM virtual

peripheral operates in the background so pulses will continue to

be sent while the program does other things. In this case, it

waits.

The parameters in the PWM update method are measured in 8.68µs
ticks. The high time is set to 110 ticks and the low time is set

to 2000 ticks.

1.0 ms = 1000 µs = 1000/8.68 ticks = 115 ticks

1.5 ms = 1500 µs = 1500/8.68 ticks = 173 ticks

2.0 ms = 2000 µs = 2000/8.68 ticks = 230 ticks

20 ms = 20000 µs = 20000/8.68 ticks = 2304 ticks

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Your Turn

JbotServo2.java is really JbotServo1.java with one small change.

Instead of pwmR.update(110,2000), the JbotServo2 class uses

pwmR.update(240,2000). This should make the right wheel turn full

speed counterclockwise.

� Run JbotServo2 as shown.

import stamp.core.*;

/**

 * Drives right servo at high speed

 *

 * @version 1.0 5/7/02

 * @author Parallax, Inc.

 */

 public class JBotServo2 {

 static PWM pwmR = new PWM(CPU.pin12); // create right servo

 public static void main() {

 pwmR.update (240, 2000) ;

 pwmR.start () ;

 CPU.delay(10000); // run for one second

 pwmR.stop () ;

 }

}

� To make the right wheel stay still, modify the update method so

that it reads pwmR.update(175,2000), and run the modified

program. Note, the wheel may move very slowly. This is due to

minor variations in the servos which is expected.

JbotServo3.java is JbotServo2.java with some minor changes:

• The variable pwmR was changed to pwmL

• CPU.pin12 was changed to CPU.pin13

� JbotServo3.java as shown to make the left wheel turn full

speed counterclockwise.

import stamp.core.*;

/**

 * Drives left servo at high speed

 *

 * @version 1.0 5/7/02

 * @author Parallax, Inc.

 */

 public class JBotServo3 {

 static PWM pwmL = new PWM(CPU.pin13); // create left servo

Chapter #2: Writing Programs to Control the J-Bot’s Servos

 public static void main() {

 pwmL.update (240, 2000) ;

 pwmL.start () ;

 CPU.delay(10000); // run for one second

 pwmL.stop () ;

 }

}

� To make the left wheel turn full speed clockwise, modify the

pwmL.update method so that it reads pwmL.update(110,2000) and run

the modified program.

� Now, change the first argument of the update method from 110 to

175, and the wheel should stay still.

Activity #2: Running both servos together

When you assembled the J-Bot in Chapter 1, you plugged the servo

on the right side of the J-Bot into P12 and the servo on the left

side of the J-Bot into P13. Figure 2.4 shows a schematic of the

circuit you created by doing this. The servo on the J-Bot’s

right side is connected to I/O line P12 and the servo on the J-

Bot’s left is connected to P13. Each servo is also connected to

Vin (the battery pack’s positive terminal) and Vss (the battery

pack’s negative terminal).

The easy part about making

the J-Bot roll forward is

that you use two PWM objects,

one for each servo. The

difficult part can be

figuring out what the update

method arguments should be.

Take a look at the right side

of the J-Bot. To make this

wheel turn forward, the servo

has to turn clockwise. This

means first argument to update

is less than center value.

Now look at the left side of

the J-Bot. To make this

wheel turn forward, the servo

has to turn counterclockwise.

Now instead of the first

argument being less than the

center value it must be

larger.

Red

Black

Servo

White

Vin

Vss

P12

Red

Black

Servo

White

Vin

Vss

P13

Figure 2.4: Servo connection schematic.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

� Enter and run JbotServo4.java and observe the results.

If the J-Bot rolled backward instead of forward, the servo lines

were swapped. It means that the servo plugged into servo port 12

should be plugged into servo port 13 and visa-versa.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

import stamp.core.*;

/**

 * Drives both servo at high speed

 *

 * @version 1.0 5/7/02

 * @author Parallax, Inc.

 */

 public class JBotServo4 {

 static PWM pwmR = new PWM(CPU.pin12); // create right servo

 static PWM pwmL = new PWM(CPU.pin13); // create left servo

 public static void main() {

 pwmR.update (110, 255) ;

 pwmL.update (240, 255) ;

 pwmR.start () ;

 pwmL.start () ;

 CPU.delay(10000); // run for one second

 pwmR.stop () ;

 pwmL.stop () ;

 }

}

How JbotServo4.javaPulses Both Servos

JbotServo4.java program pulses the left and right servos at the

same time because the PWM objects operate in the background. The

right servo is started a fraction of a section before the left

but this has little affect on the actual operation of the servos.

Likewise, the right servo is stopped just before the left servo.

The program only runs the servos for a few seconds so the J-Bot

will not run too far but you can get it to continue on by running

it again from the IDE or by pressing the reset button the J-Bot.

This approach to timed operation of the J-Bot’s servos is how

distance movement is controlled. We have not precisely calibrated

the movement or the distance the J-Bot moves. This will be done

later in this chapter and subsequent chapters.

Your Turn

� After you make each change listed below, make sure to run the

modified version of the program and observe what the J-Bot

does differently. Save your changes as new files but remember

to change the class name to match the file. A good class names

would be JbotServo100, JbotServo101, etc.

� Swap the first arguments of the update methods to make the J-

Bot to roll backward. In other words, instead of using the

Chapter #2: Writing Programs to Control the J-Bot’s Servos

commands pwmR.update(240,2000) and pwmL.update(110,2000) use the

commands pwmR.update(110,2000) and pwmL.update(240,2000). This should

make the J-Bot travel backward instead of forward.

� Try setting both arguments to the center value of 175 to make

the J-Bot stay still.

� Try setting both arguments to 240 and run the modified

program. It will make the J-Bot rotate counterclockwise in

place.

� Try setting both arguments to 110 and run the modified

program. It will make the J-Bot rotate clockwise in place.

Chances are that you noticed your J-Bot didn’t go perfectly

straight forward when you ran JBotServo04. For that matter, it

probably didn’t go perfectly straight backward in response to the

modifications you made to JBotServo04. You can adjust the first

parameter of the update method to straighten out the J-Bot’s

travel. This practice is called “calibration in software”. We

take a look finer control and calibration of the servos in the

next few activities.

Activity #3: Centering the J-Bot’s Servos

The first place to start in software calibration is the center

point where no movement occurs. The center point is important

because we will be making adjustments to speed based upon this

value in the basic servo class in Activity #4.

It is possible to make incremental changes to the program and

download them as we did in the prior activity and enhancements

but this tends to get tedious especially when a value may change

only a little. Instead we make use of the terminal interface

between the Javelin and the IDE message window.

To start we need to enter the JbotServoCalibrate1 program shown

next.

import stamp.core.*;

/**

 * Calibrate the servo center point

 *

 * @version 1.0 5/7/02

 * @author Parallax, Inc.

 */

 public class JBotServoCalibrate1 {

 static PWM pwmR = new PWM(CPU.pin12); // create right servo

 public static void main() {

 int i = 175 ;

Chapter #2: Writing Programs to Control the J-Bot’s Servos

 pwmR.update (i, 2000) ;

 pwmR.start() ; // start servo

 mainloop: while (true) {

 System.out.print ("Servo value is ") ;

 System.out.println (i) ;

 switch (Terminal.getChar ()) {

 case '+':

 i ++ ;

 break ;

 case '-':

 i -- ;

 break ;

 case 'Q':

 case 'q':

 break mainloop;

 default:

 continue mainloop;

 }

 pwmR.update (i, 2000) ;

 }

 pwmR.stop () ;

 }

}

This program assumes that the center point for the right servo is

about 175. If not, the value being sent to the servo can be

changed using the keyboard. This done using the Terminal class

and its static method, getChar. Terminal.getChar() returns a

character when it is entered. It waits if there are no characters

in the input buffer.

The program assumes that one of three characters will be entered:

+, - and q. Any others will be ignored. The local method

variable, i, stores the current high pulse width. The variable is

incremented when the + character is typed and decremented then

the- character is entered. The mainloop is exited if the ‘q’ or

‘Q’ character is entered.

This program shows off some of the power of Java. The while loop

is labeled with mainloop:. This allows it to be referenced within

the select statement that handles the terminal character input.

The annotated break statement, break mainloop; after the case

statements checking for the ‘q’ or ‘Q’ allows the loop to be

exited. A lone break statement as in the + and – cases only exits

the break statement. This allows the PWM object’s pulse width to

Chapter #2: Writing Programs to Control the J-Bot’s Servos

be changed since the speed variable is changed within the select

statement.

Start the program. Once the program starts the Message window

will be presented and the text “Servo value is 175” will be

displayed in the window. Press the + key and a new line

containing “Servo value is 176” will be displayed. Pressing the –

key should change the servo pulse width back to 175 with the

appropriate change in servo rotation speed.

The servo may be moving slowly with the default value of 175 but

it may not. Change the value using the + and – keys until the

best result is attained. This may be a very slow movement or no

movement at all.

Record the servo center point value. This will be used in the

next activity.

Your Turn

� Modify the program to get the center point of the left servo.

Run the program and determine the center point for the left

servo. You should now have the center point value for both the

left and right servo.

Activity #4: Basic servo class

The previous examples explicitly manipulated the respective PWM

objects but this has a number of disadvantages. First, you need

to know what values to set the pulse width to. Second, the values

for moving the J-Bot forward are different for the left and right

servos. Finally, the center point for each servo may be

different.

Here we deviate from the simple program scenario and create a

class for controlling servos. This is only a basic version

because we will refine this later in the book. Still, this class

and the sample application show how the J-Bot can be more easily

controlled.

First enter the BasicWheelServo class shown next.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

package JBot;

import stamp.core.*;

/**

 * Wheel servo control class

 * <p>

 * Handles PWM support for a free running wheel servo on the J-Bot.

 * Start movement using start() and stop it using stop().

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServo extends PWM {

 public int forward;

 public int center;

 public int backward;

 public int low;

 public int pin;

 /**

 * Setup a wheel servo control object that uses PWM for movement.

 * Units are in PWM units.

 *

 * @param pin the pin to generate the PWM signal on (i.e. CPU.pin0)

 * @param forward pulse width for moving forward

 * @param center pulse width for staying still

 * @param backward pulse width for moving backward

 * @param low low time following a pulse

 */

 public BasicWheelServo (int pin, int forward, int center, int

backward, int low) {

 super (pin) ;

 this.forward = forward-center ;

 this.center = center ;

 this.backward = center-backward ;

 this.low = low ;

 }

 /**

 * Set wheel speed to forward/backward (+/-).

 *

 * @param percent relative speed

 */

 public void move (int percent) {

 if (percent == 0) {

 stop() ;

 } else {

 update(center+((((percent>0)?forward:backward)*percent)/100)

 ,low) ;

 start () ;

 }

 }

}

Chapter #2: Writing Programs to Control the J-Bot’s Servos

The first difference is the between this and most of the other

programs presented thus far is the package statement. This

indicates the class is part of a larger package so it can be more

easily imported. Also, the package file must be in the proper

directory. In this case the BasicWheelServo.java file should be

in the JBot directory of the Javelin’s project directory.

The class extends the PWM class. This allows the PWM methods to

be accessed directly. An alternative is to allocate a PWM object

when the BasicWheelServo object is created. In this case, the PWM

object can be hidden. This may be desirable but more on that

later.

The BasicWheelServo class has four object variables. These track

the pulse width values used with the servo. They are public so

they can be changed but normally the values are set using the

class constructor. Why? Because the values will be different for

the left and right servos and because the center value will be

the ones obtained in the previous activity for your J-Bot. The

forward and backward values will be changed based on the next

activity as well.

Note that the forward and backward variable values are set with

respect to the center value. This is done to simplify the move

method, otherwise each call to the move method would have an

additional subtract operation to get the value to multiply by the

percentage argument in the move method.

The class constructor calls the super constructor method. In this

case, this calls the matching constructor in the PWM class. The

parameter is the pin to use for the PWM class. The rest of the

constructor simply stores the parameters in the respective object

variables. The low variable is the time duration for the low part

of the pulse. The other values are the high pulse time duration.

FYI

A conditional expression is used to compute the

argument to the update method called in the move

method definition. A conditional expression is

similar to an if statement except that a result is

required for both a true and false result of the

condition. The general syntax is <condition> ?

<true result> : <false result> where values are

required for the items in <angle brackets>. For

example, (a == b) ? 10 : 11 will have a value of 10

if the variables a and b are equal, otherwise the

value will be 11.

The magic shows up in the move method. The move method turns the

servo so the wheel movement is forward or backwards depending

Chapter #2: Writing Programs to Control the J-Bot’s Servos

upon the parameter. The big difference between this method and

the ones used with the PWM is that the PWM values are absolute

time values (proportional to 8.68 microseconds). Instead the

parameter to the move method is a percentage (-100 to +100) of

the maximum speed that should be used. A 0 value results in the

center point value being sent to the PWM object. A –100 or +100

value results in the respective maximum rotation backward or

forward. Values outside of the range will result in adverse

results.

The approach used to calculate the PWM high pulse width works

because the of the range of values involved. If the typical range

of PWM high pulse values were too large then the result of the

calculation would be too large and exceed the value of that can

be stored in the Javelin’s integer variable.

For now, we use the limit values used in prior experiments. Start

by entering the BasicWheelServoTest1.java program listed next

but, instead of using the center values listed here, use the ones

obtained in the previous activity. The actual values used for the

forward and backward values will be determined in the next

activity.

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo control class test program

 * <p>

 * Handles PWM support for a free running wheel servo on the J-Bot.

 * Start movement using start() and stop it using stop().

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoTest1 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

Chapter #2: Writing Programs to Control the J-Bot’s Servos

 leftWheel.move (100) ;

 rightWheel.move (100) ;

 CPU.delay(10000); // run for four seconds

 leftWheel.move (-100) ;

 rightWheel.move (-100) ;

 CPU.delay(10000); // run for four seconds

 leftWheel.stop () ;

 rightWheel.stop () ;

 }

}

Notice that the forward and backward constructor parameters for

the left and right servo are reversed. This is necessary because

they rotate in the opposite direction to go forward. Subsequent

movements will be based upon the servos rotating in the proper

direction.

The program is designed to drive the J-Bot forward for 4 seconds

and then backward for the same amount of time returning to its

starting point. In practice this J-Bot will not return to the

exact same spot because the rest of the servo calibration process

is incomplete. This will be handled in the next activity.

If the J-Bot veers to the right when it is programmed to go

straight forward, either the left wheel needs to slow down, or

the right wheel needs to speed up. Since the servos are pretty

close to top speed as it is, slowing the left wheel down will

work better. You can do this by making the pulse period to the

left servo, which is connected to P13, smaller.

You can adjust the constructor parameters and run the program

again to see about getting the J-Bot to move in a straight line.

Otherwise, move onto the next activity where we have a program

that will help you to do it.

Activity #5: Software Calibration - Navigating a Straight Line

The calibration done in Activity #3 was to determine the center

point. This Activity will determine the forward and backward

limits for both servos. This set of values should then be used

with examples presented throughout the rest of this book.

There are two ways to approach the calibration issue. The first

is to continue the approach started in Activity #4 and continued

here. The other is to use a more complex, interactive application

Chapter #2: Writing Programs to Control the J-Bot’s Servos

that handles all the calibration process. The

CalibrateWheelServos program is this application. It utilizes the

multitasking system described in Chapter #4 so we will not go

into what the program does internally. Instead, the interactive

interface will be briefly described.

When you run the CalibrateWheelServos.java program it will start

by printing the following in the Messages window:

Press ? for command list.

>

Entering ? will display the following help message:

>?

? - Help/current status

C - current status

H - halt, turn off wheels

; - comment

L.6 - increase left speed

l.4 - decrease left speed

R.3 - increase right speed

r.1 - decrease right speed

F.7 - forward (100)

S.8 - stop (0)

B.9 - backward (-100)

Q - Quit. Exit program

Entering C (current status) will display the current settings for

the two wheel servos as in:

Left: F-C-B = 285-175-80

Right: F-C-B = 80-175-285

The idea behind this program is the as with the other interactive

calibration programs: to get the wheels running at the same rate.

The F, S, and B keys will set the servo movement to forward,

stop, or backward. The L, l, R and r keys will increment or

decrement the left or right servo settings for the currently

selected movement. The current status is displayed when the

program quits. It will also stop the servos. The three results

for each servo can be used when creating a BasicWheelServo.

If you are going to work this out for yourself then the first

step is enter this program.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

import stamp.core.*;

import JBot.*

/**

 * Wheel servo control class calibration program

 * <p>

 * Handles PWM support for a free running wheel servo on the J-Bot.

 * Start movement using start() and stop it using stop().

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoCalibrate1 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 mainloop: while (true) {

 System.out.println("Enter key

 switch (Terminal.getChar ()) {

 case ' ':

 break ;

 case '+':

 leftWheel.forward ++ ;

 break ;

 case '-':

 if (leftWheel.forward > 1) {

 leftWheel.forward -- ;

 }

 break ;

 case 'Q':

 case 'q':

 break mainloop;

 default:

Chapter #2: Writing Programs to Control the J-Bot’s Servos

 continue mainloop;

 }

 System.out.print ("Left forward value is

 System.out.println (leftWheel.forward + leftWheel.center) ;

 leftWheel.move (100) ;

 rightWheel.move (100) ;

 CPU.delay (2000) ;

 leftWheel.stop () ;

 rightWheel.stop () ;

 }

 }

}

This program will determine the forward value for the left wheel.

It is assumed that the right wheel limit for forward movement can

be matched by the left wheel. If this is not the case then its

value may have to be changed within the program.

The BasicWheelServoCalibrate1 program creates the left and right

servo objects. It then waits for a character to be entered in the

Message window that will be presented the first time as message

is sent to it. In this case it will be “Enter key”.

The +, - and space bar will cause the J-Bot to move forward. The

spacebar uses the current settings while the other two change the

value of the forward object variable of the left wheel object. The

idea is to get the J-Bot to move forward in a straight line. When

it does you have the settings for the forward direction. The

program does not simply print the value of leftWheel.forward

because this has been adjusted with respect to leftWheel.center.

Instead it prints the value that is the forward argument to the

left servo constructor.

If the J-Bot veers to the left then decrease the pulse width to

speed up the left wheel. If the J-Bot veers to the right then

increase the pulse width to slow down the left wheel. If the

pulse width

This takes care of the forward direction parameters. The backward

direction parameters can be determined using the following steps.

� Make the necessary changes in BasicWheelServoCalibrate1 so

that it makes the J-Bot go full speed backward.

� Change the program so keyboard input adjusts the rightServo’s

backward object variable. Remember to change the

Chapter #2: Writing Programs to Control the J-Bot’s Servos

System.out.println (leftWheel.forward + leftWheel.center) ;

line accordingly.

� Save the new program as BasicWheelServoCalibrate2.java and

change the name of the class accordingly.

Perform the same test as before to calibrate the J-Bot’s servos.

The only difference will be that the J-Bot will be going

backward. Write the final results for both servos below for

future reference.

Left Right

Forward

Center

Backward

We now have settings for forward and backward movement. Although

these settings will keep the J-Bot on the straight and narrow for

at least a few inches we are not done with this process. Two

other aspects will need to be handled first. These include

circular movement and movement using feedback.

Circular movement includes pivoting and turns. The J-Bot can

pivot on its axis. That is turning without moving from the same

spot. This is covered in the next chapter.

Feedback controlled movement is something that has not been used

thus far. It will be covered in Chapter 8. All movement thus far

has been without feedback. The programs simply move the J-Bot

using arbitrary parameters for a fixed amount of time. The

distance traveled and the accuracy of movement is based upon the

calibration performed in this chapter. The problem is that the

calibration is an approximation and movement of the servos is not

exactly repeatable, only approximately repeatable.

The amount of error may be minor but it is cumulative. This can

lead to relatively minor deviations at long distances such as

when the J-Bot tries to go straight for two yards. Unfortunately,

the problem is more severe when rotation is involved. A 90 right

degree turn may really be an 88 degree turn. The difference is a

fraction of an inch if the J-Bot is pivoting but do this a couple

dozen times and the J-Bot orientation is off by 45 degrees. Add a

little linear movement error and the J-Bot can be completely lost

assuming it is using dead reckoning, keeping track of its

position based upon its desired movement.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Feedback movement is not simple which is why it is left to

chapter 8. It also requires additional hardware that will be

installed using instructions in that chapter.

In the meantime, we’ll stick with movement that does not utilize

feedback. It is possible to do quite a lot without this type of

feedback. Instead we’ll use other sensors for feedback to

determine the desired direction or distance to an obstacle. The

lack of wheel control feedback is often not a problem in these

kinds of environments. For example, if the J-Bot is trying to

navigate its way out of a maze then it needs to avoid the walls

of the maze. As long as it stays away from the walls it does not

really care about its position. In this case, how far the J-Bot

moves and what its orientation is does not really matter.

Before checking out these other feedback mechanisms we’ll take a

look at how the J-Bot can turn and rotate.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Congratulations on the construction and

operation of your J-Bot! Through

following the procedures in this chapter,

you may have had your first taste of

testing and troubleshooting at the system

and subsystem levels. Lots of other

essential topics were covered that will

get used and re-used throughout this text. For example, the Debug

Terminal will be your best and most used tool for testing and

troubleshooting each circuit as well as many upcoming programs.

The aspects of the Java programming language and virtual

peripherals were introduced along with some example programs to

get you started with the J-Bot. Software calibration and the

terminal interface also was introduced.

Real World Example

From the space shuttle all the way down to the J-Bot, isolating

and testing subsystems during each phase of development is

critical to make sure the whole thing runs when it’s put

together. More importantly, isolating and testing each subsystem

minimizes the time spent on, and difficulty level of,

troubleshooting. At the beginning of the chapter, the problems

associated with not iteratively developing and testing were

discussed. Imagine if nobody tested the Space Shuttle’s

subsystems before putting it together. It would take hundreds of

years for NASA to get all their problems sorted out!

Whether it’s robotics competitions, product development, or space

programs, subsystem and system level development and testing is

the way to avoid unnecessary delays when working from the

beginning to the end of a project. Especially in product

development, groups of engineers develop systems and subsystems.

Often, it’s not until late in the design cycle that the system

level testing and system integration occurs. Sometimes, all a

design team knows are the input and output (I/O) requirements of

their particular module in the project. Regardless, engineering

design teams still have to iteratively develop, simulate (which

we did not do here), and test the subsystems within the project

module they are working on.

Software calibration also was introduced. This is currently a

hot topic because many appliance makers are working on

incorporating microcontrollers that can communicate across the

Internet into their products. Remote diagnostic programs can

then enhance the ability of the microcontrolled devices to self

calibrate. Also, technicians can perform software calibration,

diagnosis, and in some cases repair, all remotely. Imagine your

TV picture going bad a few years from now. Getting it fixed

might involve the pressing of a few buttons on your TV remote.

Summary

and

Applicati

ons

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Then the microcontroller in your TV will log onto the Internet

and report the problem to the company that makes the TV. Before

sending out a TV repair person, your TV’s problem will be

diagnosed, perhaps by a computer program. It might even be fixed

by the program sending special control instructions back to the

microcontroller. Otherwise the TV repair person will show up

with the right parts to fix it.

J-Bot Application

One item you’ll investigate in the Questions and Projects section

is what happens when the wiring of the servos gets changed. How

does this get handled? It involves more changes than you might

think. For example, if you were to unplug a servo from servo

port 12 and then plug it into servo port 13, you can’t just

change the drawing that shows what port to plug it into. The

schematic, which is the preferred method of communicating wiring

information, has to be changed, but so do all the program

listings. At some point you might want to add more servos to

function as grippers. Although a gripper design is not included

in this text, Questions and Projects has exercises that will

prepare you for connecting servos to different ports.

So far, the J-Bot can be programmed to roll forward or backward

or to rotate in place. During some of your testing, small

variations in servo performance were discovered and corrected in

software. The advantage of calibration in software is that,

instead of mechanically adjusting the J-Bot, the JAVA program is

modified to make the correction. This software calibration was

all done at only two or three speeds: full speed ahead, full

speed reverse, and full stop. In the projects section you’ll get

a chance to further research and generalize the software

calibration for a variety of speeds.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Questions and

Projects

Questions

1. Assuming the circuit inside the servo that controls the DC

motor updates what it’s doing every 20 ms, how many times

per second does the DC motor get updated? Hint: This is a

division problem.

2. Discuss how you would modify Figure 0.1 and Program Listing

1.2 if you wanted to test each of your servos using I/O

line P15. Keep in mind that the board does not have sockets

for this pin but it can be wired up using the wireless

breadboard.

Exercises

1. What would happen if you change the low time in the update

method? How would this effect the servos’ operation? Draw

a diagram similar to Figure 0.2 based on a pulse train

using values of 1000 and 3000.

2. What is the necessary update method argument to make a 1.626

ms pulse?

3. What are the maximum and minimum pulse widths that can be

generated using the PWM update command?

Projects

1. Program the J-Bot to move in several different patterns.

Try the following:

(a) Identify a pair of forward values that make the J-Bot

move slowly straight forward. Shoot for wheel speeds of

4 revolutions per minute (RPM). Some trial and error

will be necessary to find the forward value to make each

servo turn at this rate.

(b) Identify a pair of backward values that make the J-Bot

move very slowly straight backward at the same speed.

How do these values compare (or not compare) to those

identified in 1 (a.)?

2. Make a graph of wheel speed as a function of pulse width

for each servo. Use several pulse widths between 0.8 and

Chapter #2: Writing Programs to Control the J-Bot’s Servos

2.2 ms (update values between 10 and 350). Either count how

many revolutions the wheel completes in a specified time

(20 seconds or a minute), or see how much time it takes to

complete 10 revolutions.

Your graph might look similar to Figure 2.5. This graph

was generated by a Microsoft Excel spreadsheet using eight

data points and the “Best Fit” option. Collect data points

and make your own graphs, one for each servo. In general,

when you plot more data points, you can expect your graph

to be more reliable. However, there are lots of techniques

for reducing the number of measurements. One example would

be to take a few measurements to find the curved areas of

the graph, then focus on taking many measurement in those

areas while taking only a few measurements in the areas

that are linear.

Note: Expect your graphs to look different from Figure 2.5

because it’s for a different kind of servo from the one in

your kit.

Use your graphs to predict the pulse widths required to

make your J-Bot go straight forward or straight backward

with less trial and error. Try this at a variety of

speeds. The rotational speed of one servo will correspond

with a certain PWM update value. Remember that the values

you select will come from opposite sides of the center

point.

Servo #1

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

400 500 600 700 800 900 1000 1100 1200

Pulsout Period (2-microsecond increments)

R
o

ta
ti

o
n

a
l S

p
e
e

d
 (

R
P

M
)

Figure 2.5: pulsout period vs. Rotational speed

for servo.

Test the accuracy of the graphically determined predictions

by programming them into your J-Bot and testing to see how

straight it goes. By focusing on one servo for your

corrections, you can calculate the percent error of your

initial guess. So that error from the other servo is not a

Chapter #2: Writing Programs to Control the J-Bot’s Servos

factor, fine tune it using trial and error so that it

rotates at the exact speed predicted by your graphs. Then,

you can figure the percent error on the servo that you have

not fine tuned using this equation:

100%
durationexact

durationpredicteddurationexact
error% ×

−
=

The exact period is what you will arrive at by adjusting a

single servo using trial and error. The predicted period is

the value from the graph for that servo. You can expect

percent errors of between 5 and 25% depending on the

resolution of your graph and other factors such as

imperfections in wheel alignment and slight differences in

wheel size.

