
Chapter #3: Programming the J-Bot to Go Places

Chapter #3: Programming the J-Bot to

Go Places

Chapter #3 is all about instructing

the J-Bot where to go and how to get

there. You’ll write programs to make

the J-Bot perform a variety of

maneuvers instead of just going

forward and backward. Some programs

can be used for navigating tight spaces, others for drawing

shapes. Whatever the maneuver, this chapter presents the tools

for programming the J-Bot to perform it. Here’s what you’ll

learn how to do in Chapter #3:

• Move a specific distance forward and backward.

• Pivot and make turns.

• Program your J-Bot to go a variety of directions, all in the

same program.

• Learn about the J-Bot class hierarchy used in the rest of

this book (see Activity #3)

• Create a Java class to handle basic maneuvers

• Write programs that remember long lists of movement

instructions.

• Write programs that make the J-Bot accelerate and decelerate

during maneuvers.

The exercises in this chapter also offer lots of practice in

using variables and flow control to accomplish a variety of

tasks. Some essential math for converting program commands into

distance and speed are also introduced. For some, this will be a

first glimpse into elementary Dynamics.

Converting Instructions to Motion

In the previous chapter, you programmed the J-Bot to move forward

and backward. Additionally, software calibration settings were

determined for programming the J-Bot to move forward, backward,

and to stop and stay still.

Each J-Bot navigation program in Chapter #2 focused on one

direction. If the J-Bot was programmed to go forward, it had to

be reprogrammed to go backward and reprogrammed again to turn in

place. In this chapter, all the directions will be incorporated

into a single program. By determining how many pulses it takes

to make the J-Bot rotate a certain amount during a turn, you can

program the J-Bot to perform a variety of more precise maneuvers.

For example, the J-Bot can be programmed to draw a square, or a

cross, or a triangle.

This level of programmed maneuverability is well and good, but

programming long and involved lists can become a complicated

Chapter #3:

Programming

the J-Bot

to Go

Places

Chapter #3: Programming the J-Bot to Go Places

problem. Java also features a simple and efficient method of

recording and accessing long lists of directions in the program

memory. You’ll notice that while the J-Bot is performing its

programmed maneuvers that it comes to abrupt stops when it

changes direction. Commands can also be added to make the J-Bot

decelerate into and accelerate out of direction changes. This

ramping process will solve the abrupt stops and extend the life

of the J-Bot’s servos.

FYI

The J-Bot will be able to run all the programs in

this book when it is powered by the external power

supply that plugs into a wall outlet. In some cases,

the J-Bot will not operate properly when using

battery power. This can be due to a combination of

things from improper batteries, such as rechargeable

nickel-cadmium (NiCd) batteries, or partially

discharged batteries that cannot supply a sufficient

current surge to the J-Bot when the servos start at

top speed. In this case, the ramping support

described at the end of chapter should be employed as

it minimizes power surge. The ramping support will

not address batteries that cannot supply sufficient

current to run the J-Bot processor. In this case, new

batteries will be required.

When programming the J-Bot, the goal is

often to make it move a specific distance

or to execute a particular turn. It is

helpful to know how to figure out how far

the J-Bot will travel or turn when it is

given a specific command. Circumference

is equal to pi (π) multiplied by the wheel

diameter:

circumference = π x wheel diameter

circumference = 3.14159 x 6.67 cm ≅ 21 cm

So, now we know that with one complete turn of the wheels, the J-

Bot travels about 21 cm.

One way to determine how far the J-Bot will move is to determine

how fast it moves. We can then calculate how far it will move.

For example, if the servo turns at about 37.5 revolutions per

minute (RPM), or 0.625 revolutions/sec then the speed would be

about:

Figure 3.1: Wheel

Diameter and

Circumference

Chapter #3: Programming the J-Bot to Go Places

21 cm/revolution x 0.625 revolutions/sec = 13.125 cm/s

The time it takes to make the J-Bot travel 50 cm is:

ttravel = 50 cm ÷ 13.125 cm/s ≅ about 3.81 seconds

Unfortunately, determining the rotational speed of the wheel can

be somewhat difficult unless you have very good eyes or a light

strobe. You can attempt to calculate the speed of rotation but we

have an easier way of getting the J-Bot to move the distance we

want.

The approach taken in Activity #1 measures linear distance

instead of rotational distance. This is easy to measure with a

ruler or tape measure. It also takes into account other factors

such as possible slippage for a particular surface. Normally this

should be very small but it depends on the surface you have

available.

You can always compute the rotational speed from the results of

Activity #1 if you want.

Activity #1: Maneuvers – Going the distance

Chapter 2 introduced wheel servo control for moving the J-Bot.

The problem is that the J-Bot ran for a fixed amount of time.

This is fine if you don’t care how far the J-Bot moves but not if

you want the J-Bot to perform in a predictable fashion. In this

activity we move the J-Bot forward based on the desired number of

inches to move instead of the number of seconds. This should

prove move useful when we want the J-Bot to move in a square

assuming we can get it to pivot in Activity #2.

First we need to figure out how long to run the J-Bot so it moves

a fixed distance. Doing this could take a lot of trial and error

because we do not know the relationship between the J-Bot’s PWM

frequency and a particular speed. If we did then it takes just a

little math to compute distance moved for a given amount of time

at a specified speed.

Before diving into making measurements we should take a look at a

problem you may have encountered in the previous chapter. In

particular, running the J-Bot with the serial cable attached.

This is fine for short distances but impractical for longer

distances because the cable can induce drag or even act as a

tether preventing the J-Bot from moving as far as it is

programmed to. To this end, the application in this activity is

designed so that the J-Bot will not be tethered. This

configuration also means that the J-Bot must be running on

batteries.

Chapter #3: Programming the J-Bot to Go Places

The free roaming J-Bot operation works this way. First, you

download the program when the J-Bot is connected to the PC using

the serial cable. The power adapter can be used instead of

battery power at this time. Second, the power and serial cables

are removed. At this point the J-Bot is off and will not move.

The program that was downloaded is contained in the flash memory

of the Javelin Stamp. This information is retained even when

power is removed. Third, the J-Bot is moved to where it will be

tested. Fourth, battery power is applied by plugging the battery

power cable into the J-Bot’s circuit board. Hit the reset switch

if necessary since the program will start running immediately.

The reset switch starts it all over.

To start, enter the BasicWheelServoDistanceTest1.java program

shown next.

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo distance test program

 * <p>

 * The program runs the J-Bot for fixed time periods.

 * Each time period is longer than the prior one.

 * A delay is included before each test run for measurements.

 * Distance measurements can be taken between each movement.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoDistanceTest1 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 for (int i = 1 ; i <= 10 ; ++i) {

 CPU.delay(20000); // initial delay for measurements

 leftWheel.move (100) ;

 rightWheel.move (100) ;

 for (int j = 0 ; j < i ; ++ j) {

 CPU.delay(5000); // run servos for fixed amount of time

 }

Chapter #3: Programming the J-Bot to Go Places

 leftWheel.stop () ; // stop wheels

 rightWheel.stop () ;

 }

 }

}

The BasicWheelServoDistanceTest1.java program will run the J-Bot

forward for ten times. The time the J-Bot runs for each iteration

is one timer interval greater than the last. You will need an

area large enough to let the J-Bot run for this test. A hallway

or large room works nicely. The top of a table will probably be

insufficient. We present an alternative method for running the J-

Bot with this program if a large area is not available.

For this test you will need some sort of small markers. Square

pieces of paper about one square inch on a side are ideal. This

is how the experiment works.

1. Load the J-Bot with the BasicWheelServoDistanceTest1.java

program.

2. Place one marker on the ground next to the J-Bot. The marker,

and subsequent markers, should be placed near the same spot on

the J-Bot. The center of the J-Bot’s wheel on either side is

an easy spot to locate consistently.

3. Add power.

4. The J-Bot should wait two seconds before it starts moving so

you have time to aim it in the proper direction.

5. The J-Bot rolls forward for its first timed movement. Place

another marker next to the J-Bot.

6. Repeat steps 4 and 5 until all iterations are done.

7. Measure the distance between markers and put the data in the

following table. The distance can be in inches (to the closest

tenth or quarter inch) or millimeters depending upon the kind

of ruler available.

Iterat

ion

Time Distance

(in.)

Time/inch

1 5000 3.12 1602

2 10000 6.25 1600

3 15000 9.00 1666

4 20000 12.10 1652

5 25000 15.25 1639

6 30000 18.30 1639

7 35000 21.45 1631

8 40000 24.60 1626

9 45000 27.75 1621

10 50000 31.10 1607

Chapter #3: Programming the J-Bot to Go Places

Next we graph the results. The graph will look something like the

following. This can be done easily using a spreadsheet program.

Timed Movement

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Step

In
c
h

e
s

Don’t worry if the J-Bot does not go in a straight line. The

servo settings can be adjusted to improve this but finish testing

before making major changes. The J-Bot movement should be

relatively consistent as shown in the plot but there is some

variation. This is due to a number of factors including startup

and stopping times. Shorter movements will be affected more by

this factor than longer movements. Minor deviations in the

servos, wheel and servo alignment, and friction between the

wheels and the surface the J-Bot is running on all contribute to

movement deviations.

The program should be run multiple times to make sure the results

are consistent. The results may be averaged for the next step

that is the development of a wheel servo class that moves a fixed

distance.

Using the results from the table and plot we get an average time

of 1628 to move one inch. The following program turns the time

around so the J-Bot moves a fixed number of inches.

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo distance test program

 * <p>

 * The program runs the J-Bot for a fixed number of inches.

 * Distance measurements can be taken between each movement.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

Chapter #3: Programming the J-Bot to Go Places

public class BasicWheelServoDistanceTest2 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 for (int i = 1 ; i <= 10 ; ++i) {

 CPU.delay(20000); // initial delay for measurements

 leftWheel.move (100) ;

 rightWheel.move (100) ;

 for (int j = 0 ; j < i ; ++ j) {

 CPU.delay(1628); // run servos for fixed amount of time

 }

 leftWheel.stop () ; // stop wheels

 rightWheel.stop () ;

 }

 }

}

The difference between BasicWheelServoDistanceTest1 and

BasicWheelServoDistanceTest2 is the CPU.delay value. It is now

the 1628 value computed as the average time to move one inch. The

distance moved with this program will be significantly less than

BasicWheelServoDistanceTest1.

Repeat the measurements with BasicWheelServoDistanceTest2. Note

that the results will be close to an integral inch but not

exactly. If the results are always farther than expected then

reduce the CPU.delay value. Increase the value if the distances

are less than expected.

Your Turn

� The BasicWheelServoDistanceTest1.java program is setup to move

the J-Bot forward for a specific distance. Adjust the program

to do the same thing when the J-Bot moves backwards.

� Change the sample program so the J-Bot moves forward for

shorter and longer times. How do the plot results compare with

original results?

Chapter #3: Programming the J-Bot to Go Places

� The sample programs run at 100%, the top speed of the J-Bot.

Repeat the tests at different speeds such as 25%, 50% and 75%.

Chapter #3: Programming the J-Bot to Go Places

Activity #2: Maneuvers – Making Turns

Keeping the J-Bot on the straight and narrow is fine but this

leads to one dimensional thinking and movement. While the J-Bot

cannot climb steps and move in a third dimension it can move in

two dimensions.

The J-Bot changes direction by turning or pivoting. Turning is

accomplished by running the wheels in the same direction but the

servos are run at different speeds. The turn will be towards the

slower moving wheel and the radius of the turn will be based on

the difference between the two.

Pivoting occurs when the wheels are run in opposite directions.

The J-Bot will pivot in place if the wheels move at the same

speed. The movement will be a mix of a turn and pivot if the

speeds of the wheels differ. For our purposes, we want to pivot

in place.

Pivoting In place

The BasicWheelServoPivotTest1 program shown next is designed to

make the J-Bot rotate on its axis.

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo pivot test program

 * <p>

 * The program pivots the J-Bot.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoPivotTest1 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 for (int i = 1 ; i <= 4 ; ++i) {

 CPU.delay(20000); // initial delay for measurements

Chapter #3: Programming the J-Bot to Go Places

 leftWheel.move (100) ;

 rightWheel.move (-100) ;

 for (int j = 0 ; j < i ; ++ j) {

 CPU.delay(1000); // run servos for fixed amount of time

 }

 leftWheel.stop () ; // stop wheels

 rightWheel.stop () ;

 }

 }

}

The program is very close to the BasicWheelServoDistanceTest

programs. The two major changes are the number of iterations, the

direction of the wheels and the delay for the pivot action. The

number of iterations is reduced to prevent the J-Bot from

pivoting too much. This allows the test to be run with the power

and serial cable attached although you need to make sure there is

enough slack in the cable so it does not impede the movement of

the J-Bot. Running on batteries with the serial cable

disconnected eliminates this problem.

The direction of the left wheel remains the same but the right

one goes in the opposite direction. This causes the J-Bot to

pivot to the right. The delay time was reduced because it does

not take much time for the J-Bot to pivot since it does not

travel a great distance. Longer operation is possible but this

just causes the J-Bot to go in circles.

The amount of time the J-Bot pivots controls the angle of

rotation. We can determine the angle of rotation using the same

method employed for the fixed distance programs. Again, the J-

Bot’s movements will be limited. Whereas the distance program

used inches, the pivot programs will use increments of some fixed

number of degrees.

The BasicWheelServoPivotTest1 goes through four steps with

increasing angles of rotation. As it turns out, the angles are

close to values we intend to use in the long run including 45˚

and 90˚. With a delay of 1000, four pivot steps (4000) will

result in a rotation of about 45˚. If we double this and use it

in the BasicWheelServoPivotTest2 then the J-Bot will rotation a

full 90˚ on its last rotation and 45˚ after only two.

The BasicWheelServoPivotTest2 uses this information. The only

difference is that the rotation delay time has been increased to

4000. This is an approximation but it should be close. The J-Bot

should pivot 45˚, 90˚, 135˚ and 180˚. Be careful with this

program if the cables are attached because the J-Bot will make

more than one full rotation.

Chapter #3: Programming the J-Bot to Go Places

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo pivot test program

 * <p>

 * The program rotates the J-Bot in 45 degree increments.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoPivotTest2 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 for (int i = 1 ; i <= 4 ; ++i) {

 CPU.delay(20000); // initial delay for measurements

 leftWheel.move (100) ;

 rightWheel.move (-100) ;

 for (int j = 0 ; j < i ; ++ j) {

 CPU.delay(4000); // run servos for fixed amount of time

 }

 leftWheel.stop () ; // stop wheels

 rightWheel.stop () ;

 }

 }

}

We could create a class that would incorporate the distance

movement and the pivot operations so we could simply use methods

like forward, pivotRight and pivotLeft but we will wait until we

have tested all the useful actions including the next programs

for making turns.

Your Turn

� Try changing the speed of the wheels. Does the J-Bot pivot in

place or turn?

Chapter #3: Programming the J-Bot to Go Places

� Make the J-Bot pivot to the left instead of the right.

Taking a Turn

Pivoting in place is handy but not always the most preferable

method of changing direction. In particular, pivoting requires

the wheels to turn in different directions. The J-Bot will skid

if it does not stop for a short period of time. A turn, on the

other hand, keeps the wheels moving in the same direction

although there is a change in speed.

A left turn is accomplished by running both wheels in a forward

direction but the left wheel runs slower than the right. The

following BasicWheelServoTurnTest1 should look rather familiar by

now.

import stamp.core.*;

import JBot.* ;

/**

 * Wheel servo turn test program

 * <p>

 * The program turn the J-Bot for a fixed amount of time.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicWheelServoTurnTest1 {

 public static void main () {

 BasicWheelServo leftWheel =

 new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

 , 175 // center

 , 110 // backward

 , 2000 // low

) ;

 BasicWheelServo rightWheel =

 new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

) ;

 for (int i = 1 ; i <= 4 ; ++i) {

 CPU.delay(20000); // initial delay for measurements

 leftWheel.move (10) ;

 rightWheel.move (100) ;

 for (int j = 0 ; j < i ; ++ j) {

 CPU.delay(10000); // run servos for fixed amount of time

 }

 leftWheel.stop () ; // stop wheels

Chapter #3: Programming the J-Bot to Go Places

 rightWheel.stop () ;

 }

 }

}

The run time, the second CPU.delay call, has been increased

because it takes the J-Bot a longer to circumscribe an arc. The

leftWheel.forward method call cuts the speed down to 10%. This

results in a relatively tight turn with an inside radius under

one inch.

As with the first pivot program, the BasicWheelServoTurnTest1

program makes the J-Bot move but the amount of movement may not

be what is desired. Although not random, we will want the J-Bot

to move to known positions if we plan on having it do things like

move around a rectangle.

Your Turn

� Determine time settings so turns the J-Bot’s rotational

movements are in increments of 45˚. Use the same measurement

and estimation techniques used for the straight and pivot

movements.

� Make the J-Bot turn in the opposite direction. Hint: swap the

speed values in the forward methods.

� Have the J-Bot make wider turns.

� Can the J-Bot make a turn going backwards? Try it.

Activity #3: Maneuvers – Basic J-Bot Class

Control of the J-Bot to this point has been done explicitly.

Control of an individual wheel servo has been encapsulated in the

BasicWheelServo class. While it is possible to extend this class

to make actions like turning and pivot easier to work with it is

better if another class is defined to provide J-Bot movement.

Before diving into a new class definition we need to determine

what combination of methods will be useful. For now we will not

be to ambitious. We need to move forward and backward a fixed

number of inches, pivot left and right, turn left and right, and

stop. The following class does just that.

package JBot;

import stamp.core.*;

import stamp.util.os.*;

Chapter #3: Programming the J-Bot to Go Places

/**

 * J-Bot wheel control interface

 * <p>

 * Defines methods that J-Bot wheel control classes must provide.

 *

 * @version 2.1 03/12/03 Use new Task status support

 * @version 2.0 12/12/02 Use Event synchronization

 * @version 1.0 10/2/02

 * @author Parallax Inc.

 */

public abstract class JBotInterface {

 protected Event startEvent ;

 protected Event nextEvent = Event.nullEvent ;

 protected Event oneTimeEvent = Event.nullEvent ;

 static final public int continuousForward = 32760 ;

 static final public int continuousBackward = -32760 ;

 static final public int continuousLeft = continuousForward ;

 static final public int continuousRight = continuousBackward ;

 /**

 * Set Event that is to be notified when a movement starts.

 *

 * @param event Event to be notified when movement starts. Can be null.

 */

 public JBotInterface (Event event) {

 startEvent = Event.checkEvent(event);

 }

 /**

 * Setup (current) task to wait for end of movement

 *

 * @param state next task state

 */

 public void wait (int state) {

 Task waitingTask = Task.getCurrentTask () ;

 waitingTask.nextState (state) ;

 if (waitingTask.taskStatus()==Task.taskRunning) {

 waitingTask.suspend () ;

 oneTimeEvent = waitingTask ;

 }

 }

 /**

 * Set event to notify when movement is started. May be null.

 *

 * @param event Event to notify when movement is started

 *

 * @returns prior event

 */

 public Event setStartEvent (Event event) {

 Event resultEvent = startEvent ;

 startEvent = Event.checkEvent(event) ;

 return resultEvent ;

 }

 /**

 * Set event to notify when movement is done. May be null.

 *

 * @param event Event to notify when movement is done

 *

Chapter #3: Programming the J-Bot to Go Places

 * @returns prior event

 */

 public Event setNextEvent (Event event) {

 Event resultEvent = nextEvent ;

 nextEvent = Event.checkEvent(event) ;

 // Prime the pump if necessary

 if (movementDone ()) {

 causeNextEvent () ;

 }

 return resultEvent ;

 }

 /**

 * Cause one time and next event.

 * Normally called by the matching multitasking object.

 */

 protected void causeNextEvent () {

 // Notify event that the next movement can be started

 nextEvent.notify (this) ;

 // Notify event that the next movement can be started

 oneTimeEvent.notify (this) ;

 oneTimeEvent = Event.nullEvent ;

 }

 /**

 * This method should be called at the beginning of a movement method.

 */

 protected void startMovement () {

 startEvent.notify (this) ;

 }

 /**

 * Check if movement is done. This should be called until it

 * returns true.

 *

 * @returns true if done waiting for movement

 */

 public abstract boolean movementDone () ;

 /**

 * Stop movement.

 */

 public void stop () {

 move (0) ;

 }

 /**

 * Set wheel speed to move forward/backward (negative).

 *

 * @param inches number of inches to move

 */

 public abstract void move (int inches) ;

 /**

 * Set wheel speed to pivot left (positive) or right (negative).

 *

 * @param steps number of steps to turn

 */

 public abstract void pivot (int steps) ;

Chapter #3: Programming the J-Bot to Go Places

 /**

 * Turn left (positive) or right (negative).

 *

 * @param steps number of steps to turn

 */

 public abstract void turn (int steps) ;

}

The first thing to notice with the JBotInterface class is that it

is an abstract class. This means it cannot be used to create an

object but it can be used as a super class to a class that is not

an abstract class. The second thing to note is the use of the

Event class. This is part of the stamp.util.os package which is

why the statement:

import stamp.util.os.*;

is included at the start of the file. The Event class is

relatively simple. It has a method called notify that is used to

communicate with an Event object. In this case there are three

events: startEvent, nextEvent and the oneTimeEvent. The first is

notified when a movement is started. The other two are notified

when a movement is completed. This allows an event driven system

to be constructed in a multitasking environment covered in the

next chapter. These events are discussed in more detail later in

this section.

The Event.nullEvent is the only instance of the Event class that

does nothing when it is notified. While this may sound useless it

allows a reference like nextEvent to be used without having to

check for a null value. Since another event is normally

referenced by this variable it is more efficient to use a

nullEvent instead of null. Only a single nullEvent object is

needed since the response to the notify method is always the

same. It does nothing.

Before covering the rest of the JBotInterface class definition we

take a look at the class hierarchy for it and the events that

will be used here and in the rest of the experiments in the book.

First the JBotInterface hierarchy.

JBotInterface

 BasicJBot

 RampingJBot

 WheelEncoderJBot

The BasicJBot class, defined next, implements the abstact

JBotInterface methods so a real object can be created. Normally a

single object is created since there is only one J-Bot but the

class allows an easy way to collect together the methods

associated with is operation.

Chapter #3: Programming the J-Bot to Go Places

The BasicJBot provides support for forward and backward movement,

pivoting and turning. It starts and stops the servos abruptly so

it can be unsuitable for battery operation in some instances

especially as additional sensors or add-on modules are employed.

The RampingJBot builds on the BasicJBot. It removes the abrupt

change of speed with a gradual increase or decrease in speed.

This minimizes the power surge necessary to start or stop a servo

making it more suitable for battery operation.

The WheelEncoderJBot adds a closed feedback loop to the

RampingJBot. It uses the wheel encoder IR detectors to track the

color transitions on the inside of each wheel. It allows the J-

Bot to move forward in a straight line by making sure the number

of transitions for each wheel are the same over time.

The BasicJBot and RampingJBot are covered in this chapter. The

WheelEncodingJBot is covered in a later chapter.

Much of the work for controlling the J-Bot is done in the

movementDone method. This must be called repeatedly so the object

can keep track of the servos. The servos actually run

continuously but they must be turned off or the speed must change

if the J-Bot is not running continuously in one direction.

The movementDone method can be polled in a number of ways. The

simplest method is to have the part of the program that creates

the JBot object but this can be rather tedious. Instead, two

alternatives are available. One assumes a single tasking, fixed

movement mode of operation where each movement will complete

before control is returned to the calling program. The second

uses a task in a multitasking environment allowing the calling

program to do other things while the J-Bot is moving. This can

include support for sensors that require multitasking support.

Multitasking is covered in the next chapter while sensor support

is covered in subsequent chapters for various sensor types.

A control object is required as a parameter to the constructors

in the JBotInteface class hierarchy. This control object is based

on the Event class and is assigned to the startEvent when an

object is created. It is possible to change the object but in

general it is set once when the JBot object is created. The

control object hierarchy looks like this.

Event

 FixedMovementJBot

 Task

 MultitaskingJBot

In general, the creation of a BasicJBot with a fixed movement

control object looks like:

Chapter #3: Programming the J-Bot to Go Places

JbotInterface jbot = new BasicJBot (new FixedMovementJBot ());

Note that the type of jbot is JBotInterface. This can be done

because JBotInterface is a super class of BasicJBot. It also

means that BasicJBot can be replaced by any class, like

RampingJBot, that has JBotInterface as a super class. If the

movementDone method is called explicitly by the program that

creates the object referenced by jbot then the parameter to the

constructor can be Event.nullEvent.

The FixedMovementJBot is used throughout this chapter. The

MultitaskingJBot class is defined in the next chapter.

The movement methods for the abstract JbotInterface class include

move, pivot and turn. Each takes a single signed integer

parameter. A positive value yields forward movement or pivoting

and turning to the left. A negative value causes backward

movement and pivoting and turning to the right. A value of 0

causes the J-Bot to stop. This is the same as the stop method.

It is also possible to initiate continuous movements. The J-Bot

will proceed in the specified movement until a new movement is

invoked. This mode is common when sensors are used to determine

when a change in direction is required.

The movement methods like move, pivot and turn must be defined by

a subclass and they need to take into account the three events:

startEvent, nextEvent and oneTimeEvent. The startMovement method

notifies the startEvent. It should be called after all the

movement setup is complete. The event normally calls movementDone

repeatedly. The startEvent is set when in the constructor but it

can be changed using setStartEvent. This method returns the prior

event reference. A null argument causes the event to be set to

Event.nullEvent.

Once a movement is completed, the causeNextEvent method should be

called. This method notifies the nextEvent and oneTimeEvent. The

former is set using setNextEvent. This event is designed to be

used all the time. The oneTimeEvent is set using the wait method

and reset after the event is notified. The wait method assumes

the system is utilizing a multitasking environment. The wait

method should be called from a task. Waiting on an event is

discussed in more detail in the next chapter on multitasking.

FYI Keep in mind that the JBotInterface and its

subclasses are designed so that the program

controlling the J-Bot will issue another movement

command, including a move(0) or stop, immediately

after the current command has finished. If not, the

J-Bot will continue moving in the same direction and

Chapter #3: Programming the J-Bot to Go Places

speed. It is possible to create a control event that

stops after each movement but this can result in

jerky movements.

The BasicJBot class defined next extends the JBotInterface. The

BasicJBot class implements all the abstract classes of its

superclass so BasicJBot objects can be created. There are two

constructors available. One uses the default servo objects while

the other allows user defined objects to be used instead. Both

require an event that will be used as the startEvent.

package JBot;

import stamp.core.*;

import stamp.util.os.*;

/**

 * Basic J-Bot wheel control class

 * <p>

 * Handles PWM support for a free running wheel servo on the J-Bot.

 * Start movement using move(), pivot() or turn().

 * It can stop the J-Bot using stop() or move(0).

 *

 * @version 2.0 03/20/03 Added getMovementSpeed

 * @version 1.0 12/23/02 Original version

 * @author Parallax Inc.

 */

public class BasicJBot extends JBotInterface {

 public BasicWheelServo leftWheel ;

 public BasicWheelServo rightWheel ;

 public Timer timer ;

 public int timeout ;

 public int msecPerInch ;

 public int msecPerPivot ;

 public int msecPerTurn ;

 protected static final int movementNone = 0 ;

 protected static final int movementMove = 1 ;

 protected static final int movementPivot = 2 ;

 protected static final int movementTurn = 3 ;

 protected int leftMovementSpeed ;

 protected int rightMovementSpeed ;

 protected int msecPerStep ;

 /**

 * Setup wheel servos for general movement.

 * Forward movement is measured in inches.

 * Pivots and turns are measured in steps that are normally 45 degrees.

 * Uses default servo settings.

 */

 public BasicJBot (Event event) {

 this (event

 , 163 // (1628 * 100us) / 1000us = 163 msec

 , 180 // (1800 * 100us) / 1000us = 180 msec

 , 650 // (6500 * 100us) / 1000us = 650 msec

 , new BasicWheelServo (

 CPU.pin13 // pin

 , 240 // forward

Chapter #3: Programming the J-Bot to Go Places

 , 175 // center

 , 110 // backward

 , 2000 // low

)

 , new BasicWheelServo (

 CPU.pin12 // pin

 , 110 // forward

 , 175 // center

 , 240 // backward

 , 2000 // low

)

) ;

 }

 /**

 * Setup wheel servos for general movement.

 * Forward movement is measured in inches.

 * Pivots and turns are measured in steps that are normally 45 degrees.

 *

 * @param msecPerInch number of msec per inch for linear movement

 * @param msecPerPivot number of msec per pivot unit

 * @param msecPerTurn number of msec per turn unit

 * @param leftWheel BasicWheelServo for left wheel

 * @param rightWheel BasicWheelServo for right wheel

 */

 public BasicJBot

 (Event event

 , int msecPerInch

 , int msecPerPivot

 , int msecPerTurn

 , BasicWheelServo leftWheel

 , BasicWheelServo rightWheel

) {

 super(event);

 this.msecPerInch = msecPerInch ;

 this.msecPerPivot = msecPerPivot ;

 this.msecPerTurn = msecPerTurn ;

 this.leftWheel = leftWheel ;

 this.rightWheel = rightWheel ;

 timer = new Timer () ;

 }

 /**

 * Check if movement is done. This should be called until it

 * returns true.

 *

 * @returns true if done waiting for movement

 */

 public boolean movementDone () {

 return timer.timeout (timeout) ;

 }

 /**

 * Set wheel speed to move forward.

 *

 * @param steps number of linear inches to move

 */

 public void move (int steps) {

 movement (movementMove, steps) ;

 }

 /**

 * Set wheel speed to pivot left (positive) or right (negative).

Chapter #3: Programming the J-Bot to Go Places

 *

 * @param steps number of steps to turn

 */

 public void pivot (int steps) {

 movement (movementPivot, steps) ;

 }

 /**

 * Turn left (positive) or right (negative).

 *

 * @param steps number of steps to turn

 */

 public void turn (int steps) {

 movement (movementTurn, steps) ;

 }

 /**

 * Get wheel speeds for movement.

 * Sets msecPerStep, leftMovementSpeed, rightMovementSpeed

 *

 * @param movement movement type

 * @param steps number of steps to turn

 */

 protected void getMovementSpeed (int movement, int steps) {

 switch (movement) {

 default:

 case movementMove:

 msecPerStep = msecPerInch ;

 if (steps > 0) {

 leftMovementSpeed = 100 ;

 rightMovementSpeed = 100 ;

 } else {

 leftMovementSpeed = -100 ;

 rightMovementSpeed = -100 ;

 }

 break;

 case movementPivot:

 msecPerStep = msecPerPivot ;

 if (steps > 0) {

 leftMovementSpeed = -100 ;

 rightMovementSpeed = 100 ;

 } else {

 leftMovementSpeed = 100 ;

 rightMovementSpeed = -100 ;

 }

 break;

 case movementTurn:

 msecPerStep = msecPerTurn ;

 if (steps > 0) {

 leftMovementSpeed = 10 ;

 rightMovementSpeed = 100 ;

 } else {

 leftMovementSpeed = 100 ;

 rightMovementSpeed = 10 ;

 }

 break;

 }

Chapter #3: Programming the J-Bot to Go Places

 // Compute timeout when appropriate

 if ((steps != continuousForward)

 || (steps != continuousBackward)

 || (steps != 0)) {

 timeout = msecPerStep * ((steps > 0) ? steps : - steps) ;

 }

 }

 // ==== Private definitions follow ====

 /**

 * Set wheel speed for movement.

 * Use movement 1 for positive values.

 * Use movement 2 for negative values.

 *

 * @param movement movement type

 * @param steps number of steps to move

 */

 protected void movement (int movement, int steps) {

 // setup parameters

 getMovementSpeed (movement, steps) ;

 switch (steps) {

 case 0:

 setSpeed(0,0);

 startMovement();

 break;

 case continuousForward:

 case continuousBackward:

 setSpeed(leftMovementSpeed,rightMovementSpeed);

 break;

 default:

 timer.mark () ;

 setSpeed(leftMovementSpeed,rightMovementSpeed);

 startMovement();

 break;

 }

 }

 /**

 * Set speed for both wheels.

 * Settings are percentages.

 * Positive values are forward rotation.

 * Negative values are backward rotation.

 *

 * @param left speed settings for left wheel

 * @param right number speed setting for right wheel

 */

 protected void setSpeed (int left, int right) {

 // Set real speed

 leftWheel.move(left);

 rightWheel.move(right);

 }

}

If you made it this far then you have seen that the class

definition is a bit long. Still, it is relatively simple. Up

front are the variable definitions. Although they are defined as

Chapter #3: Programming the J-Bot to Go Places

public variables it might be better to make them protected. This

prevents applications like the forthcoming BasicJBotTest1.java

program.

The variables include two wheel object references and a Timer

object. In prior programs the timing was provided by CPU.delay.

In this class the timing will be done using a Timer object. The

timeout variable is used to keep track of movement duration and

is used in conjunction with the Timer.timeout method.

The three variables, msecPerInch, msecPerPivot and msecPerTurn

are values that are based on the experiments done earlier in this

chapter. For example, the BasicWheelServoDistanceTest2.java

program was used to verify the time delay for moving in inches.

This value was 1628 (your value may be slightly different) but it

is in terms of 100usec units used by the CPU.delay function. The

Timer has a 1msec (1msec is 1000usec) timeout method so we need

to change the value by a factor of 10. This is 162.8 or 163 since

the Javelin only deals with integers.

The pivot and turn values are designed for 45˚ steps. The J-Bot

can be programmed for finer gradations but its accuracy and

repeatability are limited due to the lack of feedback. Therefore,

the 45˚ step increment should be more than adequate.

There are two class constructor definitions. The first uses the

second and allocates the BasicWheelServo objects using predefined

constants. This should be sufficient for a single J-Bot. The

second definition is provided if the class is used on multiple J-

Bots where the constants may have slightly different values. In

this case an object can be created without modifying the

BasicJBot class.

Next come the public method definitions. These are the ones a

programmer will use after a BasicJBot object is created. We will

go through these definitions next. These methods are followed by

protected method definitions that are used within this class.

They can be used by subclass definitions as well. We subclass the

BasicJBot class for fixed movement and ramping covered later in

the chapter. Back to the public methods.

The movementDone method checks the Timer object to determine if

it is time to stop moving. It returns a value of true if this is

the case. The startEvent stored in the superclass object

variables can use this method in a while loop and stops both

wheels when the movement is done. The stop method is defined

later in the file but simply calls the stop method for both wheel

objects.

Now why use these methods instead of CPU.delay? There are two

reasons. First, it allows the movement timing to be centralized.

Second, this type of polled architecture meshes well with the

Chapter #3: Programming the J-Bot to Go Places

multitasking system presented in the next chapter. The

multitasking system polls tasks. The task controlling the wheels

can use the movementDone method at this time. This will be

covered in more detail after the multitasking system is covered.

For now, just see how it works.

In terms of performance, using the Timer and CPU.delay are

equivalent since the program is not doing anything else. In fact,

the wheel movement is actually controlled by the background

operation of the PWM object for each wheel.

We can quickly look at the stop method. As mentioned earlier, it

just stops the two wheels. It uses a call to move(0) allowing

movements to be coordinated by a single method. This turns out to

be useful in the RampingJBot class that uses the BasicJBot as its

superclass.

Next we take a close look at the move, pivot and turn methods.

These call the movement method using different parameters. The

first is the same as the argument to the method. The second is

the timeout increment for each step. For the move method the

msecPerInch this is the number of ticks that a servo needs to

run to move one inch. The same is true for the other two methods.

The movement method sets up the timeout to be used with the timer

object access in the movementDone method. The movement method

calls the getMovementSpeed that determines the type of operation

being performed. A 0 step value indicates the servos are to be

stopped. This is done by setting the speed of each wheel to 0.

The getMovementSpeed method is used to so it can be enhanced by

subclasses such as the RampingJBot class. The getMovementSpeed

method sets the servo speed parameters and the timeout (duration)

of the movement. The method takes into account the sign of the

step variable.

Back in the movement method, the startMovement method is called

to start of a fixed movement action. This includes stopping

indicated by a step of 0 and non-continuous movements. If the

step indicates a continuous movement then the startMovement

method is not called. It is assumed that the calling program will

initiate another movement when it wants to. The continuous

movement step values are actually the upper and lower limits of

an integer that would not normally be used to indicate the number

of steps to move because these values are very large (i.e. in

excess of 32,000).

The setSpeed method sets the speed of the servos.

FYI Remember that the BasicWheelServo move methods start

the wheels moving if they were not already moving.

Chapter #3: Programming the J-Bot to Go Places

The BasicJBot class is a little more complex than it needs to be.

As was mentioned earlier, this was done to accommodate

subclasses. We had the advantage of 20-20 hindsight when

designing the BasicJBot class because we knew about ramping and

wheel encoder support. This makes these classes easier to write

and to understand. It is possible to create these classes without

this support but in general it results in a duplication of the

BasicJBot class. Either approach is valid but this approach

allows a more incremental presentation of the design while

minimizing the duplication of support code within the subclasses.

So much for the class definition. The following program makes use

of the BasicJBot class. This program is significantly shorter

although it only takes advantage of some of the methods defined

in the BasicJBot class.

import stamp.core.*;

import JBot.* ;

/**

 * Test BasicJBot class

 * <p>

 * The program runs the J-Bot using BasicJBot class methods.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicJBotTest1 {

 public static void main () {

 BasicJBot jbot = new BasicJBot (null) ;

 jbot.move (2) ;

 while (! jbot.movementDone ()) ;

 jbot.pivot (-2) ;

 while (! jbot.movementDone ()) ;

 jbot.turn (1) ;

 while (! jbot.movementDone ()) ;

 jbot.stop () ;

 while (! jbot.movementDone ()) ;

 }

}

Three movements are performed by the main method. First the Jbot

moves forward two inches. It then pivots 90˚ to the right

followed by a 45˚ turn to the left. Notice how the movementDone

is called after each movement call. This is necessary because

there is no startEvent. The null argument to the BasicJBot

constructor causes the startEvent to be set to Event.nullEvent.

Chapter #3: Programming the J-Bot to Go Places

FYI

It is possible to test the J-Bot when it is tethered

by the power and serial cables for this simple

program but it will be very difficult when more and

longer movements are used. Instead, test by

programming the J-Bot using debug mode while

tethered. Then remove power and the serial cables.

Provide power using the battery pack and the program

will then run.

The J-Bot may not run properly using batteries if

they are rechargeable or partially discharged. In

this case the J-Bot may appear to start or run part

of the program and then reset. This is not unusual.

Simply run the J-Bot in tethered mode without the

batteries. The RampingJBot described later in this

chapter may eliminate this problem.

One way to test for this situation is to use the tone

generator presented in Chapter 1 at the beginning of

the main method. The tone should sound only once if

the J-Bot is not being reset.

Your Turn

� Try out other BasicJBot movement methods to make sure they

work properly. Use different distance values.

� Make the J-Bot move in a 3 x 4 inch rectangle.

� Make the J-Bot move in a circle. Hint: Try turning a lot.

Activity #4: Maneuvers – Fixed Movement Class

The BasicJBot class is handy but the test program shows that each

action requires multiple method calls. These calls can be cut in

half by eliminating the movementDone call. Instead of coming up

with a completely new implementation we simply pass a different

object to the BasicJBot class constructor. The following

FixedMovementJBot class definition handles the movementDone calls

instead.

package JBot;

import stamp.core.*;

import stamp.util.os.*;

/**

 * J-Bot wheel control class for fixed movements

 * <p>

Chapter #3: Programming the J-Bot to Go Places

 * Combine with BasicJBot class for movement control.

 *

 * @version 2.0 12/12/02 Event version

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class FixedMovementJBot extends Event {

 protected boolean idle = true ;

 /**

 * Called when movement started.

 */

 public void notify (Object jbot) {

 if (idle && (jbot != null)) {

 idle = false ;

 while (! ((JBotInterface)jbot).movementDone ()) {

 }

 idle = true ;

 }

 }

}

The FixedMovementJBot class is based on the Event class. It

requires a redefinition of only one method: notify. The Object

passed to the method should be the JBotInterface that controls

the J-Bot’s movements. It should not be null but a check is

performed just in case. The method does nothing if the reference

is null. Otherwise, it waits until movementDone returns true.

The result is that a call to the JBotInterface’s move, pivot or

turn methods will not return until the movement is complete. The

following program exercises the new class definition.

import stamp.core.*;

import JBot.* ;

/**

 * Test FixedMovementJBot class

 * <p>

 * The program runs the J-Bot using BasicJBot class methods.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicJBotTest2 {

 public static void main () {

 BasicJBot jbot = new BasicJBot (new FixedMovementJBot ()) ;

 jbot.move (2) ; // forward

 jbot.pivot (-2) ; // pivot right

 jbot.turn (2) ; // turn left

 jbot.stop () ;

 }

}

Chapter #3: Programming the J-Bot to Go Places

The BasicJBotTest2 program is significantly shorter (ignoring the

comments) than the prior test program. It is also easier to read.

The calls the jbot movement methods like jbot.move will not

return until the movement is completed due to the use of the

FixedMovementJBot object.

Activity #5: Maneuvers – Ramping Servo Class

Ramping is a way to gradually increase the speed of the servos

instead of suddenly making them go the opposite direction. This

technique can increase the life expectancies both of your J-Bot’s

batteries and servos. It also provides better control over

movement. Without ramping the J-Bot goes from 0 to 100% power or

at least it tries to. Do this with a car and it will leave skid

marks. The J-Bot will not leave skip marks but it will have a

jerky movement that is undesirable.

Programming for Ramping

The RampingJBot class adds some protected methods for internal

use but requires no additional change to the movement method

operation. Instead, it determines how to make incremental changes

between movements based on the current speed of each wheel and

the desired speed. This allows a move forward to be immediately

followed by a backward movement. In this case, the J-Bot will

slow down to a stop in the forward direction and then accelerate

backward until it is running full speed backwards.

Ramping takes slightly longer to move the same distance because

the JBot is slowing down or speeding up during the ramping period

as shown below.

BasicJBot

RampingJBot

Time

Servo speed

Servo speed

The full speed movement in the ramping implementation needs to be

slightly shorter than the full speed movement without ramping

because JBot is still moving during the ramping period. Ramping

can utilize any number of steps but too many will either take a

much longer period of time or be so short as to be limited by the

performance of the Javelin.

The following class definition provides the ramping support.

package JBot;

Chapter #3: Programming the J-Bot to Go Places

import stamp.core.*;

import stamp.util.os.*;

/**

 * J-Bot wheel control class for fixed movements with ramping

 * <p>

 * Uses BasicJBot class for movement control.

 *

 * @version 2.0 3/20/03 Ramp up and down between movements

 * @version 1.0 7/23/02 Original version

 * @author Parallax Inc.

 */

public class RampingJBot extends BasicJBot {

 static final private int rampTimeout = 35 ; // milliseconds

 static final private int maxRampCount = 3 ;

 protected boolean decelerate = false ;

 protected int rampCount = 0 ;

 protected int rampLeftStep ;

 protected int rampRightStep ;

 protected int leftSpeed = 0 ;

 protected int rightSpeed = 0 ;

 protected int currentMovement = movementNone ;

 protected int currentSteps ;

 protected int nextMovement = movementNone ;

 protected int nextSteps ;

 /**

 * Setup wheel servos for general movement.

 * Forward movement is measured in inches.

 * Pivots and turns are measured in steps that are normally 45 degrees.

 * Uses default servo settings.

 *

 * @param event Event to be notified when movement starts. Can be null.

 */

 public RampingJBot (Event event) {

 super (event) ;

 }

 /**

 * Setup wheel servos for general movement.

 * Forward movement is measured in inches.

 * Pivots and turns are measured in steps that are normally 45 degrees.

 *

 * @param event Event to be notified when movement starts. Can be null.

 * @param msecPerInch number of msec per inch for linear movement

 * @param msecPerPivot number of msec per pivot unit

 * @param msecPerTurn number of msec per turn unit

 * @param leftWheel BasicWheelServo for left wheel

 * @param rightWheel BasicWheelServo for right wheel

 */

 public RampingJBot

 (Event event

 , int msecPerInch

 , int msecPerPivot

 , int msecPerTurn

 , BasicWheelServo leftWheel

 , BasicWheelServo rightWheel

) {

Chapter #3: Programming the J-Bot to Go Places

 super (event, msecPerInch, msecPerPivot, msecPerTurn, leftWheel,

rightWheel) ;

 }

 /**

 * Check if next movement can be initiated.

 *

 * @returns true if next movement method can be called

 */

 public boolean ready() {

 return nextMovement == movementNone ;

 }

 /**

 * Check if movement is done. This should be called until it

 * returns true.

 *

 * @returns true if done waiting for movement

 */

 public boolean movementDone () {

 if (currentMovement == movementNone) {

 if (nextMovement == movementNone) {

 // nothing left to do

 return true;

 } else {

 // start up new movement from a dead stop

 currentMovement = nextMovement ;

 currentSteps = nextSteps ;

 nextMovement = movementNone ;

 // Startup ramping

 startRamping () ;

 }

 } else {

 // currentMovement is active

 if (rampCount > 0) {

 if (timer.timeout (rampTimeout)) {

 // Ramp timeout occurred. Adjust speed.

 -- rampCount ;

 if (rampCount == 0) {

 if (decelerate) {

 // should be stopped, setup to accelerate

 decelerate = false ;

 startRamping () ;

 } else {

 // should be up to speed

 startFullSpeedMovement(true) ;

 }

 } else {

 // setup next ramp movement

 updateRampSpeed() ;

 }

 }

 } else {

 // Not ramping. Check movement status

 if (super.movementDone ()) {

 getNextMovement ();

 }

 }

 }

 return false ;

 }

Chapter #3: Programming the J-Bot to Go Places

 /**

 * Get next movement setup

 */

 protected void getNextMovement () {

 // Get nextMovement

 if (nextMovement == movementNone) {

 // check if anything more to do

 if (currentMovement == movementNone) {

 return ;

 }

 if ((currentMovement == movementMove)

 && (currentSteps == 0)) {

 // Already stopped. Do nothing more

 currentMovement = movementNone ;

 return ;

 }

 // setup to stop if no movement acquired

 nextMovement = movementMove ;

 nextSteps = 0 ;

 // Get next movement

 causeNextEvent () ;

 }

 // update steps, currentMovement must be updated later

 currentSteps = nextSteps ;

 // check if next movement or if need to decelerate

 if (nextMovement == currentMovement) {

 startFullSpeedMovement(false) ;

 } else {

 // decelerate first

 currentMovement = nextMovement ;

 rampDown();

 }

 }

 /**

 * Start ramping for currentMovement

 */

 protected void startRamping () {

 if (currentSteps == 0) {

 super.move(0); // stop servos

 } else {

 getMovementSpeed (currentMovement, currentSteps) ;

 rampTo (leftMovementSpeed, rightMovementSpeed) ;

 }

 }

 /**

 * Start ramping for deceleration

 */

 protected void rampDown () {

 decelerate = true ;

 rampTo (0, 0) ;

 }

 /**

 * Start movement, ramp up already complete

Chapter #3: Programming the J-Bot to Go Places

 *

 * @param ramping true if ramping time must be subtracted

 */

 protected void startFullSpeedMovement (boolean ramping) {

 int timeoutAdjust = 0 ;

 switch (currentMovement) {

 case movementMove:

 super.move (currentSteps) ;

 timeoutAdjust = msecPerStep - 2 ;

 break;

 case movementPivot:

 super.pivot (currentSteps) ;

 timeoutAdjust = msecPerStep - 2 ;

 break;

 case movementTurn:

 super.turn (currentSteps) ;

 timeoutAdjust = (currentSteps == 1)

 ? ((3 * msecPerStep) / 8)

 : (msecPerStep / 2) ;

 break;

 }

 // adjust timeout for ramping

 if (ramping) {

 timeout -= timeoutAdjust ;

 }

 // Reset next movement

 nextMovement = movementNone ;

 }

 /**

 * Setup to ramp to desired speed.

 *

 * @param left final left speed

 * @param right final right speed

 */

 protected void rampTo (int left, int right) {

 rampCount = maxRampCount - 1 ; // ramp down count less current step

 rampLeftStep = (left - leftSpeed) / maxRampCount ;

 rampRightStep = (right - rightSpeed) / maxRampCount ;

 updateRampSpeed() ;

 }

 /**

 * Update speed using ramp parameters

 */

 protected void updateRampSpeed () {

 // set timeout mark for next ramp speed update

 timer.mark();

 // Set new speed

 setSpeed(leftSpeed+rampLeftStep,rightSpeed+rampRightStep) ;

 }

 /**

 * Set wheel speed to move forward.

 *

 * @param inches number of linear inches to move

 */

Chapter #3: Programming the J-Bot to Go Places

 public void move (int inches) {

 setNextMovement (movementMove, inches) ;

 }

 /**

 * Set wheel speed to pivot left.

 *

 * @param steps number of steps to turn

 */

 public void pivot (int steps) {

 setNextMovement (movementPivot, steps) ;

 }

 /**

 * Set wheel speed to turn left.

 *

 * @param steps number of steps to turn

 */

 public void turn (int steps) {

 setNextMovement (movementTurn, steps) ;

 }

 /**

 * Setup next movement to occur.

 * The movement will be started via a call to movementDone()

 *

 * @param movement next movement to perform

 * @param steps number of steps to turn

 */

 protected void setNextMovement (int movement, int steps) {

 nextMovement = movement ;

 nextSteps = steps ;

 // start moving if currently stopped

 if (currentMovement == movementNone) {

 startMovement();

 }

 }

 /**

 * Set speed for both wheels.

 * Settings are percentages.

 * Positive values are forward rotation.

 * Negative values are backward rotation.

 *

 * @param left speed settings for left wheel

 * @param right speed setting for right wheel

 */

 protected void setSpeed (int left, int right) {

 // Set real speed

 super.setSpeed(left,right);

 leftSpeed = left ;

 rightSpeed = right ;

 }

 /**

 * Adjust speed for both wheels.

 * Settings are percentages.

 * Positive values are forward rotation.

 * Negative values are backward rotation.

 *

 * @param left speed adjustment for left wheel

 * @param right speed adjustment for right wheel

Chapter #3: Programming the J-Bot to Go Places

 */

 protected void adjustSpeed (int left, int right) {

 super.setSpeed

 (leftSpeed + ((leftSpeed * -left) / 100)

 , rightSpeed + ((rightSpeed * -right) / 100));

 }

}

How the Ramping Class Works

The RampingJBot class makes use of the services provided by the

BasicJBot but it adjusts the way the movementDone and setSpeed

methods operate. It does this so the object can change the speed

in small increments instead of large jumps that can occur with

the BasicJBot. For example, a move(1) method call to a BasicJBot

object followed by a move(-1) will result in the J-Bot moving

forward for about one inch and then reversing direction and

moving backward an inch. The J-Bot’s wheels will jerk to a start

and then in reverse as each movement starts. In the latter case,

the relative speed change is 200% (100% to –100%). This can

generate a significant power surge causing problems when the J-

Bot is battery operated.

Instead, the RampingJBot takes a look at the J-Bot’s current

speed (remember that it was saved in the setSpeed method). It

then compares it to the desired speed and sets things up so the

speed change will occur in short steps. This does result in a

minor distance change but it eliminates the jerky movements and

power surges. The class also tries to take the change in distance

into account when computing how far it should run.

There are some extra variables defined in the RampingJBot object.

The rampCount controls the number of steps to take between speed

changes. The rampLeftStep and rampRightStep are the percentage

speed changes for each wheel. Two variables are needed because

the two servos must be controlled independently. Finally, the

final, desired speed is saved. This is necessary because stepping

to that point can result in a difference since integer values are

used and there can be rounding errors.

The variables currentMovement and nextMovement, along with

currentSteps and nextSteps, keep track of movements. It may seem

odd to keep the next movement around but it is necessary to allow

a proper transition between movements and to allow two identical

movements to be combined into one. For example, moving forward 5

and then 10 should be the same as moving forward 15.

The setSpeed method calls the BasicJBot’s setSpeed and stores the

current speed. This allows the adjustSpeed method to change the

speed. This method IS NOT used by the BasicJBot object. It is

Chapter #3: Programming the J-Bot to Go Places

included to support the WheelEncoderJBot subclass that needs to

adjust the speed based on the wheel encoder feedback.

The bulk of the work done is done in the movementDone method.

This method takes into account the currentMovement and

nextMovement variables. If both are set to movementNone then the

method exits with a value of true. If the currentMovement is set

to movementNone then the current movement has completed and it is

time to transition to the nextMovement. This transition will

occur when the prior movement is different from the nextMovement

and ramping at the end of the prior movement has brought the JBot

to a stop for a fraction of a second.

If it is not time to check the movement transitions then it may

be time to check the ramping status maintained by rampCount. This

variable is used for both the ramp up to the desired speed and

movement as well as ramping down to a stop. Ramping is completed

when the rampCount is zero. The decelerate variable indicates

whether the ramping is up or down. If it is down then the JBot

will be stopped and it is time to ramp up for the next movement.

This is done by calling the startRamping method. If the JBot is

ramping up then it is time to start the movement at full speed.

This is done by calling startFullSpeedMovement.

If there is no transition then the ramping speed is updated by

calling updateRampSpeed. This uses the object variables tracking

the ramping support. Of course, if all else fails to be true then

the movement is handled by the superclass’, BasicJBot,

movementDone method. If the movement is done then it is time to

call getNextMovement.

The following figure shows when getNextMovement is called for a

single movement.

RampingJBot

Time

Servo speed

movementDone ()
true

false

getNextMovement ()

The getNextMovement method is a bit convoluted. It tries to see

if the next movement has already been provided. If not then

causeNextEvent is called. This support goes way back to the

JBotInterface class. It is typically used with the

MultitaskingJBot support. The task controlling the RampingJBot

class is notified by the causeNextEvent call. The task can

initiate a movement so when the call returns the nextMovement

variable will be set. If the next movement is the same as the

Chapter #3: Programming the J-Bot to Go Places

prior one then startFullSpeedMovement is called. This time the

parameter is false indicating that the ramping time should not be

subtracted from the movement time because it was already

subtracted from the initial movement.

The ramping methods include startRamping, rampDown, and rampTo.

These manipulate the ramping variables to handle the up or down

ramping process.

The startFullSpeedMovement method is next since we are looking at

the code in the order it occurs in the source file. This is

actually where the BasicJBot movement methods are called. The

BasicJBot assumes all movements are running at full speed. The

startFullSpeedMovement method either runs a movement between

ramps or when two of the same movements occur sequentially as

shown below. In the upper timing diagram, the

startFullSpeedMovement method is called a second time at the

getNextMovement point.

Different
movements

Time

Servo speed

Same
movements

Servo speed

getNextMovement ()

movement 1 movement 2

movement 1 movement 2

The switch statement selects the type of movement to perform

next. Each case calls the BasicJBot super class method to setup a

full speed movement. The variable timeoutAdjust is then set as

shown below.

case movementMove:

 super.move (currentSteps) ;

 timeoutAdjust = msecPerStep - 2 ;

 break;

The timeoutAdjust value is the change necessary to take into

account for ramping up and down. This value is subtracted from

the object’s timeout value used to control the movement if the

ramping is part of this movement. Remember, if two of the same

type of movement are executed back-to-back then this adjustment

is only done with respect to the first movement’s timeout.

The move, pivot and turn methods are defined in the JBotInterface

superclass. They are redefined in this class because the method

of handling movements is different. In the RampingJBot class,

these methods simply store the requested movement in the

nextMovement and nextSteps variables. As noted earlier, these

variables are used when the JBot transitions from one movement to

another.

Chapter #3: Programming the J-Bot to Go Places

The following program exercises the RampingJBot class.

import stamp.core.*;

import JBot.* ;

/**

 * Test RampingJBot class

 * <p>

 * The program runs the J-Bot using BasicJBot class methods.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicJBotTest3 {

 public static void main () {

 RampingJBot jbot = new RampingJBot (new FixedMovementJBot ()) ;

 jbot.move (-2) ;

 jbot.stop () ;

 jbot.move (2) ;

 jbot.pivot (-2) ;

 jbot.turn (1) ;

 jbot.stop () ;

 }

}

The program adds a short backward movement first but then

performs the same movement sequence as the prior test programs.

Note how this program differs only by the change to the

RampingJBot and the additional reverse movement at the beginning.

Chapter #3: Programming the J-Bot to Go Places

Activity #6: Driving the J-Bot

The test program in Activity #5 can be easily changed to move the

J-Bot in other patterns but the amount of source code gets rather

verbose. It would be easier to make patterns if the only thing to

define was the movement itself. In this activity, we look at how

to encode and decode movements to simplify programming.

In this example the movements are stored in a byte array. It is

easy to define constant byte arrays in Java as shown in the

following sample program.

import stamp.core.*;

import JBot.* ;

/**

 * J-Bot movements using commands stored in an array

 * <p>

 * The program runs the J-Bot using RampingJBot class methods

 * and a table of commands.

 *

 * @version 1.0 7/23/02

 * @author Parallax Inc.

 */

public class BasicJBotTest4 {

 static final byte move = -1 ;

 static final byte pivot = -2 ;

 static final byte turn = -3 ;

 RampingJBot jbot = new RampingJBot (new FixedMovementJBot ()) ;

 static byte movements [] = { move, 2, pivot, -2, move, 5 } ;

 public void performMovements (byte movements []) {

 for (int i = 0 ; i < movements.length ; i += 2) {

 switch (movements [i]) {

 case move:

 jbot.move (movements [i + 1]) ;

 break ;

 case pivot:

 jbot.pivot (movements [i + 1]) ;

 break ;

 case turn:

 jbot.turn (movements [i + 1]) ;

 break ;

 }

 }

 jbot.stop () ;

 }

 // ---- Main program ----

 public static void main () {

 BasicJBotTest4 myJBot = new BasicJBotTest4 () ;

Chapter #3: Programming the J-Bot to Go Places

 myJBot.performMovements (movements) ;

 }

}

This program shows off a little trick. It contains both a class

definition and a static main method normally associated with a

main program. The methods in the class other than the static

methods are available to an object of this class.

The main method is performMovements. It takes an array of bytes

as its argument. The number of elements in the array is obtained

using movements.length. The array is assumed to be pairs of

numbers with the first being a movement that will be one of the

following: fw, bk, pl, or pr. The array will not contain these

letters but rather the values of the constants defined at the

beginning of the class definition. The names are arbitrary.

The performMovements method assumes the J-Bot is at rest and will

be stopped after completing the movements in the array. The

ramping methods are used for starting and stopping. The start

method is chosen based on the first action. It is assumed that

startForward will be used for any action except a backward

movement.

The movements array is defined as the following:

static byte movements [] = { move, 2, pivot, 2, move, 5 } ;

This should cause the J-Bot to accelerate forward then move 2

more inches forward, pivot 90˚ to the right, move forward 5

inches and deccelerate to a full stop.

The performMovements method can be called using any byte array.

Your Turn

� Change the movements array so the J-Bot moves once around a 3

x 4 inch rectangle.

� Add the turn movements to the array interpretation. This means

additional constants must be defined as well such as tr and

tl.

� Split the BasicJBotTest4 class definition into a separate

class called MovementJBot and BasicJBotTest5. The MovementJBot

class should be self contained allowing it to be reused in the

BasicJBotTest5 main method as well as with other classes.

� Change the movment list contents to move the J-Bot in

different patterns.

Chapter #3: Programming the J-Bot to Go Places

� The movment list consists of a pair of numbers for each

action. The movement value is always negative so it is

possible to differentiate it from the setp value. Change the

movement list scanning support so it assumes that the step

value is 1 if it is not included.

Chapter #3: Programming the J-Bot to Go Places

Coordinated J-Bot wheel control was

introduced in this chapter. Examples

include controlling the J-Bot’s distance

and turns, along with methods for

programming the J-Bot to travel measured

distances. Examples of speed ramping as

well as an example of integrating the

navigation algorithms introduced in this chapter also were

provided.

Real World Example

Micro-controlled motion is also all around us. Although there

may not be that many autonomous rolling robots in your household

yet, there are many other gizmos with micro-controlled moving

parts. Printer heads and computer disk drives are two examples

that use stepper motors. Servos controlled by microcontrollers

are also used in a variety of places. Many automobile systems

rely on servos to control small moving parts in various engine

and emission systems. Industrial servos maintain many factory

processes, often in conjunction with the level sensors discussed

earlier.

J-Bot Applications

Programmed navigation is the foundation for a variety of other J-

Bot activities. In the Projects section, you’ll work on

programming the J-Bot to navigate a variety of shapes and on fine

tuning some of the navigational algorithms developed in this

chapter. In subsequent chapters, we’ll use some of these classes

to respond to sensor inputs. The navigation routines developed

in this chapter will be especially helpful in getting around

obstacles that are detected. One of the most popular occupations

for autonomous robots is solving mazes, which are full of

obstacles. Responding automatically to certain situations can

increase the J-Bot’s ability to navigate features within the

maze. For example, when a corner is detected, instead of trying

to navigate the corner based solely on sensor.

 Questions and

Projects

Questions

1. Describe the CPU.delay was replaced with a Timer object in

the BasicJBot class.

2. Why was ramping support added?

Summary

and

Applicati

ons

Chapter #3: Programming the J-Bot to Go Places

3. Describe how a turn is accomplished. How must the sample

programs change to make a wider turn?

4. Why where arrays used in the BasicJBotTest4 program in

Activity #6?

Exercises

1. Incorporate stop and ramping commands in the array approach

used in the BasicJBotTest4 program in Activity #6.

2. Change one or more of the test programs to make the J-Bot

go in a circle, a 5 inch square, or a figure 8 instead of

the simple movements initially presented.

Projects

Need some project ideas.

1. Make the J-Bot move forward through a figure such as a

rectangle and then backward. See how close to the starting

point the J-Bot finishes.

2. Create source code for the following movement patterns:

Figure 2.8: J-Bot paths to program.

