Chapter #3: Programming the J-Bot to Go Places

Chapter #3: Programming the J-Bot to
Chapter #3: Go Places

Programming Chapter #3 1s all about instructing

the J-Bot the J-Bot where to go and how to get

to CGo there. You’ll write programs to make

Places the J-Bot . perform a yarlety .of
maneuvers instead of just going

forward and backward. Some programs

can Dbe wused for navigating tight spaces, others for drawing
shapes. Whatever the maneuver, this chapter presents the tools
for programming the J-Bot to perform it. Here’s what you’ll

learn how to do in Chapter #3:

e Move a specific distance forward and backward.

e Pivot and make turns.

e Program your J-Bot to go a variety of directions, all in the
same program.

e Learn about the J-Bot class hierarchy used in the rest of
this book (see Activity #3)

e Create a Java class to handle basic maneuvers

e Write programs that remember long 1lists of movement
instructions.

e Write programs that make the J-Bot accelerate and decelerate
during maneuvers.

The exercises in this chapter also offer lots of practice in
using variables and flow control to accomplish a variety of
tasks. Some essential math for converting program commands into
distance and speed are also introduced. For some, this will be a
first glimpse into elementary Dynamics.

Converting Instructions to Motion

In the previous chapter, you programmed the J-Bot to move forward
and backward. Additionally, software calibration settings were
determined for programming the J-Bot to move forward, backward,
and to stop and stay still.

Each J-Bot navigation program in Chapter #2 focused on one
direction. If the J-Bot was programmed to go forward, it had to
be reprogrammed to go backward and reprogrammed again to turn in
place. In this chapter, all the directions will be incorporated
into a single program. By determining how many pulses it takes
to make the J-Bot rotate a certain amount during a turn, you can
program the J-Bot to perform a variety of more precise maneuvers.
For example, the J-Bot can be programmed to draw a square, or a
cross, or a triangle.

This level of programmed maneuverability is well and good, but
programming long and involved lists can become a complicated

Chapter #3: Programming the J-Bot to Go Places

problem. Java also features a simple and efficient method of
recording and accessing long lists of directions in the program
memory. You’ll notice that while the J-Bot is performing its
programmed maneuvers that it comes to abrupt stops when it
changes direction. Commands can also be added to make the J-Bot
decelerate into and accelerate out of direction changes. This
ramping process will solve the abrupt stops and extend the life
of the J-Bot'’s servos.

The J-Bot will be able to run all the programs in
this book when it is powered by the external power
supply that plugs into a wall outlet. In some cases,
the J-Bot will not operate properly when using
battery power. This can be due to a combination of
things from improper batteries, such as rechargeable
nickel-cadmium (NicCd) batteries, or partially

FYI discharged batteries that cannot supply a sufficient
current surge to the J-Bot when the servos start at
top speed. In this case, the ramping support
described at the end of chapter should be employed as
it minimizes power surge. The ramping support will
not address batteries that cannot supply sufficient
current to run the J-Bot processor. In this case, new
batteries will be required.

6.67 cm
When programming the J-Bot, the goal is
often to make it move a specific distance 669
or to execute a particular turn. It 1is $&
helpful to know how to figure out how far
the J-Bot will travel or turn when it 1is
given a specific command. Circumference
is equal to pi (M) multiplied by the wheel
diameter: .
Figure 3.1: Wheel
Diameter and
circumference = © x wheel diameter Circumference

circumference = 3.14159 x 6.67 cm =21 cm

So, now we know that with one complete turn of the wheels, the J-
Bot travels about 21 cm.

One way to determine how far the J-Bot will move is to determine
how fast it moves. We can then calculate how far it will move.
For example, if the servo turns at about 37.5 revolutions per
minute (RPM), or 0.625 revolutions/sec then the speed would be
about:

Chapter #3: Programming the J-Bot to Go Places

21 cm/revolution x 0.625 revolutions/sec = 13.125 cm/s

The time it takes to make the J-Bot travel 50 cm is:

traver = 50 cm = 13.125 cm/s = about 3.81 seconds

Unfortunately, determining the rotational speed of the wheel can
be somewhat difficult unless you have very good eyes or a light
strobe. You can attempt to calculate the speed of rotation but we
have an easier way of getting the J-Bot to move the distance we
want.

The approach taken in Activity #1 measures linear distance
instead of rotational distance. This is easy to measure with a
ruler or tape measure. It also takes into account other factors
such as possible slippage for a particular surface. Normally this
should be wvery small but it depends on the surface you have
available.

You can always compute the rotational speed from the results of
Activity #1 if you want.

Activity #1: Maneuvers — Going the distance

Chapter 2 introduced wheel servo control for moving the J-Bot.
The problem is that the J-Bot ran for a fixed amount of time.
This is fine if you don’t care how far the J-Bot moves but not if
you want the J-Bot to perform in a predictable fashion. In this
activity we move the J-Bot forward based on the desired number of
inches to move instead of the number of seconds. This should
prove move useful when we want the J-Bot to move in a square
assuming we can get it to pivot in Activity #2.

First we need to figure out how long to run the J-Bot so it moves
a fixed distance. Doing this could take a lot of trial and error
because we do not know the relationship between the J-Bot’s PWM
frequency and a particular speed. If we did then it takes just a
little math to compute distance moved for a given amount of time
at a specified speed.

Before diving into making measurements we should take a look at a
problem vyou may have encountered in the previous chapter. 1In
particular, running the J-Bot with the serial cable attached.
This 1is fine for short distances but impractical for longer
distances because the cable can induce drag or even act as a
tether preventing the J-Bot from moving as far as it 1is
programmed to. To this end, the application in this activity is
designed so that the J-Bot will not be tethered. This
configuration also means that the J-Bot must be running on
batteries.

Chapter #3: Programming the J-Bot to Go Places

The free roaming J-Bot operation works this way. First, vyou
download the program when the J-Bot is connected to the PC using
the serial cable. The power adapter can be used instead of
battery power at this time. Second, the power and serial cables
are removed. At this point the J-Bot is off and will not move.
The program that was downloaded is contained in the flash memory
of the Javelin Stamp. This information 1is retained even when
power 1is removed. Third, the J-Bot is moved to where it will be
tested. Fourth, battery power is applied by plugging the battery
power cable into the J-Bot’s circuit board. Hit the reset switch
if necessary since the program will start running immediately.
The reset switch starts it all over.

To start, enter the BasicWheelServoDistanceTestl.java program
shown next.

import stamp.core.*;
import JBot.* ;

/**

* Wheel servo distance test program

* <p>

* The program runs the J-Bot for fixed time periods.

* Each time period is longer than the prior one.

* A delay is included before each test run for measurements.
* Distance measurements can be taken between each movement.
*

* @version 1.0 7/23/02

* Qauthor Parallax Inc.

*

~

public class BasicWheelServoDistanceTestl {
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward

, 2000 // low
) i
BasicWheelServo rightWheel =
new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward
, 2000 // low
)
for (int i =1 ; 1 <= 10 ; ++i) {
CPU.delay (20000) ; // initial delay for measurements

leftWheel.move (100) ;
rightWheel.move (100) ;

for (int 7 =0 ; j < i ; ++ 7) |
CPU.delay (5000) ; // run servos for fixed amount of time

}

Chapter #3: Programming the J-Bot to Go Places

leftWheel.stop () ; // stop wheels
rightWheel.stop () ;
}
}
}

The BasicWheelServoDistanceTestl.java program will run the J-Bot
forward for ten times. The time the J-Bot runs for each iteration
is one timer interval greater than the last. You will need an
area large enough to let the J-Bot run for this test. A hallway
or large room works nicely. The top of a table will probably be
insufficient. We present an alternative method for running the J-
Bot with this program if a large area is not available.

For this test you will need some sort of small markers. Square
pieces of paper about one square inch on a side are ideal. This
is how the experiment works.

1. Load the J-Bot with the BasicWheelServoDistanceTestl. java
program.

2. Place one marker on the ground next to the J-Bot. The marker,
and subsequent markers, should be placed near the same spot on
the J-Bot. The center of the J-Bot’s wheel on either side is
an easy spot to locate consistently.

3. Add power.

4. The J-Bot should wait two seconds before it starts moving so
you have time to aim it in the proper direction.

5. The J-Bot rolls forward for its first timed movement. Place
another marker next to the J-Bot.

6. Repeat steps 4 and 5 until all iterations are done.

7. Measure the distance between markers and put the data in the
following table. The distance can be in inches (to the closest
tenth or quarter inch) or millimeters depending upon the kind
of ruler available.

Iterat Time Distance Time/inch

ion (in.)

1 5000 3.12 1602
2 10000 6.25 1600
3 15000 9.00 1666
4 20000 12.10 1652
5 25000 15.25 1639
6 30000 18.30 1639
7 35000 21.45 1631
8 40000 24.60 1626
9 45000 27.75 1621
10 50000 31.10 1607

Chapter #3: Programming the J-Bot to Go Places

Next we graph the results. The graph will look something like the
following. This can be done easily using a spreadsheet program.

Timed Movement

35
30 - //’
25 o
20 o

15 - /
10

Inches

Step

Don’t worry if the J-Bot does not go in a straight line. The
servo settings can be adjusted to improve this but finish testing
before making major changes. The J-Bot movement should be
relatively consistent as shown in the plot but there is some
variation. This is due to a number of factors including startup
and stopping times. Shorter movements will be affected more by
this factor than longer movements. Minor deviations 1in the
servos, wheel and servo alignment, and friction between the
wheels and the surface the J-Bot is running on all contribute to
movement deviations.

The program should be run multiple times to make sure the results
are consistent. The results may be averaged for the next step
that is the development of a wheel servo class that moves a fixed
distance.

Using the results from the table and plot we get an average time
of 1628 to move one inch. The following program turns the time
around so the J-Bot moves a fixed number of inches.

import stamp.core.*;
import JBot.* ;

/**

* Wheel servo distance test program

* <p>

* The program runs the J-Bot for a fixed number of inches.
* Distance measurements can be taken between each movement.
*

* @version 1.0 7/23/02

* @Qauthor Parallax Inc.

*

~

Chapter #3: Programming the J-Bot to Go Places

public class BasicWheelServoDistanceTest2 {
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward

2000 // low
) i
BasicWheelServo rightWheel =

new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward
, 2000 // low
)
for (int i =1 ; i <= 10 ; ++1i) {
CPU.delay (20000) ; // initial delay for measurements

leftWheel.move (100) ;
rightWheel.move (100) ;

for (int j =0 ; j <1 ; ++ 3) {

CPU.delay (1628); // run servos for fixed amount of time
}
leftWheel.stop () ; // stop wheels

rightWheel.stop () ;

The difference between BasicWheelServoDistanceTestl and
BasicWheelServoDistanceTest2 1is the CPU.delay value. It is now
the 1628 value computed as the average time to move one inch. The
distance moved with this program will be significantly less than
BasicWheelServoDistanceTestl.

Repeat the measurements with BasicWheelServoDistanceTest2. Note
that the results will be <close to an integral inch but not
exactly. If the results are always farther than expected then
reduce the CPU.delay value. Increase the wvalue if the distances
are less than expected.

Your Turn

O The BasicWheelServoDistanceTestl.java program is setup to move
the J-Bot forward for a specific distance. Adjust the program
to do the same thing when the J-Bot moves backwards.

O Change the sample program so the J-Bot moves forward for
shorter and longer times. How do the plot results compare with
original results?

Chapter #3: Programming the J-Bot to Go Places

O The sample programs run at 100%, the top speed of the J-Bot.
Repeat the tests at different speeds such as 25%, 50% and 75%.

Chapter #3: Programming the J-Bot to Go Places

Activity #2: Maneuvers — Making Turns

Keeping the J-Bot on the straight and narrow is fine but this
leads to one dimensional thinking and movement. While the J-Bot
cannot climb steps and move in a third dimension it can move in
two dimensions.

The J-Bot changes direction by turning or pivoting. Turning 1is
accomplished by running the wheels in the same direction but the
servos are run at different speeds. The turn will be towards the
slower moving wheel and the radius of the turn will be based on
the difference between the two.

Pivoting occurs when the wheels are run in opposite directions.
The J-Bot will pivot in place 1if the wheels move at the same
speed. The movement will be a mix of a turn and pivot if the
speeds of the wheels differ. For our purposes, we want to pivot
in place.

Pivoting In place

The BasicWheelServoPivotTestl program shown next 1is designed to
make the J-Bot rotate on its axis.

import stamp.core.*;
import JBot.* ;

>*

~

* % X X ok X X X

Wheel servo pivot test program
<p>
The program pivots the J-Bot.

@version 1.0 7/23/02
Qauthor Parallax Inc.

~

public class BasicWheelServoPivotTestl {
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward

2000 // low
) i
BasicWheelServo rightWheel =

new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward
, 2000 // low
)
for (int i =1 ; 1 <=4 ; ++1i) {

CPU.delay (20000) ; // initial delay for measurements

Chapter #3: Programming the J-Bot to Go Places

leftWheel .move (100) ;

rightWheel.move (-100) ;
for (int j =0 ; j <1 ; ++ 3) {
CPU.delay (1000) ; // run servos for fixed amount of time
}
leftWheel.stop () ; // stop wheels

rightWheel.stop () ;

The program 1is very close to the BasicWheelServoDistanceTest
programs. The two major changes are the number of iterations, the
direction of the wheels and the delay for the pivot action. The
number of iterations 1s reduced to prevent the J-Bot from
pivoting too much. This allows the test to be run with the power
and serial cable attached although you need to make sure there is
enough slack in the cable so it does not impede the movement of
the J-Bot. Running on batteries with the serial cable
disconnected eliminates this problem.

The direction of the left wheel remains the same but the right
one goes in the opposite direction. This causes the J-Bot to
pivot to the right. The delay time was reduced because it does
not take much time for the J-Bot to pivot since it does not
travel a great distance. Longer operation is possible but this
just causes the J-Bot to go in circles.

The amount of time the J-Bot pivots controls the angle of
rotation. We can determine the angle of rotation using the same
method employed for the fixed distance programs. Again, the J-
Bot’s movements will be limited. Whereas the distance program
used inches, the pivot programs will use increments of some fixed
number of degrees.

The BasicWheelServoPivotTestl goes through four steps with
increasing angles of rotation. As it turns out, the angles are
close to values we intend to use in the long run including 45°
and 90°. With a delay of 1000, four pivot steps (4000) will
result in a rotation of about 45°. If we double this and use it
in the BasicWheelServoPivotTest2 then the J-Bot will rotation a
full 90° on its last rotation and 45° after only two.

The BasicWheelServoPivotTest2 wuses this information. The only
difference is that the rotation delay time has been increased to
4000. This is an approximation but it should be close. The J-Bot
should pivot 45°, 90°, 135° and 180°. Be careful with this
program 1if the cables are attached because the J-Bot will make
more than one full rotation.

Chapter #3:

Programming the J-Bot to Go Places

import stamp.core.*;
import JBot.* ;

/‘k‘k

* Wheel servo pivot test program

* <p>

* The program rotates the J-Bot in 45 degree increments.
*

* @Qversion 1.0 7/23/02

* Qauthor Parallax Inc.

*/

public class BasicWheelServoPivotTest2 {

public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (

CPU.pinl3 // pin
, 240 // forward
, 175 // center
, 110 // backward
// low

, 2000

) i

BasicWheelServo rightWheel =
new BasicWheelServo (

CPU.pinl2 // pin
, 110 // forward
, 175 // center
, 240 // backward
, 2000 // low
)
for (int i =1 ; 1 <=4 ; ++1)

CPU.delay (20000) ;

leftWheel .move (
rightWheel.move (

100) ;
-100) ;

for (int j = 0 ;
CPU.delay (4000) ;

j<ij;

}

++3)
// run servos for fixed amount of time

// initial delay for measurements

{

distance

leftWheel.stop () ; // stop wheels
rightWheel.stop () ;
}
}
}
We could create a class

that would

incorporate the

movement and the pivot operations so we could simply use methods
like forward, pivotRight and pivotLeft but we will wait until we
have tested all the useful actions including the next programs

for making turns.

Your Turn

O Try changing the speed of the wheels.

place or turn?

Does the J-Bot pivot in

Chapter #3: Programming the J-Bot to Go Places

O Make the J-Bot pivot to the left instead of the right.

Taking a Turn

Pivoting in place 1is handy but not always the most preferable
method of changing direction. In particular, pivoting requires
the wheels to turn in different directions. The J-Bot will skid
if it does not stop for a short period of time. A turn, on the
other hand, keeps the wheels moving in the same direction
although there is a change in speed.

A left turn is accomplished by running both wheels in a forward
direction but the left wheel runs slower than the right. The
following BasicWheelServoTurnTestl should look rather familiar by
now.

import stamp.core.*;
import JBot.* ;

/‘k‘k

* Wheel servo turn test program

* <p>

* The program turn the J-Bot for a fixed amount of time.
*

* @version 1.0 7/23/02

* Qauthor Parallax Inc.

*/

public class BasicWheelServoTurnTestl {
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward

, 2000 // low
) i
BasicWheelServo rightWheel =
new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward
, 2000 // low
)
for (int i =1 ; i <=4 ; ++1i) {
CPU.delay (20000) ; // initial delay for measurements

leftWheel.move (10) ;
rightWheel.move (100) ;

for (int 7 =0 ; j < i ; ++ 7) |
CPU.delay (10000) ; // run servos for fixed amount of time
}

leftWheel.stop () ; // stop wheels

Chapter #3: Programming the J-Bot to Go Places

rightWheel.stop () ;
}
}
}

The run time, the second CPU.delay call, has been increased
because it takes the J-Bot a longer to circumscribe an arc. The
leftWheel.forward method call cuts the speed down to 10%. This
results in a relatively tight turn with an inside radius under
one inch.

As with the first pivot program, the BasicWheelServoTurnTestl
program makes the J-Bot move but the amount of movement may not
be what is desired. Although not random, we will want the J-Bot
to move to known positions if we plan on having it do things like
move around a rectangle.

Your Turn

O Determine time settings so turns the J-Bot’s rotational

movements are in increments of 45°. Use the same measurement
and estimation techniques used for the straight and pivot
movements.

O Make the J-Bot turn in the opposite direction. Hint: swap the
speed values in the forward methods.

QO Have the J-Bot make wider turns.

O Can the J-Bot make a turn going backwards? Try it.

Activity #3: Maneuvers — Basic J-Bot Class

Control of the J-Bot to this point has been done explicitly.
Control of an individual wheel servo has been encapsulated in the
BasicWheelServo class. While it is possible to extend this class
to make actions like turning and pivot easier to work with it is
better if another class is defined to provide J-Bot movement.

Before diving into a new class definition we need to determine
what combination of methods will be useful. For now we will not
be to ambitious. We need to move forward and backward a fixed
number of inches, pivot left and right, turn left and right, and
stop. The following class does just that.

package JBot;

import stamp.core.*;
import stamp.util.os.*;

Chapter #3: Programming the J-Bot to Go Places

/‘k‘k

* J-Bot wheel control interface

* <p>

* Defines methods that J-Bot wheel control classes must provide.
*

* @version 2.1 03/12/03 Use new Task status support

* @version 2.0 12/12/02 Use Event synchronization

* @version 1.0 10/2/02

* @author Parallax Inc.

*

~

public abstract class JBotInterface {
protected Event startEvent ;
protected Event nextEvent = Event.nullEvent ;
protected Event oneTimeEvent = Event.nullEvent ;

static final public int continuousForward = 32760 ;

static final public int continuousBackward -32760 ;

static final public int continuousLeft continuousForward ;
static final public int continuousRight = continuousBackward ;

/‘k‘k
* Set Event that is to be notified when a movement starts.
*

* @param event Event to be notified when movement starts. Can be null.
wy

public JBotInterface (Event event) {
startEvent = Event.checkEvent (event) ;

}
/‘k‘k

* Setup (current) task to wait for end of movement
*

* (@param state next task state

=Y

public void wait (int state) {
Task waitingTask = Task.getCurrentTask () ;
waitingTask.nextState (state) ;

if (waitingTask.taskStatus ()==Task.taskRunning) {
waitingTask.suspend () ;
oneTimeEvent = waitingTask ;

—

*

Set event to notify when movement is started. May be null.

@param event Event to notify when movement is started

* X X % %

* @returns prior event

wy
public Event setStartEvent (Event event) ({
Event resultEvent = startEvent ;

startEvent = Event.checkEvent (event) ;
return resultEvent ;

}

*

/

Set event to notify when movement is done. May be null.

@param event Event to notify when movement is done

* % X X %

Chapter #3: Programming the J-Bot to Go

Places

* @returns prior event

wy

public Event setNextEvent (Event event) {
Event resultEvent = nextEvent ;
nextEvent = Event.checkEvent (event) ;

// Prime the pump if necessary
if (movementDone ()) {
causeNextEvent () ;

return resultEvent ;

}
/‘k‘k

* Cause one time and next event.
* Normally called by the matching multitasking object.
%Y
protected void causeNextEvent () {
// Notify event that the next movement can be started
nextEvent.notify (this) ;

// Notify event that the next movement can be started
oneTimeEvent.notify (this) ;
oneTimeEvent = Event.nullEvent ;

}
/‘k‘k

* This method should be called at the beginning of a movement method.

wy
protected void startMovement () {
startEvent.notify (this) ;
}

/‘k‘k
* Check if movement is done. This should be called until it

* returns true.
*

* @returns true if done waiting for movement

*/
public abstract boolean movementDone () ;
/**
* Stop movement.
*/
public void stop () {
move (0) ;
}
/**

* Set wheel speed to move forward/backward (negative).
*

* @param inches number of inches to move
%y

public abstract void move (int inches) ;

/‘k‘k
* Set wheel speed to pivot left (positive) or right (negative).
*

* @param steps number of steps to turn
*/

public abstract void pivot (int steps) ;

Chapter #3: Programming the J-Bot to Go Places

/‘k‘k
* Turn left (positive) or right (negative).
*

* @param steps number of steps to turn
*/
public abstract void turn (int steps) ;

}

The first thing to notice with the JBotInterface class is that it
is an abstract class. This means it cannot be used to create an
object but it can be used as a super class to a class that is not
an abstract class. The second thing to note is the use of the
Event class. This is part of the stamp.util.os package which is
why the statement:

import stamp.util.os.*;

is included at the start of the file. The Event class 1is
relatively simple. It has a method called notify that is used to
communicate with an Event object. In this case there are three
events: startEvent, nextEvent and the oneTimeEvent. The first is
notified when a movement is started. The other two are notified
when a movement is completed. This allows an event driven system
to be constructed in a multitasking environment covered in the
next chapter. These events are discussed in more detail later in
this section.

The Event.nullEvent is the only instance of the Event class that
does nothing when it is notified. While this may sound useless it
allows a reference like nextEvent to be used without having to
check for a null wvalue. Since another event 1is normally
referenced by this wvariable it 1is more efficient to wuse a
nullEvent instead of null. Only a single nullEvent object 1is
needed since the response to the notify method is always the
same. It does nothing.

Before covering the rest of the JBotInterface class definition we
take a look at the class hierarchy for it and the events that
will be used here and in the rest of the experiments in the book.
First the JBotInterface hierarchy.

JBotInterface
BasicJBot
RampingJBot
WheelEncoderJBot

The BasicJBot class, defined next, implements the abstact
JBotInterface methods so a real object can be created. Normally a
single object is created since there is only one J-Bot but the
class allows an easy way to <collect together the methods
associated with is operation.

Chapter #3: Programming the J-Bot to Go Places

The BasicJBot provides support for forward and backward movement,
pivoting and turning. It starts and stops the servos abruptly so
it can Dbe unsuitable for battery operation in some instances
especially as additional sensors or add-on modules are employed.

The RampingJBot builds on the BasicJBot. It removes the abrupt
change of speed with a gradual increase or decrease 1in speed.
This minimizes the power surge necessary to start or stop a servo
making it more suitable for battery operation.

The WheelEncoderJBot adds a closed feedback loop to the
RampingJBot. It uses the wheel encoder IR detectors to track the
color transitions on the inside of each wheel. It allows the J-
Bot to move forward in a straight line by making sure the number
of transitions for each wheel are the same over time.

The BasicJBot and RampingJdBot are covered in this chapter. The
WheelEncodingdBot is covered in a later chapter.

Much of the work for controlling the J-Bot 1s done in the
movementDone method. This must be called repeatedly so the object
can keep track of the servos. The servos actually run
continuously but they must be turned off or the speed must change
if the J-Bot is not running continuously in one direction.

The movementDone method can be polled in a number of ways. The
simplest method is to have the part of the program that creates
the JBot object but this can be rather tedious. Instead, two
alternatives are available. One assumes a single tasking, fixed
movement mode of operation where each movement will complete
before control is returned to the calling program. The second
uses a task in a multitasking environment allowing the calling
program to do other things while the J-Bot is moving. This can
include support for sensors that require multitasking support.
Multitasking is covered in the next chapter while sensor support
is covered in subsequent chapters for various sensor types.

A control object is required as a parameter to the constructors
in the JBotInteface class hierarchy. This control object is based
on the Event class and is assigned to the startEvent when an
object 1s created. It is possible to change the object but in
general it 1is set once when the JBot object 1is created. The
control object hierarchy looks like this.

Event
FixedMovementJBot
Task
MultitaskingJBot

In general, the creation of a BasicJdBot with a fixed movement
control object looks like:

Chapter #3: Programming the J-Bot to Go Places

JbotInterface jbot = new BasicJBot (new FixedMovementJBot ());

Note that the type of Jjbot is JBotInterface. This can be done
because JBotInterface 1is a super class of BasicJBot. It also
means that BasicJBot can be replaced by any class, like
RampingJBot, that has JBotInterface as a super class. If the
movementDone method 1is called explicitly by the program that
creates the object referenced by jbot then the parameter to the
constructor can be Event.nullEvent.

The FixedMovementJBot is wused throughout this chapter. The
MultitaskingJBot class is defined in the next chapter.

The movement methods for the abstract JbotInterface class include
move, ©pivot and turn. Each takes a single signed integer
parameter. A positive value yields forward movement or pivoting
and turning to the left. A negative value causes Dbackward
movement and pivoting and turning to the right. A wvalue of O
causes the J-Bot to stop. This is the same as the stop method.

It is also possible to initiate continuous movements. The J-Bot
will proceed in the specified movement until a new movement is
invoked. This mode is common when sensors are used to determine
when a change in direction is required.

The movement methods like move, pivot and turn must be defined by
a subclass and they need to take into account the three events:
startEvent, nextEvent and oneTimeEvent. The startMovement method
notifies the startEvent. It should be called after all the
movement setup is complete. The event normally calls movementDone
repeatedly. The startEvent is set when in the constructor but it
can be changed using setStartEvent. This method returns the prior
event reference. A null argument causes the event to be set to
Event.nullEvent.

Once a movement is completed, the causeNextEvent method should be
called. This method notifies the nextEvent and oneTimeEvent. The
former is set using setNextEvent. This event is designed to be
used all the time. The oneTimeEvent is set using the wait method
and reset after the event is notified. The wait method assumes
the system 1is wutilizing a multitasking environment. The wait
method should be called from a task. Waiting on an event 1is
discussed in more detail in the next chapter on multitasking.

FYI Keep in mind that the JBotInterface and its
subclasses are designed SO that the program
controlling the J-Bot will 1issue another movement
command, including a move(0) or stop, immediately
after the current command has finished. If not, the
J-Bot will continue moving in the same direction and

Chapter #3: Programming the J-Bot to Go Places

speed. It is possible to create a control event that
stops after each movement but this can result in
jerky movements.

The BasicJBot class defined next extends the JBotInterface. The
BasicJBot class implements all the abstract classes of its
superclass so BasicJBot objects can be created. There are two
constructors available. One uses the default servo objects while
the other allows user defined objects to be used instead. Both
require an event that will be used as the startEvent.

package JBot;

import stamp.core.*;
import stamp.util.os.*;

*

/
Basic J-Bot wheel control class

<p>

Handles PWM support for a free running wheel servo on the J-Bot.
Start movement using move (), pivot() or turn().

It can stop the J-Bot using stop() or move(0).

@version 2.0 03/20/03 Added getMovementSpeed
@version 1.0 12/23/02 Original version
@author Parallax Inc.

% o X X ok ok X X F o

~

public class BasicJBot extends JBotInterface {
public BasicWheelServo leftWheel ;
public BasicWheelServo rightWheel ;
public Timer timer ;
public int timeout ;
public int msecPerInch ;
public int msecPerPivot ;
public int msecPerTurn ;

protected static final int movementNone = 0 ;
protected static final int movementMove = 1 ;
protected static final int movementPivot = 2 ;

protected static final int movementTurn = 3 ;

protected int leftMovementSpeed ;
protected int rightMovementSpeed ;
protected int msecPerStep ;

/**
* Setup wheel servos for general movement.
* Forward movement is measured in inches.
* Pivots and turns are measured in steps that are normally 45 degrees.
* Uses default servo settings.
wy
public BasicJdBot (Event event) {
this (event
, 163 // (1628 * 100us) / 1000us = 163 msec
, 180 // (1800 * 100us) / 1000us 180 msec
, 650 // (6500 * 100us) / 1000us 650 msec
, hew BasicWheelServo (
CPU.pinl3 // pin
, 240 // forward

Chapter #3: Programming the J-Bot to Go Places

—

P I T I T T I S

>*

, 175 // center
, 110 // backward
, 2000 // low

, hew BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center

, 240 // backward
, 2000 // low

Setup wheel servos for general movement.

Forward
Pivots

@param
@param
@param
@param
@param

~

movement is measured in inches.
and turns are measured in steps that are normally 45 degrees.

msecPerInch number of msec per inch for linear movement
msecPerPivot number of msec per pivot unit

msecPerTurn number of msec per turn unit

leftWheel BasicWheelServo for left wheel

rightWheel BasicWheelServo for right wheel

public BasicJdBot

/*
*
*
*
*
*

(Event

, int ms
, int ms
, int ms

event
ecPerInch
ecPerPivot
ecPerTurn

, BasicWheelServo leftWheel
, BasicWheelServo rightWheel

) A

super (event) ;

this.msecPerInch = msecPerInch ;
this.msecPerPivot = msecPerPivot ;
this.msecPerTurn = msecPerTurn ;
this.leftWheel = leftWheel ;
this.rightWheel = rightWheel ;
timer = new Timer () ;

*

Check if movement is done. This should be called until it
returns true.

@returns true if done waiting for movement

/

public boolean movementDone () {

}
/%

return t

*

imer.timeout (timeout) ;

* Set wheel speed to move forward.

*

* @param steps number of linear inches to move

wy
public void move (int steps) {
movement (movementMove, steps) ;
}
/**

* Set wheel speed to pivot left (positive) or right (negative).

Chapter #3: Programming the J-Bot to Go

Places

*

* @param steps number of steps to turn

wy
public void pivot (int steps) {
movement (movementPivot, steps) ;
}
/**

* Turn left (positive) or right (negative).
*
* @param steps number of steps to turn
wy
public void turn (int steps) {
movement (movementTurn, steps) ;

}

>*

/
Get wheel speeds for movement.
Sets msecPerStep, leftMovementSpeed, rightMovementSpeed

@param movement movement type
@param steps number of steps to turn

* % X ok ok X

wy
protected void getMovementSpeed (int movement, int steps) {
switch (movement) {
default:
case movementMove:
msecPerStep = msecPerInch ;

if (steps > 0) {

leftMovementSpeed = 100 ;
rightMovementSpeed = 100 ;
} else {
leftMovementSpeed = -100 ;
rightMovementSpeed = -100 ;
}
break;

case movementPivot:
msecPerStep = msecPerPivot ;

if (steps > 0) {

leftMovementSpeed = -100 ;
rightMovementSpeed = 100 ;
} else {
leftMovementSpeed = 100 ;
rightMovementSpeed = -100 ;
}
break;

case movementTurn:
msecPerStep = msecPerTurn ;

if (steps > 0) {

leftMovementSpeed = 10 ;

rightMovementSpeed = 100 ;
} else {

leftMovementSpeed = 100 ;

rightMovementSpeed = 10 ;

}

break;

Chapter #3: Programming the J-Bot to Go Places

// Compute timeout when appropriate

if ((steps != continuousForward)
|| (steps != continuousBackward)
Il (steps != 0)) {
timeout = msecPerStep * ((steps > 0) ? steps : - steps) ;
}
}
// ==== Private definitions follow ====
/‘k‘k
* Set wheel speed for movement.
* Use movement 1 for positive values.
* Use movement 2 for negative values.
*
* @param movement movement type
* @param steps number of steps to move
%Y
protected void movement (int movement, int steps) {
// setup parameters
getMovementSpeed (movement, steps) ;
switch (steps) {
case 0:
setSpeed(0,0) ;
startMovement () ;
break;
case continuousForward:
case continuousBackward:
setSpeed (leftMovement Speed, rightMovementSpeed) ;
break;
default:
timer.mark () ;
setSpeed (leftMovement Speed, rightMovementSpeed) ;
startMovement () ;
break;
}
}
/‘k‘k
* Set speed for both wheels.
* Settings are percentages.
* Positive values are forward rotation.
* Negative values are backward rotation.
*
*

@param left speed settings for left wheel
* @param right number speed setting for right wheel
wy
protected void setSpeed (int left, int right) {
// Set real speed
leftWheel .move (left);
rightWheel.move (right) ;
}

If you made it this far then you have seen that the class
definition is a bit long. Still, it 1is relatively simple. Up
front are the wvariable definitions. Although they are defined as

Chapter #3: Programming the J-Bot to Go Places

public variables it might be better to make them protected. This
prevents applications 1like the forthcoming BasicJBotTestl.java
program.

The wvariables include two wheel object references and a Timer
object. In prior programs the timing was provided by CPU.delay.
In this class the timing will be done using a Timer object. The
timeout variable is used to keep track of movement duration and
is used in conjunction with the Timer.timeout method.

The three wvariables, msecPerInch, msecPerPivot and msecPerTurn
are values that are based on the experiments done earlier in this
chapter. For example, the BasicWheelServoDistanceTest2.java
program was used to verify the time delay for moving in inches.
This value was 1628 (your value may be slightly different) but it
is in terms of 100usec units used by the CPU.delay function. The
Timer has a 1lmsec (lmsec 1is 1000usec) timeout method so we need
to change the value by a factor of 10. This is 162.8 or 163 since
the Javelin only deals with integers.

The pivot and turn values are designed for 45° steps. The J-Bot
can be programmed for finer gradations but its accuracy and
repeatability are limited due to the lack of feedback. Therefore,
the 45° step increment should be more than adequate.

There are two class constructor definitions. The first uses the
second and allocates the BasicWheelServo objects using predefined
constants. This should be sufficient for a single J-Bot. The
second definition is provided if the class is used on multiple J-
Bots where the constants may have slightly different wvalues. In
this case an object <can be created without modifying the
BasicJBot class.

Next come the public method definitions. These are the ones a
programmer will use after a BasicJBot object is created. We will
go through these definitions next. These methods are followed by
protected method definitions that are used within this class.
They can be used by subclass definitions as well. We subclass the
BasicJBot class for fixed movement and ramping covered later in
the chapter. Back to the public methods.

The movementDone method checks the Timer object to determine if
it is time to stop moving. It returns a value of true if this is
the case. The startEvent stored in the superclass object
variables can use this method in a while loop and stops both
wheels when the movement is done. The stop method is defined
later in the file but simply calls the stop method for both wheel
objects.

Now why use these methods instead of CPU.delay? There are two
reasons. First, it allows the movement timing to be centralized.
Second, this type of polled architecture meshes well with the

Chapter #3: Programming the J-Bot to Go Places

multitasking system presented in the next chapter. The
multitasking system polls tasks. The task controlling the wheels
can use the movementDone method at this time. This will be
covered in more detail after the multitasking system is covered.
For now, just see how it works.

In terms of performance, using the Timer and CPU.delay are
equivalent since the program is not doing anything else. In fact,
the wheel movement 1s actually controlled by the Dbackground
operation of the PWM object for each wheel.

We can quickly look at the stop method. As mentioned earlier, it
just stops the two wheels. It uses a call to move(0) allowing
movements to be coordinated by a single method. This turns out to
be useful in the RampingJBot class that uses the BasicJBot as its
superclass.

Next we take a close look at the move, pivot and turn methods.
These call the movement method using different parameters. The
first is the same as the argument to the method. The second 1is
the timeout increment for each step. For the move method the
msecPerInch this is the number of ticks that a servo needs to
run to move one inch. The same is true for the other two methods.

The movement method sets up the timeout to be used with the timer
object access in the movementDone method. The movement method
calls the getMovementSpeed that determines the type of operation
being performed. A 0 step value indicates the servos are to be
stopped. This is done by setting the speed of each wheel to 0.

The getMovementSpeed method is used to so it can be enhanced by
subclasses such as the RampingJdJBot class. The getMovementSpeed
method sets the servo speed parameters and the timeout (duration)
of the movement. The method takes into account the sign of the
step variable.

Back in the movement method, the startMovement method 1is called
to start of a fixed movement action. This includes stopping
indicated by a step of 0 and non-continuous movements. If the
step 1indicates a continuous movement then the startMovement
method is not called. It is assumed that the calling program will
initiate another movement when it wants to. The continuous
movement step values are actually the upper and lower limits of
an integer that would not normally be used to indicate the number
of steps to move because these values are very large (i.e. in
excess of 32,000).

The setSpeed method sets the speed of the servos.

FYI Remember that the BasicWheelServo move methods start
the wheels moving if they were not already moving.

Chapter #3: Programming the J-Bot to Go Places

The BasicJBot class is a little more complex than it needs to be.
As was mentioned earlier, this was done to accommodate
subclasses. We had the advantage of 20-20 hindsight when
designing the BasicJBot class because we knew about ramping and
wheel encoder support. This makes these classes easier to write
and to understand. It is possible to create these classes without
this support but in general it results in a duplication of the
BasicJBot <class. Either approach is wvalid but this approach
allows a more incremental presentation of the design while
minimizing the duplication of support code within the subclasses.

So much for the class definition. The following program makes use
of the BasicJdBot class. This program is significantly shorter
although it only takes advantage of some of the methods defined
in the BasicJBot class.

import stamp.core.*;
import JBot.* ;

/**

* Test BasicJBot class

* <p>

* The program runs the J-Bot using BasicJBot class methods.
*

*

@version 1.0 7/23/02

* Qauthor Parallax Inc.

%Y
public class BasicJBotTestl {
public static void main () {

BasicJBot jbot = new BasicJBot (null) ;

jbot.move (2) ;

while (! jbot.movementDone ()) ;
jbot.pivot (-2) ;
while (! jbot.movementDone ()) ;

jbot.turn (1) ;

while (! jbot.movementDone ()) ;
jbot.stop () ;
while (! jbot.movementDone ()) ;

Three movements are performed by the main method. First the Jbot
moves forward two inches. It then pivots 90° to the right
followed by a 45° turn to the left. Notice how the movementDone
is called after each movement call. This 1is necessary because
there 1is no startEvent. The null argument to the BasicJBot
constructor causes the startEvent to be set to Event.nullEvent.

Chapter #3: Programming the J-Bot to Go Places

It is possible to test the J-Bot when it is tethered
by the power and serial cables for this simple
program but it will be wvery difficult when more and
longer movements are used. Instead, test by
programming the J-Bot using debug mode while
tethered. Then remove power and the serial cables.
Provide power using the battery pack and the program
will then run.

The J-Bot may not run properly using batteries if

FYI they are rechargeable or partially discharged. 1In
this case the J-Bot may appear to start or run part
of the program and then reset. This is not unusual.
Simply run the J-Bot 1in tethered mode without the
batteries. The RampingJBot described 1later in this
chapter may eliminate this problem.

One way to test for this situation is to use the tone
generator presented in Chapter 1 at the beginning of
the main method. The tone should sound only once if
the J-Bot is not being reset.

Your Turn

O Try out other BasicJBot movement methods to make sure they
work properly. Use different distance values.

O Make the J-Bot move in a 3 x 4 inch rectangle.

O Make the J-Bot move in a circle. Hint: Try turning a lot.

Activity #4: Maneuvers — Fixed Movement Class

The BasicJBot class is handy but the test program shows that each
action requires multiple method calls. These calls can be cut in
half by eliminating the movementDone call. Instead of coming up
with a completely new implementation we simply pass a different
object to the BasicJdBot class constructor. The following
FixedMovementJBot class definition handles the movementDone calls
instead.

package JBot;

import stamp.core.*;
import stamp.util.os.*;

/**
* J-Bot wheel control class for fixed movements
* <p>

Chapter #3: Programming the J-Bot to Go Places

* Combine with BasicJBot class for movement control.
*

* @version 2.0 12/12/02 Event version

* @version 1.0 7/23/02

* @author Parallax Inc.

%Y

public class FixedMovementJBot extends Event ({
protected boolean idle = true ;

/‘k*
* Called when movement started.
wy
public void notify (Object jbot) {
if (idle && (jbot != null)) {
idle = false ;
while (! ((JBotInterface)jbot) .movementDone ()) {
}

idle = true ;

The FixedMovementJBot class 1is Dbased on the Event class. It
requires a redefinition of only one method: notify. The Object
passed to the method should be the JBotInterface that controls
the J-Bot’s movements. It should not be null but a check is
performed just in case. The method does nothing if the reference
is null. Otherwise, it waits until movementDone returns true.

The result is that a call to the JBotInterface’s move, pivot or
turn methods will not return until the movement is complete. The
following program exercises the new class definition.

import stamp.core.*;
import JBot.* ;

*

/

Test FixedMovementJBot class
<p>
The program runs the J-Bot using BasicJBot class methods.

@version 1.0 7/23/02
Qauthor Parallax Inc.

* % X o ok X X o

~

public class BasicJBotTest2 {
public static void main () {
BasicJBot jbot = new BasicJBot (new FixedMovementJBot ()) ;

jbot.move (2) ; // forward
jbot.pivot (-2) ; // pivot right
jbot.turn (2) ; // turn left
jbot.stop () ;

Chapter #3: Programming the J-Bot to Go Places

The BasicJBotTest2 program is significantly shorter (ignoring the
comments) than the prior test program. It is also easier to read.
The calls the jbot movement methods like Jjbot.move will not
return until the movement 1is completed due to the use of the
FixedMovementJBot object.

Activity #5: Maneuvers — Ramping Servo Class

Ramping is a way to gradually increase the speed of the servos

instead of suddenly making them go the opposite direction. This
technique can increase the life expectancies both of your J-Bot'’s
batteries and servos. It also provides better control over

movement. Without ramping the J-Bot goes from 0 to 100% power or
at least it tries to. Do this with a car and it will leave skid
marks. The J-Bot will not leave skip marks but it will have a
jerky movement that is undesirable.

Programming for Ramping

The RampingJBot class adds some protected methods for internal
use but requires no additional change to the movement method
operation. Instead, it determines how to make incremental changes
between movements based on the current speed of each wheel and
the desired speed. This allows a move forward to be immediately
followed by a backward movement. In this case, the J-Bot will
slow down to a stop in the forward direction and then accelerate
backward until it is running full speed backwards.

Ramping takes slightly longer to move the same distance Dbecause
the JBot is slowing down or speeding up during the ramping period
as shown below.

BasicJBot T Servo speed

RampingJBot - L T Servo speed

Time >

The full speed movement in the ramping implementation needs to be
slightly shorter than the full speed movement without ramping
because JBot is still moving during the ramping period. Ramping
can utilize any number of steps but too many will either take a
much longer period of time or be so short as to be limited by the
performance of the Javelin.

The following class definition provides the ramping support.

package JBot;

Chapter #3: Programming the J-Bot to Go

Places

import stamp.core.*;
import stamp.util.os.*;

>*

/
J-Bot wheel control class for fixed movements with ramping
<p>

Uses BasicJdBot class for movement control.

@version 2.0 3/20/03 Ramp up and down between movements
@version 1.0 7/23/02 Original version
@author Parallax Inc.

* % X ok ok X X ok of

~

public class RampingJBot extends BasicJBot ({
static final private int rampTimeout = 35 ; // milliseconds
static final private int maxRampCount = 3 ;

protected boolean decelerate = false ;
protected int rampCount = 0 ;
protected int ramplLeftStep ;
protected int rampRightStep ;

protected int leftSpeed = 0 ;
protected int rightSpeed = 0 ;

protected int currentMovement = movementNone ;
protected int currentSteps ;
protected int nextMovement = movementNone ;

protected int nextSteps ;
Jxx
Setup wheel servos for general movement.

Forward movement is measured in inches.

Pivots and turns are measured in steps that are normally 45 degrees.
Uses default servo settings.

P I R R

* (@param event Event to be notified when movement starts. Can be null.
%y

public RampingJdBot (Event event) {
super (event) ;

}

>*

/
Setup wheel servos for general movement.
Forward movement is measured in inches.
Pivots and turns are measured in steps that are normally 45 degrees.

@param event Event to be notified when movement starts. Can be null.
@param msecPerInch number of msec per inch for linear movement
@param msecPerPivot number of msec per pivot unit

@param msecPerTurn number of msec per turn unit

@param leftWheel BasicWheelServo for left wheel

@param rightWheel BasicWheelServo for right wheel

* % X ok ok X X ok ok X

*

%y

public RampingJBot
(Event event
, 1int msecPerInch
, int msecPerPivot
, int msecPerTurn
, BasicWheelServo leftWheel
, BasicWheelServo rightWheel
) A

Chapter #3: Programming the J-Bot to Go Places

super (event, msecPerInch, msecPerPivot, msecPerTurn, leftWheel,
rightWheel) ;
}

/‘k‘k
* Check if next movement can be initiated.
*

* @returns true if next movement method can be called
wy

public boolean ready () {
return nextMovement == movementNone ;

}
/‘k‘k

* Check if movement is done. This should be called until it

* returns true.
*

* @returns true if done waiting for movement

wy
public boolean movementDone () {
if (currentMovement == movementNone) {
if (nextMovement == movementNone) {
// nothing left to do
return true;
} else {
// start up new movement from a dead stop
currentMovement = nextMovement ;
currentSteps = nextSteps ;
nextMovement = movementNone ;
// Startup ramping
startRamping () ;
}
} else {

// currentMovement is active
if (rampCount > 0) {
if (timer.timeout (rampTimeout)) {
// Ramp timeout occurred. Adjust speed.
—-— rampCount ;

if (rampCount == 0) {
if (decelerate) {
// should be stopped, setup to accelerate
decelerate = false ;
startRamping () ;
} else {
// should be up to speed
startFullSpeedMovement (true) ;
}
} else {
// setup next ramp movement
updateRampSpeed () ;
}
}
} else {
// Not ramping. Check movement status
if (super.movementDone ()) {
getNextMovement () ;

}
}

return false ;

Chapter #3: Programming the J-Bot to Go Places

/**
* Get next movement setup
wy
protected void getNextMovement () {
// Get nextMovement
if (nextMovement == movementNone) {
// check if anything more to do
if (currentMovement == movementNone) {
return ;

if ((currentMovement == movementMove)
&& (currentSteps == 0)) {
// Already stopped. Do nothing more
currentMovement = movementNone ;
return ;

}

// setup to stop if no movement acquired
nextMovement = movementMove ;
nextSteps = 0 ¢

// Get next movement
causeNextEvent () ;

}

// update steps, currentMovement must be updated later
currentSteps = nextSteps ;

// check if next movement or if need to decelerate
if (nextMovement == currentMovement) {
startFullSpeedMovement (false) ;
} else {
// decelerate first
currentMovement = nextMovement ;
rampDown () ;

}
/‘k‘k

* Start ramping for currentMovement
%y
protected void startRamping () {
if (currentSteps == 0) {
super.move (0); // stop servos
} else {
getMovementSpeed (currentMovement, currentSteps) ;

rampTo (leftMovementSpeed, rightMovementSpeed) ;
}
}

/‘k‘k
* Start ramping for deceleration
wy
protected void rampDown () {
decelerate = true ;
rampTo (0, 0) ;
}

/**

* Start movement, ramp up already complete

Chapter #3: Programming the J-Bot to Go Places

*
* @param ramping true if ramping time must be subtracted
wy
protected void startFullSpeedMovement (boolean ramping) {
int timeoutAdjust = 0 ;

switch (currentMovement) {
case movementMove:

super.move (currentSteps) ;
timeoutAdjust = msecPerStep - 2 ;
break;

case movementPivot:

super.pivot (currentSteps) ;
timeoutAdjust = msecPerStep - 2 ;
break;

case movementTurn:

super.turn (currentSteps) ;
timeoutAdjust = (currentSteps == 1)
? ((3 * msecPerStep) / 8)

(msecPerStep / 2) ;
break;

}

// adjust timeout for ramping
if (ramping) {
timeout -= timeoutAdjust ;

}

// Reset next movement
nextMovement = movementNone ;

/‘k‘k

* Setup to ramp to desired speed.
*

* @param left final left speed
* @param right final right speed

=Y
protected void rampTo (int left, int right) {
rampCount = maxRampCount - 1 ; // ramp down count less current step
rampLeftStep = (left - leftSpeed) / maxRampCount ;
rampRightStep = (right - rightSpeed) / maxRampCount ;
updateRampSpeed () ;
}
/**
* Update speed using ramp parameters
=Y

protected void updateRampSpeed () {
// set timeout mark for next ramp speed update
timer .mark () ;

// Set new speed
setSpeed(leftSpeed+rampleftStep, rightSpeed+rampRightStep) ;

}
/‘k‘k

* Set wheel speed to move forward.
*

* @param inches number of linear inches to move

*/

Chapter #3: Programming the J-Bot to Go

Places

public void move (int inches) {
setNextMovement (movementMove, inches) ;

}

/**

* Set wheel speed to pivot left.
*

* @param steps number of steps to turn

wy
public void pivot (int steps) {
setNextMovement (movementPivot, steps) ;
}
/**

* Set wheel speed to turn left.
*

* @param steps number of steps to turn

=Y
public void turn (int steps) {
setNextMovement (movementTurn, steps) ;
}
/**
* Setup next movement to occur.
* The movement will be started via a call to movementDone ()
*
* @param movement next movement to perform
* @param steps number of steps to turn
=Y
protected void setNextMovement (int movement, int steps) {
nextMovement = movement ;
nextSteps = steps ;

// start moving if currently stopped
if (currentMovement == movementNone) {
startMovement () ;

—

/‘k‘k

* Set speed for both wheels.

* Settings are percentages.

* Positive values are forward rotation.
* Negative values are backward rotation.
*

*

@param left speed settings for left wheel
* @param right speed setting for right wheel
wy
protected void setSpeed (int left, int right) {
// Set real speed
super.setSpeed(left,right);
leftSpeed = left ;
rightSpeed = right ;

—

*

Adjust speed for both wheels.

Settings are percentages.

Positive values are forward rotation.
Negative values are backward rotation.

@param left speed adjustment for left wheel
@param right speed adjustment for right wheel

* % X X ok % X X

Chapter #3: Programming the J-Bot to Go Places

wy
protected void adjustSpeed (int left, int right) {
super .setSpeed
(leftSpeed + ((leftSpeed * -left) / 100)
, rightSpeed + ((rightSpeed * -right) / 100));

How the Ramping Class Works

The RampingJBot class makes use of the services provided by the
BasicJdBot but it adjusts the way the movementDone and setSpeed
methods operate. It does this so the object can change the speed
in small increments instead of large jumps that can occur with
the BasicJBot. For example, a move(l) method call to a BasicJBot
object followed by a move(-1) will result in the J-Bot moving
forward for about one inch and then reversing direction and
moving backward an inch. The J-Bot’s wheels will jerk to a start
and then in reverse as each movement starts. In the latter case,
the relative speed change is 200% (100% to -100%). This can
generate a significant power surge causing problems when the J-
Bot is battery operated.

Instead, the RampingJdBot takes a look at the J-Bot’s current
speed (remember that it was saved in the setSpeed method). It
then compares it to the desired speed and sets things up so the
speed change will occur in short steps. This does result in a
minor distance change but it eliminates the jerky movements and
power surges. The class also tries to take the change in distance
into account when computing how far it should run.

There are some extra variables defined in the RampingJBot object.
The rampCount controls the number of steps to take between speed
changes. The rampLeftStep and rampRightStep are the percentage
speed changes for each wheel. Two variables are needed because
the two servos must be controlled independently. Finally, the
final, desired speed is saved. This is necessary because stepping
to that point can result in a difference since integer wvalues are
used and there can be rounding errors.

The wvariables currentMovement and nextMovement, along with
currentSteps and nextSteps, keep track of movements. It may seem
odd to keep the next movement around but it is necessary to allow
a proper transition between movements and to allow two identical
movements to be combined into one. For example, moving forward 5
and then 10 should be the same as moving forward 15.

The setSpeed method calls the BasicJBot’s setSpeed and stores the
current speed. This allows the adjustSpeed method to change the
speed. This method IS NOT used by the BasicJBot object. It is

Chapter #3: Programming the J-Bot to Go Places

included to support the WheelEncoderJBot subclass that needs to
adjust the speed based on the wheel encoder feedback.

The bulk of the work done is done in the movementDone method.
This method takes into account the currentMovement and
nextMovement variables. If both are set to movementNone then the
method exits with a value of true. If the currentMovement is set
to movementNone then the current movement has completed and it is
time to transition to the nextMovement. This transition will
occur when the prior movement is different from the nextMovement
and ramping at the end of the prior movement has brought the JBot
to a stop for a fraction of a second.

If it is not time to check the movement transitions then it may
be time to check the ramping status maintained by rampCount. This
variable is used for both the ramp up to the desired speed and
movement as well as ramping down to a stop. Ramping is completed
when the rampCount 1is zero. The decelerate variable indicates
whether the ramping is up or down. If it is down then the JBot
will be stopped and it is time to ramp up for the next movement.
This is done by calling the startRamping method. If the JBot is
ramping up then it is time to start the movement at full speed.
This is done by calling startFullSpeedMovement.

If there is no transition then the ramping speed is updated by
calling updateRampSpeed. This uses the object variables tracking
the ramping support. Of course, if all else fails to be true then
the movement is handled Dby the superclass’, BasicJBot,
movementDone method. If the movement is done then it is time to
call getNextMovement.

The following figure shows when getNextMovement is called for a
single movement.

—— true
movermentDone ()

false

getNextMoverment () w

RarmpingJBot - L T Servo speed

Time >

The getNextMovement method is a bit convoluted. It tries to see
if the next movement has already been provided. If not then
causeNextEvent 1is called. This support goes way back to the
JBotInterface class. It is typically used with the
MultitaskingdBot support. The task controlling the RampingJBot
class 1is notified by the causeNextEvent call. The task can
initiate a movement so when the call returns the nextMovement
variable will be set. If the next movement is the same as the

Chapter #3: Programming the J-Bot to Go Places

prior one then startFullSpeedMovement is called. This time the
parameter is false indicating that the ramping time should not be
subtracted from the movement time Dbecause it was already
subtracted from the initial movement.

The ramping methods include startRamping, rampDown, and rampTo.
These manipulate the ramping variables to handle the up or down
ramping process.

The startFullSpeedMovement method is next since we are looking at
the code in the order it occurs in the source file. This 1is
actually where the BasicJBot movement methods are called. The
BasicJBot assumes all movements are running at full speed. The
startFullSpeedMovement method either runs a movement between
ramps or when two of the same movements occur sequentially as
shown below. In the upper timing diagram, the
startFullSpeedMovement method is called a second time at the
getNextMovement point.

getNextMovement () 1

Same
movements ’JJ movement 1 movement 2 4 TServo speed
Different
movements ______Jfrr;;;;;;;;:nllujfj movement 2 L T Servo speed

Time >

The switch statement selects the type of movement to perform
next. Each case calls the BasicJBot super class method to setup a
full speed movement. The variable timeoutAdjust is then set as
shown below.

case movementMove:
super.move (currentSteps) ;
timeoutAdjust = msecPerStep - 2 ;
break;

The timeoutAdjust wvalue is the change necessary to take into
account for ramping up and down. This wvalue is subtracted from
the object’s timeout wvalue used to control the movement if the
ramping is part of this movement. Remember, if two of the same
type of movement are executed back-to-back then this adjustment
is only done with respect to the first movement’s timeout.

The move, pivot and turn methods are defined in the JBotInterface
superclass. They are redefined in this class because the method
of handling movements is different. In the RampingJBot class,
these methods simply store the requested movement in the
nextMovement and nextSteps variables. As noted earlier, these
variables are used when the JBot transitions from one movement to
another.

Chapter #3: Programming the J-Bot to Go Places

The following program exercises the RampingJBot class.

import stamp.core.*;
import JBot.* ;

>*

/
Test RampingJBot class

<p>

The program runs the J-Bot using BasicJBot class methods.

@version 1.0 7/23/02
Qauthor Parallax Inc.

X % X ok ok X X o

~

public class BasicJBotTest3 {
public static void main () {

RampingJBot jbot = new RampingJBot (new FixedMovementJBot ()) ;
jbot.move (-2) ;

jbot.stop () ;

jbot.move (2)

jbot.pivot (-2) ;

jbot.turn (1) ;

jbot.stop () ;

The program adds a short backward movement first Dbut then
performs the same movement sequence as the prior test programs.
Note how this program differs only Dby the change to the
RampingJBot and the additional reverse movement at the beginning.

Chapter #3: Programming the J-Bot to Go Places

Activity #6: Driving the J-Bot

The test program in Activity #5 can be easily changed to move the
J-Bot in other patterns but the amount of source code gets rather
verbose. It would be easier to make patterns if the only thing to
define was the movement itself. In this activity, we look at how
to encode and decode movements to simplify programming.

In this example the movements are stored in a byte array. It is
easy to define constant byte arrays in Java as shown in the
following sample program.

import stamp.core.*;
import JBot.* ;

*

/
J-Bot movements using commands stored in an array

<p>

The program runs the J-Bot using RampingJBot class methods
and a table of commands.

@version 1.0 7/23/02
Qauthor Parallax Inc.

L S . T

~

public class BasicJBotTest4d {
static final byte move = -1 ;
static final byte pivot = -2 ;
static final byte turn = -3 ;
RampingJBot jbot = new RampingJBot (new FixedMovementJBot ()) ;

static byte movements [] = { move, 2, pivot, -2, move, 5 } ;

public void performMovements (byte movements []) {

for (int i = 0 ; i < movements.length ; 1 += 2) {
switch (movements [1]) {
case move:
jbot.move (movements [i + 1]) ;
break ;

case pivot:
jbot.pivot (movements [i + 1]) ;
break ;

case turn:

jbot.turn (movements [i + 1]) ;
break ;
}
}
jbot.stop () ;
}
// —---— Main program --——-—

public static void main () {
BasicJBotTest4 myJBot = new BasicJdBotTest4d () ;

Chapter #3: Programming the J-Bot to Go Places

myJBot.performMovements (movements) ;
}
}

This program shows off a little trick. It contains both a class
definition and a static main method normally associated with a
main program. The methods in the class other than the static
methods are available to an object of this class.

The main method is performMovements. It takes an array of bytes
as 1its argument. The number of elements in the array is obtained
using movements.length. The array is assumed to be pairs of
numbers with the first being a movement that will be one of the
following: fw, bk, pl, or pr. The array will not contain these
letters but rather the values of the constants defined at the
beginning of the class definition. The names are arbitrary.

The performMovements method assumes the J-Bot is at rest and will
be stopped after completing the movements in the array. The
ramping methods are used for starting and stopping. The start
method is chosen based on the first action. It is assumed that
startForward will be wused for any action except a Dbackward
movement.

The movements array is defined as the following:
static byte movements [] = { move, 2, pivot, 2, move, 5 } ;
This should cause the J-Bot to accelerate forward then move 2

more inches forward, pivot 90° to the right, move forward 5
inches and deccelerate to a full stop.

The performMovements method can be called using any byte array.

Your Turn

O Change the movements array so the J-Bot moves once around a 3
x 4 inch rectangle.

O Add the turn movements to the array interpretation. This means
additional constants must be defined as well such as tr and
tl.

O Split the BasicJdBotTest4 «class definition into a separate
class called MovementJBot and BasicJBotTest5. The MovementJBot
class should be self contained allowing it to be reused in the
BasicJBotTest5 main method as well as with other classes.

O Change the movment 1list contents to move the J-Bot in
different patterns.

Chapter #3: Programming the J-Bot to Go Places

The movment list consists of a pair of numbers for each
action. The movement value 1is always negative so it 1is
possible to differentiate it from the setp value. Change the
movement list scanning support so it assumes that the step
value is 1 if it is not included.

Chapter #3: Programming the J-Bot to Go Places

Summary Coordinated J-Bot wheel control was
and introduced in this chapter. Examples
. . include controlling the J-Bot’s distance
Applicatil 4n4 turns, along with methods for
ons programming the J-Bot to travel measured
distances. Examples of speed ramping as

well as an example of integrating the
navigation algorithms introduced 1in this <chapter also were
provided.

Real World Example

Micro-controlled motion is also all around us. Although there
may not be that many autonomous rolling robots in your household
yet, there are many other gizmos with micro-controlled moving
parts. Printer heads and computer disk drives are two examples
that use stepper motors. Servos controlled by microcontrollers
are also used in a variety of places. Many automobile systems
rely on servos to control small moving parts in various engine
and emission systems. Industrial servos maintain many factory
processes, often in conjunction with the level sensors discussed
earlier.

J-Bot Applications

Programmed navigation is the foundation for a variety of other J-
Bot activities. In the Projects section, vyou’ll work on
programming the J-Bot to navigate a variety of shapes and on fine
tuning some of the navigational algorithms developed in this
chapter. 1In subsequent chapters, we’ll use some of these classes
to respond to sensor inputs. The navigation routines developed
in this chapter will Dbe especially helpful in getting around
obstacles that are detected. One of the most popular occupations
for autonomous robots 1s solving mazes, which are full of
obstacles. Responding automatically to certain situations can
increase the J-Bot’s ability to navigate features within the
maze. For example, when a corner is detected, instead of trying
to navigate the corner based solely on sensor.

Questions and
Projects

Questions

1. Describe the CPU.delay was replaced with a Timer object in
the BasicJBot class.

2. Why was ramping support added?

Chapter #3: Programming the J-Bot to Go Places

3. Describe how a turn 1is accomplished. How must the sample
programs change to make a wider turn?

4. Why where arrays used 1in the BasicJdBotTest4 program in
Activity #67

Exercises

1. Incorporate stop and ramping commands in the array approach
used in the BasicJBotTest4 program in Activity #6.

2. Change one or more of the test programs to make the J-Bot

go in a circle, a 5 inch square, or a figure 8 instead of
the simple movements initially presented.

Projects

Need some project ideas.
1. Make the J-Bot move forward through a figure such as a
rectangle and then backward. See how close to the starting

point the J-Bot finishes.

2. Create source code for the following movement patterns:

Figure 2.8: J-Bot paths to program.

