Chapter #2: Writing Programs to Control the J-Bot’s Servos

Chapter #2: Writing Programs to
Chapter #2: Control the J-Bot’s Servos
Writing
Programs to The J-Bot’s se?vos are attached to
wheels that drive the J-Bot. J-Bot
Control the applications can control the wheels to

J-Bot'’s move the J-Bot in any direction or
Servos have the J-Bot pivot or turn in any
direction. How the sServos are

controlled dictate how the J-Bot moves.

This chapter addresses how the servos work and how to calibrate
them for use in subsequent chapters. Those who have already done
this type of work, possibly using PBasic and a BOEBOT, may want
to skip to Activity #5 that deals with servo calibration. The
other activities provide a step-by-step introduction to servo
operation and calibration. An interactive calibration program is
used in Activity #5 that allows you to get the J-Bot configured
quickly.

The J-Bot comes with a special modified servo that allows the
wheel to turn continuously. This is different than normal hobby
Servos.

Normal (un—-modified) hobby Servos are very popular for
controlling the steering systems in radio-controlled cars, boats,
and planes. These servos are designed to control the position of

something such as a steering flap on a radio-controlled airplane.
Their range of motion is typically 90° or 180°, and they are great
for applications where inexpensive, accurate high-torque
positioning motion is required. The position of these servos is
controlled by an electronic signal called a pulse train, which
you’ll get some first hand experience with shortly. An un-
modified hobby servo has built-in mechanical stoppers to prevent
it from turning beyond its 90° or 180° range of motion. It also
has internal mechanical linkages for position feedback so that
the electronic circuit that controls the DC motor inside the
servo knows where to turn to in response to a pulse train.

A Parallax pre-modified servo

does not have the position =
feedback and mechanical P12 p—hite
stoppers you find in normal Red '®) Servo
hobby servos. You can send the Black
same electronic signals (a
pulse train) to a Parallax pre- :F
SS

modified servo as you would

normally send to a hobby servo.

In a hobby servo, a given pulse Figure 2.1: Servo connection
schematic.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

train makes it turn to a certain position and stay there. The
same pulse train causes a Parallax pre-modified servo to turn
continuously. The pulse train also sets the pre-modified servo’s
speed and direction. So, instead of controlling airplane flaps,
the Parallax pre-modified servos are used as Javelin controlled
motors that make the J-Bot'’s wheels turn.

Figure 2.1 shows the circuit that is established when a servo is
plugged into the servo port labeled 12 on the BOE’s Rev B’s top
right corner. The red and black wires connect to the servo’s
power source, and the white (or sometimes vyellow) wire 1is
connected to a signal source. When a servo is plugged into servo
port 12, the servo’s signal source is Javelin I/0 pin P12.

for the Activities in this workbook. Do not use the

2 Only use the Vdd sockets above the BOE’s breadboard
vVdd on the 20-pin app-mod header.

Activity #1: Connecting and Testing The Servos

The control signal the Javelin sends to the servo’s control line
is called a *“pulse train,” and an example of one is shown in
figure 2.2. If this looks familiar it is because it is the same
pulse width modulation (PWM) support presented in the prior
chapter.

The Javelin can be programmed to produce this waveform using any
of its I/O pins. In this activity, we’ll start with I/0 pin P12,
which 1is already connected to servo port 12 by a metal trace
built into the Board of Education. First, the Javelin sets the
voltage at P12 to 0 V (low) for 20 ms. Then, it sets the voltage
at P12 to 5 V (high) for 1.0 ms. Then, it starts over with a low
output for another 20 ms, and a high output for another 1.0 ms,
and so on.

—>»| |€«—— 1.0ms —>»| |[€<— 1.0ms

Vdd (5 V)]]

Vss (0 V)

< 20 ms —>

Figure 2.2: Pulse train.

This pulse train has a 1.0 ms high time and a 20 ms low time.
This differs from the symmetrical pulse train used for the tone
generator in Chapter 1. In that case, the object was to simulate
a sine wave that is typically used to generate a tone.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

In this case, the high time is the main ingredient for
controlling a servo’s motion, and it is most commonly referred to
as the pulse width. In this example, we are working with 1 ms
wide pulses. Since these pulses go from low to high (0 V to 5 V)
for a certain amount of time, they are called positive pulses.
Negative pulses would involve a resting state that’s high with
pulses that drop 1low. Pulse trains have some other technical
descriptions such as duty and duty cycle. These are described in
BASIC Analog and Digital, Experiment #6.

Pulse width is what controls the servo’s motion.
The low time between pulses can range between 10
and 40 ms without adversely affecting the servo’s
performance.

Remember

A pre-modified servo can be pulsed to make its output shaft turn

continuously. The pulse widths for pre-modified servos range
between 1.0 and 2.0 ms for full speed clockwise and
counterclockwise respectively. If you give a pre-modified servo
1.25 ms pulses, it will turn clockwise at roughly half of full
speed. If you give a pre-modified servo 1.90 ms pulses, the
servo will turn at almost full speed counterclockwise. The
“center pulse width” is 1.5 ms, and that makes the servo stay
still. If the servo turns very slowly in response to 1.5 ms

pulses, you will learn how to adjust the servo to stay still
using a JAVA program in Activity #1.

Front

Forward

Left Right

Backward

Back

Figure 2.3: J-Bot from the driver’s seat.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Figure 2.3 shows the J-Bot’s front, back, left and right. Use
this diagram as your guide when you see instructions about making
the J-Bot move forward/backward, examining the right or left
wheels, etc.

Converting Instructions to Motion Using the PWM Virtual
Peripheral

Let’s start by programming the J-Bot’s right wheel to turn full
speed ahead. For the right side of the J-Bot, this means the
wheel has to turn clockwise, which means it needs to receive 1 ms
pulses every 20 ms or so.

O You may want to set the J-Bot on something to keep it’s wheels
from touching the ground during these tests. Otherwise, you
will see the J-Bot spin around in circles since only one wheel
is turning.

O Enter JbotServol.java listing into the Javelin IDE.

import stamp.core.*;

/**

* Drives right servo at high speed
*

* @version 1.0 5/7/02
* @author Parallax, Inc.

*/

public class JBotServol {
static PWM pwmR = new PWM(CPU.pinl2); // create right servo

public static void main () {
pwmR.update (110, 2000) ;
pwmR.start () ;

CPU.delay (10000) ; // run for one second

pwmR.stop () ;
}

O Save the program using as JbotServol.java. You can do this by
clicking the File Manu and selecting Save (or Save As... if
you are renaming the file). Then enter the “JbotServol” into
the File name: field, and make sure that the Save as type:
field is set to “Java source (*.java)”.

O Make sure the J-Bot has power and the serial cable 1is
connecting the PC to the J-Bot. Run the program by clicking
Project and selecting Program.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

O Verify that, as you’re looking at the wheel from the J-Bot’s
right side that it 1is turning clockwise fairly rapidly (about
37 RPM) .

How the Right Wheel Full Speed Ahead Program Works

As with previous program examples, the first line of the program
imports class definitions for objects that will be used in the
program. In this case it is the PWM class. This is followed by a
comment that describes the program. We forego major comments in
the rest of the program because it is so short and it will not be
reused.

The main static method is required for a Java program. It is
contained within the JbotServol class definition. The first line
in the class definition is a static wvariable, pwmR. That’s an
abbreviation of ©pulse width modulation right (wheel) . The
variable is a PWM reference used to keep track of the new PWM
object that is created in the same line. The object is setup to
use pin 12 by passing the CPU.pinl2 parameter to the PWM
constructor.

Do not wuse integer values where a pin ID is
required as an argument. For example, use CPU.pinl2
FYI for the PwWM constructor as in new PWM(CPU.pinl2)
instead of new PWM(12). The latter will not work
because CPU.pinl2 does not convert to a number 12.

It is possible to put the variable definition within the main
method but this would restrict its access to that method. This is
possible here but not typically done in the rest of the book
where other methods would have to access the wvariable. The
variable is static so it can be accessed by the static methods.
If this class definition were to be used by other classes then it
would be a Dbetter idea to wuse object methods and object
variables. This is what will be done later in this book.

The creation of the PWM object simply sets up the virtual
peripheral object. It does not start sending a pulse train to the
servo. This is done using the update method and the pwmR object
within the main method. The parameters to the update method are
the length of time that the pulse should be high followed by the
length of time the pulse should be low. The high voltage is Vdd,
5 volts, while the low voltage is Vss, 0 volts.

The update method starts the PWM virtual peripheral sending a
series of pulses . These pulses will continue until the stop
method is called. The pulse train can also be changed with a
subsequent update method call.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

The CPU.delay (10000) method utilizes the CPU class’ to pause the
program for 1 second otherwise the program would immediately call
the PWM object’s stop method and the wheel would not turn much
since only one or two pulses may be sent. The PWM virtual
peripheral operates in the background so pulses will continue to
be sent while the program does other things. In this case, it
waits.

The parameters in the PWM update method are measured in 8.68Us
ticks. The high time is set to 110 ticks and the low time is set
to 2000 ticks.

1.0 ms = 1000 us = 1000/8.68 ticks = 115 ticks
1.5 ms = 1500 us = 1500/8.68 ticks = 173 ticks
2.0 ms = 2000 ms = 2000/8.68 ticks = 230 ticks
20 ms = 20000 ms = 20000/8.68 ticks = 2304 ticks

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Your Turn

JbotServo2.java is really JbotServol.java with one small change.
Instead of pwmR .update (110,2000), the JbotServo?2 class uses
pwmR .update (240, 2000) . This should make the right wheel turn full
speed counterclockwise.

O Run JbotServo2 as shown.
import stamp.core.*;

/**

* Drives right servo at high speed
*

* @version 1.0 5/7/02
* @author Parallax, Inc.

*/

public class JBotServo2 {
static PWM pwmR = new PWM(CPU.pinl2); // create right servo

public static void main() {
pwmR.update (240, 2000) ;
pwnmR.start () ;

CPU.delay (10000) ; // run for one second

pwmR.stop () ;
}

O To make the right wheel stay still, modify the update method so
that 1t reads pwmR .update (175,2000) , and run the modified
program. Note, the wheel may move very slowly. This is due to
minor variations in the servos which is expected.

JbotServo3.java is JbotServo2.java with some minor changes:

e The variable pwmR was changed to pwmL
e CPU.pinl2 was changed to CPU.pinl3

O JbotServo3.java as shown to make the left wheel turn full
speed counterclockwise.

import stamp.core.*;

/‘k‘k

* Drives left servo at high speed
*

* @version 1.0 5/7/02

* @author Parallax, Inc.

*/

public class JBotServo3 {
static PWM pwmL = new PWM(CPU.pinl3); // create left servo

Chapter #2: Writing Programs to Control the J-Bot’s Servos

public static void main() {
pwmL .update (240, 2000) ;
pwnL.start () ;
CPU.delay (10000) ; // run for one second

pwmL.stop () ;

O To make the left wheel turn full speed clockwise, modify the
pwmL.update method so that it reads pwmL.update (110,2000) and run
the modified program.

O Now, change the first argument of the update method from 110 to
175, and the wheel should stay still.

Activity #2: Running both servos together

When you assembled the J-Bot in Chapter 1, you plugged the servo
on the right side of the J-Bot into P12 and the servo on the left
side of the J-Bot into P13. Figure 2.4 shows a schematic of the

circuit you created by doing this. The servo on the J-Bot'’s
right side is connected to I/0 line P12 and the servo on the J-
Bot’s left is connected to P13. Each servo is also connected to

Vin (the battery pack’s positive terminal) and Vss (the battery
pack’s negative terminal).

The easy part about making Vin,

the J-Bot roll forward is P12 o White |

that you use two PWM objects, Red

one for each servo. The Black o Servo
difficult part can be

figuring out what the update = —
method arguments should be. Vss

Take a look at the right side Vin

of the J-Bot. To make this - .

wheel turn forward, the servo P13 p—Whie

has to Furn clockwise. This Red '®) Servo
means first argument to update Black

is less than center value.

Now look at the left side of
the J-Bot. To make this Vss
wheel turn forward, the servo
has to turn counterclockwise.
Now instead of the first
argument being less than the
center value it must be
larger.

Figure 2.4: Servo connection schematic.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

O Enter and run JbotServo4d.java and observe the results.

If the J-Bot rolled backward instead of forward, the servo lines
were swapped. It means that the servo plugged into servo port 12
should be plugged into servo port 13 and visa-versa.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

import stamp.core.*;

/**
* Drives both servo at high speed
*

* @version 1.0 5/7/02
* @author Parallax, Inc.

*/

public class JBotServo4d ({
static PWM pwmR = new PWM(CPU.pinl2); // create right servo
static PWM pwmL = new PWM(CPU.pinl3); // create left servo

public static void main () {
pwmR.update (110, 255) ;
pwmL.update (240, 255) ;
pwmR.start () ;
pwmL.start () ;
CPU.delay (10000) ; // run for one second
pwmR.stop () ;
pwmL.stop () ;

How JbotServo4.javaPulses Both Servos

JbotServo4d. java program pulses the left and right servos at the
same time because the PWM objects operate in the background. The
right servo 1is started a fraction of a section before the left
but this has little affect on the actual operation of the servos.
Likewise, the right servo is stopped just before the left servo.

The program only runs the servos for a few seconds so the J-Bot
will not run too far but you can get it to continue on by running
it again from the IDE or by pressing the reset button the J-Bot.
This approach to timed operation of the J-Bot’s servos 1is how
distance movement is controlled. We have not precisely calibrated
the movement or the distance the J-Bot moves. This will be done
later in this chapter and subsequent chapters.

Your Turn

O After you make each change listed below, make sure to run the
modified version of the program and observe what the J-Bot
does differently. Save your changes as new files but remember
to change the class name to match the file. A good class names
would be JbotServol00, JbotServol0l, etc.

O Swap the first arguments of the update methods to make the J-
Bot to roll backward. In other words, instead of using the

Chapter #2: Writing Programs to Control the J-Bot’s Servos

commands pwmR.update (240,2000) and pwmL.update(110,2000) use the
commands pwmR.update (110,2000) and pwmL.update (240,2000). This should
make the J-Bot travel backward instead of forward.

O Try setting both arguments to the center value of 175 to make
the J-Bot stay still.

O Try setting both arguments to 240 and run the modified
program. It will make the J-Bot rotate counterclockwise in
place.

O Try setting both arguments to 110 and run the modified
program. It will make the J-Bot rotate clockwise in place.

Chances are that vyou noticed your J-Bot didn’t go perfectly
straight forward when you ran JBotServo0O4. For that matter, it
probably didn’t go perfectly straight backward in response to the
modifications you made to JBotServo04. You can adjust the first
parameter of the wupdate method to straighten out the J-Bot'’s
travel. This practice 1is called “calibration in software”. We
take a look finer control and calibration of the servos in the
next few activities.

Activity #3: Centering the J-Bot’s Servos

The first place to start in software calibration is the center
point where no movement occurs. The center point is important
because we will be making adjustments to speed based upon this
value in the basic servo class in Activity #4.

It is possible to make incremental changes to the program and
download them as we did in the prior activity and enhancements
but this tends to get tedious especially when a value may change
only a 1little. Instead we make use of the terminal interface
between the Javelin and the IDE message window.

To start we need to enter the JbotServoCalibratel program shown
next.

import stamp.core.*;

/**
* Calibrate the servo center point
*

* @version 1.0 5/7/02
* @author Parallax, Inc.

*/

public class JBotServoCalibratel ({
static PWM pwmR = new PWM(CPU.pinl2); // create right servo

public static void main() {
int i = 175 ;

Chapter #2: Writing Programs to Control the J-Bot’s Servos

pwmR.update (i, 2000) ;
pwmR.start () ; // start servo

mainloop: while (true) {
System.out.print ("Servo value is ") ;
System.out.println (1) ;
switch (Terminal.getChar ()) {
case '+':
i ++ ;
break ;

case '-':
i—
break ;

case 'Q':
case 'qg':
break mainloop;

default:
continue mainloop;

}

pwmR.update (i, 2000) ;
}

pwmR.stop () ;

This program assumes that the center point for the right servo is
about 175. If not, the wvalue being sent to the servo can be
changed using the keyboard. This done using the Terminal class
and 1its static method, getChar. Terminal.getChar() returns a
character when it is entered. It waits if there are no characters
in the input buffer.

The program assumes that one of three characters will be entered:
+, - and g. Any others will be ignored. The 1local method
variable, i, stores the current high pulse width. The variable is
incremented when the + character is typed and decremented then
the- character is entered. The mainloop is exited if the ‘g’ or
‘Q’ character 1s entered.

This program shows off some of the power of Java. The while loop
is labeled with mainloop:. This allows it to be referenced within
the select statement that handles the terminal character input.
The annotated break statement, break mainloop; after the case
statements checking for the ‘g’ or ‘Q’ allows the loop to be
exited. A lone break statement as in the + and - cases only exits
the break statement. This allows the PWM object’s pulse width to

Chapter #2: Writing Programs to Control the J-Bot’s Servos

be changed since the speed variable is changed within the select
Statement.

Start the program. Once the program starts the Message window
will Dbe presented and the text “Servo value is 175" will be
displayed in the window. Press the + key and a new 1line
containing “Servo value is 176" will be displayed. Pressing the -
key should change the servo pulse width back to 175 with the
appropriate change in servo rotation speed.

The servo may be moving slowly with the default value of 175 but
it may not. Change the wvalue using the + and - keys until the
best result is attained. This may be a very slow movement or no
movement at all.

Record the servo center point wvalue. This will be used in the
next activity.

Your Turn
O Modify the program to get the center point of the left servo.
Run the program and determine the center point for the left

servo. You should now have the center point wvalue for both the
left and right servo.

Activity #4: Basic servo class

The previous examples explicitly manipulated the respective PWM
objects but this has a number of disadvantages. First, you need
to know what wvalues to set the pulse width to. Second, the wvalues
for moving the J-Bot forward are different for the left and right
servos. Finally, the center point for each servo may be
different.

Here we deviate from the simple program scenario and create a
class for controlling servos. This 1is only a basic wversion
because we will refine this later in the book. Still, this class
and the sample application show how the J-Bot can be more easily
controlled.

First enter the BasicWheelServo class shown next.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

package JBot;

import stamp.core.*;

/

S T

~

*

Wheel servo control class

<p>

Handles PWM support for a free running wheel servo on the J-Bot.
Start movement using start() and stop it using stop().

@version 1.0 7/23/02
Qauthor Parallax Inc.

public class BasicWheelServo extends PWM {

public int forward;
public int center;
public int backward;
public int low;
public int pin;

/**
* Setup a wheel servo control object that uses PWM for movement.
* Units are in PWM units.
*
* (@param pin the pin to generate the PWM signal on (i.e. CPU.pin0)
* @param forward pulse width for moving forward
* @param center pulse width for staying still
* (@param backward pulse width for moving backward
* @param low low time following a pulse
=/
public BasicWheelServo (int pin, int forward, int center, int
backward, int low) {

super (pin) ;
this.forward

forward-center ;

this.center = center ;
this.backward = center-backward ;
this.low = low ;

}

/**

* Set wheel speed to forward/backward (+/-).

*

* @param percent relative speed

4
public void move (int percent) {
if (percent ==) 1
stop () ;
} else {
update (center+ ((((percent>0) ?forward:backward) *percent) /100)

s Llow) ;
start () ;

Chapter #2: Writing Programs to Control the J-Bot’s Servos

The first difference 1is the between this and most of the other
programs presented thus far is the package statement. This
indicates the class is part of a larger package so it can be more
easily imported. Also, the package file must be in the proper
directory. In this case the BasicWheelServo.java file should be
in the JBot directory of the Javelin’s project directory.

The class extends the PWM class. This allows the PWM methods to
be accessed directly. An alternative is to allocate a PWM object
when the BasicWheelServo object is created. In this case, the PWM
object can be hidden. This may Dbe desirable but more on that
later.

The BasicWheelServo class has four object variables. These track
the pulse width wvalues used with the servo. They are public so
they can be changed but normally the wvalues are set using the
class constructor. Why? Because the wvalues will be different for
the left and right servos and because the center wvalue will be
the ones obtained in the previous activity for your J-Bot. The
forward and backward wvalues will be changed based on the next
activity as well.

Note that the forward and backward variable values are set with
respect to the center value. This is done to simplify the move
method, otherwise each call to the move method would have an
additional subtract operation to get the value to multiply by the
percentage argument in the move method.

The class constructor calls the super constructor method. In this
case, this calls the matching constructor in the PWM class. The
parameter is the pin to use for the PWM class. The rest of the
constructor simply stores the parameters in the respective object
variables. The low variable is the time duration for the low part
of the pulse. The other values are the high pulse time duration.

A conditional expression 1is used to compute the
argument to the update method called in the move
method definition. A conditional expression 1is
similar to an if statement except that a result is
required for both a true and false result of the
FYI condition. The general syntax is <condition> ?

<true result> : <false result> where values are
required for the items 1in <angle brackets>. For
example, (a == b) ? 10 : 11 will have a value of 10

if the variables a and b are equal, otherwise the
value will be 11.

The magic shows up in the move method. The move method turns the
servo so the wheel movement is forward or backwards depending

Chapter #2: Writing Programs to Control the J-Bot’s Servos

upon the parameter. The big difference between this method and
the ones used with the PWM is that the PWM values are absolute
time values (proportional to 8.68 microseconds). Instead the
parameter to the move method is a percentage (-100 to +100) of
the maximum speed that should be used. A 0 value results in the
center point value being sent to the PWM object. A -100 or +100
value results 1in the respective maximum rotation backward or
forward. Values outside of the range will result in adverse
results.

The approach used to calculate the PWM high pulse width works
because the of the range of values involved. If the typical range
of PWM high pulse values were too large then the result of the
calculation would be too large and exceed the value of that can
be stored in the Javelin’s integer variable.

For now, we use the limit values used in prior experiments. Start
by entering the BasicWheelServoTestl.java program listed next
but, instead of using the center values listed here, use the ones
obtained in the previous activity. The actual values used for the
forward and Dbackward values will be determined in the next
activity.

import stamp.core.*;
import JBot.* ;

/**

* Wheel servo control class test program

* <p>

* Handles PWM support for a free running wheel servo on the J-Bot.
* Start movement using start() and stop it using stop() .

*

* @version 1.0 7/23/02

* @author Parallax Inc.

*

~

public class BasicWheelServoTestl ({
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward

, 2000 // low
)
BasicWheelServo rightWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward

, 2000 // low
) 8

Chapter #2: Writing Programs to Control the J-Bot’s Servos

leftWheel.move (100) ;
rightWheel.move (100) ;

CPU.delay (10000) ; // run for four seconds
leftWheel.move (-100) ;
rightWheel.move (-100) ;
CPU.delay (10000) ; // run for four seconds

leftWheel.stop () ;
rightWheel.stop () ;

Notice that the forward and backward constructor parameters for
the left and right servo are reversed. This is necessary because
they rotate in the opposite direction to go forward. Subsequent
movements will be based upon the servos rotating in the proper
direction.

The program is designed to drive the J-Bot forward for 4 seconds
and then backward for the same amount of time returning to its
starting point. In practice this J-Bot will not return to the
exact same spot because the rest of the servo calibration process
is incomplete. This will be handled in the next activity.

If the J-Bot veers to the right when it is programmed to go
straight forward, either the left wheel needs to slow down, or
the right wheel needs to speed up. Since the servos are pretty
close to top speed as it 1is, slowing the left wheel down will
work Dbetter. You can do this by making the pulse period to the
left servo, which is connected to P13, smaller.

You can adjust the constructor parameters and run the program
again to see about getting the J-Bot to move in a straight line.
Otherwise, move onto the next activity where we have a program
that will help you to do it.

Activity #5: Software Calibration - Navigating a Straight Line

The calibration done in Activity #3 was to determine the center
point. This Activity will determine the forward and backward
limits for both servos. This set of values should then be used
with examples presented throughout the rest of this book.

There are two ways to approach the calibration issue. The first
is to continue the approach started in Activity #4 and continued
here. The other is to use a more complex, interactive application

Chapter #2: Writing Programs to Control the J-Bot’s Servos

that handles all the calibration process. The
CalibrateWheelServos program is this application. It utilizes the
multitasking system described in Chapter #4 so we will not go
into what the program does internally. Instead, the interactive
interface will be briefly described.

When you run the CalibrateWheelServos.java program it will start
by printing the following in the Messages window:

Press ? for command list.
>

Entering ? will display the following help message:

J

— Help/current status
current status

- halt, turn off wheels
comment

— increase left speed
- decrease left speed
— increase right speed
decrease right speed
— forward (100)

- stop (0)

— backward (-100)
Quit. Exit program

T Q vV
|

O 00 JF Wk o |
|

O W s O s

Entering C (current status) will display the current settings for
the two wheel servos as in:

Left:
Right:

285-175-80
= 80-175-285

F-C-B
F-C-B

The idea behind this program is the as with the other interactive
calibration programs: to get the wheels running at the same rate.
The F, S, and B keys will set the servo movement to forward,
stop, or Dbackward. The L, 1, R and r keys will increment or
decrement the left or right servo settings for the currently
selected movement. The current status 1s displayed when the
program quits. It will also stop the servos. The three results
for each servo can be used when creating a BasicWheelServo.

If you are going to work this out for yourself then the first
step is enter this program.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

import stamp.core.*;
import JBot.*

/**

* Wheel servo control class calibration program

* <p>

* Handles PWM support for a free running wheel servo on the J-Bot.
* Start movement using start() and stop it using stop() .

*

* @version 1.0 7/23/02

* @author Parallax Inc.

*

~

public class BasicWheelServoCalibratel ({
public static void main () {
BasicWheelServo leftWheel =
new BasicWheelServo (
CPU.pinl2 // pin

, 110 // forward
, 175 // center
, 240 // backward

, 2000 // low
)
BasicWheelServo rightWheel =
new BasicWheelServo (
CPU.pinl3 // pin

, 240 // forward
, 175 // center
, 110 // backward
, 2000 // low
)

mainloop: while (true) {

System.out.println("Enter key

switch (Terminal.getChar ()) {
case ' ':
break ;

case '+':
leftWheel.forward ++ ;
break ;

case '-':
if (leftWheel.forward > 1) {
leftWheel.forward —- ;
}

break ;
case 'Q':
case 'qg':

break mainloop;

default:

Chapter #2: Writing Programs to Control the J-Bot’s Servos

continue mainloop;

}

System.out.print ("Left forward value is
System.out.println (leftWheel.forward + leftWheel.center) ;

leftWheel.move (100) ;
rightWheel.move (100) ;

CPU.delay (2000) ;

leftWheel.stop () ;
rightWheel.stop () ;

This program will determine the forward value for the left wheel.
It is assumed that the right wheel 1limit for forward movement can
be matched by the left wheel. If this is not the case then its
value may have to be changed within the program.

The BasicWheelServoCalibratel program creates the left and right
servo objects. It then waits for a character to be entered in the
Message window that will be presented the first time as message
is sent to it. In this case it will be “Enter key”.

The +, - and space bar will cause the J-Bot to move forward. The
spacebar uses the current settings while the other two change the
value of the forward object variable of the left wheel object. The
idea is to get the J-Bot to move forward in a straight line. When
it does you have the settings for the forward direction. The
program does not simply print the wvalue of leftWheel.forward
because this has been adjusted with respect to leftWheel.center.
Instead it prints the wvalue that is the forward argument to the
left servo constructor.

If the J-Bot veers to the left then decrease the pulse width to
speed up the left wheel. If the J-Bot veers to the right then
increase the pulse width to slow down the left wheel. If the
pulse width

This takes care of the forward direction parameters. The backward
direction parameters can be determined using the following steps.

O Make the necessary changes 1in BasicWheelServoCalibratel so
that it makes the J-Bot go full speed backward.

O Change the program so keyboard input adjusts the rightServo’s
backward object variable. Remember to change the

Chapter #2: Writing Programs to Control the J-Bot’s Servos

System.out.println (leftWheel.forward + leftWheel.center) ;
line accordingly.

O Save the new program as BasicWheelServoCalibrate2.java and
change the name of the class accordingly.

Perform the same test as before to calibrate the J-Bot’s servos.
The only difference will Dbe that the J-Bot will be going
backward. Write the final results for both servos below for
future reference.

Left Right

Forward

Center

Backward

We now have settings for forward and backward movement. Although
these settings will keep the J-Bot on the straight and narrow for
at least a few inches we are not done with this process. Two
other aspects will need to be handled first. These include
circular movement and movement using feedback.

Circular movement includes pivoting and turns. The J-Bot can
pivot on its axis. That is turning without moving from the same
spot. This is covered in the next chapter.

Feedback controlled movement is something that has not been used
thus far. It will be covered in Chapter 8. All movement thus far
has been without feedback. The programs simply move the J-Bot
using arbitrary parameters for a fixed amount of time. The
distance traveled and the accuracy of movement is based upon the
calibration performed in this chapter. The problem is that the
calibration is an approximation and movement of the servos is not
exactly repeatable, only approximately repeatable.

The amount of error may be minor but it is cumulative. This can
lead to relatively minor deviations at long distances such as
when the J-Bot tries to go straight for two yards. Unfortunately,
the problem is more severe when rotation is involved. A 90 right
degree turn may really be an 88 degree turn. The difference is a
fraction of an inch if the J-Bot is pivoting but do this a couple
dozen times and the J-Bot orientation is off by 45 degrees. Add a
little linear movement error and the J-Bot can be completely lost
assuming it is using dead reckoning, keeping track of its
position based upon its desired movement.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Feedback movement is not simple which 1is why it 1s left to
chapter 8. It also requires additional hardware that will be
installed using instructions in that chapter.

In the meantime, we’ll stick with movement that does not utilize
feedback. It is possible to do quite a lot without this type of
feedback. 1Instead we’ll wuse other sensors for feedback to
determine the desired direction or distance to an obstacle. The
lack of wheel control feedback is often not a problem in these
kinds of environments. For example, 1if the J-Bot is trying to
navigate its way out of a maze then it needs to avoid the walls
of the maze. As long as it stays away from the walls it does not
really care about its position. In this case, how far the J-Bot
moves and what its orientation is does not really matter.

Before checking out these other feedback mechanisms we’ll take a
look at how the J-Bot can turn and rotate.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Summary Congratulations on the construction and
operation of your J-Bot! Through
and : : ,

)) following the procedures in this chapter,
Applicati you may have had your first taste of
ons testing and troubleshooting at the system

and subsystem levels. Lots of other

essential topics were covered that will
get used and re-used throughout this text. For example, the Debug
Terminal will be your best and most used tool for testing and
troubleshooting each circuit as well as many upcoming programs.

The aspects of the Java programming language and virtual
peripherals were introduced along with some example programs to
get vyou started with the J-Bot. Software calibration and the
terminal interface also was introduced.

Real World Example

From the space shuttle all the way down to the J-Bot, isolating
and testing subsystems during each phase of development 1is
critical to make sure the whole thing runs when 1it’s put
together. More importantly, isolating and testing each subsystem
minimizes the time spent on, and difficulty level of,
troubleshooting. At the beginning of the chapter, the problems
associated with not iteratively developing and testing were
discussed. Imagine if nobody tested the Space Shuttle’s
subsystems before putting it together. It would take hundreds of
years for NASA to get all their problems sorted out!

Whether it’s robotics competitions, product development, or space
programs, subsystem and system level development and testing is
the way to avoid wunnecessary delays when working from the
beginning to the end of a project. Especially in product
development, groups of engineers develop systems and subsystems.
Often, it'’s not until late in the design cycle that the system
level testing and system integration occurs. Sometimes, all a
design team knows are the input and output (I/0O) requirements of
their particular module in the project. Regardless, engineering
design teams still have to iteratively develop, simulate (which
we did not do here), and test the subsystems within the project
module they are working on.

Software calibration also was introduced. This is currently a
hot topic Dbecause many appliance makers are working on
incorporating microcontrollers that can communicate across the
Internet into their products. Remote diagnostic programs can
then enhance the ability of the microcontrolled devices to self
calibrate. Also, technicians can perform software calibration,
diagnosis, and in some cases repair, all remotely. Imagine your
TV picture going bad a few years from now. Getting it fixed
might involve the pressing of a few buttons on your TV remote.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Then the microcontroller in your TV will log onto the Internet
and report the problem to the company that makes the TV. Before
sending out a TV repair person, your TV’s problem will be
diagnosed, perhaps by a computer program. It might even be fixed
by the program sending special control instructions back to the
microcontroller. Otherwise the TV repair person will show up
with the right parts to fix it.

J-Bot Application

One item you’ll investigate in the Questions and Projects section
is what happens when the wiring of the servos gets changed. How
does this get handled? It involves more changes than you might
think. For example, if you were to unplug a servo from servo
port 12 and then plug it into servo port 13, you can’t Jjust
change the drawing that shows what port to plug it into. The
schematic, which is the preferred method of communicating wiring
information, has to be changed, but so do all the program
listings. At some point you might want to add more servos to
function as grippers. Although a gripper design is not included
in this text, Questions and Projects has exercises that will
prepare you for connecting servos to different ports.

So far, the J-Bot can be programmed to roll forward or backward
or to rotate in place. During some of your testing, small
variations in servo performance were discovered and corrected in
software. The advantage of calibration in software 1is that,
instead of mechanically adjusting the J-Bot, the JAVA program is
modified to make the correction. This software calibration was
all done at only two or three speeds: full speed ahead, full
speed reverse, and full stop. In the projects section you’ll get
a chance to further research and generalize the software
calibration for a variety of speeds.

Chapter #2: Writing Programs to Control the J-Bot’s Servos

Questions and
Projects

Questions

1. Assuming the circuit inside the servo that controls the DC
motor updates what it’s doing every 20 ms, how many times
per second does the DC motor get updated? Hint: This is a
division problem.

2. Discuss how you would modify Figure 0.1 and Program Listing
1.2 if you wanted to test each of your servos using I/O
line P15. Keep in mind that the board does not have sockets
for this pin but it can be wired up using the wireless
breadboard.

Exercises

1. What would happen if you change the low time in the update
method? How would this effect the servos’ operation? Draw
a diagram similar to Figure 0.2 based on a pulse train
using values of 1000 and 3000.

2. What is the necessary update method argument to make a 1.626
ms pulse?

3. What are the maximum and minimum pulse widths that can be

generated using the PWM update command?

Projects

1. Program the J-Bot to move in several different patterns.
Try the following:

(a) Identify a pair of forward values that make the J-Bot
move slowly straight forward. Shoot for wheel speeds of
4 revolutions per minute (RPM). Some trial and error

will Dbe necessary to find the forward value to make each
servo turn at this rate.

(b) Identify a pair of backward values that make the J-Bot
move very slowly straight backward at the same speed.
How do these wvalues compare (or not compare) to those
identified in 1 (a.)?

2. Make a graph of wheel speed as a function of pulse width
for each servo. Use several pulse widths between 0.8 and

Chapter #2: Writing Programs to Control the J-Bot’s Servos

2.2 ms (update values between 10 and 350). Either count how
many revolutions the wheel completes in a specified time
(20 seconds or a minute), or see how much time it takes to
complete 10 revolutions.

Your graph might look similar to Figure 2.5. This graph
was generated by a Microsoft Excel spreadsheet using eight
data points and the “Best Fit” option. Collect data points
and make your own graphs, one for each servo. In general,
when you plot more data points, you can expect your graph
to be more reliable. However, there are lots of techniques
for reducing the number of measurements. One example would
be to take a few measurements to find the curved areas of
the graph, then focus on taking many measurement in those
areas while taking only a few measurements in the areas
that are linear.

Note: Expect your graphs to look different from Figure 2.5
because it’s for a different kind of servo from the one in
your kit.

Use vyour graphs to predict the pulse widths required to
make vyour J-Bot go straight forward or straight backward

with less trial and error. Try this at a wvariety of
speeds. The rotational speed of one servo will correspond
with a certain PWM update value. Remember that the wvalues

you select will come from opposite sides of the center
point.

Servo #1
50.0 1

40.0 1
30.0
20.Q
10.04

400 500 600 71%027 800 900 1000 1100 1200
-20.0

-30.0 §

-40.0

-50.0 -

Pulsout Period (2-microsecond increments)

Rotational Speed (RPM)

Figure 2.5: pulsout period vs. Rotational speed
for servo.

Test the accuracy of the graphically determined predictions
by programming them into your J-Bot and testing to see how
straight it Ggoes. By focusing on one servo for your
corrections, you can calculate the percent error of your
initial guess. So that error from the other servo is not a

Chapter #2: Writing Programs to Control the J-Bot’s Servos

factor, fine tune it wusing trial and error so that it
rotates at the exact speed predicted by your graphs. Then,
you can figure the percent error on the servo that you have
not fine tuned using this equation:

exact duration —predicted duration
exact duration

% error = x100%

The exact period is what you will arrive at by adjusting a
single servo using trial and error. The predicted period is
the value from the graph for that servo. You can expect
percent errors of between 5 and 25% depending on the
resolution of your graph and other factors such as
imperfections in wheel alignment and slight differences in
wheel size.

