
Chapter #1: Assembling and Testing Your J-Bot

Chapter #1: As

sembling and

Testing Your J-

Bot

About Robotics Competitions and Robot Development

Students in high schools and colleges preparing their entries for

various robotics competitions get first-hand exposure to the

engineering occupation. They start by working in teams

developing a Robot’s subsystems. A robot’s subsystems include

its motors, sensor arrays, microprocessor, and mechanical

linkages. Next they test and trouble-shoot the subsystems. Then

comes system integration, the process of making all the Robot’s

subsystems work together.

Once the testing and trouble-shooting is finished at the

subsystem level, a robot’s subsystems have to be connected to and

controlled by a microprocessor. The process of getting all the

subsystems (including the microprocessor) to work together to

make the robot perform its assigned task list is called system

integration. System integration can be tricky to begin with, but

robotics teams who skipped any of the testing and troubleshooting

at the subsystem level often have much larger problems with their

system integration. Many a late night can be spent trying to get

the robot to work the way it’s supposed to. If bugs are hiding

in the subsystems when you’re trying to do system integration, it

only compounds the problems.

Even when testing and troubleshooting is performed for each

subsystem, it can still be the most difficult part of robot

development. For example, a group at a recent robotics

competition spent five hours trying to get a Sumo wrestling robot

to work right with no luck. Later, by utilizing the Javelin’s

Debug Terminal, the testing and troubleshooting took less than 5

minutes.

Testing and troubleshooting at each phase of robot development is

a skill that one gets better at with practice. By following the

instructions in the activities in this student workbook, you’ll

get a taste of testing and troubleshooting while putting your J-

Bot together and getting it up and running. With practice,

you’ll enjoy more five-minute troubleshooting times and less of

the five-hour variety.

Chapter #1: Assembling and Testing Your J-Bot

This chapter is separated into four activities:

1. J-Bot Parts and Tools

2. J-Bot Mechanical Assembly

3. Testing PC – J-Bot Communication

4. Building and testing a Speaker Alarm – Intro to Virtual

Peripherals

Each of these activities involves discrete steps to get the J-Bot

up and running. First, check to make sure you have all your

parts. Next, put the mechanical parts together. After that,

test the microprocessor subsystem. Then test each servo motor

individually. Then, make the servo motors work in unison. Last,

but certainly not least, calibrate the pre-modified servos. By

carefully following the instructions in these first five

activities, you ensure that your microprocessor and motor

subsystems are working reliably. The task in later chapters will

be to develop and test a variety of sensors and integrate them

with the rest of the J-Bot’s subsystems. In Chapters 5-7, you’ll

isolate and test the sensors before writing JAVA programs that

integrate the sensor subsystems. For example, in chapter 5,

you’ll first construct and test whiskers, sensors that tell the

J-Bot when it’s bumped into something. Once the testing and

troubleshooting is complete, you’ll move on to writing JAVA

programs that make use of the whisker input signals for directing

the J-Bot’s motion.

 Activity #1: J-Bot Parts and Tools

Let’s get started by taking an inventory of the tools and parts

we’ll need to get though the activities in this student workbook.

For starters, all activities in this student workbook require a

personal computer (PC) with the Windows 95/98/... operating

system. You’ll also need a few simple hand tools, all of which

are common and can be found in most households, and school shops.

They can also be purchased at local hardware stores. The parts

for the J-Bot are either included in the J-Bot full kit or in a

combination of the JSDB Full Kit and the J-Bot parts kit. See

Appendix A: J-Bot Parts Lists and Sources for more information.

Chapter #1: Assembling and Testing Your J-Bot

The Simple Hand Tools

Recommended Tools

The top row of tools in Figure

1.1 are recommended for the

Activities in Chapter #1.

(1) Phillips #1 point

screwdriver

(1) ¼” Combination wrench

The tools shown on the bottom row

will come in handy for the

activities from Chapter #2

onward.

 (1) Small needle nose

pliers

(1) Wire cutter/stripper
Figure 1.1: Recommended tools.

J-Bot Parts Inventory

� Before getting started, take an inventory of the parts in

your kit. Appendix A: J-Bot Parts Lists and Sources will

tell you how many of each part should be in your kit. For

help with identifying each part, use the back cover of this

text; it has labeled pictures of all of the J-Bot parts.

� Gather the parts shown in Figure 1.2 and set them aside for

use as you go through the rest of the activities in this

chapter.

Chapter #1: Assembling and Testing Your J-Bot

Chapter #1 Parts List:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

(1)

(1)

(2)

(2)

(1)

(2)

(1)

(1)

(2)

(1)

(10)

(2)

(8)

(8)

(4)

(1)

(4)

(1)

J-Bot chassis

Battery pack

Parallax Pre-

Modified

Servos

(labeled PM)

Plastic

wheels

Polyethylene

ball

9/32” Rubber

Grommets

13/32” Rubber

Grommet

Board of

Education and

Javelin

O-ring tires

Cotter pin

4-40 locknuts

4-40 flathead

screws

3/8” 4-40

screws

1/4” 4-40

screws

1/2"

Standoffs

Serial cable

AA alkaline

batteries

Parallax CD

Figure 1.2: Chapter #1 parts.

B CA

D

E
F

G
H

I

J

K
L

M N O

P Q R

Chapter #1: Assembling and Testing Your J-Bot

 Activity #2: J-Bot Mechanical Assembly

This section breaks assembling the J-Bot into steps. In each

step, you gather a few of the parts, and then assemble them so

that they match the pictures. Each picture has instructions that

go with it; make sure to follow them carefully.

Mounting the Topside Hardware

Figure 1.3 shows the J-Bot

chassis, topside hardware and

mounting screws.

Parts List:

(1) J-Bot Chassis

(4) Standoffs

(4) 1/4” 4-40 Screws

(2) 9/32” Rubber grommets

(1) 13/32” Rubber grommet

Figure 1.3: Chassis and topside

hardware.

Assembly:

Figure 1.4 shows the topside hardware attached to the J-Bot

chassis. Each rubber grommet has a groove in its outer edge that

holds it in place in a hole on the top of the J-Bot chassis.

� Insert the 13/32” rubber

grommet into the hole in

the center of the J-Bot

chassis.

� Insert the two 9/32”

rubber grommets into the

two corner holes as shown.

� Use the four 1/4” 4-40

screws to attach the four

standoffs to the chassis

as shown.
Figure 1.4: Topside hardware assembled.

Chapter #1: Assembling and Testing Your J-Bot

Removing the Servo Horns

Get the two Parallax pre-

modified servos from your

parts kit, shown in Figure

1.5. Each servo has a horn

attached to its output

shaft by a Phillips screw.

Parts List

(2) Pre-modified servos

Figure 1.5: Parallax pre-modified servos.

Figure 1.6 shows the dehorned

servos.

� Unscrew each of the

Phillips screws, then

pull each servo horn

upwards and off of the

servo output shaft.

� Save the screws for

attaching the J-Bot

wheels.

Figure 1.6: Pre-modified servos dehorned.

Horn Phillips

Screw

Chapter #1: Assembling and Testing Your J-Bot

Mounting The Servos

Parts List:

Figure 1.7 shows the pre-modified

servos and servo mounting

hardware.

(1) Partially assembled J-Bot

chassis

(2) Servos

(8) 3/8” 4-40 screws

(8) 4-40 locknuts

!
Stop

If you have not already checked

the labeling on your servos, do

that now. Turn to page 1 and

follow the instructions.
Figure 1.7: Servos and mounting

hardware.

Chapter #1: Assembling and Testing Your J-Bot

Assembly:

Figure shows the servos mounted

on the chassis.

� Use the eight 3/8” 4-40 screws

and locknuts to attach each

servo to the J-Bot chassis as

shown.

Figure 1.8: Servos mounted on chassis.

Assembly:

Figure 1.9 shows the IR wheel

encoder detectors mounted on the

chassis. Now would be the perfect

time to mount these sensors. The

IR wheel encoder detectors are

not included in the Boe-Bot kit.

You need to purchase the Boe-Bot

Digital Encoder Kit (Part #28107)

from Parallax, Inc. The IR wheel

encoders are needed for exercises

later in this book. However, the

IR wheel encoders can be easily

added later.

Figure 1.9: IR wheel encoder detectors

mounted on chassis.

Mounting the Battery Pack

Figure 1.10 shows the battery

pack and mounting hardware to be

added next.

Parts List:

(1) Partially assembled J-Bot

chassis.

(1) Empty battery pack

(2) Flathead 4-40 screws

(2) 4-40 locknuts

Figure 1.10: Battery pack and mounting

hardware.

Assembly

Figure 1.11 shows the J-Bot chassis with the battery pack mounted

(a) from the underside and (b) from the topside.

Chapter #1: Assembling and Testing Your J-Bot

� Use the flathead screws and locknuts to attach the battery

pack to underside of the J-Bot chassis as shown in Figure 1.11

(a). Make sure to insert the screws through the battery pack

then tighten down the locknuts on the topside of the chassis.

� Pull the battery pack’s power cord through the hole with the

largest rubber grommet in the center of the chassis.

� Pull the servo lines through the same hole.

� Arrange the servo lines and supply cable as shown in Figure

1.11 (b).

Figure 1.11: (a) Battery pack installed (b) wires pulled through.

Socketing the Javelin.

Figure 1.12 shows the Javelin

to the left of the Javelin

Stamp Demo Board

Parts List:

(1) Javelin

(1) Javelin Stamp Demo Board
Figure 1.12: Javelin and Board of Education

FYI Board of Education is abbreviated BOE.

Chapter #1: Assembling and Testing Your J-Bot

Figure 1.13 shows the Javelin

mounted in its socket on the

JSDB. The Javelin has a half-

circle printed in the center of

its top edge. This is meant to

serve as the reference notch

common on many integrated

circuits. When placing the

Javelin in its socket on the

JSDB, make sure this half-circle

is closest to the Sout and Vin

labels. As a second check, make

sure the largest black chip with

the label SX48 is at the bottom,

between the P7 and P8 labels.

� If your Javelin and JSDB were packaged separately, plug the

Javelin into its socket on the JSDB as shown in Figure 1.13.

Make sure the pins on the Javelin line up with the holes in

the socket, then press down firmly on the Javelin with your

thumb. The Javelin’s pins should sink into socket holes by

about a quarter-inch.

Attaching the Board of

Education to the J-Bot Chassis

Figure 1.14 shows the Board of

Education, Javelin and mounting

hardware.

Parts List:

 (1) Partially assembled J-Bot

(not shown)

 (1) Board of Education with

Javelin

 (4) 1/4” 4-40 screws Figure 1.14: BOE with Javelin and

mounting screws.

Assembly:

Figure 1.15 shows the Board

of education attached to the

J-Bot chassis with the servos

plugged into the servo ports.

� Make sure the white

breadboard on the Board of

Figure 1.13: Javelin inserted into

its socket on the BOE.

Figure 1.15: BOE attached to chassis.

Chapter #1: Assembling and Testing Your J-Bot

Education is above where the servos are mounted on the

chassis.

� Use the four 1/4” machine screws to attach the Board of

Education to the standoffs.

Figure 1.16 (a) shows a close-up of the servo ports on the BOE.

The numbers along the top indicate the servo port number. If you

connect a servo to servo port 12, it means the servo’s control

line is connected to I/O line P12. I/O line P12 is a metal trace

on the BOE that connects the top servo port pin to the Javelin’s

I/O pin P12.

The labels to the right of the servo port are for making sure

your servo gets plugged in properly. Figure 1.16 (b) shows a

servo plugged into servo port 12 so that the black wire lines up

with the “Black” label, and the red wire lines up with the “Red”

label. Although the topmost wire is labeled “White” in Figure

1.16 (b), it could either be white or yellow.

Rev B

Black

Red

X3

Vdd VssVin

X4 X5

15 14 13 12

Rev B

Black

Red

X3

Vdd VssVin

X4 X5

15 14 13 12

Black

Red

White

(a) (b)

Figure 1.16: Servo ports on the BOE (a) before, and (b) after plugging in servo

port 12.

!
Make sure the “Black” and “Red” labels to the right

of the servo port line up with the servo connector’s

black and red wires before plugging in a servo.

� Plug the servo that you can see in Figure 1.7 into servo port

12, and plug the other servo into servo port 13.

TIP

The BOE Rev A does not have built-in servo ports.

If you can not find the servo ports shown in

Figure 1.16, go to Appendix F: Building Servo

Ports on the Rev A Board of Education.

Chapter #1: Assembling and Testing Your J-Bot

The Wheels

Figure 1.17 shows the J-Bot’s

wheel parts and mounting

hardware.

Parts List:

(1) Partially assembled J-Bot

(not shown)

(1) 1/16” Cotter pin

(2) O-ring tires

(1) 1” Polyethylene ball

(2) Plastic machined wheels

(2) Screws that attached the

servo horns, which were set

aside in the Removing the Servo

Horns step.

Figure 1.17: Wheel parts.

Assembly:

Figure 1.18 (a) shows the tail wheel attached to the J-Bot

chassis with a cotter pin, and Figure 1.18 (b) shows one of the

front wheels attached to a servo’s output shaft.

� The plastic ball is used as the J-Bot’s rear or tail wheel,

and the cotter pin is its axle. Run the cotter pin through

the holes in the tail of the J-Bot chassis so that it holds

the one-inch plastic ball in place as shown in Figure 1.18

(a).

� Seat each o-ring tire in the groove on the outer edge of each

plastic wheel.

� Each plastic wheel has a recess that fits on a servo output

shaft. Press each plastic wheel onto a servo output shaft

making sure the shaft lines up with and sinks into the recess.

� Use the machine screws that you saved when you removed the

servo horns to attach the wheels to the servo output shafts.

Chapter #1: Assembling and Testing Your J-Bot

 (a) (b)

Figure 1.18: (a), Tail wheel mounted on J-Bot chassis, and (b), front wheel

mounted on servo output shaft.

 Getting Connected

Figure 1.19 shows the parts you’ll need to make your PC

communicate with your Javelin.

Parts List:

(4) 1.5 V AA

batteries

(1) Serial Cable

(1) Parallax CD

Figure 1.19: parts you’ll need before your first

program.

Assembly:

Figure 1.20 shows the battery pack before and after the batteries

are loaded.

� Load the batteries into the battery pack so that the polarity

symbols on each battery match those printed on the inside of

the battery pack.

Chapter #1: Assembling and Testing Your J-Bot

!
Always use AA 1.5 V batteries.

Do not use 1.2 V (typically

rechargeable) batteries.

If you are considering using an

AC adaptor that you can plug

into the wall to power your J-

Bot, see page 2 for details on

which ones are compatible with

your servos.

Figure 1.20: Battery pack without/with

batteries.

Figure 1.21 shows (a), the serial cable connected to a COM port

on the back of a PC, and (b) the serial cable and battery pack

connected to the BOE.

� Plug the female end of the serial cable into one of your

computer’s unused serial ports.

� Plug the male end of the serial cable into the DB9 socket on

the BOE.

Figure 1.21: (a), Serial cable

connected to com port,

 (b) BOE connected to serial cable and

battery pack.

� Plug the battery pack back into the BOE while watching the

green light on the BOE for problems. Unplug the battery pack

immediately if you see any of the warning signs listed below.

Chapter #1: Assembling and Testing Your J-Bot

� To extend the life of your batteries, unplug the battery

pack’s barrel plug from the BOE’s barrel jack. This will

disconnect power from the Board of Education and the servo

motors. You will need to plug the power back in when you are

ready to run your first JAVA program in Activity #3.

Activity #3: Testing PC – J-Bot Communication

The Javelin IDE is the software you’ll be using to program the J-

Bot’s Javelin on-board computer. The Javelin IDE has an

integrated debugger and Messages window in addition to the

ability to edit Java source files. You can use the Messages

window to display messages received from the Javelin and also to

send messages to the Javelin. Messages are sent to the Messages

window using the System.out.println function.

If you have used the Basic Stamp IDE then you are in for a

surprise. The Javelin IDE is much more powerful. It supports

multiple breakpoints and it is possible to single step through a

program. Global, local and stack variables can be examined.

Overall, the development environment is on par with more

sophisticated cross platform development tools.

!

Warning Signs:

If the green light doesn’t come on, looks unusually dim, or flickers,

disconnect the battery pack immediately and check your wiring. Any of

these warning signs could indicate a wiring problem that could be

dangerous to your servo and/or your Javelin.

Chapter #1: Assembling and Testing Your J-Bot

Software and First Program

This section covers the steps for:

• Installing the Javelin IDE

• Using the Javelin IDE to establish PC – Javelin communication

• Running a sample JAVA program that uses the System.out.println

method

Note: These instructions are for installing the

Javelin IDE from the Parallax CD. A copy of the

Parallax CD can be requested from

stampsinclass@parallaxinc.com. You can also get the

latest version of the Javelin IDE (It’s free!) from

the Downloads page of www.parallax.com.

Software

� If you have not already done so, load the Parallax CD into

your computer’s CDROM drive.

The Parallax CD has a browsing program called the Welcome

application that runs automatically after the CD is placed in

your computer’s CDROM drive. Figure 1.22 (a) shows the browser

as it appears the first time the CD is placed in the computer’s

drive. Figure 1.22 (b) shows the browser as it normally appears

when you run the Welcome application.

 Figure 1.22: Welcome application (a)

Kits page, and
(b) Parallax page.

TI

P

If the Welcome application did not run automatically,

here’s how to run it manually: Click the Start button

on your Windows taskbar and select Run. When the Run

window appears, enter the CDROM drive letter, followed

by a colon, a backslash, and the name “Welcome.exe.”

Chapter #1: Assembling and Testing Your J-Bot

For example, if the drive letter for your computer’s

CDROM drive is D, type in “D:\Welcome.exe.” Click the

OK button, and the Welcome application will run.

� If this is not your first time running the Welcome

application, the Parallax page shown in Figure 1. (b) will

display instead of the Kits page. Skip the next checklist

instruction.

� If this is your first time running the Welcome application, a

text document about the Parallax CD will automatically

display. When you’re finished reading the text document,

minimize it or drag it out of the way so that you can see the

Kits page. Click the “Back” button on the bottom right of the

kits page to get to the Parallax page.

� Click the Software link.

� Click the + next to the Javelins folder, then click the + next

to the Windows 95/98... folder, then click the diskette

labeled Javelin Stamp.

� Click the Install button, and select “Yes” when the Confirm

window asks you if you want to “Install selected files to

“C:\Program Files\Parallax Inc\Javelin Stamp IDE”

� If additional prompts appear, answer them as directed.

After installing the software, run it by following these steps:

� Select Javelin Stamp IDE from the Start menu or double-click

the Javelin Stamp IDE icon on the desktop

Chapter #1: Assembling and Testing Your J-Bot

The Javelin IDE window, similar to Figure 1.23 (a), will appear

next. It will help to know the version number of the software

you are using before you check to see if the Javelin IDE is

communicating with the Javelin.

� Click the Help menu and select About…

� When the About window appears, make a note of the Version

number.

Before attempting to run your first program, it’s important to

check and make sure the Javelin IDE can communicate with the

Javelin.

� Plug the battery pack’s barrel plug back into the barrel jack

on the JSDB. Verify the green light on the Board of Education

lights up.

� Click the Project menu, and select Test Connection as shown in

Figure 1. (b).

Figure 1.23: (a) Javelin IDE,

Chapter #1: Assembling and Testing Your J-Bot

(b) Javelin IDE with Compile selected.

Chapter #1: Assembling and Testing Your J-Bot

First Program

Your first program will demonstrate the Javelin’s ability to

communicate with the outside world using the Debug Terminal.

This handy terminal can be used for two-way communication between

your PC and the Javelin. For now, we’ll focus on programming the

Javelin to send messages to the PC.

� Type Program HelloWorld.java into the Javelin IDE as shown in

Figure 1.24 (a).

� Click Project and select Program. The Message window should

appear in a second window, as shown in Figure 1.24 (b).

Figure 1.24: (a) Javelin IDE

Chapter #1: Assembling and Testing Your J-Bot

(b) Messages window.

How “Hello world!” Works

Readers should be familiar with Java and the Java class

structure. The import statement is used to indicate other classes

that will be used by this class. In this case, the

System.out.println statement found later in the file will use the

System class. The following statement allows this class to be

referenced.

import stamp.core.*

Java supports two types of comments. The first is shown in the

HelloWorld.java program. In this case, /* and */ bracket the

comment text. The /** is a special form that allows comments in

the program to be used to generate documentation automatically.

It uses a program called javadoc that scans the file and extracts

these comments. It then takes this information and generates HTML

documentation files. Special prefixes provide a way to insert

specially formatted information such as the version number noted

by @version as shown below.

* @version 1.0 7/30/02

The other form of comments prefix the comment text with //. This

type of comment proceeds to the end of the line. If a comment is

on the next line then another // must prefix it.

The next set of lines defines the HelloWorld class and the main

method. A class that will be executed directly must have this

method defined. Most other classes will not have this method. The

main method is called when the program starts. In this case the

following line is executed:

System.out.println ("Hello World") ;

it sends the “Hello World” message to your PC by way of the

serial cable. The “Hello World” message is a text string, which

is one of several types of output data the Javelin can be

programmed to send using the System.out.println function.

Your Turn

The best way to get a better feel for what you can do with the
System.out.println function is to try the examples in the Javelin Stamp

User’s Manual.

Activity #4: Building and testing a Speaker Alarm – Intro to

Virtual Peripherals

Chapter #1: Assembling and Testing Your J-Bot

In this activity, you will program the Javelin to sound an alarm.

This uses the pulse width modulation (PWM) virtual peripheral.

The Javelin supports a number of virtual peripherals. Six may be

active at one time. Virtual peripherals are covered in the

Javelin Stamp User’s Manual. Most will be used in this book at

various points. Many can be used for different purposes. For

example, the PWM virtual peripheral will also be used to drive

the servos on the J-Bot.

The virtual peripherals supported by the Javelin are:

Background Virtual Peripherals

UART Buffered serial port support

PWM Pulse width modulation

Timer 32-bit timer

DAC 1-bit digital-to-analog

converter

Delta/Sigma

ADC

Analog-to-digital converter

Foreground Virtual Peripherals

Pulse Count Count number of pulses

Pulse Width

Measurement

Measure the width of a pulse

Pulse

Generation

Generate a fixed length pulse

RC Timer Measure RC discharge rate

SPI master SPI communication link

Background peripherals operate in the background while the Java

program is running. This provides a limited form of multitasking.

Only six background virtual peripherals can be active at one time

although one Timer virtual peripheral will support any number of

Timer objects. The limitation is set because the Javelin memory

used for the virtual peripherals is limited and not part of the

RAM used for Javelin code and data.

The foreground virtual peripherals execute only when the

appropriate method is called. For example, the pulse count

virtual peripheral will count the number of pulses seen on an

input pin for a fixed amount of time. The next instruction in the

Java application will be executed when the time has expired. Any

number of foreground peripherals can be created at one time.

Virtual peripherals are loaded into memory by creating a virtual

peripheral object. To create an object you need to reference its

class definition. This is done using the import statement. The

virtual peripherals are in the stamp.core package. The following

statement used in the Hello World program does the trick.

import stamp.core.*

Chapter #1: Assembling and Testing Your J-Bot

All the background virtual peripherals are implemented via their

own class. For example, the PWM class is used to create a pulse

width modulation object. Some of the foreground virtual

peripherals are created in the same fashion while others are

implemented in the CPU class. In the latter case, the peripherals

are accessed using static CPU class methods. For example, the

pulse count virtual peripheral is accessed using:

CPU.count (nTime, CPU.pin0, true) ;

In this case, the parameters are the amount of time to wait, the

pin to check and the edge to count. The last value indicates the

rising edge is counted.

No Garbage Collection So Don’t Make Garbage

The Javelin does not support garbage collection which is a

feature found in most Java implementations. This means that once

an object is allocated it will always take up memory space even

when it can no longer be referenced. This is called a memory

leak.

Memory leaks may not be a problem for small applications that run

for a short amount of time because there is enough memory in the

Javelin to handle these objects. Unfortunately, this can be a

problem when a robot runs for a long period of time. Even a small

memory leak of a few bytes can cause a program to terminate after

a few minutes if the allocation occurs often.

This means that a good Javelin programming technique is not to

dereference an object especially when an object like it may be

needed later. In general, this means that all objects should be

allocated when the program starts. If objects need to be created,

used and then discarded then it is best to keep track of

discarded objects in a list and new objects of that type should

be allocated by removing an unused object from the list.

Virtual peripheral objects are like any other object and should

be managed accordingly. For this chapter, it means that

allocating a tone generator object when a tone needs to be

generated is not such a great idea. Instead, create one tone

generator object and use it throughout the life of the program

that uses the tone generator.

How Tone Generation Works

The small speaker that comes in the J-Bot kit will be used with

the PWM virtual peripheral to generate tones. While many tone

generators use a sine wave to drive the speaker, the Javelin can

only generate a square wave. This is not much of a problem though

Chapter #1: Assembling and Testing Your J-Bot

and it is possible to include a capacitor in the circuit to

improve the output.

Figure 1.25 shows the circuit

that is with the speaker. Any

of the Javelin’s pins can be

used but we use pin 2 for this

example. Note that pins in

Javelin Java are specified as

CPU.pin2 instead of the number 2.

Using a number can be a major

problem with many Javelin

applications because the

parameter type used is normally

an integer and 0 is a valid

integer.

One of the wires on the speaker

is connected to Vdd that is a

positive 5 volts. The other is

connected to pin 2. The tones

are generated by raising and

lowering the output value of

pin 2. When the output is high

then no current flows through

the speaker. When the output is

low then current flows through

the speaker and the pin. A

single pulse does not generate

much sound because the time is

too short to hear. This is why

a number of pulses must be

generated large.

Instead of sending a fixed number of pulses it is easier to send

an arbitrary number of pulses for a fixed amount of time. This is

how our tone generator object will work. Timing is easy with the

Javelin so this approach is preferable.

About Time Measurements and Voltage levels

Milliseconds

and

Microseconds

s
3-101s

1000

1
ms1 ×==

s
6-101s

1,000,000

1
s1 ×==µ

Figure 1.25: Tone generator wiring.

Figure 1.26: Tone generator

schematic.

Chapter #1: Assembling and Testing Your J-Bot

Voltages and

BOE Labels

(ground)V0Vss =

)(regulatedV5Vdd =

ed)(unregulatV6Vin =

Throughout this student workbook, amounts of time will be

referred to in units of seconds (s), milliseconds (ms), and

microseconds (µs). Seconds are abbreviated with the lower-case

letter s. So, one second is written as 1 s. Milliseconds are

abbreviated as ms, and it means one one-thousandth of a second.

One microsecond is one one-millionth of a second. The

Milliseconds and Microseconds box to the right shows these

equalities in terms of both fractions and scientific notation.

A voltage level is measured in volts, which is abbreviated with

an upper case V. The BOE has sockets labeled Vss, Vdd, and Vin.

Vss is called the system ground or reference voltage. When the

battery pack is plugged in, Vss is connected to its negative

terminal. As far as the BOE, Javelin and serial connections to

the computer are concerned, Vss is always 0 V. Vin is

unregulated 6 V, and it’s connected to the positive terminal of

the battery pack. Vdd is regulated to 5 V by the BOE’s onboard

voltage regulator, and it will be used with Vss to supply power

to circuits built on the BOE’s breadboard.

!
Only use the Vdd sockets above the BOE’s breadboard

for the Activities in this workbook. Do not use the

Vdd on the 20-pin app-mod header.

Now back to the tone generator. The PWM virtual peripheral sends

a “pulse train,” and an example of one is shown in Figure 1.27.

The Javelin can be programmed to produce this waveform using any

of its I/O pins. In this activity, we’ll start with I/O pin 0.

The high and low times within the pulse train will be the same.

Other uses of the PWM virtual peripheral may use different times

for each. For example, servo control uses short high pulses and

long low times.

Vdd (5 V)

Vss (0 V)

1.0 ms 1.0 ms

20 ms

Chapter #1: Assembling and Testing Your J-Bot

Figure 1.27: Pulse train.

While the name of the tone generator class might be

ToneGenerator, we will be calling it FREQOUT. This is also the

name of the command used in the Basic Stamp programming language.

We will be defining another tone generator for our multitasking

environment and use a more descriptive name there.

Remember

Pulse cycle time is what controls the tones being

generated. Lower tones have a longer cycle time.

Higher tones have a shorter cycle time.

The FREQOUT class in the FREQOUT.java file extends the PWM class.

It can be found in the stamp.core package versus the Hello World

program that is in the sample program listings. This allows other

applications to easily use the class. The following is the source

code for the FREQOUT class.

The FREQOUT.java file starts out with a javadoc comment between

the /** and */ comment specifiers. This information will be

contained in the Java documentation about the FREQOUT class.

Next there is the package statement.

package stamp.core;

This indicates that the class will be part of the stamp.core

package. It means that the FREQOUT class can use any other

classes in the package including the PWM class which it extends.

This is the next statement:

public class FREQOUT extends PWM {

Within the outer brackets is the class definition. The FREQOUT

class supports all the PWM methods so a FREQOUT object can be

used like a PWM object. The FREQOUT class also defines its own

set of methods in addition to using the methods of the PWM class.

The entire list of PWM methods can be found in the online help.

We discuss only those used with the FREQOUT class.

Note that each method has a javadoc comment (/** to */) in from

of it. This is how the online documentation is created. The

general format is a short description followed by the parameters

to the method and then a description of a return value if the

method returns a value. The parameter comments are prefixed by

@param while the return values are described using @returns.

Chapter #1: Assembling and Testing Your J-Bot

The first method is the FREQOUT constructor. It does not return a

value. Its parameter is the pin to be used for output. It calls

the super method which is the constructor for its superclass, the

PWM. This is the usual constructor used with the FREQOUT class

because it does not start sending out pulses on the designated

pin until subsequent methods are called.

The next method is also a constructor that uses the same

arguments as the PWM constructor. If this constructor is used the

PWM virtual peripheral object will start sending pulses

immediately.

Next we get to a useful method that can be called after a FREQOUT

object is created. This is the setFrequency method. It takes one

parameter, the frequency in hertz. It uses this value to

calculate the cycle time. There is a check for a zero parameter

value to prevent a divide by zero error then the halfCycleTime is

set. This is a reasonable alternative to use the more complex

catch/throw error handling semantics of Java. The cycle time is

then used with the PWM update method. Note that the method can be

called without an object reference since it the PWM object is

part of a FREQOUT object.

Setting the frequency will only cause a tone to be generated if

the PWM object within FREQOUT object is running. This is done

using the PWM start method. It is possible to use the FREQOUT

object using this combination but it is easier to use the next

method, freqout.

The freqout method takes two parameters. The first is the

frequency that will be passed to the setFrequency method call. The

PWM virtual peripheral is then started. This generates a series

of pulses until the stop method is called. This will be time

milliseconds later because the CPU.delay method is called. This

method uses the delay virtual peripheral that is built into the

CPU class that is also part of the stamp.core package.

This class can be compiled by opening it in the Javelin IDE and

then selecting Project menu and then the Compile item. This

generates the FREQOUT.class file. This is already done when the

class was installed since it is part of the standard package so

we don’t have to do it here. Instead we can move onto the sample

program that utilizes the FREQOUT class, TestFREQOUT.java.

This is a short program because most of the work is being done by

the PWM and FREQOUT classes. The import statement is included so

the PWM and FREQOUT classes in the stamp.core package are

available. The System class is also available. There is the

usual javadoc comment at the beginning of the program followed by

Chapter #1: Assembling and Testing Your J-Bot

the TestFREQOUT class definition. Note that this class does not

extend another class. Also, unlike the PWM class, there is no

constructor method, only the main method which is defined as

public static void. The inclusion of the static keyword means that

this is a class method versus an object method used in the

FREQOUT class. This particular format is necessary for any main

application such as the Hello World application discussed

earlier.

The main method creates a new FREQOUT object and the reference to

it is called freqout. The names can be the same because Java is

case sensitive otherwise the object reference variable would

conflict with the class name.

In any case, we now have a FREQOUT object that is associated with

pin 0. The System.out.println will display the text string in the

message window and then the program will cause two different

short tones to be generated. The program then ends.

The program can be run again using the Javelin IDE or it will run

again if the reset button on the BOE board is pressed.

In general, this is how applications will be constructed in this

book. The classes for the objects needed for an application will

be defined first. The main program file with a main method will be

defined last. This program can then be run to test the other

classes. For now, we wrap up this first exercise.

Chapter #1: Assembling and Testing Your J-Bot

Congratulations on the construction and

operation of your J-Bot! Through

following the procedures in this chapter,

you may have had your first taste of

testing and troubleshooting at the system

and subsystem levels. Lots of other

essential topics were covered that will

get used and re-used throughout this text. For example, the

Message window will be your best and most used tool for testing

and troubleshooting each circuit as well as many upcoming

programs.

The JAVA programming language was introduced along with some

example programs to get you started with the Message window and

with the J-Bot. The Javelin also supports more advanced

debugging features like breakpoints and single stepping. These

are covered in more detail in the Javelin Stamp User’s Manual.

Check it out if you have not already used these debugging

features.

Real World Example

From the space shuttle all the way down to the J-Bot, isolating

and testing subsystems during each phase of development is

critical to make sure the whole thing runs when it’s put

together. More importantly, isolating and testing each subsystem

minimizes the time spent on, and difficulty level of,

troubleshooting. At the beginning of the chapter, the problems

associated with not iteratively developing and testing were

discussed. Imagine if nobody tested the Space Shuttle’s

subsystems before putting it together. It would take hundreds of

years for NASA to get all their problems sorted out!

Whether it’s robotics competitions, product development, or space

programs, subsystem and system level development and testing is

the way to avoid unnecessary delays when working from the

beginning to the end of a project. Especially in product

development, groups of engineers develop systems and subsystems.

Often, it’s not until late in the design cycle that the system

level testing and system integration occurs. Sometimes, all a

design team knows are the input and output (I/O) requirements of

their particular module in the project. Regardless, engineering

design teams still have to iteratively develop, simulate (which

we did not do here), and test the subsystems within the project

module they are working on.

J-Bot Application

One item you’ll investigate in the Questions and Projects section

is what happens when the wiring of the servos gets changed. How

Summary

and

Applicati

ons

Chapter #1: Assembling and Testing Your J-Bot

does this get handled? It involves more changes than you might

think. For example, if you were to unplug a servo from servo

port 12 and then plug it into servo port 15, you can’t just

change the drawing that shows what port to plug it into. The

schematic, which is the preferred method of communicating wiring

information, has to be changed, but so do all the program

listings. At some point you might want to add more servos to

function as grippers. Although a gripper design is not included

in this text, Questions and Projects has exercises that will

prepare you for connecting servos to different ports.

Chapter #1: Assembling and Testing Your J-Bot

Questions and

Projects

Questions

1. Explain the two things the System.out.println command does.

2. What are the different types of output data that can be

used with the System.out.println command? Hint: Use the

Javelin Manual to answer this question.

3. The pulse widths in the example program are generated based

upon a desired frequency. What happens if the frequency

computation is changed?

4. Why did the FREQOUT class extend the PWM class?

Exercises

1. Add a filter capacitor across the speaker. Does this

improve the sound quality?

2. Determine the frequency range of useful tones. Tones at the

lower and upper end of the spectrum may not be rendered as

well as those in the middle of the spectrum.

3. Implement a NewFreqout class that provides the same tone

generation capability as FREQOUT but does not extend the

PWM class. Note, the NewFreqout class does not have to

implement all the PWM methods, only the FREQOUT setFrequency

and freqout methods.

Hint: Allocate a PWM object and assign it to an object

variable.

Projects

1. The pulse width generation in the examples is based on

frequency but must musical instruments generate only a

fixed number of frequencies designated as notes. Create an

application that uses logical note names to generate tones.

Hint: Retain and extend the PWM tone generator class. Use

the Java switch statement to determine the note to be played

and its matching frequency.

Chapter #1: Assembling and Testing Your J-Bot

