Chapter #1: Assembling and Testing Your J-Bot

Chapter #1: As
sembling and
Testing Your J-
Bot

About Robotics Competitions and Robot Development

Students in high schools and colleges preparing their entries for
various robotics competitions get first-hand exposure to the
engineering occupation. They start Dby working 1in teams
developing a Robot’s subsystems. A robot’s subsystems include
its motors, sensor arrays, microprocessor, and mechanical
linkages. Next they test and trouble-shoot the subsystems. Then
comes system integration, the process of making all the Robot’s
subsystems work together.

Once the testing and trouble-shooting is finished at the
subsystem level, a robot’s subsystems have to be connected to and
controlled by a microprocessor. The process of getting all the
subsystems (including the microprocessor) to work together to
make the robot perform its assigned task list is called system
integration. System integration can be tricky to begin with, but
robotics teams who skipped any of the testing and troubleshooting
at the subsystem level often have much larger problems with their
system integration. Many a late night can be spent trying to get
the robot to work the way it’s supposed to. If bugs are hiding
in the subsystems when you’re trying to do system integration, it
only compounds the problems.

Even when testing and troubleshooting is performed for each
subsystem, it can still be the most difficult part of robot

development. For example, a group at a recent robotics
competition spent five hours trying to get a Sumo wrestling robot
to work right with no luck. Later, by utilizing the Javelin’s

Debug Terminal, the testing and troubleshooting took less than 5
minutes.

Testing and troubleshooting at each phase of robot development is
a skill that one gets better at with practice. By following the
instructions in the activities in this student workbook, vyou’ll
get a taste of testing and troubleshooting while putting your J-
Bot together and getting it up and running. With practice,
you’ll enjoy more five-minute troubleshooting times and less of
the five-hour wvariety.

Chapter #1: Assembling and Testing Your J-Bot

This chapter is separated into four activities:

J-Bot Parts and Tools

J-Bot Mechanical Assembly

Testing PC - J-Bot Communication

. Building and testing a Speaker Alarm - Intro to Virtual
Peripherals

W N

Fach of these activities involves discrete steps to get the J-Bot
up and running. First, check to make sure you have all your
parts. Next, put the mechanical parts together. After that,
test the microprocessor subsystem. Then test each servo motor
individually. Then, make the servo motors work in unison. Last,
but certainly not least, calibrate the pre-modified servos. By
carefully following +the instructions in these first five
activities, you ensure that vyour microprocessor and motor
subsystems are working reliably. The task in later chapters will
be to develop and test a variety of sensors and integrate them
with the rest of the J-Bot’s subsystems. In Chapters 5-7, you’ll
isolate and test the sensors before writing JAVA programs that

integrate the sensor subsystems. For example, in chapter 5,
you’ll first construct and test whiskers, sensors that tell the
J-Bot when 1it’s bumped into something. Once the testing and

troubleshooting 1is complete, vyou’ll move on to writing JAVA
programs that make use of the whisker input signals for directing
the J-Bot’s motion.

Activity #1: J-Bot Parts and Tools

Let’s get started by taking an inventory of the tools and parts
we’ll need to get though the activities in this student workbook.
For starters, all activities in this student workbook require a

personal computer (PC) with the Windows 95/98/... operating
system. You’ll also need a few simple hand tools, all of which
are common and can be found in most households, and school shops.
They can also be purchased at local hardware stores. The parts

for the J-Bot are either included in the J-Bot full kit or in a
combination of the JSDB Full Kit and the J-Bot parts kit. See
Appendix A: J-Bot Parts Lists and Sources for more information.

Chapter #1: Assembling and Testing Your J-Bot

The Simple Hand Tools

Recommended Tools

T row of tools in
1 recommended for
A es in Chapter #

illips #1 point)
swdriver | !]

Combination wre

The tools shown on the bottom row
will come in handy for the
activities from Chapter #2
onward.

(1) Small needle nose
pliers .
(1) Wire cutter/stripper Figure 1.1: Recommended tools.

J-Bot Parts Inventory

O Before getting started, take an inventory of the parts in
your kit. Appendix A: J-Bot Parts Lists and Sources will
tell you how many of each part should be in your kit. For
help with identifying each part, use the back cover of this
text; it has labeled pictures of all of the J-Bot parts.

O Gather the parts shown in Figure 1.2 and set them aside for
use as you go through the rest of the activities in this
chapter.

Chapter #1: Assembling and Testing Your J-Bot

Chapter #1 Parts List:

A (1) J-Bot chassis

B (1) Battery pack

C (2) Parallax Pre-
Modified
Servos
(labeled PM)

D (2) Plastic
wheels

E (1) Polyethylene
ball

F(2) 9/32" Rubber
Grommets

G (1) 13/32"” Rubber
Grommet

H (1) Board of
Education and
Javelin

I (2) O-ring tires

J (1) Cotter pin

K (10) 4-40 locknuts

L (2) 4-40 flathead
screws

M (8) 3/8" 4-40
screws

N (8) 1/4" 4-40
screws

o (4) 1/2"
Standoffs

P (1) Serial cable

Q (4) AA alkaline

R (1) batteries

Parallax CD

Figure 1.2: Chapter #1 parts.

Chapter #1: Assembling and Testing Your J-Bot

Activity #2: J-Bot Mechanical Assembly

This section breaks assembling the J-Bot into steps. In each
step, you gather a few of the parts, and then assemble them so
that they match the pictures. Each picture has instructions that

go with it; make sure to follow them carefully.

Mounting the Topside Hardware

Eigure 1.3 shows the J-Bot
chassis, topside hardware and
mounting screws.

Parts List:

(1) J-Bot Chassis
(4) Standoffs
(4) 1/4" 4-40 Screws
(2) 9/32"” Rubber grommets
(1) 13/32” Rubber grommet
Figure 1.3: Chassis and topside
hardware.
Assembly:

Figure 1.4 shows the topside hardware attached to the J-Bot
chassis. Each rubber grommet has a groove in its outer edge that
holds it in place in a hole on the top of the J-Bot chassis.

==l

O Insert the 13/32” rubber
grommet into the hole in
the center of the J-Bot
chassis.

O Insert the two 9/32"
rubber grommets into the
two corner holes as shown.

Q Use the four 1/4” 4-40
screws to attach the four
standoffs to the chassis
as shown.

Figure 1.4: Topside hardware assembled.

Removing the Servo Horns

Get the two Parallax pre-

modified servos from vyour
parts kit, shown in Figure
1.5. Each servo has a horn

attached to its
shaft by a Phillips screw.

Parts List

(2) Pre-modified servos

Figure 1.6 shows the dehorned

sServos.
Q Unscrew each of
Phillips screws,
pull each sServo
upwards and off of the

servo output shaft.

Q Save the
attaching
wheels.

the

output

the
then
horn

SCrews for
J-Bot

Chapter #1: Assembling and Testing Your J-Bot

Horn

Figure 1.5:

Phillips
Screw

Parallax pre-modified servos.

& &

Figure 1.6:

Pre-modified servos dehorned.

Mounting The Servos

Parts List:

Figure 1.7 shows the pre-modified
servos and servo mounting
hardware.

(1) Partially assembled J-Bot
chassis

(2) Servos

(8) 3/8" 4-40 screws

(8) 4-40 locknuts

0N

Stop

If you have not already checked
the labeling on your servos, do
that now. Turn to page 1 and
follow the instructions.

Chapter #1: Assembling and Testing Your J-Bot

Figure 1.7: Servos and mounting
hardware.

Chapter #1: Assembling and Testing Your J-Bot

Assembly:

Figure shows the servos mounted
on the chassis.

O Use the eight 3/8” 4-40 screws
and locknuts to attach each
servo to the J-Bot chassis as
shown.

Figure 1.8: Servos mounted on chassis.
Assembly:

Figure 1.9 shows the IR wheel

encoder detectors mounted on the

chassis. Now would be the perfect £
time to mount these sensors. The

IR wheel encoder detectors are

not included in the Boe-Bot kit.

You need to purchase the Boe-Bot I | s
Digital Encoder Kit (Part #28107) LA
from Parallax, Inc. The IR wheel

i Figure 1.9: IR wheel encoder detectors
encoders are needed for exercises mounted on chassis.

later in this book. However, the
IR wheel encoders can be easily
added later.

Mounting the Battery Pack
Figure 1.10 shows the battery
pack and mounting hardware to be

added next.

Parts List:

(1) Partially assembled J-Bot
chassis.

(1) Empty battery pack

(2) Flathead 4-40 screws

(2) 4-40 locknuts

Figure 1.10: Battery pack and mounting
hardware.

Assembly

Figure 1.11 shows the J-Bot chassis with the battery pack mounted
(a) from the underside and (b) from the topside.

Chapter #1: Assembling and Testing Your J-Bot

O Use the flathead screws and locknuts to attach the battery
pack to underside of the J-Bot chassis as shown in Figure 1.11
(a). Make sure to insert the screws through the battery pack
then tighten down the locknuts on the topside of the chassis.

O Pull the battery pack’s power cord through the hole with the
largest rubber grommet in the center of the chassis.

O Pull the servo lines through the same hole.

O Arrange the servo lines and supply cable as shown in Figure
1.11 (b).

Figure 1.11: (a) Battery pack installed (b) wires pulled through.

Socketing the Javelin.

Figure 1.12 shows the Javelin
to the 1left of the Javelin
Stamp Demo Board

Parts List:

(1) Javelin Figure 1.12: Javelin and Board of Education
(1) Javelin Stamp Demo Board

FYI Board of Education is abbreviated BOE.

Figure 1.13 shows the Javelin
mounted 1in its socket on the
JSDB. The Javelin has a half-

circle printed in the center of
its top edge. This is meant to
serve as the reference notch
common on many integrated
circuits. When placing the
Javelin 1in its socket on the
JSDB, make sure this half-circle
is closest to the Sout and Vin
labels. As a second check, make
sure the largest black chip with
the label SX48 is at the bottom,
between the P7 and P8 labels.

O If your Javelin and JSDB were packaged separately,

Chapter #1: Assembling and Testing Your J-Bot

Figure 1.13: Javelin inserted into
its socket on the BOE.

plug the

Javelin into its socket on the JSDB as shown in Figure 1.13.
Make sure the pins on the Javelin line up with the holes in

the socket,
thumb.
about a quarter-inch.

Attaching the Board of
Education to the J-Bot Chassis

Figure 1.14 shows the Board of
Education, Javelin and mounting

hardware.

Parts List:

(1) Partially assembled J-Bot
(not shown)

(1) Board of Education with
Javelin

(4) 1/4” 4-40 screws

Assembly:

Figure 1.15 shows the Board
of education attached to the
J-Bot chassis with the servos
plugged into the servo ports.

white
Board of

Q Make sure the
breadboard on the

then press down firmly on the Javelin with your
The Javelin’s pins should sink into socket holes by

Figure 1.14: BOE with Javelin and
mounting screws.

Figure 1.15: BOE attached to chassis.

Chapter #1: Assembling and Testing Your J-Bot

Education 1is above where the servos are mounted on the
chassis.

Q Use the four 1/4” machine screws to attach the Board of
Education to the standoffs.

Figure 1.16 (a) shows a close-up of the servo ports on the BOE.

The numbers along the top indicate the servo port number. If you
connect a servo to servo port 12, it means the servo’s control
line is connected to I/0 line P12. 1I/0 line P12 is a metal trace

on the BOE that connects the top servo port pin to the Javelin'’s
I/0 pin P12.

The labels to the right of the servo port are for making sure
your servo gets plugged in properly. Figure 1.16 (b) shows a
servo plugged into servo port 12 so that the black wire lines up
with the “Black” label, and the red wire lines up with the “Red”
label. Although the topmost wire is labeled “White” in Figure
1.16 (b), it could either be white or yellow.

White
Red

Black

\
=

15 14 13 12
15 14 13 12 Z 2 74

Do
il lBIack

X4 X5 Rev B
X4 X5 RevB Vdd Vin _ Vss
Vdd Vin _ Vss

Red
Black

X3

(a) (b)

Figure 1.16: Servo ports on the BOE (a) before, and (b) after plugging in servo
port 12.

of the servo port line up with the servo connector’s

j Make sure the “Black” and “Red” labels to the right
black and red wires before plugging in a servo.

O Plug the servo that you can see in Figure 1.7 into servo port
12, and plug the other servo into servo port 13.

The BOE Rev A does not have built-in servo ports.
If you can not find the servo ports shown in

TIP Figure 1.16, go to Appendix F: Building Servo
Ports on the Rev A Board of Education.

Chapter #1: Assembling and Testing Your J-Bot

The Wheels
Figure 1.17 shows the J-Bot’s
wheel parts and mounting

hardware. 7

Parts List:

Partially assembled J-Bot

O-ring tires

1” Polyethylene ball

Plastic machined wheels

(2) Screws that attached the

servo horns, which were set Figure 1.17: Wheel parts.
aside in the Removing the Servo

Horns step.

)
o
) 1/16” Cotter pin
)
)
)

Assembly:

Figure 1.18 (a) shows the tail wheel attached to the J-Bot
chassis with a cotter pin, and Figure 1.18 (b) shows one of the
front wheels attached to a servo’s output shaft.

O The plastic ball is used as the J-Bot’s rear or tail wheel,
and the cotter pin 1is its axle. Run the cotter pin through
the holes in the tail of the J-Bot chassis so that it holds
the one-inch plastic ball in place as shown in Figure 1.18

(a) .

O Seat each o-ring tire in the groove on the outer edge of each
plastic wheel.

O Each plastic wheel has a recess that fits on a servo output
shaft. Press each plastic wheel onto a servo output shaft
making sure the shaft lines up with and sinks into the recess.

O Use the machine screws that you saved when you removed the
servo horns to attach the wheels to the servo output shafts.

Chapter #1: Assembling and Testing Your J-Bot

(a) (b)
Figure 1.18: (a), Tail wheel mounted on J-Bot chassis, and (b),

front wheel
mounted on servo output shaft.

Getting Connected

Figure 1.19 shows the parts you’ll need to

make your PC
communicate with your Javelin.

Parts List:

(4) 1.5 V AA
batteries

(1) Serial Cable
(1) Parallax CD

Figure 1.19: parts you’ll need before your first
program.

Assembly:

Figure 1.20 shows the battery pack before and after the batteries
are loaded.

O Load the batteries into the battery pack so that the polarity

symbols on each battery match those printed on the inside of
the battery pack.

Chapter #1: Assembling and Testing Your J-Bot

T

Always use AA 1.5 V batteries.

Do not use 1.2 V (typically
rechargeable) batteries.

If you are considering using an
AC adaptor that you can plug
into the wall to power your J-
Bot, see page 2 for details on
which ones are compatible with
your servos.

Figure 1.20: Battery pack without/with
batteries.

Figure 1.21 shows (a), the serial cable connected to a COM port
on the back of a PC, and (b) the serial cable and battery pack
connected to the BOE.

O Plug the female end of the serial cable into one of vyour
computer’s unused serial ports.

O Plug the male end of the serial cable into the DBY9 socket on
the BOE.

Figure 1.21: (a), Serial cable (b) BOE connected to serial cable and
connected to com port, battery pack.

O Plug the battery pack back into the BOE while watching the
green light on the BOE for problems. Unplug the battery pack
immediately if you see any of the warning signs listed below.

Chapter #1: Assembling and Testing Your J-Bot

Warning Signs:

& If the green light doesn’t come on, looks unusually dim, or flickers,

disconnect the battery pack immediately and check your wiring. Any of

these warning signs could indicate a wiring problem that could be
dangerous to your servo and/or your Javelin.

O To extend the 1life of your batteries, unplug the Dbattery

pack’s barrel plug from the BOE’s barrel jack. This will
disconnect power from the Board of Education and the servo
motors. You will need to plug the power back in when you are

ready to run your first JAVA program in Activity #3.

Activity #3: Testing PC — J-Bot Communication

The Javelin IDE is the software you’ll be using to program the J-

Bot’s Javelin on-board computer. The Javelin IDE has an
integrated debugger and Messages window in addition to the
ability to edit Java source files. You can use the Messages

window to display messages received from the Javelin and also to
send messages to the Javelin. Messages are sent to the Messages
window using the System.out.println function.

If you have used the Basic Stamp IDE then you are in for a
surprise. The Javelin IDE is much more powerful. It supports
multiple breakpoints and it is possible to single step through a
program. Global, local and stack wvariables can be examined.
Overall, the development environment 1is on par with more
sophisticated cross platform development tools.

Chapter #1: Assembling and Testing Your J-Bot

Software and First Program
This section covers the steps for:
e Installing the Javelin IDE

e Using the Javelin IDE to establish PC - Javelin communication
e Running a sample JAVA program that uses the System.out.println

method
Note: These instructions are for installing the
Javelin IDE from the Parallax CD. A copy of the
Parallax CD can be requested from
stampsinclass@parallaxinc.com. You can also get the
latest version of the Javelin IDE (It’s free!) from

the Downloads page of www.parallax.com.

Software

O If you have not already done so, load the Parallax CD into
your computer’s CDROM drive.

The Parallax CD has a browsing program called the Welcome
application that runs automatically after the CD is placed in

your computer’s CDROM drive. Figure 1.22 (a) shows the browser
as it appears the first time the CD is placed in the computer’s
drive. Figure 1.22 (b) shows the browser as it normally appears

when you run the Welcome application.

Welcome to the Parallax, Inc. Product CD-ROM - April 2000

~Welcome to the Parallax. Inc. Product CD-ROM - Apiil 2000

i;sﬂngﬁﬁ _(K 4‘?,;— b
PSR

Description
This is the "Welcome" message for

the entire CD. It explains how to use
the CD and where to find the

About Parallas CD, Kits & Products
| &ppkit-Cemetek CH1785 Modem (27947)
[AppKitCMBE80 DTHF [27315)
[4ppkitDS1302 Real Time Clock (27321)
| ApRKitDS1620 Digital Therm.[27919)
|l kit TC1298 12460 Ao (27516)
|l AppkitMAx7219 B-dig LED Driver [27914)
| AppKitSNTS1E RS-485 Comm, (27934
| - AppKitx25640 8K EEPROM (27318)
|l BASIC Stamp T Starter Kit [27205)
[l BSIC Stamp 2 Staner Kit [27203)
|l BASIC Stamp 25 Starter Kit (27206)
| BASIC Stamp Activity Brd (27905 & 27306) -
= BOE Full Kit (28102 & 28103] =™

software. source code and
information you need if you
purchased one of the kits/products
shown here |

i | Install | Back |

iliayco Fdidiidi, 1L,

widiligoliilvidoo

[Please select an item to explore.

Figure 1.22: Welcome application (a)

Kits page, and (b) Parallax page.

If the Welcome application did not run automatically,
TI here’s how to run it manually: Click the Start button
P on your Windows taskbar and select Run. When the Run

window appears, enter the CDROM drive letter, followed

by a colon, a backslash, and the name “Welcome.exe.”

Q

Chapter #1: Assembling and Testing Your J-Bot

For example, if the drive letter for your computer’s
CDROM drive is D, type in “D:\Welcome.exe.” Click the
OK button, and the Welcome application will run.

If this is not your first time running the Welcome

application, the Parallax page shown in Figure 1. (b) will
display instead of the Kits page. Skip the next checklist
instruction.

If this is your first time running the Welcome application, a
text document about the Parallax CD will automatically
display. When you’re finished reading the text document,
minimize it or drag it out of the way so that you can see the
Kits page. Click the “Back” button on the bottom right of the
kits page to get to the Parallax page.

Click the Software link.

Click the + next to the Javelins folder, then click the + next
to the Windows 95/98... folder, then <click the diskette
labeled Javelin Stamp.

Click the Install button, and select “Yes” when the Confirm
window asks you if you want to “Install selected files to
“C:\Program Files\Parallax Inc\Javelin Stamp IDE”

If additional prompts appear, answer them as directed.

After installing the software, run it by following these steps:

Q

Select Javelin Stamp IDE from the Start menu or double-click
the Javelin Stamp IDE icon on the desktop

Chapter #1: Assembling and Testing Your J-Bot

The Javelin IDE window, similar to Figure 1.23 (a), will appear
next. It will help to know the version number of the software
you are using before you check to see if the Javelin IDE is
communicating with the Javelin.

O Click the Help menu and select About..

O When the About window appears, make a note of the Version
number .

Before attempting to run your first program, it’s important to
check and make sure the Javelin IDE can communicate with the
Javelin.

O Plug the battery pack’s barrel plug back into the barrel jack
on the JSDB. Verify the green light on the Board of Education
lights up.

O Click the Project menu, and select Test Connection as shown in
Figure 1. (b).

il Javelin Stamp IDE - o x|

| File Edit Project Debug Help

O = W v & B -
Mew Open.. Save Savesl | Cut Copy Paste Undo

ﬁ"% & & Bl &

Options... | Compile Frogram Debug Resume | Help

Untitled jawva |

=
1| | »

Source | Diocumentation |

Figure 1.23: (a) Javelin IDE,

Chapter #1: Assembling and Testing Your J-Bot

| i Javelin Stamp IDE - o] x|
| File Edit| Project Debug Help

O = o il 9 B L
Mew Open Link Copy Paste LUndo

@
Help

& ‘ E; & & R

Options... | Compile Frogram Debug Resume

Untitled jaw 4% Program Ctrl+F
& Debug Cirl+D
& Besume Debug

|dentify...
Test Connection

ake Fraject
Select Praject
W Project Options. .

4 | Sawve Deskiop _»lJ
& Global Options...

OLUTTTETTIETOTT

 Source |

(b) Javelin IDE with Compile selected.

First Program

Chapter #1: Assembling and Testing Your J-Bot

Your first program will demonstrate the Javelin’s ability to
communicate with the outside world wusing the Debug Terminal.
This handy terminal can be used for two-way communication between

your PC and the Javelin.

For now, we’ll focus on programming the

Javelin to send messages to the PC.

O Type Program HelloWorld.java into the Javelin IDE as shown in

Figure 1.24 (a).

O Click Project and select Program.
as shown in Figure 1.24 (Db).

appear in a second window,

fi Javelin Stamp IDE

The Message window should

=lol x|

| File Edit Project Debug Help

MNew Open.. Save Savedsl

0O = | | 3 i)
Cut Copy Paste lUndo

K

o] ptﬂ

HelloWwarld. jawa |

import stamp.core. ¥ ;

fﬁé
Basic Hello World Program
*

* @rersion 1.0 7AI050ZF
=4

public class HellaoWorld
public static void maini() {

i

|

System.out.println ["Hello World™)

sl

{ Snurce | Documentatian |

Figure 1.24: (a) Javelin IDE

H Message From Javelin

=lo]x|

A -
Clear Copy Close I Eelals

Hello World

Chapter #1: Assembling and Testing Your J-Bot

(b) Messages window.
How “Hello world!” Works

Readers should be familiar with Java and the Java class
structure. The import statement i1s used to indicate other classes
that will be used Dby this class. In this case, the
System.out.println statement found later in the file will wuse the
System class. The following statement allows this class to be
referenced.

import stamp.core.*

Java supports two types of comments. The first is shown in the
HelloWorld.java program. In this case, /* and */ Dbracket the
comment text. The /** is a special form that allows comments in
the program to be used to generate documentation automatically.
It uses a program called javadoc that scans the file and extracts
these comments. It then takes this information and generates HTML
documentation files. Special prefixes provide a way to insert
specially formatted information such as the version number noted
by @version as shown below.

* @version 1.0 7/30/02

The other form of comments prefix the comment text with //. This
type of comment proceeds to the end of the line. If a comment is
on the next line then another // must prefix it.

The next set of lines defines the HelloWorld class and the main
method. A class that will be executed directly must have this
method defined. Most other classes will not have this method. The
main method is called when the program starts. In this case the
following line is executed:

System.out.println ("Hello World") ;

it sends the “Hello World” message to your PC by way of the
serial cable. The “Hello World” message is a text string, which
is one of several types of output data the Javelin can be
programmed to send using the System.out.println function.

Your Turn

The best way to get a better feel for what you can do with the
System.out.println function is to try the examples in the Javelin Stamp
User’s Manual.

Activity #4: Building and testing a Speaker Alarm — Intro to
Virtual Peripherals

Chapter #1: Assembling and Testing Your J-Bot

In this activity, you will program the Javelin to sound an alarm.
This uses the pulse width modulation (PWM) virtual peripheral.
The Javelin supports a number of virtual peripherals. Six may be
active at one time. Virtual peripherals are covered in the
Javelin Stamp User’s Manual. Most will be used in this book at
various points. Many can be used for different purposes. For
example, the PWM virtual peripheral will also be used to drive
the servos on the J-Bot.

The virtual peripherals supported by the Javelin are:

Background Virtual Peripherals

UART Buffered serial port support

PWM Pulse width modulation

Timer 32-bit timer

DAC 1-bit digital-to-analog
converter

Delta/Sigma Analog-to-digital converter

ADC

Foreground Virtual Peripherals
Pulse Count Count number of pulses
Pulse Width Measure the width of a pulse

Measurement

Pulse Generate a fixed length pulse
Generation

RC Timer Measure RC discharge rate

SPI master SPI communication link

Background peripherals operate in the background while the Java
program is running. This provides a limited form of multitasking.
Only six background virtual peripherals can be active at one time
although one Timer virtual peripheral will support any number of
Timer objects. The limitation is set because the Javelin memory
used for the virtual peripherals is limited and not part of the
RAM used for Javelin code and data.

The foreground virtual peripherals execute only when the
appropriate method 1is <called. For example, the pulse count
virtual peripheral will count the number of pulses seen on an
input pin for a fixed amount of time. The next instruction in the
Java application will be executed when the time has expired. Any
number of foreground peripherals can be created at one time.

Virtual peripherals are loaded into memory by creating a virtual
peripheral object. To create an object you need to reference its
class definition. This is done using the import statement. The
virtual peripherals are in the stamp.core package. The following
statement used in the Hello World program does the trick.

import stamp.core.*

Chapter #1: Assembling and Testing Your J-Bot

All the background virtual peripherals are implemented via their
own class. For example, the PWM class is used to create a pulse
width modulation object. Some of the foreground virtual
peripherals are created in the same fashion while others are
implemented in the CPU class. In the latter case, the peripherals
are accessed using static CPU class methods. For example, the
pulse count virtual peripheral is accessed using:

CPU.count (nTime, CPU.pin0O, true) ;

In this case, the parameters are the amount of time to wait, the
pin to check and the edge to count. The last value indicates the
rising edge is counted.

No Garbage Collection So Don’t Make Garbage

The Javelin does not support garbage collection which is a
feature found in most Java implementations. This means that once
an object 1is allocated it will always take up memory space even
when it can no longer be referenced. This 1is called a memory
leak.

Memory leaks may not be a problem for small applications that run
for a short amount of time because there is enough memory in the
Javelin to handle these objects. Unfortunately, this can be a
problem when a robot runs for a long period of time. Even a small
memory leak of a few bytes can cause a program to terminate after
a few minutes if the allocation occurs often.

This means that a good Javelin programming technique is not to
dereference an object especially when an object like it may be
needed later. In general, this means that all objects should be
allocated when the program starts. If objects need to be created,
used and then discarded then it is best to keep track of
discarded objects in a list and new objects of that type should
be allocated by removing an unused object from the list.

Virtual peripheral objects are like any other object and should
be managed accordingly. For this chapter, it means that
allocating a tone generator object when a tone needs to be
generated 1is not such a great idea. Instead, create one tone
generator object and use it throughout the life of the program
that uses the tone generator.

How Tone Generation Works

The small speaker that comes in the J-Bot kit will be used with
the PWM virtual peripheral to generate tones. While many tone
generators use a sine wave to drive the speaker, the Javelin can
only generate a square wave. This is not much of a problem though

and it 1is possible to include
improve the output.

Figure 1.25 shows the circuit
that is with the speaker. Any
of the Javelin’s pins can be
used but we use pin 2 for this
example. Note that pins in
Javelin Java are specified as

CPU.pin2 instead of the number 2.
Using a number can be a major

problem with many Javelin
applications because the
parameter type used 1is normally
an integer and 0 is a wvalid
integer.

One of the wires on the speaker
is connected to Vdd that is a
positive 5 wvolts. The other is
connected to pin 2. The tones
are generated by raising and
lowering the output wvalue of
pin 2. When the output is high
then no current flows through
the speaker. When the output 1is
low then current flows through
the speaker and the pin. A
single pulse does not generate
much sound because the time 1is
too short to hear. This is why
a number of pulses must be
generated large.

Chapter #1: Assembling and Testing Your J-Bot

a capacitor in the circuit to

Yidd Rl “sg

3

P15
P14
P13
P12
P11
F10
Pa
P&
F7
P&
P5
P4
FP3
P2
F1
PO
w2

Figure 1.25: Tone generator wiring.

Fiezo

L
Wssg

FZ2

Figure 1.26: Tone generator
schematic.

Instead of sending a fixed number of pulses it is easier to send

an arbitrary number of pulses for a fixed amount of time.
how our tone generator object will work.

This 1is
Timing is easy with the

Javelin so this approach is preferable.

About Time Measurements and Voltage levels

Milliseconds
and
Microseconds

ms=Ls=1x10'Ss
1000

1 us =1x10°s

1
=—————5
1,000,000

Chapter #1: Assembling and Testing Your J-Bot

Voltages and
BOE Labels

Vss =0V (ground)
Vdd =5 V (regulated)
Vin =6V (unregulated)

Throughout this student workbook, amounts of time will be
referred to 1in units of seconds (s), milliseconds (ms), and

microseconds (Us) . Seconds are abbreviated with the lower-case
letter s. So, one second is written as 1 s. Milliseconds are
abbreviated as ms, and it means one one-thousandth of a second.
One microsecond is one one-millionth of a second. The
Milliseconds and Microseconds box to the right shows these
equalities in terms of both fractions and scientific notation.

A voltage level 1is measured in volts, which is abbreviated with
an upper case V. The BOE has sockets labeled Vss, Vdd, and Vin.
Vss 1s called the system ground or reference voltage. When the
battery pack is plugged in, Vss 1is connected to 1its negative
terminal. As far as the BOE, Javelin and serial connections to
the computer are concerned, Vss 1is always 0 V. Vin 1is
unregulated 6 V, and it’s connected to the positive terminal of
the battery pack. Vdd is regulated to 5 V by the BOE’s onboard
voltage regulator, and it will be used with Vss to supply power
to circuits built on the BOE’s breadboard.

for the Activities in this workbook. Do not use the

2 Only use the Vdd sockets above the BOE’s breadboard
vVdd on the 20-pin app-mod header.

Now back to the tone generator. The PWM virtual peripheral sends
a “pulse train,” and an example of one is shown in Figure 1.27.
The Javelin can be programmed to produce this waveform using any
of its I/O pins. In this activity, we’ll start with I/O pin O.
The high and low times within the pulse train will be the same.
Other uses of the PWM virtual peripheral may use different times
for each. For example, servo control uses short high pulses and
long low times.

—>»| |€— 1.0ms —>» |€<— 1.0ms

Vdd (5 V)]]

Vss (0 V)

< 20 ms —>

Chapter #1: Assembling and Testing Your J-Bot

Figure 1.27: Pulse train.

While the name of the tone generator class might be
ToneGenerator, we will be calling it FREQOUT. This is also the
name of the command used in the Basic Stamp programming language.
We will be defining another tone generator for our multitasking
environment and use a more descriptive name there.

Pulse cycle time is what controls the tones being
Remember generated. Lower tones have a longer cycle time.
Higher tones have a shorter cycle time.

The FREQOUT class in the FREQOUT.java file extends the PWM class.
It can be found in the stamp.core package versus the Hello World
program that is in the sample program listings. This allows other
applications to easily use the class. The following is the source
code for the FREQOUT class.

The FREQOUT.java file starts out with a javadoc comment between
the /** and */ comment specifiers. This information will be
contained in the Java documentation about the FREQOUT class.
Next there is the package statement.

package stamp.core;

This indicates that the class will be part of the stamp.core
package. It means that the FREQOUT class can use any other
classes in the package including the PWM class which it extends.
This is the next statement:

public class FREQOUT extends PWM ({

Within the outer brackets 1is the class definition. The FREQOUT
class supports all the PWM methods so a FREQOUT object can be
used like a PWM object. The FREQOUT class also defines its own
set of methods in addition to using the methods of the PWM class.
The entire list of PWM methods can be found in the online help.
We discuss only those used with the FREQOUT class.

Note that each method has a javadoc comment (/** to */) in from
of it. This 1is how the online documentation 1is created. The
general format is a short description followed by the parameters
to the method and then a description of a return value 1if the
method returns a wvalue. The parameter comments are prefixed by
@param while the return values are described using @returns.

Chapter #1: Assembling and Testing Your J-Bot

The first method is the FREQOUT constructor. It does not return a
value. Its parameter is the pin to be used for output. It calls
the super method which is the constructor for its superclass, the
PWM. This 1is the usual constructor used with the FREQOUT class
because it does not start sending out pulses on the designated
pin until subsequent methods are called.

The next method 1is also a constructor that wuses the same
arguments as the PWM constructor. If this constructor is used the
PWM virtual ©peripheral object will start sending pulses
immediately.

Next we get to a useful method that can be called after a FREQOUT
object 1s created. This 1is the setFrequency method. It takes one
parameter, the frequency in hertz. It uses this wvalue to
calculate the cycle time. There is a check for a zero parameter
value to prevent a divide by zero error then the halfCycleTime 1is
set. This 1is a reasonable alternative to use the more complex
catch/throw error handling semantics of Java. The cycle time 1is
then used with the PWM update method. Note that the method can be
called without an object reference since it the PWM object is
part of a FREQOUT object.

Setting the frequency will only cause a tone to be generated if
the PWM object within FREQOUT object is running. This is done
using the PWM start method. It 1is possible to use the FREQOUT
object using this combination but it is easier to use the next
method, fregout.

The freqout method takes two parameters. The first is the
frequency that will be passed to the setFrequency method call. The
PWM virtual peripheral is then started. This generates a series
of pulses until the stop method 1is called. This will Dbe time
milliseconds later Dbecause the CPU.delay method is called. This
method uses the delay virtual peripheral that is built into the
CPU class that is also part of the stamp.core package.

This class can be compiled by opening it in the Javelin IDE and
then selecting Project menu and then the Compile item. This
generates the FREQOUT.class file. This is already done when the
class was installed since it is part of the standard package so
we don’t have to do it here. Instead we can move onto the sample
program that utilizes the FREQOUT class, TestFREQOUT.java.

This is a short program because most of the work is being done by
the PWM and FREQOUT classes. The import statement is included so
the PWM and FREQOUT classes 1in the stamp.core package are
available. The System class 1s also available. There 1is the
usual javadoc comment at the beginning of the program followed by

Chapter #1: Assembling and Testing Your J-Bot

the TestFREQOUT class definition. Note that this class does not
extend another class. Also, unlike the PWM class, there is no
constructor method, only the main method which is defined as
public static void. The inclusion of the static keyword means that
this 1is a class method versus an object method wused in the
FREQOUT class. This particular format is necessary for any main
application such as the Hello World application discussed
earlier.

The main method creates a new FREQOUT object and the reference to
it 1is called freqout. The names can be the same because Java is
case sensitive otherwise the object reference variable would
conflict with the class name.

In any case, we now have a FREQOUT object that is associated with
pin 0. The System.out.println will display the text string in the
message window and then the program will cause two different
short tones to be generated. The program then ends.

The program can be run again using the Javelin IDE or it will run
again if the reset button on the BOE board is pressed.

In general, this is how applications will be constructed in this
book. The classes for the objects needed for an application will
be defined first. The main program file with a main method will be
defined last. This program can then be run to test the other
classes. For now, we wrap up this first exercise.

Chapter #1: Assembling and Testing Your J-Bot

Summary Congratulations on the construction and
operation of your J-Bot! Through
and : : ,

)) following the procedures in this chapter,
Applicati you may have had your first taste of
ons testing and troubleshooting at the system

and subsystem levels. Lots of other

essential topics were covered that will
get used and re-used throughout this text. For example, the
Message window will be your best and most used tool for testing
and troubleshooting each circuit as well as many upcoming
programs.

The JAVA programming language was introduced along with some
example programs to get you started with the Message window and
with the J-Bot. The Javelin also supports more advanced
debugging features like breakpoints and single stepping. These
are covered in more detail in the Javelin Stamp User’s Manual.
Check it out 1if you have not already wused these debugging
features.

Real World Example

From the space shuttle all the way down to the J-Bot, isolating
and testing subsystems during each phase of development 1is
critical to make sure the whole thing runs when 1it’s put
together. More importantly, isolating and testing each subsystem
minimizes the time spent on, and difficulty level of,
troubleshooting. At the beginning of the chapter, the problems
associated with not iteratively developing and testing were
discussed. Imagine if nobody tested the Space Shuttle’s
subsystems before putting it together. It would take hundreds of
years for NASA to get all their problems sorted out!

Whether it’s robotics competitions, product development, or space
programs, subsystem and system level development and testing is
the way to avoid wunnecessary delays when working from the
beginning to the end of a project. Especially in product
development, groups of engineers develop systems and subsystems.
Often, it'’s not until late in the design cycle that the system
level testing and system integration occurs. Sometimes, all a
design team knows are the input and output (I/0) requirements of
their particular module in the project. Regardless, engineering
design teams still have to iteratively develop, simulate (which
we did not do here), and test the subsystems within the project
module they are working on.

J-Bot Application

One item you’ll investigate in the Questions and Projects section
is what happens when the wiring of the servos gets changed. How

Chapter #1: Assembling and Testing Your J-Bot

does this get handled? It involves more changes than you might

think. For example, if you were to unplug a servo from servo
port 12 and then plug it into servo port 15, you can’t Jjust
change the drawing that shows what port to plug it into. The

schematic, which is the preferred method of communicating wiring
information, has to be changed, but so do all the program
listings. At some point you might want to add more servos to
function as grippers. Although a gripper design is not included
in this text, Questions and Projects has exercises that will
prepare you for connecting servos to different ports.

Chapter #1: Assembling and Testing Your J-Bot

Questions and
Projects

Questions
1. Explain the two things the System.out.println command does.

2. What are the different types of output data that can be
used with the System.out.println command? Hint: ©Use the
Javelin Manual to answer this question.

3. The pulse widths in the example program are generated based
upon a desired frequency. What happens if the frequency
computation is changed?

4. Why did the FREQOUT class extend the PWM class?

Exercises

1. Add a filter <capacitor across the speaker. Does this
improve the sound quality?

2. Determine the frequency range of useful tones. Tones at the
lower and upper end of the spectrum may not be rendered as
well as those in the middle of the spectrum.

3. Implement a NewFregout class that provides the same tone
generation capability as FREQOUT but does not extend the
PWM class. Note, the NewFregout class does not have to
implement all the PWM methods, only the FREQOUT setFrequency
and fregout methods.

Hint: Allocate a PWM object and assign it to an object
variable.

Projects

1. The pulse width generation in the examples 1is based on
frequency but must musical instruments generate only a
fixed number of frequencies designated as notes. Create an
application that uses logical note names to generate tones.

Hint: Retain and extend the PWM tone generator class. Use
the Java switch statement to determine the note to be played
and its matching frequency.

Chapter #1: Assembling and Testing Your J-Bot

