

“C+” 3.0

Programmer’s Manual
Document Version 1.0

March 2005

Miro Samek, Ph.D.

quantum Leaps™, LLC
www.quantum-leaps.com

 Copyright © 2002-2005 quantum Leaps
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with this
copyright notice being preserved. A copy of the license is available from
the Free Software Foundation at: www.gnu.org/copyleft/fdl.html.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com

Table of Contents
1 Introduction ... 1

1.1 Licensing ... 1
1.2 Contact Information .. 2

2 Getting Started with “C+” .. 2
2.1 Installation .. 2
2.2 Borland Turbo C++ 1.01.. 3
2.3 GNU Make.. 3
2.4 Compiling the “C+” Library... 4
2.5 Building the Test Application... 4
2.6 Running the Test .. 4

3 “C+” Overview ... 5
3.1 Encapsulation... 5
3.2 Inheritance .. 6
3.3 Polymorphism .. 8
3.4 Costs and Overhead .. 13

4 An Annotated Example .. 15
4.1 Subclassing Shape .. 17
4.2 Executing the Test .. 18

5 Summary .. 19
6 References... 20

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 1 of 20

C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, it blows away your whole leg.
—Bjarne Stroustrup

1 Introduction
Object-oriented programming (OOP) is not the use of a particular language or a tool. It is
rather a way of design based on the three fundamental design meta-patterns:

• Encapsulation—the ability to package data and functions into classes

• Inheritance—the ability to define new classes based on existing classes in order to obtain
code reuse and code organization

• Polymorphism—the ability to substitute objects of matching interfaces for one another at
runtime

Although these meta-patterns are traditionally associated with object-oriented languages, such
as Smalltalk, C++, or Java, you can implement them in almost any programming language in-
cluding C1 and even assembly2. Indeed, as Frederick Brooks [Brooks 95] observes:

… any of these disciplines [object-oriented meta-patterns] can be had without taking the
whole Smalltalk or C++ package—many of them predated object-oriented technology.

In fact, virtually any larger software system, regardless of implementation language, uses the
meta-patterns of “Abstraction”, “Inheritance”, or “Polymorphism” in some form or another.
Easy to identify examples include OSF/Motif (the popular, object-oriented graphical user inter-
face), and Java Native Interface, both of which are implemented in C. You don’t need to look
far to find many more such examples.

OOP in an object-oriented language is straightforward, because such a language natively sup-
ports the three fundamental meta-patterns. However, you can also implement these patterns in
other languages, such as C, as sets of conventions and idioms. I call my set of such conven-
tions and idioms “C+” [Samek 02]. The main objective of “C+” is to achieve performance and
maintainability equivalent to the C++ object model. In fact, “C+” is, to a large degree, an ex-
plicit re-implementation of the C++ object model, as described, for example in [Lippman 96].

1.1 Licensing

This software may be distributed and modified under the terms of the BSD open source license,
which is provided below.

Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

1 The original cfront C++ compiler translated C++ into C, which is perhaps the most convincing argument
that all C++ constructs can be in fact implemented in plain C.
2 For example, Borland Turbo Assembler v4.0 [Borland 93] directly supports abstraction, inheritance, and
polymorphism and therefore can be considered an object-oriented language.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 2 of 20

Neither the name of the Quantum Leaps nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL QUANTUM LEAPS OR OTHER CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NOTE: Not all products of Quantum Leaps are offered under the BSD open source license.
In fact, most software available from Quantum Leaps is licensed under the terms of the
GNU General Public License (GPL) as well as commercially under the dual-licensing business
model. Please refer to Quantum Leaps licensing information available online.

1.2 Contact Information

Quantum Leaps Web site: http://www.quantum-leaps.com
Quantum Leaps products: http://www.quantum-leaps.com/products
Quantum Leaps licensing: http://www.quantum-leaps.com/licensing
e-mail: sales@quatnum-leaps.com

2 Getting Started with “C+”

2.1 Installation

“C+” is distributed in a ZIP archive, that can be installed (unzipped) into any folder. After the
installation, you should end up with the following files and directories (not all files are shown):

<cplus/> - directory for “C+”
 |
 +-cplus_manual.pdf - this file
 |
 +-cplus/ - “C+” directory
 | +-include/ - “C+” public header files
 | +-source/ - “C+” implementation
 | |
 | +-dosb1/ - “C+” port to DOS with Borland Turbo C++ 1.01
 | +-Makefile - GNU make file to build “C+” library
 | +-cplus.mak - Borland Turbo C++ 1.01 make file to build “C+” library
 | +-release/ - contains cplus.lib (release version)
 |
 |
 +-cplustst/ - Shapes sample application to test “C+”
 | +-include/ - platform-independent application header files
 | +-source/ - platform-independent application implementation
 | +-dosb1/ - port of the application to DOS with Borland Turbo C++ 1.01

mailto:sales@quatnum-leaps.com

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 3 of 20

 | +-Makefile - GNU make file to build cplustst executable
 | +-cplus.mak - Borland Turbo C++ 1.01 make file to build cplustst executable
 | +-link.rsp - Turbo Linker response file
 | +-release/ - contains cplustst.exe (DOS version)

Listing 1 “C+” distribution directory and file structure

2.2 Borland Turbo C++ 1.01

Borland recently donated its legacy Borland Turbo C++ 1.01 compiler for free downloads from
the Borland "Museum" (http://bdn.borland.com/article/0,1410,21751,00.html). In addition,
Borland provides a scanned image of the original "Turbo C++ User's Guide" in the PDF format
(http://www.borland.com/cbuilder/tsuite/). The User's Guide is for Borland C++ v3.0, but still
largely applies to version 1.01.

The free Borland Turbo C++ 1.01 suite is a “good enough” tool for evaluating, learning, and
experimenting with “C+ code and this “C+ Programmer’s Manual” provides support for Turbo
C++ 1.01.

To install Borland Turbo C++ 1.01, unzip the TCPP101.ZIP archive from the Borland “Museum”
onto your hard drive. Run the INSTALL.EXE program and follow the installation instructions to
install the software. For compatibility with the provided make files, you should install the com-
piler into the directory C:\tools\tcpp101. If you choose a different directory, you’ll need to
modify the make files and the linker response files provided in the “C+” distribution.

2.3 GNU Make

This software is distributed with makefiles conforming to the GNU make standard, which in turn
conforms to Section 6.2 of IEEE Standard 1003.2-1992 (POSIX.2). The GNU make utility is
freely available for Windows and UNIX™ platforms, most notably Linux™.

If you work on Windows, you basically have two choices for using GNU make. The first one is
with Cygwin from Red Hat, which is a rather heavyweight UNIX emulation for Win32. The other,
lightweight version of GNU make is available from the MinGW project (Minimal GNU for Win-
dows), which is a native implementation of POSIX API for Win32. The basic MinGW runtime has
been placed in the public domain (see MinGW licensing terms at http://www.mingw.org/-
licensing.shtml), while utilities such as GNU make are licensed under the terms of the GPL.

You can download the MinGW GNU make either directly from the MinGW download site
(http://www.mingw.org/download.shtml), or from Quantum Leaps mirror at http://-
www.quantum-leaps.com/downloads/tools.htm#GNUmake). The code described here has been
actually tested only with the MinGW GNU make and might not work correctly with the Cygwin
GNU make.

NOTE: The mingw32-make.exe make invoking DOS tools, such as the Borland Turbo C++
1.01 compiler, has been tested on Windows XP. However, on earlier versions of Windows
(such as 98/ME), the mingw32-make.exe make utility didn’t work correctly with the 16-bit
DOS tools. Therefore, the QEP/C distribution includes both GNU Makefiles and *.mak files
for the make utility shipping with Borland Turbo C++ 1.01.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 4 of 20

2.4 Compiling the “C+” Library

“C+”+ is deployed as a static library that you link with your application. To build the “C+” li-
brary with Borland Turbo C++ 1.01, you open a console window on a Windows PC, change di-
rectory to <cplus>\cplus\dosb1, and type at the command prompt the following command:

mingw32-make.exe

or

C:\tools\tcpp101\bin\make –fcplus.mak

This command line and the make file Makefile (cplus.mak) assume that Borland Turbo C++
1.01 has been installed in the directory C:\tools\tcpp101. You need to adjust both if you’ve in-
stalled Turbo C++ 1.01 into a different directory.

The make process should produce the “C+” library in the location: <cplus>\cplus\dosb1\re-
lease\cplus.lib.

2.5 Building the Test Application

This “C+” distribution comes with the classical “Shapes” example. The Turbo C++ 1.01 make
file for the test application is located in <cplus>\cplustst\dosb1\cplustst.mak. You invoke the
make file from the <cplus>\cplustst\dosb1 directory through the following command:

mingw32-make.exe

or

C:\tools\tcpp101\bin\make –fcplustst.mak

This command line, the make file Makefile (cplus.mak), and the Turbo Linker response file
link.rsp assume that Borland Turbo C++ 1.01 has been installed in the directory
C:\tools\tcpp101. You need to adjust all these elements if you’ve installed Turbo C++ 1.01 into
a different directory.

2.6 Running the Test

The latter make process should produce the test application in the location:
<cplus>\cplustst\dosb1\release\cplustst.exe.

NOTE: the executable is provided as part of the build, so even if you don’t install Borland
Turbo C++ 1.01 and don’t build the application from source files, you still can run the ex-
ecutable.

You can run this executable from any Windows PC. The application outputs the current status of
each dining philosopher to the console. You can run this executable from any command prompt
by typing:

release\cplustst.exe

Here is the expected output generated by the test application:

release\cplustst.exe
name="Circle", area()=3.14, scale(2), name="Circle", area()=12.57,

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 5 of 20

name="Rectangle-0", area()=0.00, scale(2), name="Rectangle-0", area()=0.00,
name="Rectangle-1", area()=1.00, scale(2), name="Rectangle-1", area()=4.00,
name="Rectangle-2", area()=2.00, scale(2), name="Rectangle-2", area()=8.00,
name="Rectangle-3", area()=3.00, scale(2), name="Rectangle-3", area()=12.00,

The internals of the test application will be discussed later in this manual.

3 “C+” Overview

3.1 Encapsulation

As a C programmer, you must have already used abstract data types (ADTs). Take for example
the family of functions fopen(), fclose(), fread(), fwrite(), fseek(), ftell(), and so on, from the
standard C run-time library. All these functions operate on objects of type FILE. The FILE ADT is
encapsulated so that the clients have no need to access the FILE’s internal attributes (have
you ever looked at what's inside the FILE structure?). The only interface to FILE is through
functions (methods), such as fopen(), fclose(), fread(), fwrite(), fseek(), ftell(), and so on. All
these functions take a pointer to a FILE object as one of the arguments. You can think of the
FILE structure and the associated functions that operate on it as the FILE class.

Let’s quickly summarize the way in which the C run-time library implements the FILE class:

• Attributes of the class are defined with a C struct (the FILE struct).

• Methods of the class are defined as C functions. Each function takes a pointer to the a
tribute structure (FILE*) as an argument. Class methods typically follow a common na
convention (e.g., all FILE class methods start with f).

t-
ming

• Special methods are used for initializing and cleaning up the attribute structure (fopen()
and fclose(), respectively). These methods play the roles of class constructor and destruc-
tor.

 1: typedef struct StringTag String;
 2: struct StringTag {
 3: char *buf__; /* private character buffer */
 4: };
 5:
 6: void String_ctor1(String *me, char const *str); /* public Ctor1 */
 7: void String_ctor2(String *me, String *other); /* public Ctor2 */
 8: void String_xtor(String *me); /* public Xtor */
 9: char const *String_toChar(String *me); /* to-char conversion */

Listing 2 Declaration of String class.

Listing 2 declares String class and demonstrates how a coding convention can strengthen the
association between the attributes and methods. Each class method starts with the common
class prefix (String) and takes the pointer to the attribute structure (String *) as the first ar-
gument. In C+, this argument is consistently called me. In C++, me corresponds to the implicit
this pointer. In C, the pointer must be explicit. I could have named that argument this in the
analogy to C++ (which, in fact, was my first guess), but such a choice precludes using C
classes in C++ because this is reserved in C++. The need for mixing C with C++ can easily
arise when you want to share common code between C and C++ projects. Besides, me is
shorter than this, and you will find yourself using many me->... constructs.

The next aspect that Listing 2 addresses with a coding convention is access control. In C, you
cannot restrict the level of access permitted to a particular attribute or a method. All you can

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q

do is convey the intended level of protection in the name of an attribute or a method (which is
typically better than merely indicating the intended level of access in a comment at the declara-
tion point). This way, any unintentional access to class members is easy to detect during a code
review. Most OO designs distinguish the following three levels of protection:

• Private—accessible only from within the class.

• Protected—accessible only by the class and its subclasses.

• Public—accessible to anyone (the default in C).

C+ convention is that the double-underscore suffix (foo__) indicates private attributes, and a
single-underscore suffix (foo_, Foo_doSomething_()) indicates protected members. Public mem-
bers do not require underscores (foo, Foo_doSomething()). You typically don’t need to include
private methods in the class interface (in the .H file), because you can hide such methods com-
pletely in the class implementation file (define them as static in the .C file).

Optionally, a class might provide one or more constructors and a destructor for initialization and
cleanup, respectively. To distinguish these special methods, C+ uses base names ctor
(Foo_ctor, Foo_ctor1) for constructors and xtor (Foo_xtor) for destructors. A C+ constructor
takes the me argument to allow initialization of externally pre-allocated memory. The destructor
takes only the me argument and returns void.

As in C++, you can allocate objects statically, dynamically (on the heap), or automatically (on
the stack). However, because of C syntax limitations, generally you can’t initialize objects at
the definition point. For static objects, you can’t invoke a constructor at all, because function
calls aren't permitted in a static initializer. Automatic objects (objects allocated on the stack)
must all be defined at the beginning of a block (just after the opening ‘{’ brace). At this point,
you generally do not have enough initialization information to call the appropriate constructor.
Therefore, you often have to separate object allocation from initialization. Some objects might
require destruction, and explicitly calling destructors for all objects when they become obsolete
or go out of scope is a good programming practice. As described in Section 3.3 later in this
manual, destructors can be polymorphic.

Exercise 1 Define three preprocessor macros—CLASS(class_), METHODS, and END_CLASS
— so that the declaration of class String from Listing 2 can be rewritten as

CLASS(String)
 char *buf__; /* private character buffer */
METHODS
 void String_ctor1(String *me, char const *str); /* public Ctor1 */
 void String_ctor2(String *me, String *other); /* public Ctor2 */
 void String_xtor(String *me); /* public Xtor */
 char const *String_toChar(String *me); /* to-char conversion */
END_CLASS

3.2 Inheritance

Inheritance is a mechanism that defines new and more specialized classes in terms of existing
classes. When a child class (subclass) derives from a parent class (superclass), the subclass
then includes the definitions of all the attributes and methods that the superclass defines. Usu-
ally, the subclass extends the superclass by adding new attributes and methods. Objects that
are instances of the subclass contain all data defined by both the subclass and its ancestor
classes, and can perform all operations defined by both the subclass and its ancestor classes.

 Copyright © 2002-2005 quantum uantum-leaps.com 6 of 20

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 7 of 20

Example of Inheritance in C

Seasoned C programmers often intuitively arrive at designs that use inheritance. For ex-
ample, in the original µC/OS Real-Time Kernel, Jean Labrosse defines a type OS_EVENT
[Labrosse 92]. This abstraction captures a notion of an operating system event, such as
a semaphore, a mailbox, or a message queue. The µC/OS clients never deal with
OS_EVENT directly, because it is an abstract concept. Such an abstract class captures
the commonality among inter-task synchronization mechanisms and enables uniform
treatment of all operating system events.

The subsequent versions of µC/OS provide an interesting case study in the evolution of
the OS_EVENT concept. In the original version (v1.10), no OS_EVENT methods exist, but
rather the author replicates identical code for semaphores, mailboxes, and message
queues. In MicroC/OS-II [Labrosse 99], OS_EVENT is fully factored out as a separate en-
tity (class) with a constructor (OSEventWaitListInit()) and methods (OSEventTaskRdy(),
OSEventTaskWait(), OSEventTaskTO()). The methods are subsequently reused in all spe-
cializations of OS_EVENT, such as semaphores, mailboxes, and message queues. This re-
use significantly simplifies the code and makes it easier to port to different microproces-
sor architectures.

You can implement inheritance in C in a number of ways. The objective is to embed the parent
attributes in the child so that you can invoke the parent's methods for the child instances as
well. One of the techniques is to use the C preprocessor to define class attributes as a macro
[Van Sickle 97]. Subclasses invoke the parent class attribute macro when defining their own
attributes. C+ implements single inheritance by literally embedding the parent-class attribute
structure as the first member of the child-class structure. As shown in Figure 1(c), this ar-
rangement lets you treat any pointer to the Child class as a pointer to the Parent class. In par-
ticular, you can always safely cast (upcast) a Child pointer to the Parent and pass such a
pointer to any C function that is expecting a pointer to the Parent class. Consequently, all
methods designed for the Parent class are automatically available to any Child class—they are
inherited.

(a) (b)Parent

Child

(c)

Attributes
added by

Child

Attributes
inherited from

Parent

mestruct Parent {
 . . .
};

struct Child {
 struct Parent super_;
 . . .
};

Figure 1 UML class diagram showing the inheritance relationship between Child
and Parent classes (a); Declaration of Child structure with embedded Parent as the
first member super (b); Memory alignment of a Child object (c).

This simple approach works only for single inheritance (one parent class) because a class with
many parent classes cannot align attributes with multiple parents.

The C+ convention is to name the inherited protected attribute super_ (a loan from Java) to
make the inheritance relationship between classes more explicit. The super member provides a
handle to access the superclass' attributes. For example, a grandchild class can access its
grandparent's attribute either as foo as: me->super_.super_.foo, or by direct upcasting:
((Grandparent *)me)->foo.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q

Inheritance adds responsibilities to class constructors and destructors. Because each child ob-
ject contains an embedded parent object, the child constructor must initialize the portion con-
trolled by the parent through an explicit call to the parent’s constructor. To avoid potential de-
pendencies, the superclass constructor should be called before initializing the attributes. Exactly
the opposite holds true for the destructor. The inherited portion should be destroyed as the last
step.

Exercise 2 Define preprocessor macro SUBCLASS(class_, super_), so that a class Circle
derived from class Shape can be defined as follows:

 1: #include "shape.h"
 2:
 3: SUBCLASS(Circle, Shape) /* Class Circle extends Shape */
 4: double r__; /* private radius */
 5: METHODS
 6: void Circle_ctor(Circle *me, char *name, double r);
 7: double Circle_area(Circle *me);
 8: void Circle_scale(Circle *me, double mag);
 9: END_CLASS

Exercise 3 Provide definition of the Circle class constructor Circle_ctor(). Hint:
don’t forget to explicitly construct the superclass Shape.

3.3 Polymorphism

 Copyright © 2002-2005 quantum uantum-leaps.com 8 of 20

Subclasses often have a need to redefine and refine
methods inherited from their ancestor classes. More
specifically, a subclass often needs to override behav-
ior defined by its ancestor class by providing a
different implementation of one or more inherited
methods. For this process to work, the association
between an object and its methods cannot be
established at compile time1. Instead, the binding
must happen at run time and is therefore called
dynamic binding. Dynamic binding lets you
substitute objects with identical interfaces (objects
derived from a common superclass) for each other at
run time. This substitutability is called polymor-
phism.

IRQ1()
IRQ2()
IRQ3()
. . .

«abstract»
GenericPC

YourPC MyPC

Figure 2 YourPC and MyPC as sub-
classes of GenericPC class

Perhaps the best way to appreciate dynamic binding
and polymorphism is to look at some real-life exam-
ples. You can find polymorphism in many systems (not
necessarily object-oriented) often disguised and called
hooks or callbacks.

As the first example, let’s examine dynamic binding implemented in hardware. Consider inter-
rupt vectoring of a typical microprocessor system, for example, an x86-based PC. In the PC,

1 Some subclasses might not even exist yet at the time the superclass is compiled.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps ww

the programmable interrupt controller provides for the run-time association between the inter-
rupt request (IRQ) and the interrupt service routine (ISR). Interrupt handling is polymorphic,
because all IRQs are handled uniformly in hardware. Concrete PCs (subclasses of the GenericPC
class), such as YourPC and MyPC (see Figure 2), can react quite differently to the same IRQ. For
example, IRQ4 can cause YourPC to fetch a byte from COM1 and MyPC to output a byte to LPT2.

As another example of a system using polymorphism, consider the MS-DOS device driver de-
sign shown in Figure . MS-DOS specifies two abstract types of devices: character and block. A
character device performs input and output by a single character at a time. Specific character
devices include the keyboard, screen, serial port, and parallel port. A block device performs in-
put and output in structured pieces, or blocks. Specific block devices include disk drives and
other mass storage devices.

StrategyRoutine()
InterruptRoutine()

dhLink
dhAttributes
dhStrategy
dhInterrupt
dhNameOrUnits

«abstract»
MS_DOS_DeviceDriver

KeyboardDriver SerialDriver

«abstract»
CharacterDeviceDriver

«abstract»
BlockDeviceDriver

FloppyDriver IDE_Driver

Figure 3 MS-DOS device-driver taxonomy.

 Copyright © 2002-2005 quantum

The abstract classes MS-DOS_Device_Driver, CharacterDeviceDriver, and BlockDeviceDriver from
Figure 3 are specified only in the MS-DOS documentation, rather than in any programming lan-
guage. Still, MS-DOS drivers clearly use the polymorphism design pattern. As long as device
drivers comply with the specification (which is to extend one of the two abstract device driver
classes), they are substitutable for one another and are treated uniformly by the operating sys-
tem.

MS-DOS itself can be viewed as a abstract superclass
for specific implementations, such as MS-DOS 5.0 or
MS-DOS 6.22 (see Figure 4). The Interrupt-21H func-
tions provide the dynamic-binding mechanism to in-
voke operating system services from applications.
Among others, the dynamic binding allows you to
change the implementation of MS-DOS (for example,
upgrading from MS-DOS 5.0 to MS-DOS 6.22)
without affecting the MS-DOS applications (even
without reinstalling them).

As you probably noticed in the previous examples,
dynamic binding always involves a level of indirection
in method invocation. In C, this indirection can be
provided by function pointers grouped into virtual
tables (VTABLEs), see Figure 5. The function pointer
stored in the VTABLE represents a method (virtual
Int21Function00h()
Int21Function01h()
Int21Function02h()
. . .

«abstract»
MS_DOS

MS_DOS_5.0 MS_DOS_6.22

Figure 4 Dynamic binding in
MS-DOS implemented with the
Interrupt-21H functions.
w.q uantum-leaps.com 9 of 20

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q

function in C++), which a subclass can override. All instances of a given class have a pointer to
that class’ VTABLE (exactly one VTABLE per class exists). This pointer is called the virtual
pointer (VPTR). Dynamic binding is a two-step process of (1) de-referencing the VPTR to get to
the VTABLE, and (2) de-referencing the desired function pointer to invoke the specific imple-
mentation.

super__
xtor__

theObjectVTABLE

NULL

super__
xtor__
methodA

theFooVTABLE

super__
xtor__
methodA

theBarVTABLE

vptr__

ObjectFoo1

vptr__

ObjectFoo2

vptr__

ObjectFoo3

vptr__

ObjectBar1

vptr__

ObjectBar2

ObjectAbstract() {
 ASSERT(0);
}

FooXtor(Foo *me) {
 . . .
 ObjectXtor(me);
}

FooMethodA(Foo *me, ...) {
 . . .
}

BarXtor(Foo *me) {
 . . .
 FooXtor(me);
}

BarMethodA(Bar *me, ...) {
 . . .
}

Figure 5 Run-time relations between objects, VTABLEs, and method implementa-
tions.

Each object involved in dynamic binding must store the VPTR to its class’ VTABLE. One way to
enforce the availability of the VPTR is to require that all classes using polymorphism must di-
rectly or indirectly derive from a common abstract base class Object (again a loaner from Java).
The VTABLEs themselves require a separate and parallel class hierarchy, because the virtual
methods need to be inherited, as well as the attributes. The root abstract base class for the
VTABLE hierarchy is the ObjectVTABLE class. Listing 2 provides the C+ declaration of these two
base classes

 1: CLASS(Object)
 2: struct ObjectVTABLETag *vptr__; /* private virtual pointer */
 3: METHODS
 4: /* protected constructor 'inline'... */
 5: #define Object_ctor_(me_) ((me_)->vptr__ = &CP_ObjectVTABLE, (me_))
 6:
 7: /* protected destructor 'inline'... */
 8: #define Object_xtor_(me_) ((void)0)
 9:
10: /* dummy implementation for abstract methods */
11: void Object_abstract(void);
12:
13: /* Run Time Type Identification (RTTI) */
14: #define Object_IS_KIND_OF(me_, class_) \
15: Object_isKindOf__((Object *)(me_), &CP_##class_##VTABLE)

 Copyright © 2002-2005 quantum uantum-leaps.com 10 of 20

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 11 of 20

16:
17: int Object_isKindOf__(Object const *me, void const *vtable);
18: END_CLASS
19:
20: CLASS(ObjectVTABLE)
21: ObjectVTABLE *super__; /* pointer to superclass' VTBL */
22: void (*xtor)(Object *); /* public virtual destructor */
23: METHODS
24: END_CLASS
25:
26: extern ObjectVTABLE CP_ObjectVTABLE; /* Object class descriptor */

Listing 2 Declaration of Object and ObjectVTABLE abstract base classes.

The Object class is declared in Listing 2, lines 1–18. The Object‘s only attribute is the private
virtual pointer vptr__ (line 2). The Object class is abstract, which means that it is not intended
to be instantiated (but only inherited from), and therefore protects its constructor Ob-
ject_ctor_() and destructor Object_xtor_(). Other facilities supplied by the Object class include
a dummy implementation Object_abstract() (line 11) to be used for pure virtual methods, and
a simple run-time type identification (RTTI), defined as a macro Object_IS_KIND_OF() (lines 14–
15).

The purpose of class ObjectVTABLE (Listing 2, lines 20–26) is to provide an abstract base class
for the derivation of VTABLEs. The first private attribute super__ (line 21) is a pointer to the su-
perclass’ VTABLE. You can identify this pointer with the arrow pointing from the subclass to the
superclass in the UML class diagram1. The second attribute (line 22) is the virtual destructor,
which is inherited subsequently by all subclasses of ObjectVTABLE. Consistently with the C+
convention, the destructor is defined as a pointer to a function that takes only the me pointer
and returns void. VTABLE is a Singleton2, which means that there should be exactly one in-
stance of the VTABLE for any given class. This sole instance for any given class <Class> is
called the<Class>VTABLE. Listing 2 declares the VTABLE instance for the Object class (CP_Ob-
jectVTABLE) in line 26.

The hierarchies of the attribute classes (rooted in the Object class) and VTABLEs (rooted in the
ObjectVTABLE class) must be exactly parallel. The following macro SUBCLASS() encapsulates the
construction of a subclass (see Exercise 4)

#define SUBCLASS(class_, superclass_) \
 CLASS(class_) \
 superclass_ super_;

Similarly, constructing the VTABLE hierarchy and declaring the VTABLE singletons can be en-
capsulated in the macro VTABLE()

#define VTABLE(class_, superclass_) }; \
 typedef struct class_##VTABLETag class_##VTABLE; \
 extern class_##VTABLE CP_##class_##VTABLE; \
 struct class_##VTABLETag { \
 superclass_##VTABLE super_;

The VTABLE Singletons, as all other objects, need to be initialized through their own construc-
tors. Preprocessor macros can automate the generation of these constructors. The body of the
VTABLE constructor can be broken into two parts: (1) copying the inherited VTABLE and (2) ini-

1 That is why the arrow denoting inheritance points from the subclass to the superclass.
2 I use here the name Singleton as the Singleton design pattern [Gamma+ 95] just to denote a class with
the single instance, not necessarily to strictly apply the pattern.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 12 of 20

tializing or overriding the chosen function pointers. The first step is generated automatically by
the macro BEGIN_VTABLE()

 1: #define BEGIN_VTABLE(class_, superclass_) \
 2: class_##VTABLE CP_##class_##VTABLE; \
 3: static ObjectVTABLE *class_##VTABLECtor(class_ *t) { \
 4: class_##VTABLE *me = &CP_##class_##VTABLE; \
 5: *(superclass_##VTABLE *)me = \
 6: *(superclass_##VTABLE *)((Object *)t)->vptr__;

Listing 3 BEGIN_VTABLE() macro.

This macro first defines the object, which is the<Class>VTABLE instance (Listing 3, line 2), and
then starts defining the static VTABLE constructor (line 3). The first part of the constructor
makes a copy (copy-by-value) of the inherited VTABLE (lines 5-6), which guarantees that add-
ing new virtual functions to the superclass won’t break subclasses. Consequently, no manual
changes to the subclasses are required after adding new attributes or methods to the super-
class (you only have to recompile the subclass code). Unless a given class explicitly chooses to
override the superclass behavior, the inherited or copied virtual functions are adequate. Of
course, if a class adds its own virtual functions, the corresponding function pointers are not be
initialized during this step.

The second step of binding virtual functions to their implementation is facilitated by the macro
VMETHOD()

#define VMETHOD(class_, meth_) ((class_##VTABLE *)me)->meth_

This macro is an l-value, and its intended use is to assign to it the appropriate function pointer,
for example

VMETHOD(Object, xtor) = (void (*)(Object *))&Shape_xtor;

Generally, in order to avoid compiler warnings, you must explicitly upcast the function pointer
to take the superclass me pointer (Object* in this case) rather than subclass pointer (Shape* in
this case).

You should initialize all function pointers in the VTABLE, even if you intended some methods to
be abstract (pure virtual in C++) and don’t want to provide the implementation. The Object
base class offers the Object_abstract() dummy implementation specifically for initializing the
abstract methods. An attempt to execute Object_abstract()aborts the execution (through a
failing assertion), which helps detect unimplemented abstract methods at run time.

The attribute and virtual-method class hierarchies can grow independently. However, they are
coupled together by the VPTR attribute, which needs to be initialized to point to the appropriate
VTABLE Singleton, as shown in Figure 5. The appropriate place to set up this pointer is, of
course, the constructor. The VPTR initialization must be done after the superclass constructor
call because the superclass constructor sets the VPTR to point to the superclass’ VTABLE. If the
VTABLE for the object under construction is not yet initialized, the VTABLE constructor should
be called. The following macro VHOOK()accomplishes these two steps

 1: #define VHOOK(class_) \
 2: if (((ObjectVTABLE *)&CP_##class_##VTABLE)->super__ == 0) \
 3: ((Object *)me)->vptr__ = class_##VTABLECtor(me); \
 4: else \
 5: (((Object *)me)->vptr__ = (ObjectVTABLE *)&CP_##class_##VTABLE)

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 13 of 20

Listing 4 VHOOK() macro.

To determine whether the VTABLE has been initialized, the macro VHOOK() checks the super__
attribute (Listing 4, line 2). If the attribute is NULL (value implicitly set up by the guaranteed
static pointer initialization), then the VTABLE constructor must be invoked (line 3) before set-
ting up the VPTR; otherwise, just the VPTR must be set up (lines 5-6). Note that because
VHOOK() is invoked after the superclass constructor, the superclass’ VTABLE is already initialized
by the same mechanism applied recursively, so the whole class hierarchy is initialized properly.

Finally, after all the setup work is done, you are ready to use dynamic binding. For the virtual
destructor (defined in the class Object), the polymorphic call takes the form

(*obj->vptr__->xtor)(obj);

where, obj is assumed to be of Object* type. Note that the obj pointer is used in this example
twice: once for resolving the method and once as the me argument.

In a general case, you deal with Object subclasses rather than Objects directly. Therefore you
have to upcast the object pointer (on type Object*) and downcast the virtual pointer vptr__ (on
the specific VTABLE type) to find the function pointer. These operations, as well as double-
object pointer referencing, are encapsulated in the macros VPTR(), VCALL(), and END_CALL

#define VPTR(class_, obj_) \
 ((class_##VTABLE *)(((Object *)(obj_))->vptr__))

#define VCALL(class_, meth_, obj_) \
 (*VPTR(class_, obj_)->meth_)((class_*)(obj_)
#define END_CALL)

For example, the virtual destructor call on behalf of object foo of any subclass of class Object
takes the form

VCALL(Object, xtor, foo)
END_CALL;

If a virtual function takes arguments other than me, these arguments should be sandwiched be-
tween macro VCALL() and END_CALL. The virtual function can also return a result. For example

result = VCALL(Foo, computeSomething, obj), 2, 3,
 END_CALL;

where, obj points to a Foo class or any subclass of Foo, and the virtual function computeSome-
thing() is defined in FooVTABLE. Note the use of the comma after VCALL().

3.4 Costs and Overhead

Any OO programmer can benefit from understanding costs associated with using the OO layer.

Abstraction typically incurs no overhead and actually often brings some performance boost. If
an ADT truly abstracts some useful concept, the OO style of programming typically results in
fewer arguments passed to the methods because all attributes are passed as only one me argu-
ment.

Inheritance is also mostly free. The invocation of an inherited method on behalf of a distant
successor object is exactly as expensive as invocation on behalf of the parent object. The only
overhead caused by inheritance comes from constructor invocation, which must initialize all

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 14 of 20

parts inherited from ancestors. If the hierarchy is deep, nested, superclass, constructor calls
can consume significant stack space.

In contrast, polymorphism always incurs some memory and run-time costs. As far as memory
is concerned, each class requires space for its VTABLE. The space required is typically several
bytes for function pointers. In addition to this one-time memory cost, each object must contain
the VPTR, which is inherited directly or indirectly from the Object class. If many instances of a
class exist, the VPTRs in each object can easily add up to something significant.

The run-time cost of dynamic binding in C+ is similar to C++. In fact, most compilers generate
identical code for C+ and C++ virtual calls. The following code fragment highlights this over-
head for a typical CISC processor (x86 running in protected 32-bit mode)

; static binding: Shape_xtor(c)
 push ebx ; push “me” (in ebx) onto the stack
 call _ShapeXtor ; static call
 add esp, 4 ; pop the stack

; dynamic binding: VCALL(Object, xtor, c)END_CALL
 mov eax, DWORD PTR [ebx+0] ; get VPTR into eax
 push ebx ; push “me” (in ebx) onto the stack
 call DWORD PTR [eax+4] ; dynamic call
 add esp, 4 ; pop the stack

As you can see, dynamic binding requires only one more assembly instruction than does static
binding. Additional work that to do involves de-referencing VPTR (the me pointer is already in
the ebx register) and placing the address of VTABLE into the eax register. The actual call re-
quires also one more memory access to fetch the address of the appropriate function from the
VTABLE.

To complete the picture, consider now the virtual call overhead on a RISC architecture, using
an ARM instruction set

; static binding: Shape_xtor(c)
 mov a1,v1 ; move “me” (in v1) into a1 (argument1)
 bl _ShapeXtor ; static call (branch with link)

; dynamic binding: VCALL(Object, xtor, c)END_CALL
 mov a1,v1 ; move “me” (in v1) into a1 (argument1)
 ldr a2,[v1,#0] ; get VPTR into a2
 mov lr,pc ; save return address
 ldr pc,[a2,#4] ; dynamically call xtor

In this case, the static call is extremely fast with only two instructions and does not involve any
data accesses (thanks to the ARM branch-and-link instruction bl). Unfortunately, the dynamic
call cannot take advantage of the bl instruction because the address cannot be statically em-
bedded in the bl opcode, and therefore, an additional instruction for saving the return address
into the link register lr is necessary. Otherwise, dynamic binding overhead is very similar to
that of the CISC processor and involves two additional data accesses (the two highlighted ldr
instructions) to de-reference the VPTR and to de-reference the function pointer.

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q

4 An Annotated Example
The example application implements in “C+” the classic polymorphic example of geometric
shapes. Concrete shapes, such as Rectangle and Circle, derive from the common abstract base
class Shape. The Shape class provides the abstract method area() that returns the area of a
given shape. Concrete shapes implement this method differently (e.g., Rectangle computes its
area as h×w, while Circle computes its area as 3.14×r*r). Similarly, method scale() must be
implemented differently for each subclass of Shape. For the Rectangle, scale() multiplies bothe
the width w and the height h by the scale factor. For the Circle, scale() multiples only the radius
r by the scale factor. Additionally, class Shape illustrates aggregation (by composition) of other
objects (an object of class String in this case). The following Figure shows a UML class diagram
of this design.

area()
scale()

name : String

«abstract»
Shape

toChar() : char *

buf : char*

Stringname

area() : double
scale()

w__ : double
h__ : double

Rect

area() : double
scale()

r__ : double

Circle

aggregation

Abstract base
class Shape

«abstract»
Object

other
possible
subclasses

inheritance tree

return w__*h__;

w__ *= scale;
h__ *= scale;

return 3.14*r__*r__;

r__ *= scale;

inheritance

Figure 6 Simple inheritance tree implemented in “C+”

The following header file declares classes String and Shape:

 1: #include "cplus.h"
 2:
 3: CLASS(String)
 4: char *buf__; /* private character buffer */
 5: METHODS
 6: void String_ctor1(String *me, char const *str); /* public Ctor1 */
 7: void String_ctor2(String *me, String *other); /* public Ctor2 */
 8: void String_xtor(String *me); /* public Xtor */
 9: char const *String_toChar(String *me); /* to-char conversion */
10: END_CLASS
11:
12: SUBCLASS(Shape, Object)
13: String name; /* public shape's name */
14: VTABLE(Shape, Object)
15: double (*area)(Shape *me); /* pure virtual! */

 Copyright © 2002-2005 quantum uantum-leaps.com 15 of 20

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 16 of 20

16: void (*scale)(Shape *me, double mag); /* pure virtual! */
17: METHODS
18: void Shape_ctor_(Shape *me, char *name); /* protected Ctor */
19: void Shape_xtor_(Shape *me); /* protected Xtor */
20: END_CLASS
21:
22: /* test for the abstract Shape class */
23: void test_area(Shape *s);
24: void test_scale(Shape *s);

Listing 5 Declaration of the String and Shape classes

Please note that class String does not derive from any class (notice macro CLASS() in Lising 5.
line 3), whereas class Shape inherits from Object (notice macro SUBCLASS() in line 12), which
makes it polymorhphism-ready.

1: /* String class --*/
 2: void String_ctor1(String *me, char const *str) {
 3: me->buf__ = (char *)malloc(strlen(str) + 1);
 4: assert(me->buf__ != (char *)0);
 5: strcpy(me->buf__, str);
 6: }
 7: /*..*/
 8: void String_ctor2(String *me, String *other) {
 9: String_ctor1(me, String_toChar(other));
10: }
11: /*..*/
12: char const *String_toChar(String *me) {
13: return me->buf__;
14: }
15: /*..*/
16: void String_xtor(String *me) {
17: free(me->buf__); /* release buffer */
18: }
19:
20: /* Shape class ---*/
21: BEGIN_VTABLE(Shape, Object)
22: VMETHOD(Object, xtor) = (void (*)(Object *))&Shape_xtor_;
23: VMETHOD(Shape, area) = (double (*)(Shape *))&Object_abstract;
24: VMETHOD(Shape, scale) = (void (*)(Shape *, double))&Object_abstract;
25: END_VTABLE
26:
27: /*..*/
28: void Shape_ctor_(Shape *me, char *name) {
29: Object_ctor_(&me->super_); /* construct superclass */
30: VHOOK(Shape); /* hook Shape class */
31: String_ctor1(&me->name, name); /* construct member */
32: }
33: /*..*/
34: void Shape_xtor_(Shape *me) {
35: String_xtor(&me->name); /* destroy member */
36: Object_xtor_(&me->super_); /* destroy superclass */
37: }
38:
39: /* tests for Shape ===*/
40: void test_area(Shape *s) {
41: assert(Object_IS_KIND_OF(s, Shape));
42: printf("name=\"%s\", area()=%.2f, ",
43: String_toChar(&s->name), /* static binding */
44: VCALL(Shape, area, s)END_CALL); /* dynamic binding */
45: }
46: /*..*/

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 17 of 20

47: void test_scale(Shape *s) {
48: double mag = 2.0;
49: assert(Object_IS_KIND_OF(s, Shape));
50: printf("scale(%.0f), ", mag);
51: VCALL(Shape, scale, s), mag END_CALL; /* dynamic binding */
52: }

Listing 6 Definition the String and Shape classes

Listing 6 shows the definition (implementation) of classes String and Shape. The two construc-
tors of String (Listing 6, lines 2-10) are simple because they deal only with initialization of the
local String attribute. However, the Shape constructor (lines 28-32) is more involved because it
is responsible for initialization of the super_ attribute inherited from Object (line 29), as well as
for hooking the virtual pointer in line 30. Moreover, the Shape constructor is also responsible
for initialization of all aggregated objects, such as the name attribute of type String.

Perhaps the most important part of the implementation is definition of the Shape’s virtual table,
that’s accomplished via macros: BEGIN_VTABLE()/END_VTABLE and macros VMETHOD() used
in between (lines 21-25). The Shape class declares both its methods area() and scale() as ab-
stract (purely virtual), which means that they must be defined in the subclasses of Shape.

Finally, Listing 6 contains also the unit test for the class Shape, which exercises the two virtual
methods area() and scale(), respectively. Please note that the test is written only in terms of
the Shape class interface, without any knowledge of concrete subclasses of Shape. These sub-
classes are completely independent and can be added at a later time because of the late bind-
ing that occurs in test methods (lines 44 and 51, respectively).

4.1 Subclassing Shape

Here is the declaration of the Circle sublclass of Shape:

 1: #include "shape.h"
 2:
 3: SUBCLASS(Circle, Shape) /* Class Circle extends Shape */
 4: double r__; /* private radius */
 5: VTABLE(Circle, Shape) /* make sure Circle has a virtual table */
 6: METHODS
 7: void Circle_ctor(Circle *me, char *name, double r);
 8: double Circle_area(Circle *me);
 9: void Circle_scale(Circle *me, double mag);
10: END_CLASS

Listing 7 Declaration of class Circle

And here is the definition (implementation) of Circle

 1: /*..*/
 2: BEGIN_VTABLE(Circle, Shape)
 3: VMETHOD(Shape, area) = (double (*)(Shape *))&Circle_area;
 4: VMETHOD(Shape, scale) = (void (*)(Shape *, double))&Circle_scale;
 5: END_VTABLE
 6: /*..*/
 7: void Circle_ctor(Circle *me, char *name, double r) {
 8: Shape_ctor_(&me->super_, name); /* construct superclass */
 9: VHOOK(Circle); /* hook Circle class */
10: me->r__ = r; /* initialise member(s) */
11: }
12: /*..*/

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 18 of 20

13: double Circle_area(Circle *me) {
14: return 3.141592535 * me->r__ * me->r__; /* pi * r-squared */
15: }
16: /*..*/
17: void Circle_scale(Circle *me, double mag) {
18: me->r__ *= mag;
19: }

Listing 8 Definition the Circle class

For comparison, there are the declaration and definition of class Rect:

#include "shape.h"

SUBCLASS(Rect, Shape) /* Class Rect extends Shape */
 double w__; /* private width */
 double h__; /* private height */
VTABLE(Rect, Shape)
METHODS
 void Rect_ctor(Rect *me, char *name, double w, double h);
 double Rect_area(Rect *me);
 void Rect_scale(Rect *me, double mag);
END_CLASS

Listing 9 Declaration of class Rect

/*..*/
BEGIN_VTABLE(Rect, Shape)
 VMETHOD(Shape, area) = (double (*)(Shape *))&Rect_area;
 VMETHOD(Shape, scale) = (void (*)(Shape *, double))&Rect_scale;
END_VTABLE

/*..*/
void Rect_ctor(Rect *me, char *name, double w, double h) {
 Shape_ctor_(&me->super_, name); /* construct superclass */
 VHOOK(Rect); /* hook Rect class */
 me->h__ = h; /* initialise member(s) */
 me->w__ = w;
}
/*..*/
double Rect_area(Rect *me) {
 return me->w__ * me->h__;
}
/*..*/
void Rect_scale(Rect *me, double mag) {
 me->w__ *= mag;
 me->h__ *= mag;
}

Listing 10 Definition the Rect class

4.2 Executing the Test

#include "shape.h"
#include "circle.h"
#include "rect.h"

enum { NRECT = 4 };

“C+” Programmer’s Manual quantum Leaps™, LLC

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 19 of 20

int main() {
 Circle circle; /* Circle instance on the stack frame */
 Circle *c;
 Rect r[NRECT];
 int i;

 /* construct objects... */
 Circle_ctor(&circle, "Circle", 1.0);
 c = &circle;
 for (i = 0; i < NRECT; i++) {
 char name[20];
 sprintf(name, "Rectangle-%d", i); /* prepare the name */
 Rect_ctor(&r[i], name, (double)i, 1.0); /* construct Rect */
 }

 /* test the Circle ... */
 test_area((Shape *)c);
 test_scale(&c->super_);
 test_area((Shape *)c);
 printf("\n");

 /* test the Rectangles ... */
 for (i = 0; i < NRECT; i++) {
 test_area((Shape *)&r[i]);
 test_scale(&r[i].super_);
 test_area((Shape *)&r[i]);
 printf("\n");
 }

 /* detstroy objects ... */
 VCALL(Object, xtor, c)END_CALL; /* destroy the Circle, dynamic binding */
 for (i = 0; i < NRECT; i++) {
 VCALL(Object, xtor, &r[i])END_CALL; /* destroy the Rectangles ...*/
 }
 return 0;
}

Listing 11 Test harness for the sample application

5 Summary
OOP is a design method rather than use of particular language or a tool. Indeed, as David Par-
nas writes:

Instead of teaching people that OO is a type of design, and giving them design principles,
people have taught that OO is the use of a particular tool. We can write good or bad pro-
grams with any tool. Unless we teach people haw to design, the languages matter very lit-
tle.

OO languages support OO design directly, but you can also successfully implement OO design
in other languages, such as C. Abstraction, inheritance, and polymorphism are nothing but de-
sign meta-patterns at the C level. Many C programmers, very likely you also, have been using
these fundamental patterns in some form or another for years, often without clearly realizing
this fact. As with all design patterns, the three patterns combined allow you to work at a higher
OO level of abstraction by introducing their specific naming conventions and idioms.

This manual describes “C+”, which is one specific set of such C conventions and idioms. C+
achieves performance and maintainability of code comparable to C++. A particularly important
feature of C+ is that adding new attributes and methods, including virtual functions, to a super-

“C+” Programmer’s Manual quantum , LLC Leaps™

 Leaps www.q Copyright © 2002-2005 quantum uantum-leaps.com 20 of 20

class does not require manual changes to subclasses. As in C++, after extending the super-
class, you only need to recompile the subclass implementation files.

I have been successfully using C+ in many projects for number of years, and I challenge you to
find a more efficient, scaleable, portable, and maintainable implementation. However, perhaps
the weakest aspect inherent in any attempt to implement OOP in C (not only C+) is the com-
promised type safety. The fundamental problem is that a C compiler does not know that some
types are generalizations of the others and treats related types as completely different. This
issue requires a lot of type casting (upcasting), which is awkward and defeats much of the type
safety of the language.

Therefore, if you have access to a decent C++ compiler for your platform, I recommend that
you consider using C++ instead of C+. Contrary to some misunderstandings, especially among
embedded systems programmers, C++ is not inherently bulky and slow. By sticking only to the
essential OO features of C++ and omitting pretty much everything else (a policy embodied in
the Embedded C++ standard, see [EC++ 01]), you can achieve very good performance, ele-
gance, convenience, and full compiler support for OOP.

6 References

[Brooks 95] Brooks, Frederick. 1995. The mythical man-month. Anniversary ed. Addison
Wesley.

[Gamma 95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns, elements of reusable object-oriented software. Addison Wesley,
1995.

[Labrosse 99] Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel. R&D Publications,
1999, ISBN 0-87930-543-6

[Meyer 97] Meyer, Bertrand, Object-Oriented Software Construction 2nd Edition, Pren-
tice Hall, 1997. ISBN: 0-136-29155-4

[Samek 97] Samek, Miro, “Portable Inheritance and Polymorphism in C”, Embedded
Systems Programming, December 1997.

[Samek 02] Samek, Miro, Practical Statecharts in C/C++: Quantum Programming for
Embedded Systems, CMP Books 2002, ISBN 1-57820-110-1

[QL 05a] Quantum Leaps, Quantum Leaps C/C++ Coding Standard, January 2005,
http://www.quantum-leaps.com/resources/goodies.htm#CodingStandard

[QL 05] Quantum Leaps website, http://www.quantum-leaps.com

[Van Sickle 97] Van Sickle, Ted. Reusable software components, object-oriented embedded
systems programming in C. Prentice Hall, 1997.

	Introduction
	Licensing
	Contact Information

	Getting Started with “C+”
	Installation
	Borland Turbo C++ 1.01
	GNU Make
	Compiling the “C+” Library
	Building the Test Application
	Running the Test

	“C+” Overview
	Encapsulation
	Inheritance
	Polymorphism
	Costs and Overhead

	An Annotated Example
	Subclassing Shape
	Executing the Test

	Summary
	References

