
Contents

Preface

1 Number Representations and Errors 1

1.1 Introduction 1

1.2 Floating-point number 2

1.3 Sources of errors 8

1.4 Measures of error and precision 12

1.5 Floating-point arithmetic 15

2 Iterative Solution of Equations 20

2.1 Introduction 20

2.2 The bisection method 22

2.3 Function iteration 27

2.4 Newton's method 35

2.5 The secant method 41

2.6 2 equations in 2 unknowns: Newton's method 45

2.7 MATLAB functions for equation solving 49

3 Approximate Evaluation of Functions 52

3.1 Introduction 52

3.2 Series expansions 53

3.3 CORDIC algorithms 60

3.4 MATLAB functions 73

4 Interpolation 74

4.1 Introduction 74

4.2 Lagrange interpolation 77

4.3 Difference representations 84

4.4 Splines 100

4.5 MATLAB interpolation functions 115

5 Numerical Calculus 119

5.1 Introduction 119

5.2 Numerical integration: interpolatory quadrature rules 122

5.3 Composite formulas 132

5.4 Practical numerical integration 140

5.5 Improper integrals 149

5.6 Numerical differentiation 153

5.7 Maxima and minima 159

5.8 MATLAB functions for numerical calculus 168

v



6 Differential Equations 171

6.1 Introduction and Euler's method 171

6.2 Runge±Kutta methods 178

6.3 Multistep methods 186

6.4 Systems of differential equations 193

6.5 Boundary-value problems: (1) shooting methods 198

6.6 Boundary-value problems: (2) ®nite difference methods 204

6.7 MATLAB functions for ordinary differential equations 208

7 Linear Equations 210

7.1 Introduction 210

7.2 Gauss elimination 212

7.3 LU factorization: iterative re®nement 225

7.4 Iterative methods 232

7.5 Linear least squares approximation 239

7.6 Eigenvalues 248

7.7 MATLAB's linear algebra functions 257

Appendices

A MATLAB Basics 261

B Answers to Selected Exercises 282

References and Further Reading 298

Index 299

vi Contents



Preface

This book is a revision of the ®rst edition Guide to Numerical Analysis, which was

developed from a variety of introductory courses in numerical methods and

analysis that I taught at the University of Lancaster and the University of Maryland.

Over the intervening ten years or so, I have taught similar courses at the Naval

Academy. The level and content of the courses has varied considerably but they

have included all the material presented here. The intention of this book is to

provide a gentle and sympathetic introduction to many of the problems of scienti®c

computing, and the wide variety of methods used for their solution. The book is

therefore suitable for a ®rst course in numerical mathematics or scienti®c

computing ± whether it be for mathematics majors, or for students of science,

engineering or economics, for example.

This, of course, precludes the possibility of providing a fully rigorous treatment

of all the most up-to-date algorithms and their analyses. The intention is rather to

give an appreciation of the need for numerical methods for the solution of different

types of problem, and to discuss the basic approaches. For each of the problems this

is followed by at least some mathematical justi®cation ± and, most importantly,

examples ± to provide both practical evidence and motivation for the reader. The

level of mathematical justi®cation is determined largely by the desire to keep the

mathematical prerequisites to a minimum. Thus, for example, no knowledge of

linear algebra is assumed beyond the most basic matrix algebra, and analytic results

are based on a sound knowledge of the calculus.

Inevitably this means that some methods, such as those for numerical solution of

ordinary differential equations, are not derived in a detailed and rigorous manner.

Such methods are nonetheless justi®ed and/or derived by appealing to other

techniques discussed earlier in the book such as those for numerical integration and

differentiation. In contrast, in situations where rigorous explanation can be included

without substituting baf¯ement for enlightenment, this is given. In Chapter 2, on

iterative solution of equations, for instance, a detailed analysis of the convergence

of some iterative schemes is presented. (A brief summary of basic results on

convergence of sequences is included as a reminder to the reader.)

As in the ®rst edition, practical justi®cation of the methods is presented through

computer examples and exercises. However, a major change from that ®rst edition

is that these are now achieved through the use of MATLAB1 rather than the BASIC

programming language. MATLAB is an extremely powerful package for numerical

ÐÐÐÐ

1MATLAB is a registered trademark of The MathWorks, Inc.

vii



computing and programming which has many `add-on' toolboxes. However we use

nothing outside the basic MATLAB package in this text. Each chapter concludes

with a section describing some of the relevant MATLAB functions ± which will

often include implementations of methods beyond the scope of this book. It is a

mark of the power and success of packages such as MATLAB that programming

languages such as FORTRAN which were formerly regarded as `high-level'

languages have become `low-level' ones in the modern era of scienti®c computing.

The book has an Appendix devoted to the basics of the MATLAB package, its

language and programming.

The MATLAB example code used in this book is not intended to exemplify

sophisticated or robust pieces of software; it is simply illustrative of the methods

under discussion. This is important for a beginning student since writing robust

code necessitates taking into account all sorts of dif®culties well beyond our

present scope. Our objective here is to get the basic ideas across. The interested

student can ponder some of these dif®culties in subsequent courses.

As to the content of the book: Chapter 1 is devoted to ¯oating-point arithmetic

and errors and, throughout the book we take time to consider the precision of our

numerical solutions, and how this can be safeguarded or improved. Subsequent

chapters deal with the solution of (nonlinear) equations, now including pairs of

equations in two unknowns (Chapter 2); the approximate evaluation of functions,

both by series approximations and the CORDIC algorithms that are used in almost

all calculators and PCs (Chapter 3); interpolation with both polynomial and cubic

spline interpolation discussed (Chapter 4); numerical calculus including integra-

tion, differentiation and location of extrema (Chapter 5); ordinary differential

equations including Runge-Kutta and multistep methods as well as systems of

differential equations and shooting and ®nite difference methods for boundary

value problems (Chapter 6). Chapter 7 is devoted to linear equations. This

fundamental topic is deliberately left to the end to allow the earlier chapters to

motivate its treatment. This chapter has now been augmented with a section on

eigenvalues. However, Chapter 7 is independent of any of the speci®c material and

so can easily be covered earlier if desired.

The intention of this book remains to provide the student with an introduction to

this subject which is not, in its combined demands of computing, motivation,

manipulation and analysis, paced such that only the most able can `see the wood for

the trees'. The major effort of programming is therefore removed from the reader,

as are the harder parts of the analysis. The algebraic manipulation is largely

unavoidable but is carefully explained ± especially in the early stages. The

motivation for the numerical methods is provided by the examples ± which are not

all of types that can be solved directly ± and the numerical methods themselves

provide the motivation for the necessary analysis.

In writing the Preface for the ®rst edition, it was important to thank two good

friends David Towers, the series editor, and Charles Clenshaw who was a great

source of help in the writing process. To those I should add many colleagues who

viii Preface



have in¯uenced me over the last ten years. Where the in¯uence is positive it is to

their credit, if it is ever negative it is probably because I did not take their good

advice! Notable among these are Frank Olver, Dan Lozier, Alan Feldstein, Jim

Buchanan, George Nakos and Bob Williams. The struggles of hundreds of students

have also helped me see the dif®culties, and, I hope, have led to better explanations

of many topics.

PETER R. TURNERAnnapolis

Preface ix



CHAPTER 3 Approximate Evaluation
of Functions

In this chapter, we address the question of how to obtain good

approximations to some of the standard elementary functions. We

introduce both the traditional approach using series expansions and its

modern equivalent, the CORDIC algorithms used by almost all

calculators and personal computer chips. With easy access to so many

functions at the touch of a button, one of the primary objectives is to

convince the reader that there is a problem to be solved ± as well as

giving an introduction to two powerful techniques.

3.1 Introduction

The next several chapters are concerned with computing functional quantities

beginning with the evaluation of some of the basic functions of mathematics. The

elementary functions such as sine, cosine, exponential and logarithm functions are

not computable exactly except in very special cases. Some are even de®ned in

terms of integrals which cannot be computed exactly by standard algebra or

calculus techniques. For example, the natural logarithm function is often de®ned as

ln x �
Z x

1

1

t
dt

Techniques for numerical evaluation of integrals such as this will be discussed in

Chapter 5.

Other elementary functions, such as arctan, are de®ned as inverses of functions

which themselves cannot be readily evaluated exactly. Implicitly, this de®nes them

as solutions of nonlinear equations which cannot be solved algebraically.

Techniques such as those used in Chapter 2 are then potential methods of

evaluating such functions.

In many cases there are better techniques available. Many of these are based on

either the use of series expansions (Section 3.2) or the CORDIC algorithms

(Section 3.3) which are widely used in calculators and personal computer (PC)

hardware. If you consult the MATLAB manual to see what methods are used for

some of the elementary and special functions of mathematics, you will see other

Aims and
objectives

52



techniques mentioned, such as rational approximation and asymptotic series. The

speci®cs of these methods are beyond our scope here but many of the principles

used here are also employed in those techniques to ensure the desired accuracy in

the resulting approximations.

In the case of series expansions, the important theoretical issues are ®nding the

radius of convergence of the series expansion, and then determining the number of

terms that are needed in order to reduce the truncation error below some prescribed

tolerance. Once that is achieved, the summation of the appropriate terms of the

series is usually a straightforward task.

For both series expansions and the CORDIC algorithms there is further dif®culty

in handling arguments outside their intervals of convergence. These problems can

often be overcome by some range reduction method. As an (apparently) simple

example of this, we know that the basic trigonometric functions sin and cos are

periodic with period 2�. It is suf®cient therefore to have good algorithms for

computing these functions for arguments in the interval 0; 2�� �; larger arguments

can be reduced to this interval by subtracting an appropriate multiple of 2�. As we

shall see there is much more to it than this implies.

3.2 Series expansions

There are two absolutely fundamental power series from which many of the other

important examples are derived: the geometric series

1

1ÿ x
�
X1
k�0

xk � 1� x� x2 � � � � xj j < 1� � �3:1�

and the exponential series

exp�x� � ex �
X1
k�0

xk

k!
� 1� x� x2

2!
� x3

3!
� � � � all x� � �3:2�

Other important series expansions are easily derived from these, or by Taylor or

MacLaurin expansions. Using the identity

eix � cos x� i sin x

where i is the imaginary
�������ÿ1p

, we get the series for the two basic trigonometric

functions:

cos x �
X1
k�0

ÿ1� �kx2k
2k� �! � 1ÿ x2

2!
� x4

4!
� � � all x� � �3:3�

sin x �
X1
k�0

ÿ1� �kx2k�1
2k � 1� �! � xÿ x3

3!
� x5

5!
� � � all x� � �3:4�

Approximate Evaluation of Functions 53



(Alternatively, if you are unfamiliar with complex numbers, these are the

MacLaurin series for these functions.) Series expansions for the hyperbolic

functions can be obtained in a similar manner

cosh x � 1

2
ex � eÿx� � �

X1
k�0

x2k

2k� �! � 1� x2

2!
� x4

4!
� � � � all x� � �3:5�

sinh x � 1

2
ex ÿ eÿx� � �

X1
k�0

x2k�1

2k � 1� �! � x� x3

3!
� x5

5!
� � � � all x� � �3:6�

By integrating the power series (3.2) we get

ln 1ÿ x� � � ÿ
X1
k�0

xk�1

k � 1
� ÿxÿ x2

2
ÿ x3

3
ÿ � � � xj j < 1� � �3:7�

and, replacing x by ÿx,

ln 1� x� � � ÿ
X1
k�0

ÿ1� �k�1xk�1
k � 1

� xÿ x2

2
� x3

3
ÿ x4

4
� � � xj j < 1� � �3:8�

For more details on the derivations of these formulas, consult your calculus text.

The rest of this section is devoted to some important and illustrative examples.

Example 1 The series in (3.8) is convergent for x � 1. It follows that

ln 2 � 1ÿ 1

2
� 1

3
ÿ 1

4
� � �

Use the ®rst 8 terms of this series to estimate ln 2. How many terms would

be needed to compute ln 2 with an error less than 10ÿ6 using this series?

(Note: The true value of ln 2 � 0:693 147 18)

The ®rst 8 terms yield

ln 2 � 1ÿ 1

2
� 1

3
ÿ 1

4
� 1

5
ÿ 1

6
� 1

7
ÿ 1

8
� 0:634 523 81

which has an error close to 0:06.

Since the series (3.8) is an alternating series of decreasing terms (for

0 < x � 1), the truncation error is smaller than the ®rst term omitted. To force

this truncation error to be smaller than 10ÿ6 would therefore require that the

®rst term omitted is smaller than 1=1 000 000. That is, the ®rst one million

terms would suf®ce.

This is obviously not a practical approach. We shall return to the natural

logarithm function later.

54 Guide to Scientific Computing



Example 2 Derive a series expansion for the function arctan x. Use this

series and the identity arctan 1 � ��=4 to compute ��.

First, we know that

d

dt
arctan t � 1

1� t2

and so, for tj j < 1, using (3.1) with x � ÿt2 we get

d

dt
arctan t � 1ÿ t2 � t4 ÿ t6 � � �

Power series may be integrated term-by-term within their radius of

convergence. Hence, for xj j < 1,

arctan x �
Z x

0

1ÿ t2 � t4 ÿ t6 � � �ÿ �
dt

� xÿ x3

3
� x5

5
ÿ x7

7
� � �

�3:9�

This series is also convergent for x � 1 and so we may deduce that

�

4
� arctan 1 � 1ÿ 1

3
� 1

5
ÿ 1

7
� � �

The ®rst eight terms yield the approximation

� � 4
X7
k�0

ÿ1� �k
2k � 1

� 3:017 071 8

Adding the next term we get � � 3:017 071 8� 4=17 � 3:252 365 9. It is

apparent that many more terms will be needed to obtain a good approximation

to � using this series.

For single-precision ¯oating-point, we would require an error in the series

approximation of �=4 smaller than 2ÿ25. Since the series is alternating with

decreasing terms, we could stop once the ®rst term omitted is smaller than this

bound: 224 � 16 777 216 would suf®ce! For IEEE double precision, as is used

by MATLAB, the required number of terms rises to 253 � 1016. Even on a

very fast giga¯op (109 ¯oating-point operations per second) computer, we

would be waiting about 10 million seconds, or nearly 4 months to obtain a

value for �. Typing pi at the MATLAB prompt should convince you that better

techniques must be available! We shall consider some improvements shortly.

These ®rst two examples using series approximations make it plain that ®nding

an elegant mathematical expression for a quantity is not the same as ®nding a good

algorithm for its evaluation!

Approximate Evaluation of Functions 55



Example 3 Find the number of terms of the exponential series that are

needed for exp x to have error < 10ÿ5 for xj j � 2

First we observe that the tail of the exponential series truncated after N terms

increases with xj j. Also the truncation error for x > 0 will be greater than that

for ÿx since the series for exp ÿx� � will be alternating in sign. It is suf®cient

therefore to consider x � 2.

We shall denote by EN x� � the truncation error in the approximation using

N terms:

exp x �
XNÿ1
k�0

xk

k!

Then, we obtain, for x > 0

EN x� � �
X1
k�N

xk

k!
� xN

N !
� xN�1

N � 1� �!�
xN�2

N � 2� �!� � � �

� xN

N !
1� x

N � 1
� x2

N � 2� � N � 1� � � � � �
� �

� xN

N !
1� x

N � 1
� x2

N � 1� �2 � � � �
" #

� xN

N !
� 1

1ÿ x= N � 1� �
provided x < N � 1. For x � 2, this simpli®es to

EN 2� � � 2N

N !
� N � 1

N ÿ 1

and we require this quantity to be smaller than 10ÿ5. Now 211=11! �
5:130 671 8� 10ÿ5, while 212=12! � 8:551 119 7� 10ÿ6. We must check the

effect of the factor
N � 1

N ÿ 1
� 13

11
� 1:181 818 2. Since 1:181 818 2� � 8:551 119 7� �

� 10:105 869, 12 terms are not quite suf®cient. N � 13 terms are needed:

213

13!
� 14
12
� 1:534 816 4� 10ÿ6.

We note that for xj j � 1 in Example 3 we obtain EN 1� � � N � 1

N � N !
< 10ÿ5 for

N � 9. For xj j � 1=2, just 7 terms are needed. The number of terms required

increases rapidly with x. These ideas can be used as a basis for range reduction, so

that the series would be used only for very small values of x. For example, we could

use the 7 terms to obtain e1=2 and then take

e2 � e1
ÿ �2� e1=2

� �4

56 Guide to Scientific Computing



to obtain exp 2. Greater care would be needed over the precision obtained from the

series to allow for any loss of accuracy in squaring the result twice. The details are

unimportant here, the point is that the series expansion can provide the basis for a

good algorithm.

The magnitude of the error in any of these approximations to ex increases rapidly

with xj j, as can be seen from Figure 3.1.

The curve plotted is the error ex ÿP6
k�0 x

k=k!. We see that the error remains

very small throughout ÿ1; 1� � but rises sharply outside this interval indicating that

more terms are needed there. The truncated exponential series is computed using

the function m-®le

function y=expn(x,n)

% Evaluates the ®rst n terms of the exponential series

s=ones(size(x));

t=s;

for k=1:n-1

t=t.*x/k;

s=s+t;

end

y=s;

In the remaining examples of this section, we discover that substantial

improvements are possible for the ®rst two examples, too.

Approximate Evaluation of Functions 57

Figure 3.1 Series approximation error for ex



Example 4 Develop a series for ln 1� x� �= 1ÿ x� �� �, use it for the

evaluation of ln 2 with error less than 10ÿ6

We can use the series (3.7) and (3.8) to obtain

ln
1� x

1ÿ x
� ln 1� x� � ÿ ln 1ÿ x� �

� 2 x� x3

3
� x5

5
� � � �

� � �3:10�

Also
1� x

1ÿ x
� 2 for x � 1=3 and so

ln 2 � 2

3
1� 1=3� �2

3
� 1=3� �4

5
� � � �

" #
� 2

3

X1
k�0

1

2k � 1� �32k

The truncation error incurred by using just the ®rst N terms is then bounded by

2

3
� 1

2N � 1
� 1
9N

< 10ÿ6

for N � 6 so that just 6 terms suf®ce. This compares very favourably with the

1 million that were required in Example 3. Using these 6 terms, we obtain the

approximation

ln 2 � 2

3

X5
k�0

1

2k � 1� �32k � 0:693 147 07

58 Guide to Scientific Computing

Figure 3.2 Series approximations to ln x



Recall the true value of ln 2 � 0:693 147 18, so that the actual error is close to

10ÿ7, which is well within our tolerance.

The relative effectiveness of this approximation and the original power

series (3.8) is illustrated in Figure 3.2. The true natural logarithm is plotted

with a solid line, the sum of the ®rst 6 terms of (3.8) with �s and the ®rst

6 terms of (3.10) with the os.

It is apparent that the new approximation reproduces the curve better over a

wider range.

Example 5 Compute �� using the identity arctan 1=
���
3
p � ��=6

In Example 2, we obtained the series expansion arctan x � xÿ x3

3
� x5

5
ÿ x7

7
� � �

from which we have

� � 6 3ÿ1=2 ÿ 3ÿ3=2

3
� 3ÿ5=2

5
� � �

� �
� 6���

3
p 1ÿ 1

3 3� � �
1

5 3� �2 � � �
" #

� 2
���
3
p X1

k�0

ÿ1� �k
2k � 1� �3k

The truncation error for this alternating series is bounded by the ®rst term

omitted. For single precision ¯oating-point evaluation of � we would require

this truncation error to be smaller than 2ÿ23, and so we seek N such that

2
���
3
p

2N � 1� �3N < 2ÿ23

This is satis®ed for N � 13. This should be compared with the nearly 17

million terms needed to achieve the same accuracy in Example 2. Using these

terms we obtain

� � 2
���
3
p X13

k�0

ÿ1� �k
2k � 1� �3k � 3:141 592 6

which is indeed a good approximation.

For IEEE double-precision (MATLAB) accuracy, the approximation in

Example 5 requires just 30 terms. The 4 months on a fast computer for

Example 2 would be reduced to about one-millionth of a second! Clearly the choice

and design of computer algorithms can have a marked effect. The actual methods

implemented on modern machines are much more ef®cient than these but the

analysis of this section should give some idea of what can be achieved.

Approximate Evaluation of Functions 59



Exercises:
Section 3.2

1 Write a MATLAB m-file to approximate the natural logarithm using the first

6 terms of (3.8). Use it to estimate ln 1:25.
2 How many terms of the series (3.8) are needed to approximate ln 1:25 with error

smaller than 10ÿ6? Evaluate this approximation and verify that the error is

indeed within the tolerance.

3 Use the fact that ln 10 � ln 8� ln 1:25, the result of Exercise 2, and an accurate

value for ln 2 to estimate ln 10 with error smaller than 10ÿ6.
4 Determine the number of terms of the exponential series that are needed to

obtain e0:1 with error smaller than 10ÿ10. Evaluate the sum of these terms and

verify that the desired accuracy is achieved.

5 Write a MATLAB m-file to compute the natural logarithm function using n

terms of the approximation in Example 4. Graph the error in this approximation

to ln x for x 2 �0; 2:5� using 8 terms.

6 The erf function, or `error function', defined by

erf x� � � 2���
�
p
Z x

0

exp ÿt2ÿ �
dt

is an important function in statistics. Derive the series expansion

erf x� � � 2���
�
p
X1
k�0

ÿ1� �kx2k�1
2k � 1� �k!

Use the first 10 terms of this series to obtain a graph of this function over the

interval 0; 4� �. Compare this with the built-in erf function.

3.3 CORDIC algorithms

In this section, we concentrate on a topic which is in many ways a modern

equivalent of interpolation in tables of logarithmic or trigonometric functions.

Interpolation methods are still needed for special functions, and as a basis for

numerical integration and the solution of differential equations. These aspects will

be discussed in Chapters 4±6. The elementary functions such as ln; exp; sin and cos

are available at the touch of a button on your calculator or computer.

Perhaps the most surprising aspect of this is that all these functions are computed

on most calculators and PCs by minor variations of the same algorithm. The so-

called CORDIC (COordinate Rotation DIgital Computer) algorithms were ®rst

developed by Volder for solving trigonometric problems in in-¯ight navigational

computers. (In mathematics, it is usual that methods or theorems bear the names of

their discoverers, and so perhaps these algorithms should be known as Volder

methods. The use of the acronym CORDIC is testament to their having been

discovered by an engineer.)

60 Guide to Scientific Computing



In this section, we shall concern ourselves only with binary versions of the

CORDIC algorithms. Hand calculators typically use decimal-based versions but the

extra detail of the decimal form of CORDIC algorithms does not enhance the

understanding of the underlying ideas. To get a basic idea, we begin by observing

that the long multiplication algorithm for binary integers is particularly simple,

consisting solely of shifts and additions.

For example consider the multiplication 73� 47. The decimal calculation

requires 4 single-digit multiplications (each yielding a 2-digit result) with 2 carries

and then a further addition with another carry. As a binary operation

73� 47 � 1001001

� 101111

1001001

10010010 Each of these terms is just

100100100 1001001 shifted the

1001001000 appropriate number of places.

100100100000

110101100111

The principal objective of the CORDIC algorithm is to achieve a similar level of

simplicity for the elementary functions. All the CORDIC algorithms are based on

an ingenious decomposition of the argument and/or the required answer in terms of

simple constants, so that only additions and exponent shifts are needed. The

following theorem lies at the heart of the matter.

Theorem 1 Suppose that the numbers �k k � 0; 1; . . . ; n� � are positive,

decreasing and that

�k �
Xn
j�k�1

�j � �n �3:11�

Suppose too that

rj j �
Xn
j�0

�j � �n �3:12�

Then the sequence de®ned by s0 � 0 and

sk�1 � sk � �k�k k � 0; 1; . . . ; n� �
where �k � sgn r ÿ sk� � satis®es, for each k,

r ÿ skj j �
Xn
j�k

�j � �n �3:13�

In particular, sn�1 approximates r with error bounded by �n; that is,

r ÿ sn�1j j � �n

Approximate Evaluation of Functions 61



Remark 1 Note that sgn is the usual signum function de®ned by

sgn x� � � 1 if x � 0

ÿ1 if x < 0

�

Proof The proof is by induction. First, we have

r ÿ s0j j � rj j �
Xn
j�0

�j � �n

so that (3.13) holds for k � 0.

Now, assuming the result holds for some value of k, and noting that �k is

chosen to have the same sign as r ÿ skj j, we obtain

r ÿ sk�1j j � r ÿ sk ÿ �k�kj j � r ÿ skj j ÿ �kj j
Then, by (3.11) and the induction hypothesis, we deduce that

ÿ
Xn
j�k�1

�j � �n
 !

� ÿ�k � r ÿ skj j ÿ �k

�
Xn
j�k

�j � �n
 !

ÿ �k �
Xn
j�k�1

�j � �n

as required. n

Theorem 1 shows that, if we choose a positive decreasing sequence

�0; �1; . . . ; �n to satisfy (3.11), then any number in the interval ÿE;E� � where
E �Pn

j�0 �j � �n can be written in the form ��0 � �1 � . . .� �n with an error no

worse than �n.

Example 6 The values �k � 2ÿk satisfy the conditions of Theorem 1, and so for any r 2 ÿ2; 2� �, we
can write

r � �1� 1

2
� 1

4
� � � � � 1

2n

with error less than 2ÿn. Find this decomposition of 1:2345 using n � 5

We set s0 � 0 and choose �k � sgn r ÿ sk� �. We get

�0 � �1 s1 � 0� 1 20
ÿ � � 1 r ÿ s1j j � 0:2345 < �0 � 1

�1 � �1 s2 � 1� 1 2ÿ1
ÿ � � 1:5 r ÿ s2j j � 0:265 5 < �1 � 1=2

�2 � ÿ1 s3 � 1:5ÿ 1 2ÿ2� � � 1:25 r ÿ s3j j � 0:0155 < �2 � 1=4

�3 � ÿ1 s4 � 1:25ÿ 1 2ÿ3� � � 1:125 r ÿ s4j j � 0:109 5 < �3 � 1=8

�4 � �1 s5 � 1:125� 1 2ÿ4
ÿ � � 1:187 5 r ÿ s5j j � 0:047 < �4 � 1=16

�5 � �1 s6 � 1:187 5� 1 2ÿ5� � � 1:218 75 r ÿ s6j j � 0:0157 5 < �5 � 1=32

62 Guide to Scientific Computing



Clearly, this process could be continued to any desired accuracy. It is important

to observe that the convergence is not monotone ± even the absolute values of the

errors can increase in individual steps as we see in steps 2 and 4 of Example 6.

The following general algorithm, with appropriate choices for the parameters m

and �k , yields approximations to a wide class of elementary functions.

Algorithm 1 General CORDIC Algorithm

Inputs Starting values x0, y0, z0
Parameter m � ÿ1, 0, or �1, and corresponding sequence �k� �
Mode: either rotation mode or vectoring mode

Compute three sequences:

xk�1 � xk ÿ m�kyk2
ÿk �3:14�

yk�1 � yk � �kxk2ÿk �3:15�
zk�1 � zk ÿ �k�k �3:16�

where

�k � sgn zk� � for rotation mode

ÿsgn yk� � for vectoring mode

�
�3:17�

The value of m depends on the operation to be performed: m � 0 for arithmetic

operations, m � 1 for trigonometric functions and m � ÿ1 for hyperbolic

functions. Details of the choice of the various parameters and modes for particular

functions are summarized in Tables 3.1±3.3 below.

The names of the 2 modes are a historical accident owing to the development of

the algorithms for navigational purposes. They are not of great value in

understanding the methods.

Example 7 CORDIC Division

For multiplication and division we use m � 0 and �k � 2ÿk which we have already seen satisfy (3.11).

Division is performed using the vectoring mode: with z0 � 0, we ®nd that

zn�1 ÿ y0=x0j j < 2ÿn

provided that the quotient y0=x0 2 ÿ2; 2� �. To see this, we note ®rst that, since m � 0, xk � x0 for every

k, the algorithm reduces to just the 2 equations

yk�1 � yk � �kx02ÿk
zk�1 � zk ÿ �k2ÿk

with �k � ÿsgn yk� �.

Approximate Evaluation of Functions 63



In this case therefore (3.15) represents the decomposition

y0 � ÿ
Xn
k�0

�kx02
ÿk

or, equivalently,

y0

z0
� ÿ

Xn
k�0

�k2
ÿk

with error less than 2ÿn. However, from (3.16) we see that zn�1 � ÿ
Pn

k�0 �k2
ÿk .

As a speci®c example, consider the division 1:2=2:3. Then x0 � 2:3 and

y0 � 1:2 z0 � 0 �0 � ÿsgn�1:2� � ÿ1
y1 � 1:2ÿ 2:3� �20 � ÿ1:1 z1 � 0ÿ ÿ1� �20 � 1 �1 � ÿsgn�ÿ1:1� � �1
y2 � ÿ1:1� 2:3� �2ÿ1 � 0:05 z2 � 1ÿ 1� �2ÿ1 � 0:5 �2 � ÿ1
y3 � 0:05ÿ 2:3� �2ÿ2 � ÿ0:525 z3 � 0:5� 2ÿ2 � 0:75 �3 � �1
y4 � ÿ0:525� 2:3� �2ÿ3 � ÿ0:237 5 z4 � 0:75ÿ 2ÿ3 � 0:625 �4 � �1
y5 � ÿ0:09375 z5 � 0:5625 �5 � �1
y6 � ÿ0:021875 z6 � 0:53125 ..

.

The values of yk are being driven towards 0 by the choice of the signs, and zk is approaching

1:2=2:3 � 0:52174 to 5 decimals. The error in z6 is about 0:01 which is indeed smaller than

2ÿ5 � 0:03125.

We see that the most complicated operation involved here is the calculation of yk , which involves no

more than a binary shift of x0 and the addition or subtraction of this quantity from the previous value.

The algorithm entails no more than shifts and adds, which was the objective behind the development of

CORDIC algorithms.

Multiplication can be performed using the same CORDIC algorithm in rotation

mode. Setting y0 � 0, we obtain yn�1 � x0z0 with error bounded by x02
ÿn. The

details are left to the exercises.

Thus far, we have paid little attention to the condition (3.11) of Theorem 1,

which for multiplication and division states that the decomposition works for

rj j �
Xn
k�0

2ÿk � 2ÿn � 2

For division, this imposes the requirement that y0=x0j j � 2 which is automatically

satis®ed for (the mantissas of) normalized binary ¯oating-point numbers which lie

in �1; 2�. Similarly for ¯oating-point multiplication, both operands are within the

appropriate range. With n chosen appropriately, and with x0 2 �1; 2� the error

bound for multiplication also guarantees the correct relative precision in the

product.

The use of CORDIC algorithms for multiplication and division is summarized in

Table 3.1. Here, as in Tables 3.2 and 3.3 for trigonometric and hyperbolic functions

64 Guide to Scientific Computing



(pp. 68 and 72), R and V represent the Rotation and Vectoring modes, respectively.

In each of the tables, a `useful domain' is quoted for each operation. This is not

necessarily the complete domain of convergence for the algorithm but it indicates a

useful practical domain for which convergence can be established.

Example 8 CORDIC trigonometric functions

For the trigonometric functions, we use m � 1 and take

�k � arctan 2ÿk k � 0; 1; . . . ; n� �
The fact that this sequence satis®es (3.11) can be established by an application

of the Mean Value Theorem.

The rotation mode provides a technique for computing sin � and cos � by

setting z0 � � and decomposing this as
P
�k�k . Writing sk � �ÿ zk , it follows

from (3.16) that

sk�1 � sk � �k�k
Hence, using the facts that sine and cosine are odd and even functions,

respectively, we have

cos sk�1� � � cos sk � �k�k� �
� cos sk� � cos �k�k� � ÿ sin sk� � sin �k�k� �
� cos sk� � cos �k� � ÿ �k sin sk� � sin �k� �

and, similarly,

sin sk�1� � � sin�sk� cos �k� � � �k cos sk� � sin �k� �
Dividing both these equations by cos �k� � and observing that tan �k� � � 2ÿk ,
we now obtain

cos sk�1� �
cos �k� � � cos sk� � ÿ �k2ÿk sin sk� � �3:18�
sin sk�1� �
cos �k� � � sin sk� � � �k2ÿk cos sk� � �3:19�

Approximate Evaluation of Functions 65

Table 3.1 CORDIC algorithms for arithmetic operations

m � 0, �k � 2ÿk for k � 0; 1; . . . ; n

Function Mode Initial

values

Output Error

bound

Useful domain

� R y0 � 0 yn�1 � x0z0 x0j j2ÿn x0j j; z0j j � 2

= V z0 � 0 zn�1 � y0=x0 2ÿn y0=x0j j � 2



From Theorem 1 it follows that zn�1j j � sn�1 ÿ �j j � �n. Apart from the

divisor cos �k� �, (3.18) and (3.19) resemble (3.14) and (3.15) with m � 1,

xk � cos sk� �, and yk � sin sk� �. The factors cos �k� � and their product

KT �
Yn
k�0

cos �k� �

can be precomputed. The initial values of xk and yk can be premultiplied by

this constant KT . That is, we set

x0 � KT cos s0� � � KT cos 0� � � KT

y0 � KT sin s0� � � KT sin 0� � � 0

The effect is that after the n� 1 steps are completed, we have

xn�1 � cos �; yn�1 � sin �

each with error less than 2ÿn.
To illustrate this algorithm we shall compute sin 1� � and cos 1� � using just

4 steps (n � 3). In this case we use

�0 � arctan 1 � 0:7854

�1 � arctan 1=2� � � 0:4636

�2 � arctan 1=4� � � 0:2450

�3 � arctan 1=8� � � 0:1244

and

KT � cos �0� � cos �1� � cos �2� � cos �3� � � 0:6088

Then, with �k � sgn zk� �;m � 1 we get, using (3.14)±(3.16)

x0 � 0:6088 y0 � 0 z0 � 1 �0 � �1
x1 � 0:6088 y1 � 0:6088 z1 � 0:2146 �1 � �1
x2 � 0:3044 y2 � 0:9132 z2 � ÿ0:2490 �2 � ÿ1
x3 � 0:5327 y3 � 0:8371 z3 � ÿ0:0040 �3 � ÿ1
x4 � 0:6373 y4 � 0:7705 z4 � 0:1204 �4 � �1

from which we deduce that cos 1 � 0:6373 and sin 1 � 0:7705, each with error

less than 2ÿ3 � 0:125. (The true values are 0:5403 and 0:8415.)

Note that, as with the division algorithm, the errors are not necessarily

reduced at each iteration. The compensating advantage is that we know in

advance the exact number of steps that are needed to achieve a speci®ed

accuracy. In the case of the trigonometric functions, we should also note that it

is not until the completion of the predetermined number of steps that we really

have approximations to cos � and sin � because of the initial scaling by KT

which depends on the number of steps to be used.

66 Guide to Scientific Computing



MATLAB m-®le for sin and cos using CORDIC algorithm with 40 stepsProgram

function y=Cordictrig(z)

% Computes cos and sin of z using 40 steps of CORDIC algorithm

% y(1), y(2) are approximations of cos(z), sin(z) respectively

s=2.^-(0:39); sig=atan(s);

KT=prod(cos(sig));

x1=KT; y1=0;

for k=1:40

x0=x1; y0=y1;

if z>=0, del=1; else del=-1; end

x1=x0-del*y0*s(k);

y1=y0+del*x0*s(k);

z=z-del*sig(k);

end

y(1)=x1; y(2)=y1;

The results from this m-®le should be accurate to within 2ÿ39. As an example, the

command

» cs=cordictrig(1)

yields the result

cs =

0.540302305868555 0.841470984807631

which each have errors smaller than 2ÿ41 as can be veri®ed using

» log2(abs([cos(1)-cs(1),sin(1)-cs(2)]))

ans =

ÿ41.1327212602903 ÿ41.7753953184615

The vectoring mode of the trigonometric CORDIC provides algorithms for both

the inverse tangent function and for the magnitude of a 2-dimensional vector.

Speci®cally, with z0 � 0, we can use it to compute

zn�1 � arctan y0=x0� �
and

xn�1 �
��������������
x20 � y20

q
=KT

If the initial values x0; y0 are scaled by KT , the arctangent value is unchanged and

the square root becomes just
��������������
x20 � y20

p
, which is to say we have precisely the

appropriate output for conversion between Cartesian and polar coordinates in the

plane.

Approximate Evaluation of Functions 67



Remark 2 It may appear from the program above that this algorithm

requires knowledge of both arctan and cos in order to compute these

functions. However, we should note that in a hardware implementation only

those special values �k and cos �k are needed and these would be

precomputed and stored on the chip.

As with the arithmetic functions, we must consider the intervals of convergence

for these CORDIC trigonometric functions. Since the angle � is decomposed asP
�k�k , this algorithm will be applicable for any �j j �P�k � �n � 1:74 which is

greater than �=2 so that range reduction could be implemented to allow the

CORDIC algorithm to compute any value of these functions. Essentially this

involves subtracting the appropriate integer multiple of 2� and then adjusting the

answers for the correct quadrant. For arguments outside a moderate interval, this

range reduction is not trivial. We do not concern ourselves with the details here.

The complete domain of the arctangent can be covered since, using

x0; y0 2 ÿ2; 2� �, the range of values of y0=x0 spans the whole real line. For the

geometric coordinate transformation, this range remains suf®cient since we can

scale both coordinates by an appropriate binary exponent. As before we summarize

the trigonometric CORDIC algorithms in a table (Table 3.2).

Example 9 Hyperbolic, exponential and logarithmic functions

The CORDIC algorithms for these functions are very similar to those for the

trigonometric functions. This time we take m � ÿ1 and �k � tanhÿ1 2ÿk for

k � 1. Equations similar to (3.18) and (3.19) can be derived from the

corresponding identities for the hyperbolic functions. There is one very

important difference, however. The quantities �k just de®ned do not satisfy

68 Guide to Scientific Computing

Table 3.2 CORDIC algorithms for trigonometric functions

m � 1, �k � arctan 2ÿk for k � 0; 1; . . . ; n, KT �
Qn

k�0 cos��k�
Function Mode Initial values Output Useful domain

cos, sin R
x0 � KT

y0 � 0

xn�1 � cos z0
yn�1 � sin z0

x0j j, z0j j � �=2

arctan V z0 � 0 zn�1 � arctan y0=x0� � x0j j; y0j j � 2

�j jj j V
x0 � xKT

y0 � yKT
xn�1 �

��������������
x2 � y2

p
xj j; yj j � 2



condition (3.11). It can be shown, however, that, if the steps for

k � 4; 13; 40; . . ., or, in general, k � 3j ÿ 1� �=2, are repeated then all the

conditions of Theorem 1 are satis®ed. Corresponding to the quantity KT used

for the trigonometric functions, this time we take

KH �
Y

cosh �k

where the product includes repetitions of the appropriate factors.

In the rotation mode if x1 � KH and y1 � 0 then

xn�1 � cosh z1

yn�1 � sinh z1

each with error smaller than 2ÿn. From these we can obtain the exponential

function since

ez1 � cosh z1 � sinh z1

With z1 � 0, the vectoring mode can be used to obtain

zn�1 � tanhÿ1 y1=x1� �
� 1

2
lnw

�3:20�

if x1 � w� 1; y1 � wÿ 1. Also

xn�1 �
��������������
x21 ÿ y21

p
KH

�
����
w
p
KH

�3:21�

if x1 � w� 1=4; y1 � wÿ 1=4.

We illustrate these algorithms with the estimation of e0:2 using n � 5. The

basic algorithm can be simpli®ed somewhat for the exponential function.

Equations (3.14) and (3.15) with m � ÿ1 become

xk�1 � xk � �kyk2ÿk
yk�1 � yk � �kxk2ÿk

and writing uk � xk � yk we obtain the single equation

uk�1 � uk � �kuk2ÿk �3:22�
Now using n � 5, which corresponds to 6 steps, and allowing for the repetition

for k � 4, we use

�1 � tanhÿ1 2ÿ1 � 0:5493, �2 � 0:2554,

�3 � 0:1257, �4 � 0:0626, �5 � 0:0626

from which we have

KH � cosh 0:5493� � cosh 0:2554� � cosh 0:1257� � cosh2 0:0626� �
� 1:2067

Approximate Evaluation of Functions 69



70 Guide to Scientific Computing

Then we obtain

u1 � 1:2067 z1 � 0:2000 �1 � �1
u2 � 1:8101 z2 � ÿ0:3493 �2 � ÿ1
u3 � 1:3576 z3 � ÿ0:0939 �3 � ÿ1
u4 � 1:1879 z4 � 0:0318 �4 � �1
u5 � 1:2621 z5 � ÿ0:0308 �5 � ÿ1
u6 � 1:1832 z6 � 0:0318 �6 � �1

Hence, we obtain e0:2 � u7 � 1:1832� 1:1832� �2ÿ5 � 1:2202, which should

be compared with the true value 1.2214.

In the following program, the set of steps that are repeated includes k � 1. This

has the bene®t of increasing the range of applicability of the algorithm. This

program implements the vectoring mode. With careful choice of the inputs, the

outputs yield not only the inverse hyperbolic tangent but also the natural logarithm

and square-root functions.

MATLAB m-®le for tanhÿ1 using CORDIC algorithm with 40 steps plus

repetitions

Program

function out=cordichypv(x,y)

% Cordic algorithm for hyperbolic functions

% Vectoring mode, 40 steps plus repetitions for 1,4,13,40

v=[1,1:4,4:13,13:40,40];

% Note this takes account of the repetitions

s=2.^-v;

sig=atanh(s);

KH=prod(cosh(sig));

z=0; x1=x; y1=y;

for k=1:44

x0=x1; y0=y1;

if y0>=0, del=-1; else del=1; end

x1=x0+del*y0*s(k);

y1=y0+del*x0*s(k);

z=z-del*sig(k);

end

out=[x1,y1,z];

For example, the command

» v=cordichypv(2,1)

yields the output vector

v = 1.24223904144032, 9.7878783548196e-014, 0.549306144333976

the third element of which is the approximation to tanhÿ1 1=2� � which has true

value 0.549306144334055. The error is about 10ÿ13.



Approximate Evaluation of Functions 71

The second element of the output merely con®rms that the CORDIC iterations

have forced yk to approach 0. The ®rst element is the ®nal xn�1 value which should

be close to
���������������
22 ÿ 12
p

=KH �
���
3
p

=1:39429751423739 � 1:242 239 to 6 decimals.

Equations (3.20) and (3.21) show how to modify the initial values to obtain other

desired outputs. For example, to get ln 2, we must choose x1 � 2� 1 � 3,

y1 � 2ÿ 1 � 1. This will result in zn�1 � �1=2� ln 3 and so the third element of the

output vector must be doubled:

» v=cordichypv(3,1);

» ln2=2*v(3)

ln2 =

0.69314718056046

which should be compared with the true value 0.693147180559945.

The convergence domain for the hyperbolic functions with the repetitions used isP
�k � 1:74 so that cosh z, sinh z and exp z may be computed for zj j � 1:74. This

range can be extended in a variety of ways. One convenient method is to write

larger arguments in the form

z � z1 � p ln 2

where p is an integer chosen so that z1 2 �0; ln 2�. Then z1 is in the range of

applicability and we can then use

ez � ep ln 2ez1 � 2pez1

which will be the normalized binary ¯oating-point representation. The error in the

value of ez1 will be 2ÿn�1, where n is the number of steps used. It is therefore easy

to determine in advance the number of steps needed for any particular ¯oating-

point format. This number of steps remains ®xed for all arguments.

The CORDIC algorithms for the hyperbolic functions are summarized in

Table 3.3.

It is necessary here to give a word of warning about the possibility of

meaningless computation. As an illustration, suppose that a hypothetical calculator

works to 7 decimal digits so that a number, A, is represented as a� 10� with

1 � a < 10. The difference between A and the next representable number is then

10�ÿ6 which is certainly greater than 2� whenever � � 7. To try to give a speci®c

value to, say, cosA is then plainly meaningless since more than one complete

period of the cosine function would share the same representation. Nonetheless

most computers and calculators will attribute a speci®c value to cosA, which

emphasizes the point that any output from a computer or calculator should be

treated with suspicion until the situation has been analyzed carefully.

Before leaving the subject of approximate evaluation of functions, it should be

stressed that, although many practical algorithms are based on the ideas presented

here, these are by no means the only ones available. The different routines used in

various computers provide ample testimony to the variety and blend of approaches



which may be useful in different circumstances. The interpolation-based methods

of Chapter 4 also play an important role, as do others that are beyond our present

objectives.

Exercises:
Section 3.3

1 Approximate 0:12345 in the form �1� 1=2� � � � � 1=32. Verify that the error

satisfies the bound given in Theorem 1.

2 Show that �k � 2ÿk for k � 0; 1; . . . ; n satisfies the condition (3.11) of

Theorem 1.

3 Write a MATLAB m-file to obtain the CORDIC decomposition of a number

r 2 ÿ2; 2� � using �k � 2ÿk for k � 0; 1; . . . ; 40. Test it for r � �0:12345 and

�1:2345 and verify that the error bounds satisfy (3.13).

4 Use the CORDIC multiplication algorithm to compute 1:23� 1:12 with error

less than 2ÿ7.
5 Show that �k � arctan 2ÿk for k � 0; 1; . . . ; n satisfies condition (3.11) of

Theorem 1. Use the CORDIC algorithm to compute sin 0:5� � and cos 0:5� � with
n � 5.

6 Write a MATLAB m-file to compute the vectoring mode of the trigonometric

CORDIC algorithm using 40 steps. Use it to convert the Cartesian coordinates

2; 1� � to plane polar coordinates.

7 Derive a simplified CORDIC scheme for evaluating the function eÿz. Use this

algorithm with n � 6 to approximate eÿ0:25.
8 Use the CORDIC algorithm to approximate ln 1:5 using n � 6.

9 Write an m-file for the rotation mode of the CORDIC algorithm for hyperbolic

functions using n � 40. (Don't forget the repeated steps!) Use this to evaluate

sinh x for x � ÿ1:5 : 0:1 : 1:5. Graph the error function for these values and

verify that the errors are appropriately bounded.

72 Guide to Scientific Computing

Table 3.3 CORDIC algorithms for hyperbolic functions

m � ÿ1, �k � tanhÿ1 2ÿk for k � 1; 2; . . . ; n, KH �
Q

cosh��k� with repetitions

for k � 1; 4; 13; 40; . . .

Function Mode Initial values Output Useful domain

cosh

sinh

exp

R
x0 � KH

y0 � 0

xn�1 � cosh z0
yn�1 � sinh z0
xn�1 � yn�1 � ez0

x0j j; y0j j � 1:7

tanhÿ1 V z1 � 0 zn�1 � tanhÿ1 y1=x1� � y1j j < x1j j
y1j j � 2

lnw V
x1 � w� 1

y1 � wÿ 1
zn�1 � 1

2
lnw 1=2 � w � 2

����
w
p

V
x1 � KH w� 1=4� �
y1 � KH wÿ 1=4� � xn�1 � ����

w
p

1 � w � 4



3.4 MATLAB functions

MATLAB has algorithms built in for all the standard `elementary' mathematical

functions, such as the trigonometric functions and their inverses, the exponential

function, the natural logarithm and the hyperbolic functions and their inverses.

Their names are usually the expected ones with the convention that the inverse

functions are pre®xed with the letter a so that atan is MATLAB's arctan function.

The syntax is also as you would expect. Some of the basic ones are included in

Table 3.4. All the standard MATLAB functions can be applied elementwise to

vectors and matrices ± a fact which is particularly helpful for graphics.

Modern PCs can evaluate most of these in hardware using algorithms similar to

those described in this chapter. However, MATLAB does not use these hardware

functions because its results should be the same independent of the hardware

platform being used. (Most UNIX workstations do not have the ability to compute

these in hardware on their RISC (Reduced Instruction Set Computer) chips.)

MATLAB employs very ef®cient software code for these functions.

In addition to these `elementary' functions, MATLAB has built-in m-®les for

many other `special' functions. These include the erf function (which was

introduced in the Exercises to Section 3.2), the beta and gamma functions, the

Bessel functions and many others. Again the syntax is much as would be expected

for these different functions. You can check the details in your MATLAB

documentation when you need to use any of these functions.

Approximate Evaluation of Functions 73

Table 3.4 MATLAB elementary functions

Mathematical

notation

MATLAB Mathematical

notation

MATLAB

sin x sin(x) ex � exp x� � exp(x)

cos x cos(x) ln x log(x)

tan x tan(x) log10 x log10(x)

arctan x atan(x) log2 x log2(x)

arcsin x asin(x) cosh x cosh(x)���
x
p

sqrt(x) sinh x sinh(x)

xj j abs(x) tanhÿ1 x atanh(x)


	Contents
	Preface
	Chapter 3

