

PE-BASIC
REV 0.15

B.A.S.I.C. Interpreter for the Parallax

Propeller Microcontroller

Create programs

without a PC.

PE-Basic 0.15

Page 1

Overview 2

Variables 3

Registers 4

Functions 5

Pin I/O 6

Operators 7

Commands 8

PE-Basic 0.15

Page 2

Overview:

PEBasic is an interpreted BASIC (Beginners All-purpose Symbolic Instruction Code) language for the
Parallax Propeller microcontroller.

If you have every used any of the "home computers" of the 1980's you will be familiar with the language as it
was built-in to most computers of the time. (Timex Sinclair, C64, Atari 400/800, Vic 20, TI 99/4A, etc).

The program is written using line numbers to indicate the order of execution. It is customary to number the
lines in increments of 10 so that additional lines may be inserted later.

Commands can be entered as part of a program with a line number, or as a direct command without a line
number. Direct commands are executed immediately.

Here is a short program that prints the numbers from 1 to 10.

10 FOR a=1 TO 10

20 PRINT a

30 NEXT a

By entering the direct command RUN the program will execute.

PE-Basic 0.15

Page 3

Variables:

Variable names must start with a letter, may contain letters and numbers, may be up to 8 characters long.

FOR..NEXT variables must be a single letter.

Variables are 32-bit signed integers able to hold integer values from -2,147,483,648 to +2,147,483,647.

Upper and lower case are the same. The variable "value", "Value" and "VALUE" are all the same variable.

You cannot use a command or other reserved word as a variable name.

Single letter variable names execute faster.

Up to 100 multi-letter variable names may be created.

The following are valid variable names:

value
value5
value23

The following are NOT valid variable names:

5value - may not start with a number
BallXPosition - too long (more than 8 characters long)
value_5 - Contains an invalid character
free - "free" is a reserved word

PE-Basic 0.15

Page 4

Registers:

DIRA Pin direction 0=INPUT; 1=OUTPUT write-only

OUTA Pin outputs 0=LOW; 1=HIGH write-only

INA Pin inputs 0=LOW; 1=HIGH read-only

CNT System counter read-only

CTRA,CTRB Counter mode write-only

FRQA,FRQB Counter frequency write-only

PHSA,PHSB Counter phase write-only

VCFG,VSCL Sets video generator write-only

INKEY Returns value of key pressed read-only

VARS Address of variables read-only

FREE Returns number of free program bytes read-only

CHARS Address of character bitmaps read-only - NTSC-only

SCREEN Returns address of screen memory read-only - NTSC-only

PE-Basic 0.15

Page 5

Functions:

ABS(expr) Returns the absolute value of expr

RND(expr) Returns a random number from 0 to expr -1

PEEK(expr) Returns byte(8-bit) value in memory at expr

PEEKW(expr) Returns word(16-bit) value in memory at expr

PEEKL(expr) Returns long(32-bit) value in memory at expr

PIN(expr) Returns value of pin expr

PIN(expr_msb..expr_lsb) Returns value of pin group

PE-Basic 0.15

Page 6

Pin I/O:

INPUT Make pin(s) inputs.

OUTPUT Make pin(s) outputs.

HIGH Make pin(s) output and high (3.3V)

LOW Make pin(s) output and low (0V)

PIN Sets a pin or pin group to a specific value

For all commands that operate on hardware pins you can specify a range of pins by using MSB..LSB.

For example to make pin 23 high use: HIGH 23

To make pins 24 thru 26 high use: HIGH 24..26

!!! NOTE if the MSB value is less than the LSB value, the bits will be reversed, this is the same as the spin
language !!!

PE-Basic 0.15

Page 7

Operators:

Order of precedence:

Parenthesis ()
UNARY +, UNARY -, !, ABS, RND, PEEKB, PEEKW, PEEKL, PIN, ..
SHL, SHR, ROL, ROR, SAR, REV
&
|, ^
*, /, //
+, -
=, <, >, <=, >=, <>
NOT
AND
OR

Description:

SHL Shift left 2 SHL 3 gives 16
SHR Shift right 16 SHR 3 gives 2
ROL Rotate left
ROR Rotate right
SAR Shift Right Arithmetic
REV Reverse bits 4 REV 3 gives 1
& Bitwise AND 6 & 3 gives 2
| Bitwise OR 6 | 1 gives 7
^ Bitwise XOR 6 ^ 4 gives 2
* Multiply
/ Divide
// Modulus
+ Addition
- Subtraction
= Logical is equal to 1 = 2 gives 0; 2 = 2 gives -1
< Logical is less than
> Logical is greater than
<= Logical is less than or equal to
>= Logical is greater than or equal to
<> Logical is not equal to
NOT Logical NOT
AND Logical AND
OR Logical OR

Notes:
Logical operators take zero as false and non-zero as true.
Logical operators return zero as false and -1 as true.

&, |, ^ are bitwise (AND,OR,XOR); "AND" and "OR" are logical AND and OR.
4 | 1 = 5
4 OR 1 = -1

x..y returns (x + y*256 + 11141120) 11141120 = $AA0000 and is just a unique number which means (this is
a .. result)

x..y - 0..0 = x + y*256

PE-Basic 0.15

Page 8

Commands:

BCOLOR BCOLOR {expression}
 BCOLOR 4
 Sets the background color (see COLOR, FCOLOR)
 0 = BLACK
 1 = MAGENTA
 2 = RED
 3 = YELLOW
 4 = GREEN
 5 = CYAN
 6 = BLUE
 7 = DARK GREY
 8 = LIGHT GREY
 9 = BRIGHT MAGENTA
 10 = BRIGHT RED
 11 = BRIGHT YELLOW
 12 = BRIGHT GREEN
 13 = BRIGHT CYAN
 14 = BRIGHT BLUE
 15 = WHITE

CLS CLS
 CLS
 Clears the screen to the currently set color

COLOR COLOR {expression}
 COLOR 4+15*16 ‘ White on Green
 Sets both background and foreground colors with one value (see BCOLOR, FCOLOR)
 Color = background + foreground * 16

CONT CONT {optional expression}
 CONT
 Continue program after ESC is pressed

DATA DATA expression, expression, expression
 DATA 0,1,2,4,8,16,32
 Define data to be read with READ (see READ, RESTORE)

DEBUG DEBUG
 DEBUG
 Shows line #'s as program runs

DISPLAY DISPLAY {expression}
 DISPLAY 42 ' prints a "*"
 Prints ascii character. May use multiple paramters.
 Value 10 moves to next line and moves back to starting position (for multi line displays)

DUMP DUMP
 DUMP
 Shows program bytes, press a key to stop

END END
 END
 Stops program and returns to command prompt

PE-Basic 0.15

Page 9

FCOLOR FCOLOR {expression}
 FCOLOR 7
 Sets the foreground color (see COLOR, BCOLOR)
 0 = BLACK
 1 = MAGENTA
 2 = RED
 3 = YELLOW
 4 = GREEN
 5 = CYAN
 6 = BLUE
 7 = DARK GREY
 8 = LIGHT GREY
 9 = BRIGHT MAGENTA
 10 = BRIGHT RED
 11 = BRIGHT YELLOW
 12 = BRIGHT GREEN
 13 = BRIGHT CYAN
 14 = BRIGHT BLUE
 15 = WHITE

FOR FOR {single letter var} = {start value} TO {limit value} [STEP {step value}]
 FOR A = 1 TO 10
 Creates a program loop

GOSUB GOSUB {expression}
 GOSUB 1000
 Go to subroutine (see RETURN)

GOTO GOTO {expression}
 GOTO 100
 Jumps to specified line number

HIGH HIGH {expression} or HIGH {expression..expression}
 HIGH 23
 HIGH 23..26
 Make pin(s) an output and high

IF IF {condition expression} THEN commands [ELSE commands]
 IF A = B THEN 1000
 IF A <> B THEN c=1000:d=1000 ELSE e=1000
 If the condition is true, execute commands following THEN, otherwise skip to next line

INPUT INPUT {expression} or INPUT {expression..expression}
 INPUT 23
 INPUT 23..26
 Make pin(s) an input

LET LET {var} = {expression}
 LET A=A*10
 LET A=PIN 27..24
 Assigns a value to a variable. (LET is optional)

PE-Basic 0.15

Page 10

LIST LIST {optional expression}
 LIST
 LIST 100
 Show program listing (Press a key to stop)

LOAD LOAD {optional expression}
 LOAD
 LOAD 1
 Retrieves program from EEPROM, if 64K eeprom can use LOAD [1-4]

LOCATE LOCATE {expression},{expression}
 LOCATE 5, 10
 Sets print location to x,y

LOW LOW {expression} or LOW {expression..expression}
 LOW 23
 LOW 23..26
 Make pin(s) an output and low

NEW NEW
 NEW
 Clears program and displays version info

NEXT NEXT {single letter variable}
 Adjusts value and loops back to FOR line

NODEBUG NODEBUG
 Does NOT show line #'s as it runs (see DEBUG)

OUTPUT OUTPUT {expression} or OUTPUT {expression..expression}
 OUTPUT 23
 OUTPUT 23..26
 Makes pin(s) an output

PAUSE PAUSE {expression}
 PAUSE 1000
 Pauses for milliseconds

PIN PIN {expression},{expression} or PIN {expression}..{expression},{expression}
 PIN 23,1
 PIN 27..24,15
 Sets pin output state. NOTE: DOES NOT SET PIN TO OUTPUT MODE

POKE POKE {expression},{expression}
 POKE a,100
 Changes a byte of program memory

POKEW POKEW {expression},{expression}
 POKEW a,1000
 Changes a word of program memory

POKEL POKEL {expression},{expression}
 POKEL a,100000
 Changes a long of program memory (RAM, not EEPROM)

PE-Basic 0.15

Page 11

PRINT PRINT {expression} or PRINT "TEXT"
 PRINT a
 PRINT "The value is ";a
 Prints to the screen.

READ READ {variable} [,{variable},etc]
 READ a,b,c
 Reads data from the DATA lines

REM REM {any characters} may use apostrophe in place of REM
 REM This is a comment
 dirx = 1 ' set direction to 1
 Comment

RESTORE RESTORE {optional expression}
 RESTORE 1000
 Set program line number that READ will start reading data from

RETURN RETURN
 RETURN
 Return from subroutine

RUN RUN {optional expression}
 RUN
 RUN 1000
 Runs program

SAVE SAVE {optional expression}
 SAVE
 SAVE 1
 Saves program to EEPROM, if 64K eeprom can use SAVE [1-4]

PE-Basic 0.15

Page 12

NOTES:

 Single letter variable names are faster than multi-letter variable names

 FOR...NEXT is faster than GOTO
 GOTO needs to scan from the beginning to find the line # requested

 FOR does NOT have to be the first command on a line.
 10 CLS: FOR a=1 TO 10:PRINT a:NEXT a

PE-Basic 0.15

Page 13

EXAMPLE PROGRAMS:

1 REM ---------------

2 REM Guess my number

3 REM ---------------

10 CLS

20 a = RND 99 + 1

30 PRINT "Guess my number (1 to 100):";

40 b=0

50 c=INKEY:IF c=0 THEN GOTO 50

60 IF c=13 THEN GOTO 100

70 IF c=8 THEN b=b/10:GOTO 50

80 b=b*10+c-48

90 GOTO 50

100 IF b > a THEN PRINT "Too high..."

110 IF b < a THEN PRINT "Too low..."

120 IF b <> a THEN GOTO 30

130 PRINT "You guessed it !!!"

