
Multi-pin PWM on the SX
Terry Hitt
July 10, 2009

Generating PWM with the SX processor is fairly simple using the SX/B PWM command. However, no
other processing can occur while the PWM voltage is being generated. In order to allow other
processing to occur the PWM code is typically placed inside an ISR (Interrupt Service Routine).

The required interrupt rate depends on the PWM output rate, the interrupt rate must be (Hertz *
Levels). So let’s say you wanted to create an output with a 4KHz update rate using 8-bits. Eight bits is
256 levels, so the interrupt rate would have to be (4000 * 256) or 1,024,000. If you are running the SX
from it’s internal clock at 4MHz you can see that there would be less than 4 cycles available per
interrupt. 4,000,000 / 1,024,0000 = 3.90625. It is clear that we would need to sacrifice either update
speed or resolution to be able to use an interrupt for generating this signal.

One way around this problem is to use more than one pin to generate the PWM output. We can
create a 3-bit DAC using 3 resistors (1K, 2K and 4K. you can use multiple 1K resistors if you wish).
This gives us 8 levels of output voltage without using PWM to toggle any pins. To create the levels in
between, we will toggle the DAC pins between two of the eight output levels.

Since the PWM interrupt code will toggle the DAC between two adjacent values we cannot just divide
the DAC value by 32 (1/8 of 256) to get the setting we want and let the interrupt toggle between that
setting and the next highest setting. Because if we set the DAC to %111 that is the maximum, and
there is no next highest setting.

What we need to do is divide the DAC range into 7 settings instead of 8, so the maximum base value
is %110 instead of %111. Now you can probably guess that the calculations get sticky. Each DAC
setting is 1/7 of the maximum instead of 1/8. There are 37 (256 / 7) values between each of the DAC
settings. Since 37 is not a very computer friendly number, it’s a little more work to get the PWM
calculations correct.

Because there are 37 levels between DAC levels when we calculate our required interrupt rate we get
(4000 * 37) = 148,000. This makes our interrupt rate 7 times lower. This gives us 27 (4,000,000 /
148,000) cycles for the interrupt routine and foreground code. With a little clever programming this
should be doable.

The odd value calculations requires a fairly large number of instructions, so I’m only going to do the
calculations in the main code via a subroutine. The interrupt contains only the bare minimum required
to do the PWM.

Let’s look at the code:

' Multi-Pin PWM
' Terry Hitt
' July 10, 2009
' 4K
' RA.0 ---------/\/\/\-------+
' 2K | +-----------------> PWM Output
' RA.1 ---------/\/\/\-------+ | 0.1uF
' 1K +--------+---|(---|Gnd
' RA.2 ---------/\/\/\-------+
'
' Uses multiple pins to create an 8-bit PWM output with 4 KHz update rate
'
DEVICE SX28,OSC4MHZ
FREQ 4_000_000,1_925_925 ' ISR uses 14 of 27 cycles

DAC PIN RA OUTPUT

pwmLevel VAR BYTE

temp1 VAR BYTE ' Used by SetDAC
temp2 VAR BYTE ' Used by SetDAC

' Interrupt variables
pwmDACBase VAR BYTE
pwmAccum VAR BYTE
pwmFrac VAR BYTE

INTERRUPT NOPRESERVE 148_000 ' 37 interrupts for 1 complete update (148000 / 37 = 4000)
 pwmAccum = pwmAccum + pwmFrac
 DAC = pwmDACBase + C
RETURNINT

SetDAC SUB 1

PROGRAM Start NOSTARTUP

Start:
 ' Create Waveform
 SetDAC 0
 PAUSEUS 250
 FOR pwmLevel = 0 TO 255
 SetDAC pwmLevel
 PAUSEUS 50
 NEXT
 GOTO Start
END

SUB SetDAC
 temp1 = __PARAM1
 temp1 = temp1 / 37
 temp2 = __REMAINDER
 temp2 = temp2 * 7
 pwmDACBase = temp1
 pwmFrac = temp2
ENDSUB

First we setup the device with the two lines:

DEVICE SX28,OSC4MHZ
FREQ 4_000_000,1_925_925 ' ISR uses 14 of 27 cycles

The first line defines that we are using the SX28 device with the internal 4MHz oscillator. The second
line defines the clock speed to be 4 MHz (4_000_000), and the apparent clock speed is 1.925925
MHz (1_925_925). This “apparent” clock speed is used by the SX/B compiler to generate the timing
for delays. This value is found by taking the (((cycles per interrupt – the cycles used in the ISR) /
cycles per interrupt) * SX Clock Speed) since the ISR takes 14 cycles, and the interrupt rate is 27
cycles we get (((27 – 14) / 27) * 4,000,000) = 1,925,925.

Next we declare our I/O pins for the DAC as outputs.

DAC PIN RA OUTPUT

Then we declare the variables.

pwmLevel VAR BYTE

temp1 VAR BYTE ' Used by SetDAC
temp2 VAR BYTE ' Used by SetDAC

' Interrupt variables
pwmDACBase VAR BYTE
pwmAccum VAR BYTE
pwmFrac VAR BYTE

Now comes the interrupt service routine (ISR).

INTERRUPT NOPRESERVE 148_000 ' 37 interrupts for 1 complete update (148000 / 37 = 4000)
 pwmAccum = pwmAccum + pwmFrac
 DAC = pwmDACBase + C
RETURNINT

The NOPRESERVE option tells SX/B that it does NOT need to preserve the systems variables
__PARAM1..5. If you view the code listing using Run->View List you can see that these two lines of
SX/B code do not use any of the system variables, so we are safe to not preserve them. Preserving
the system variables adds many cycles to the ISR.

Here we also indicate that we want the interrupt routine to be executed 148,000 times a second. Note
that you will get a warning that the actual interrupt rate is 148,148.148 because 4MHz / 27 =
148148.148. This doesn’t matter for our code.

Next we declare the subroutine that we are going to use to set the DAC value.

SetDAC SUB 1

We indicate that the subroutine will be given 1 byte parameter, which is the value of the DAC.

Next we indicate where our program should start executing from, with the PROGRAM directive.

PROGRAM Start NOSTARTUP

The NOSTARTUP option tells the compiler to NOT generate the code to zero all the variables. We
don’t need this, and it makes debugging more difficult because you need to skip through all this
initialization code.

Next is the main program code.

Start:
 ' Create Waveform
 SetDAC 0
 PAUSEUS 250
 FOR pwmLevel = 0 TO 255
 SetDAC pwmLevel
 PAUSEUS 50
 NEXT
 GOTO Start
END

Here we just set the DAC to zero, wait for the voltage level to settle (250uSec), then generate a ramp
waveform. Then we repeat the whole process over again.

You will notice that the main code allows only 50uSec for the output to settle when generating the
ramp. This is less than the 4KHz update rate (which would be 250uSec), but since we are only
moving 1 bit in the output it will work fine. If you were changing from 0 to 255 you do need to wait
250uSec for the output level to change.

Next in the program is the subroutine that sets-up the PWM variables for the ISR.

SUB SetDAC
 temp1 = __PARAM1
 temp1 = temp1 / 37
 temp2 = __REMAINDER
 temp2 = temp2 * 7
 pwmDACBase = temp1
 pwmFrac = temp2
ENDSUB

Here we need to get the value of (DAC / 37) and (DAC // 37 * 7) instead of doing the MOD (//) 37
calcuation (which would take a lot of code space and execution time) we just use the remainder from
the division operation. As the values are being calculated they need to be stored in a temporary
variable. If the interrupt should trigger in the middle of the calculation the output would be incorrect.
There is a slight chance that the interrupt could occur between the “pwmDACBase = temp1” and the
“pwmFrac = temp2” lines, but it doesn’t seem to affect the output.

Simulation with SXSim
Open this SX/B program in the SX-Key IDE, then start SXSim, then make sure the I/O panel is open
by pressing the “I/O Panel” button in the command dialog box. Then press the RUN button in SXSim.
You will see the RA port pins changing as the output value increments, then goes to zero.

