
5522 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NTSC will soon be a thing of the past. So,
what will you do in a world without the
NTSC? Jeff answers that question and
more. Read on to learn how he is using a
chip to bridge the gap between the NTSC
and VGA formats.

A World Without NTSC
Bridge the Gap Between NTSC and VGA

T

by Jeff Bachiochi

he United States Federal Communications
Commission (FCC) has mandated that most

broadcasters cease transmitting NTSC in favor of
digital television. What will happen in a world
without NTSC?

I was raised on NTSC. My uncle Ray was the
first in my family to have a color TV. I remember
saying, to my uncle’s dismay, “I prefer black and
white to color; look how awful the picture is.”
The grainy, fuzzy, rainbow-colored objects were
tough to watch. And I’ll admit now that this may
have been due to early set design and fringe recep-
tion. Back then, we were considered fortunate if

FROM THE BENCH

we could receive all three major networks. Today’s
TVs (or should I say those of the recent past) do a
great job at receiving broadcast signals. Strong sta-
tions give crystal-clear pictures. I don’t know the
exact numbers, but many viewers have now given
up their antennas for cable or dish connections.
Their broadcasts are already digital. Their receiver
boxes translate the ones and zeros into NTSC out-
put so we can connect our legacy TVs. For those
of you still using an antenna for reception, the
new digital broadcast transmissions can not be
received directly by legacy TVs. They require a
converter box to stupefy the new broadcast format
down into an NTSC output that can be used by
the outdated equipment.

I’m not going to debate the pros and cons of
the new digital broadcast format. Instead, I want
to point out that this means an end to using
inexpensive NTSC TVs and monitors as display
devices. All of this may have started back with
Don Lancaster’s design of the TV typewriter that
appeared on the cover of Radio-Electronics mag-
azine in September 1973.[1]

NTSC is a composite video standard used by the
first personal computers (TRS-80 and Apple) and
video game systems (Coleco and Atari). As higher
resolutions were required, the composite video sig-
nal was separated into multiple components allow-
ing finer control of the video format. While (S)VGA
uses discreet signals, each color is still basically
analog. One of the newer standards, the Digital

PPhhoottoo 11——You can start experi-
menting with the Parallax Pro-
peller processor for $80 using
the Propeller demo board.

of

Art

a

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 52

http://www.circuitcellar.com
Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or visit www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

www.circuitcellar.com • CIRCUIT CELLAR® 5533

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Video Interface (DVI) combines DVI-D
(digital mode) and DVI-A (VGA in analog
mode). Of the advertised interfaces on
today’s TVs—such as, HDMI, compo-
nent, VGA, S-Video, RF, and compos-
ite—which option do you think will be
the first to go on future models?

PROPELLING
I spent most of my early hard-earned

pocket money playing Space Invaders
and Asteroids at the local hangout. I
thought I had since shed my addiction
for gaming. Little did I realize the
demon had only moved into the shad-
ows. I continually collect products and
technologies that I think have potential

for the Propeller-Powered HYDRA—I
recently started playing with it. I read
“GPFTPPH,” but it wasn’t until I saw
the FCC’s writing on the wall that I
understood how the Propeller could

for future spotlight time in one of my
monthly raves. For instance, after hav-
ing a Parallax Propeller chip sitting on
my shelf for a few years—along with
Andre LaMothe’s Game Programming

FFiigguurree 11——The Propeller block diagram shows the interaction between the hub and eight cogs. Each cog has access to all I/O pins and the
hub’s RAM and ROM, as well as its own RAM.

PPhhoottoo 22——The HYDRA game console
is based on the Propeller chip. The
experimental console comes com-
plete with a PS2 mouse, a PS2 key-
board, a game controller, a power
supply, and cables. It also includes
the book Game Programming for
the Propeller-Powered HYDRA and a
CD for $200.

Pin directions

Pin outputs

I/O
 A

ss
is

ta
nt

 A
 +

 P
LL

I/O
 A

ss
is

ta
nt

 B
 +

 P
LL

V
id

eo
 g

en
er

at
or

I/O
 O

ut
pu

t r
eg

is
te

r

I/O
 D

ire
ct

io
n

re
gi

st
er

512 x 32
RAM

Processor

Cog 0

P31

P30

P29

P28

P27

P26

P25

P24

P23

P22

P21

P20

P19

P18

P17

P16

P15

P14

P13

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

3232

Pin inputs

System counter

System counter

Data bus

Address bus

Clock

32

I/O
Pins

P4

P5

P6

P7

VSS

BOEn

RESn

VDD

P8

P9

P10

1

2

3

4

5

6

7

8

9

10

11

P26

P25

P24

VDD

XO

XI

VSS

P23

P22

P21

P20

33

32

31

30

29

28

27

26

25

24

23

P
11

P
12

P
13

P
14

P
15

V
S

S

V
D

D

P
16

P
17

P
18

P
19

12 13 14 15 16 17 18 19 20 21 22

P
3

P
2

P
1

P
0

V
D

D

V
S

S

P
31

P
30

P
29

P
28

P
27

44 43 42 41 40 39 38 37 36 35 34

P8X32A-Q44
AYWWXZZ

Cog
4

Cog
0

Cog
3

Cog
7

Cog
2

Cog
6

Cog
1

Cog
5

I/O
Pins

Hub

RAM, ROM,
Configuration,
control cord.

Hub and cog interaction

System
counter

2

Hub

Reset

Clock

SOFTRES

PLLENA

OSCENA

OSCMODE

CLKSEL

Clock
selector
(MUX)

CLKSEL

Reset delay
(approximately

50 ms)

Power-up
detector

(approximately
10 ms)

RC Oscillator
12 MHz /
20 KHz

Clock PLL
1x, 2x,

4x, 8x, 16x,
(16x must be
64 - 28 MHz)

Brown out
detector

Bus sequencer

8,192 x 32 RAM

8,192 x 32 ROM

Cog enables

Lock bits (8)

Configuration
register

2

3

3

5

3

VDD

VSS

BOEn

RESn

PLLENA

OSCENA

OSCMODE

SOFTRES

Crystal
oscillator

DC - 80 MHz
(4 - 8 MHz

with clock PLL)

XI

XO

32

32

32

32

Cog 7Cog 6Cog 5Cog 4Cog 3Cog 2Cog 1

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 53

http://www.circuitcellar.com

5544 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

easily bridge the gap between NTSC
and VGA. So, I took my Propeller demo
board and went to work (see Photo 1).
The HYDRA is shown in Photo 2.

The Propeller chip consists of eight
independent processor units called cogs.
Each cog has its own 512 double words
(32 bits) of RAM. The last 16 bytes of
this RAM are special function regis-
ters that enable the cog to access all
I/O pins, its own counters, and a video
generator. The RAM is used to hold
code and local VARs. Each cog executes
its own code independently, yet all
cogs run from the master clock. The
Propeller can take oscillator or XTAL
input or use an internal RC oscillator
to drive the internal clock directly or
through a 2×/4×/8×/16× PLL for a maxi-
mum clock speed of 80 MHz!

Note that in addition to eight cogs,
there is an additional device called the
hub (see Figure 1). Besides handling the

basic reset, brown out, and master
clocking, the hub has its own memory,
both RAM and ROM, with 8,000 double
words each. Hub ROM contains character
definitions, math functions, a bootloader,
and a Spin interpreter. During reset, the
bootloader loads COG0 with some code
that checks for communication (enabling
you to take control), checks for an exter-
nal EEPROM, and loads it into the hub’s
RAM or shuts down all operations. If an
application has been transferred into the
hub’s RAM, then the SPIN interpreter is
loaded into COG0 and begins to execute
the application in the hub’s RAM.

Like all microcontrollers, the Pro-
peller has a number of assembly instruc-
tions that make up its vocabulary. You
may want to write your application
code (or parts of it) in assembly lan-
guage. However, there are those who
detest having to work with assembly
code, so the Parallax folks created a

higher-level language called Spin. It
removes much of this burden by pro-
viding a bunch of useful functions.

While each cog executes on its own,
your application directs this operation
and will determine exactly how a cog
will be used. For instance, if your appli-
cation requires asynchronous serial com-
munication, you might write a cog appli-
cation that samples the RX input looking
for a start bit, and upon reception uses
the system clock to continue sampling
the input at the proper data rate. Collect-
ed bytes might be put into hub RAM
(available to any cog). The hub continu-
ously does a “round robin” on all of the
cogs. It controls when a cog has access to
the system RAM and keeps cogs from
simultaneous access. A cog may have to
wait its turn, which is a maximum of
once every 16 clock cycles, depending on
whose turn it is. If a cog needs to update
multiple RAM locations prior to allowing

FFiigguurree 22—The Propeller demo board schematic shows how simple resistors added to the Propeller’s I/O pins act as a DAC (with a monitor’s
75-Ω input impedance) creating an inexpensive interface for either NTSC or VGA video.

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 54

http://www.circuitcellar.com

5566 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

floating point ($C000-$DFFF), a sine table for 0° to 90° with
0.0439° resolution ($E000-$EFFF), and the bootloader/Spin
interpreter ($F000-$FFFF).

VIDEO HARDWARE
Each cog has its own video hardware consisting of two con-

figuration registers and the ability to stream data using Pro-
peller output pins via the video streaming unit (VSU). (Note
that while the primary use here is video, don’t overlook the
audio possibilities.) The digital outputs are meant to interface
to an external DAC producing composite NTSC video output.
Because a composite monitor presents a 75-Ω load, discrete
resistors can be used to implement a DAC (see Figure 2). The
VCFG 32-bit register is used to configure the VSU in a
number of modes (i.e., Composite Baseband, Composite
Broadband) (55.25 MHz = channel 2) or VGA (see Table 1).
The VSCL 32-bit register contains two values: the number
of CTLA PLL clocks per pixel (PixelClocks), and the number
of clocks per frame (FrameClocks) (see Table 2). A CTRA PLL
clock is based on your XTAL value, the PLL multiplier, and
the CTRA PLL divider. When using NTSC, the active pixel
area of a scan line is 52.6 µs. If you want to divide this into
256 pixels, that’s approximately 205 ns/pixel (52.6 µs/256 pix-
els). If the CTRA PLL clock is running at 40 MHz, that’s 25 ns
(1/40,000,000). The closest you could come to 205 ns would be
to use a count of eight CTRL PPL clocks. That would be 200 ns
(PixelClocks = $08). If you were using 2-bit (four-color)
mode, you would be storing 16 pixels worth of 2-bit infor-
mation in each 32-bit double word. This means that the
FrameClocks value would need to be 16 pixels × Pixel-
Clocks, in this case 8 (FrameClocks=$080).

With these registers set up, the cog has all of the timing
information it needs to automatically output a stream of
data via selected output pins. But what about the data that
needs to be moved? The data will come from a RAM buffer.
The Propeller has 32 KB of RAM for system use. This includes
variable storage, program storage, and stack space, so you have
only a fraction for video data. Just how much is necessary and
how does it all fit together? From the VCFG and VSCL regis-
ters, you have defined a single scan line as having 256 pixels.
(Actually, 256 colored pixels is beyond the bandwidth of
NTSC. But let’s not worry about that right now.) Each pixel
will require 2 bits of data to determine which color (or
shade of gray) will be displayed at that pixel location. This
will require 512 bits of data per line (i.e., 256 pixels/line × 2
bits/pixel). A field has 262.5 scans lines that make up one
screen scan. The first and last few are usually out of the field

others to access the data, it can indicate this with a lock-
flag. Other cogs should respect this flag and cease access
until it is cleared.

There are no interrupts on the Propeller. Think of a cog
as an interrupt routine that continuously executes its
code, independent of other cogs. Every cog can read and
write to every I/O at any time! You can use this to your
advantage, but without proper attention, it can cause you
headaches. Any pin configured as an output by one cog
will force the configuration of the pin to an output even if
another cog is trying to use the pin as an input. Any cog
outputting a high on a pin will force the pin high even if
another cog is outputting a low to the same pin.

The hub’s RAM ($0000-$7FFF) will hold your application after
it is transferred at boot time. The hub’s ROM code consists
of 256 printable characters and graphics ($8000-$BFFF), Log
and Anti-log tables that help convert between base-2 and

TTaabbllee 11——This 32-bit register defines how the VSU hardware is used.
The upper bits define the NTSC/VGA modes, resolution, chroma, and
audio carrier source, while the lower bits define which processor pins
are used for output.

Bits Video configuration register (VCFG)
31 n/a

30:29 VMode (Enable)

0 0 Disable VSU

0 1 VGA Mode

1 0 NTSC Mode (Broadband on upper pins, baseband on lower pins)

1 1 NTSC Mode (Baseband on upper pins, broadband on lower pins)

28 CMode (colors/shades)

0 Two-color mode

1 Four-color mode

27 Chroma 1 (Broadcast)

0 Disable chroma (color) on broadband

1 Enable chroma (color) driver

26 Chroma 0 (Baseband)

0 Disable chroma (color) on baseband

1 Enable chroma (color) driver

25:23 Aural subcarrier (source)

0 0 0 Use COG 0's PLLA

0 0 1 Use COG 1’s PLLA

0 1 0 Use COG 2’s PLLA

0 1 1 Use COG 3’s PLLA

1 0 0 Use COG 4’s PLLA

1 0 1 Use COG 5’s PLLA

1 1 0 Use COG 6’s PLLA

1 1 1 Use COG 7’s PLLA

22:12 N/A

11:9 VGroup (Port drive)

0 0 0 Group 0 (P7:0)

0 0 1 Group 1 (P15:8)

0 1 0 Group 2 (P23:16)

0 1 1 Group 3 (P31:24)

1 x x Reserved

8 n/a

7:0 VPins (Pin drive)

0 1111 Driving lower four pins only (NTSC)

1111 0000 Driving upper four pins only (NTSC)

1111 1111 Driving all eight pins (VGA)

TTaabbllee 22——This 32-bit register contains an 8-bit count of clocks per
pixel and a 12-bit count of clocks per frame (1- or 2-bit resolution-
dependent).

Bits Video scale register (VSCL)
31:20 N/A

19:12 PixelClocks (Number of CTRA PLL clocks/pixel)

$00-FF 8-bit value

11:0 FrameClocks (16 or 32 × PixelClocks)

$000-FFF 12-bit value

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 56

http://www.circuitcellar.com

5588 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

real experiences and alter those sights broadcast in black
and white. It was an extraordinary engineering feat to add
color information to the standard black and white trans-
mission signal without negatively affecting all the existing
black and white receivers. A color sync signal hidden in
the horizontal blanking portion of each scan line is disre-
garded by black and white sets, as is the modulated (and
phase-shifted) color burst cycles during the active portion
of each scan line. The average value left (of the color-mod-
ulated signal) remains as luminance levels for the black
and white monitor producing levels of gray (between a
black 0.25 V and white 1 V). A color monitor uses the
phase difference between the color sync and the modulated
color signal in the active portion of the scan line to deter-
mine color and the amplitude of the modulated signal to
determine color saturation (or intensity). You saw earlier
that the two video registers can configure the hardware to
produce a composite video output signal containing all of
the necessary syncs and modulations to do both black and
white and color signal streams.

A cog driver can actually produce a signal with the full
gamut of color. However, we’ve determined that it
requires a lot of RAM to hold high-resolution color infor-
mation. Because of the required RAM limits, RAM is
conserved by limiting the resolution to 1 or 2 bits per
pixel. One bit gives you black and white (or two colors).
Two bits gives a few more colors to choose from, but
how does this value relate to a specific color?

The grid that makes up the screen tile locations hori-
zontal (rows) by vertical (columns) has a tile pointer map
(TPM) associated with it. There is a 16-bit pointer for
each tile location. Each pointer has double duty. The top
6 bits are an index into the tile color set table (TCT). The
bottom 10 bits are an index into the tile bitmap memory
(TBM). The tile color set table is a list of 64 4-byte
entries. Each TCT entry holds the 8-bit color informa-
tion for each of the four potential colors. Thus, this tile
could choose to use any of the 64 color sets. The 10-bit

of view, leaving about 244 maximum viewable lines.
Gamers will limit themselves to approximately 200 lines to
be sure their environment is not chopped off at the top or
bottom. So, at 200 scan lines, you need 12.8 KB of data
space (512 bits/scan line × 200 lines/8 bits). In many circum-
stances, you would like to use double buffering, which means
two equal size video buffers. That would mean 25.6 KB of
RAM. That sure doesn’t leave much room for the application.

TILING
Earlier I mentioned that there are 256 character graphics

stored in ROM. Each character is made up of 16 bits (hori-
zontally) × 32 bits (vertically). Two characters are combined
to make use of the 32-bit double word data format. When
the even or odd bytes of horizontal data are displayed on 32
separate scan lines, a picture of that character appears on the
screen. If you want to print a character to the screen, you
need a single byte to define the chosen character. The appli-
cation doesn’t need to figure out what data is required to
form a character on the screen. All that is waiting for you to
access it via a ROM address. This might require 1 byte
pointer instead of 64 bytes of RAM (i.e., 16 × 32 = 512 bits).

Similarly, you can create special characters called tiles. A tile
is used to create a background. You can think of a tile as a
piece of a puzzle. The puzzle (picture) is a grid of horizon-
tal and vertical positions on the screen where these pieces may
be placed. The number of horizontal and vertical positions
depends on the screen and tile resolutions. For instance, if each
tile is 8 pixels × 8 pixels and the screen is 256 pixels × 200 pix-
els, then you can fit 32 tiles horizontally (256 pixels per scan
line/eight pixels per tile) and 25 tiles vertically (200 lines/eight
lines per tile). The tile bitmap of an 8 pixel × 8 pixel tile would
require 16 bits (eight pixels × two color bits) per row times
eight rows or 128 bits (four double words). For a gamer, the
screen might be a bird’s eye view of a maze. The entire picture
could be drawn using only two tiles: a wall tile and a floor tile.
Various mazes could be displayed by rearranging the two tiles
in different patterns. Again, this reduces the amount of work
associated with computing and storing a screen of information.

You can use tiles to dynamically change the way a screen
is displayed; however, another object has been developed to
operate in a more useful way. It is a sprite. While a tile and a
sprite may have the same dimensions (and pattern), the lat-
ter has the ability to be placed anywhere on the screen and
not just at the grid locations of tiles. One color of a sprite’s
pixel pattern is used as a transparent indicator that can let
any tile color show through. The sprite can be magnified to
become a multiple of its original size. And, most important-
ly, it has a depth associated with it that enables it to pass in
front of or behind other sprites, creating a 3-D effect. While
all of this is based on the tile/sprite generator written to run
within a cog, this and many other Spin drivers written by
the Parallax folks and other contributors like Andre
LaMothe are available at www.parallax.com.

A BIT OF COLOR
If you have seen black and white TV, you may have been

able to visualize color because your brain can take your

PPhhoottoo 33——This photo of my VGA monitor’s screen shows the simple
display of three buttons with a horizontal gauge on a background of
random characters and graphics. The red spot is the mouse cursor
used to select a button. The buttons change a variable whose value
determines the gauge’s length. This data could come from an inter-
nal cog running a sampling application or from an external processor
using the Propeller strictly as a display device.

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 58

http://www.circuitcellar.com
http://www.parallax.com

www.circuitcellar.com • CIRCUIT CELLAR® 5599

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

tile bitmap memory index is used as the upper 10 bits of
a 16-bit address that holds all of the tile’s bitmapped data.

GRAPHICS
While I consider characters, tiles, and sprites to be graphi-

cal in nature, the graphics engine driver uses point plotting
to draw lines and polygons. You may be familiar with Carte-
sian coordinates, where x as a horizontal offset and y is a
vertical offset from 0 in the center. Offsets increase when
moving up and to the right, while they decrease when mov-
ing down and to the left of center. Any point P consists of
an x and a y offset from 0. It is usually written as P(x,y).
Note that the video screen is usually mapped with an
inverted y-axis so that P(0,0) is the upper-left corner of the
screen and P(screen_width, screen_height) is the lower-right
corner of the screen. While the Cartesian coordinate system
eases rendering, it is labor-intensive when dealing with rota-
tions. Therefore, you may find the polar coordinate system
more efficient when you must deal with rotational move-
ments even though you will need to convert back and forth.

VGA
Up to this point, I’ve been discussing the power of the

Propeller to work with NTSC video output. VGA video is
actually less demanding than NTSC because the sync signal
is digital in nature and separated from the color informa-
tion. The color information is broken down into the three
primary colors, and each has its own signal. The pixel clock
is internally generated by the VGA monitor and will sup-
port 640 × 480 pixels. The VGA output consists of separated
horizontal and vertical syncs plus separate R, G, and B ana-
log outputs. Resister DACs can be used for each color simi-
lar to the DAC used for NTSC. Whereas the NTSC output
requires 3 to 4 bits, the VGA output requires 8 bits. As for
the VSU, it doesn’t care which monitor is connected on the
outside, as long as the timing configured into the video con-
figuration registers is correct for the monitor type. Photo 3
is an old VGA monitor (DB15 connection) I had connected
to a Linux system here in the shop. It shows what can be
done with just the Propeller demo board (or Hydra game
console). If you do the math on 640 × 480, you’ll find that
there isn’t anywhere near enough RAM for this resolution,
even at only 1 bit/pixel. However, by using 32 × 16 tiling,
the RAM requirements are minimal.

I used the embedded character set to design a three-but-
ton screen with a linear bar graph. A mouse input enables
button pushing, which in turn increases or decreases a vari-
able that controls the length of the bar graph. The center
button selects alternate color sets for the bar inside the
graphs frame. Think of the variable associated with the
bar’s length as data coming through the USB port or other
alternative connections, such as SPI, I2C, TTL serial, or a
parallel port controlled by a spare cog.

While most of the examples in LaMothe’s book use a
composite NTSC output, you can find enough stuff inside
about VGA to get started experimenting with some useful out-
puts. You can certainly start writing your own drivers for
another microcontroller, but Propeller has some good things

going for it. With the internal PLL and an external 5-MHz crys-
tal, the Propeller can clock at up to 80 MHz. With eight cogs,
it’s like having eight programs executing in parallel. Each cog
has its own cog and also has its own VSU that makes out-
putting streaming video or audio a snap. While the resolution
might be limited by the RAM available, the Propeller makes
transitioning from NTSC to VGA a simple matter of software.

FARE THEE WELL
Our broadcasting buddy NTSC brought us closer to our

world. We’ve seen world disasters, war, and poverty, as
well as disaster relief, the Olympic games, and men land-
ing on the moon. Thanks to NTSC, we’ve experienced pos-
itive and negative events together as one world. Digital
broadcasting won’t improve the standard of living for those
in need, but it can carry on the tradition of NTSC by help-
ing us understand more clearly (in HD) that we are no bet-
ter than the least of our brothers.

And so we say goodbye to NTSC. It’s been good knowing ya!
If you check your endangered species list, you might find

that the CRT is hovering around the top. Not many bulky
lead-shielded glass tube TVs (or computer monitors) are
being manufactured. This is a case of less is more. LCDs
have less weight and require fewer watts. Although we
might see a continuing variety of interfacing connectors,
for now all conform (for the most part) to the all-encom-
passing VGA (UXGA covers 1080p) standard. Who
would’ve thought we’d have access to streaming TV pro-
gramming via a cell phone? Cartoonist Chester Gould gave
Dick Tracy the first two-way wrist radio in 1946, thanks to
Al Gross’s work on the walkie-talkie.[2] I

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing
for Circuit Cellar since 1988. His background includes product
design and manufacturing. You can reach him at jeff.bachiochi@
imaginethatnow.com or at www.imaginethatnow.com.

RR EFERENCES
[1] D. Lancaster, “TV Typewriter,” Radio Electronics,
Gernsback Publications, New York, NY, 1973.

[2] Winnipeg Free Press, “Born Too Soon,” 2001,
www.comsoc.org/socstr/org/operation/awards/assocpress.
html.

ESOURCE
A. LaMothe, Game Programming for the Propeller-Pow-
ered HYDRA, www. parallax.com, www.xgamestation.
com.

OURCES
HYDRA Development kit
Nurve Networks | www.xgamestation.com

Propeller
Parallax | www.parallax.com

RR

SS

2905002-bachiochi.qxp 4/7/2009 11:16 AM Page 59

http://www.imaginethatnow.com
http://www.comsoc.org/socstr/org/operation/awards/assocpress.html
http://www.parallax.com
http://www.xgamestation.com
http://www.xgamestation.com
http://www.parallax.com
http://www.circuitcellar.com
http://www.xgamestation.com

