

Low Power SD Data LoggerLow Power SD Data LoggerLow Power SD Data LoggerLow Power SD Data Logger
Rev ARev ARev ARev A Manual Rev:B Hitt Consulting
* Reads & writes FAT16 files (8.3 filenames) 105 S Locust Street
* 19,200 or 2400 baud serial (8N1) Shiremanstown Pa 17011
* Store up to 32 megabytes per card info@hittconsulting.com

* Programmable data pacing www.hittconsulting.com
* Allows up to 16 files per card

* Files are directly readable from PC

* On-board regulator can use 3.6V to 7.5 VDC

* Uses 4mA + card requirements when idle (0.5mA in sleep mode)

* Uses full size SD media

* Simple 3 pin interface (Serial, Power, Ground)

Low Power SD Data Logger

WHAT DOES IT DO ?

Allows creating, reading, and appending data to

files stored on SD media cards. The files are stored in
FAT16 format and can be directly read and written using
a PC with an SD card reader.

Allows strings of variable length to be read and

written using a programmable string terminator
character.

Programmable pacing time to allow the host to

process data “character by character” without missing
data sent by the data logger.

 Allows read and writing to fast SRAM (16K when
using media, 32K when not using media).

SPECS

Power: 3.6 to 7.5 VDC 50mA

Size: 2.0” x 1.5” (not including connectors)

Speed: 19,200 or 2400 Baud

Media: Uses full size SD memory cards

Up to 32MB directly, larger cards
work as 32MB.

Files: 16 files per media. 8.3 filenames.

Maximum file size is 16MB.

SRAM: 32KB (16K free when using media)

PIN FUNCTIONS

Serial Serial In/Out connection to the SD data logger.

The data logger allows either 19,200 baud or
2400 baud depending on jumper JP1. If the
jumper is on, then the baud rate is 19,200. If the
jumper is off, then the baud rate is 2400. This
pin is used for both sending and receiving data.

+ Supply voltage input to regulator. Vin may be

between 3.6 and 7.5 volts. This source must be
able to supply 50 milliamps of current.

Gnd Power supply and serial ground. This MUST

also be connected to ground on the device
sending the serial data to the module.

SERIAL DATA FORMAT

The serial data format is inverted with eight data
bits, no parity and 1 stop bit. Characters are sent using
standard ASCII values. Baud rate may be 19,200 or
2400 depending on the setting of jumper JP1 (BAUD
SEL).

COMMAND FORMAT

Commands sent to the SD data logger begin
with a “bang” or exclamation mark. All of the commands
are two letters. For example the command to set the
pacing value is “!PV” followed by the value desired.
Values are sent as one byte, NOT as ascii. For example
to set the pacing value to 100 (10.0 milliseconds) you
would use SEROUT SPin, Baud, [“!PV”, 100] for the
Basic Stamp 2®. DO NOT INCLUDE THE VALUE
INSIDE THE QUOTES. For example this is wrong
SEROUT SPin, Baud, [“!PV100”]

When a value greater than 255 is required, the

value is sent as multiple bytes with the least significant
byte first.

DATA PACING

The data logger uses programmable pacing
when sending data. This is a pause between characters
giving the host time to process a character without
missing the next character. And without having to ask for
each character one at a time.

The pacing value is set in 0.1millisecond

increments, and can be from 0 (no delay) to 255 (25.5
millisecond delay).

DATA TYPE (RECORD VS STRING)

The data logger works with two different types of
data, records and strings. Understanding the differences
is necessary to insure that your information is stored,
and can be retrieved, properly from the media card. And
that the information can be successfully read by a PC.

Records: A record is a fixed length piece of

information. This could be a name, or an ID number, or
anything really. The main distinction is that it's length is
fixed. If you determine that 20 characters are required
for the longest name, then 20 characters are used for
ALL names. Usually unused characters are filled with
spaces, although this is up to you. Although records can
be very wasteful of space, they are useful in that records
can be retrieved in any order desired. If we know that
each record is 20 characters, and we want to read the
100th record, we can simple use the "goto position"
command to get to position 2000 (20 * 100), and read
the record.

 Often records contain "binary" or byte value

data. So instead of storing a number as each character,
it's actual value is stored instead. This saves space and
is more efficient. In other words a number like 123 would
be stored as one byte with a value of one hundred and
twenty three, instead of 3 characters "1", "2", "3".

Strings: A string is a variable length piece of

information that end with a special "string terminator"
character. The data logger will read or write characters
until it receives this special terminator character, then is
knows this is the end of the string. Since the length of
each string is not known, the only way to read a specific
string is to start at the beginning and read ALL the
strings up to the one you want.

The default string terminator is a linefeed(10).

For greatest PC portability, it is recommended to end
each string with a CR(13) then a LF(10).

SRAM MEMORY

 The on-board SRAM memory can be used to
store data that must be saved quickly. For example a
rocket data logger might generate data quickly for a
short period of time. If this data was written directly to a
file the time required to access the file would limit the
amount of data that could be collected. By storing the
data into SRAM, then after the SRAM is full, reading the
data back, and saving it in a file, will allow for much more
information to be gathered. User SRAM addresses from
0 to 16383 can be used at any time. Addresses from
16384 to 32767 can be used ONLY if no media
commands are used.

ERROR CODES

0 = Successful (No error)
1 = Failed (General media card failure)
2 = Bad or Missing media (Media not properly formatted)
3 = Cannot create file. (16 files max)
4 = File already open. (only 1 file may be opened)
5 = No open file.
6 = Media full.
7 = End of file. (A read operation has reached the EOF)
8 = Invalid Command

MEDIA CARD SETUP

There are two conditions for the media cards
used in the SD Data Logger. One is that the file system
MUST be FAT16 (just FAT under windows), and that the
allocation unit size MUST be 512. For media cards up to
and including 32 megabytes this is easily accomplished
by formatting the media card in a PC. First open “My
Computer” and determine the drive letter of your SD
memory card. MAKE SURE YOU KNOW THE LETTER
OF THE MEDIA CARD.

Now click “Start->Run” and type in CMD and

press enter. A command window will appear (black with
white text). Next type in:

 FORMAT ?: /FS:FAT /A:512

Instead of a “?” use the drive letter of your media card.

If you are using a media card larger than 32MB you
need to use the value (card size in MB) * 16 instead of
512 after the “/A:” parameter. Then you MUST put the
media in the data logger and send the data logger the
“!CC” convert card command. This command will force
the allocation unit size to the required 512 value. The
card will now appear to be 32MB in size. To restore the
card to full capacity simply format it again.

ON-BOARD VOLTAGE REGULATOR

There is an on-board voltage regulator. You may
connect the "+" pin to a 3.6 to 7.5 volt supply. The
module requires about 50 milliamps when actively
writing data to the media card.

LOW POWER OPERATION TIPS

Of course keeping the data logger in sleep mode
will save power, but by far the most power is used when
the device must write to the media card. So this must be
minimized. The best way to minimize writing to the
media is to store data in the SRAM. Then when the
SRAM is full, save the data to the media card all at one
time. Just remember that if power is lost, the SRAM
contents are lost.

The idle power of SD cards varies greatly. Try

different cards to see which ones use the least power.

Use a transistor or FET to turn-off the data

logger when not needed. The data logger uses about
0.5mA + media card idle current when in sleep mode. By
using a transistor or FET to actually remove power from
the data logger can be worthwhile. Just remember that
by removing power you will lose the contents of the
SRAM.

LIABILITY WARNING

This device should be considered to be
experimental. It has NOT gone through extensive
testing. As such it could erase or corrupt any and all data
on any and all media cards that are used in it. You must
assume all responsibility for use of this device. You must
agree that Hitt Consulting liability is strictly limited to the
purchase price of the module only.

REGULATORY WARNING

This device is NOT FCC approved. It is not in

finished product form. It is strictly intended for
experimental purposes only. If you wish to use these
modules in an actual product (a non-experimental
capacity), the modules must first be designed into the
product, then the whole product must be approved by
the FCC.

HEALTH WARNING

This product contains lead, a chemical known by

the state of CA to cause cancer and birth defects and
other reproductive harm.

CUSTOMIZATIONS

Customizations to the SD Data Logger module

is available from the developer Hitt Consulting. Please
contact info@hittconsulting.com.

Demo programs and additional info can be found on the website www.sddatalogger.com

COMMANDS

CMD
PARAMETERS
RETURN BYTES

DESCRIPTION

!PV
(1) Pacing value
(1) Pacing value

Sets the pacing delay between characters sent
Returns the pacing value

!LE
(none)

(1) Last error code
Returns the last error value that occurred

!CC
(none)

(1) Error code
Convert cards > 32MB
Returns error code

!ST
(1) Termination char
(1) Termination char

Sets the string terminator character
Returns string terminator character

!VR
(none)

(2) MinorRev, MajorRev
Returns the firmware version number.
1st byte is minor rev, 2nd byte is major rev

!SL
(none)
(none)

Sleep mode (reduced power)
Returns nothing

!WU
(none)
(none)

Wake-up from sleep mode
Returns nothing

!WM
(3+) addr_LSB, addr_MSB,

Count, Data...
(none)

Write (Count) bytes to SRAM memory
Returns nothing

!RM
(3) addr_LSB, addr_MSB, Count

(Count) Data bytes
Read from SRAM memory
Returns (count) bytes

!OF
(filename)

(1) Error code

Open file on media card
WARNING: Filename MUST be uppercase
Returns error code

!CF
(none)

(1) Error code
Close file on media card
Returns error code

!RR
(1) Record size

(Record size+1) Data, Error code
Read next record data from media card file
Returns (Record size) bytes + error code

!RS
(none)

(varies) String, Termination char,
Error code

Read next string data from media card file
Returns characters (up to and including
terminator) + error code

!AR
(1+) Record size, data...

(1) Error code
Append record data to media card file
Returns error code

!AS
("string" + string terminator)

(1) Error code
Append string data to media card file
Returns error code

!FS
(none)

(5) Filesize, Error code
Returns file size of open file as 4 bytes + error
code

!FP
(none)

(5) Filepos, Error code
Returns current file position of open file as 4
bytes + error code

!GP
(4) file position (LSB first)

(1) Error code
Go to given position of open file
Returns error code

Basic Stamp ® Example Programs
' ===
' File...... Demo Text.BS2
' Purpose... Demo for the SD Data Logger
' Author.... Terry Hitt
' E-mail.... terry@hittconsulting.com
' Started... Nov 22, 2005
' Updated... May 18, 2006
' ===
' Stamp to Data Logger Connections
'
' BS2 Data Logger
' --- -----------
' P15 ----- Serial
' GND ----- Gnd
'
'{$STAMP BS2}
'{$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000

Pacing CON 30 ' * 100uSec = 3mSec between characters
Baud CON T19K2 + Inverted ' Use fast serial mode 19.2K baud
ERROR_EOF CON 7 ' End of file error code is 7

SPin PIN 15 ' Use pin 15 for communication is data
logger

counter VAR Word ' Loop counter
value VAR Word ' Value received from data logger
result VAR Byte ' Error result from data logger
char VAR Byte ' Character from data logger

Start:
 ' Setup Serial Output Pin
 LOW SPin
 PAUSE 1000
 SEROUT SPin, Baud, ["!WU"] ' Wake-up module

 ' Send "Pacing Value" command

 SEROUT SPin, Baud, ["!PV", Pacing]
 SERIN SPin, Baud, 1000, NoResponse, [result]
 DEBUG "Pacing result=", DEC result, CR

 ' We should be the pacing value back as result
 IF result = PACING THEN

 ' Attempt to close file in case it was left open
 SEROUT SPin, Baud, ["!CF"]
 SERIN SPin, Baud, [result]
 DEBUG "CLOSE result=", DEC result, CR

 ' Attempt to open file "DATA.TXT" (Note that filename MUST be CAPS)
 SEROUT SPin, Baud, ["!OF", "DATA.TXT"]
 SERIN SPin, Baud, [result]
 DEBUG DEC result, " OPEN ATTEMPT", CR

 ' Open File result should be zero if file was opened
 IF result = 0 THEN
 ' Send "File Size" command
 SEROUT SPin, Baud, ["!FS"]
 ' Receive file size values from data logger (4 bytes)
 SERIN SPin, Baud, [counter.LOWBYTE, counter.HIGHBYTE, value.LOWBYTE,
value.HIGHBYTE, result]

 ' Show current file size in debug window
 DEBUG DEC result, " FILESIZE ATTEMPT", CR
 DEBUG "File Size = ", DEC counter, ":", DEC value, CR
 PAUSE 2000 ' Wait 2 seconds

 ' Prepare to append 100 text strings to the file
 FOR counter = 1 TO 100
 DEBUG "Appending ", DEC counter, " "
 ' Send "Append String" command (default string terminator is LF)
 SEROUT SPin, Baud, ["!AS", "Value=", DEC counter, CR, LF]
 SERIN SPin, Baud, [result] ' Get append result
 DEBUG DEC result, CR ' Show append result
 NEXT

 ' Get new file size
 SEROUT SPin, Baud, ["!FS"]
 SERIN SPin, Baud, [counter.LOWBYTE, counter.HIGHBYTE, value.LOWBYTE,
value.HIGHBYTE, result]
 DEBUG DEC result, " FILESIZE ATTEMPT", CR
 DEBUG "File Size = ", DEC counter, ":", DEC value, CR
 PAUSE 2000

 ' Send "Goto Position" command, to start of file
 SEROUT SPin, Baud, ["!GP",0,0,0,0]
 DEBUG "Waiting for GP result..."
 SERIN SPin, Baud, [result]
 DEBUG DEC result, CR
 IF result = 0 THEN
 counter = 0
 DO
 counter = counter + 1
 DEBUG "Read ", DEC counter, " "
 ' Send "Read String" command
 SEROUT SPin, Baud, ["!RS"]
 DO
 SERIN SPin, Baud, [char]
 IF char = LF THEN EXIT
 DEBUG char

 LOOP
 ' Get result
 SERIN SPin, Baud, [result]
 DEBUG " Result = ", DEC result, CR
 LOOP UNTIL result = ERROR_EOF ' Repeat until we get an END-OF-FILE
error code

 ' Get new "File Size"
 SEROUT SPin, Baud, ["!FS"]
 SERIN SPin, Baud, [counter.LOWBYTE, counter.HIGHBYTE, value.LOWBYTE,
value.HIGHBYTE, result]
 DEBUG DEC result, " FILESIZE ATTEMPT", CR
 DEBUG "File Size = ", DEC counter, ":", DEC value, CR
 PAUSE 2000

 ' Close File
 SEROUT SPin, Baud, ["!CF"]
 SERIN SPin, Baud, [result]
 DEBUG "CLOSE result=", DEC result, CR
 ENDIF
 ELSE
 DEBUG DEC result, " COULD NOT OPEN FILE.", CR
 ENDIF
 ELSE
 DEBUG DEC result, " DID NOT RECEIVE PACING VALUE FROM DATA LOGGER.", CR
 ENDIF

Done:
 DEBUG "FINISHED...", CR
 GOTO Finished

NoResponse:
 DEBUG "NO RESPONSE FROM DATA LOGGER.", CR

Finished:
 GOTO Finished

