
© Parallax, Inc. � The Elements of PBASIC Style � 01/2005 Page 1

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

The Elements of PBASIC Style

Introduction

Like most versions of the BASIC programming language, PBASIC is very forgiving and the compiler
enforces no particular formatting style. As long as the source code is syntactically correct, it will compile
and download to the BASIC Stamp without trouble.

Why, then, would one suggest a specific style for PBASIC? Consider this: Over three million BASIC
Stamps have been sold and there are nearly 2000 members that particpate in Parallax forums. This
makes it highly likely that you'll be sharing your PBASIC code with someone, if not co-developing a BASIC
Stamp project. Writing code in an organized, predictable manner will save you � and your potential
colleagues � a lot of time; in analysis, in troubleshooting and especially when you return to a project
after a long break.

The style guidelines presented here are just that: guidelines. They have been developed from style
guidelines used by professional programmers using other high-level languages such as Visual Basic®,
C/C++, and Java�. Use these guidelines as-is, or modify them to suit your individual needs. The key is
selecting a style the works well for you or your organization, and then sticking with it.

PBASIC Style Guidelines

1. Do It Right the First Time

Many programmers, especially new ones, fall into the "I'll knock it out now and fix it later." trap.
Invariably, the "fix it later" part never happens and sloppy code makes its way into production
projects. If you don't have time to do it right, when will you find time to do it again?

Start clean and you'll be less likely to introduce errors in your code. And if errors do pop up, clean
and organized formatting will make them easier to find and fix.

2. Be Organized and Consistent

Using a blank program template will help you organize your programs and establish a consistent
presentation. The BASIC Stamp Editor (as of Version 2.1, Beta 1) allows you to specify a file
template for the File | New function (see Edit | Preferences | Files & Directories...).

ʭ�%���/A��+������G���R�

w��aH��@������\�������?�z�
��<��������R���< f��,�	
o`���V�,Fe�b6���u�R\�Ky"U�6�

© Parallax, Inc. � The Elements of PBASIC Style � 01/2005 Page 2

3. Use Meaningful Names

Be verbose when naming constants, variables and program labels. The compiler will allow names
up to 32 characters long. Using meaningful names will reduce the number of comments and make
your programs easier to read, debug and maintain.

4. Naming IO Pins

BASIC Stamp IO pins are a special case as various elements of the PBASIC language require a pin
to be constant value, an input variable or an output variable. Begin IO pin names with an
uppercase letter and use mixed case, using uppercase letters at the beginning of new words within
the name.

BS1:
SYMBOL HeaterCtrl = 7 ' constant value
SYMBOL AlarmLed = PIN6 ' input or output bit

When using the BS2 the PIN definition is used. This will cause the compiler to use the correct
variant for the pin (x, INx, or OUTx)

BS2:
HeaterCtrl PIN 15

Since connections don't change during the program run, IO pins are named like constants (#5)
using mixed case, beginning with an uppercase letter.

5. Naming Constants

Begin constant names with an uppercase letter and use mixed case, using uppercase letters at the
beginning of new words within the name.

BS1:
SYMBOL AlarmCode = 25

BS2:
AlarmCode CON 25

6. Naming Variables

Begin variable names with a lowercase letter and use mixed case, using uppercase letters at the
beginning of new words within the name.

BS1 Tip: Avoid using W0 (B0 and B1) so that bit variables (BIT0..BIT15) are available for use in
your programs. Bit variables 0..15 overlay W0, so the use of W0 may cause undesired effects.

SYMBOL waterLevel = W1

BS2 Tip: Avoid the use of internal variable names (such as B0 or W1) in your programs. Allow the
compiler to automatically assign RAM space by declaring a variable of specific type.

waterLevel VAR Word

© Parallax, Inc. � The Elements of PBASIC Style � 01/2005 Page 3

7. Variable Type Definitions

When using the BS1, variable type is declared by aliasing the SYMBOL name to an internal variable
of a specific size. Note that without aliasing, the Memory Map function of the BASIC Stamp editor
will not show all RAM variables used by the program.

BS1:
SYMBOL status = BIT0
SYMBOL ovenTemp = B2
SYMBOL rndValue = W2

For the BS2, variable types should be in mixed-case and start with an uppercase letter.

BS2:
status VAR Bit
counter VAR Nib
ovenTemp VAR Byte
rndValue VAR Word

Conserve BASIC Stamp user RAM by declaring the variable type required to hold the expected
values of the variable.

BS1:
SYMBOL bitValue = BIT0 ' 0 - 1
SYMBOL byteValue = B2 ' 0 - 255
SYMBOL wordValue = W2 ' 0 - 65535

BS2:
bitValue VAR Bit ' 0 - 1
nibValue VAR Nib ' 0 - 15
byteValue VAR Byte ' 0 - 255
wordValue VAR Word ' 0 - 65535

8. Program Labels

Begin program labels with an uppercase letter, used mixed case, separate words within the label
with an underscore character and begin new words with a number or uppercase letter. Labels
should be preceded by at least one blank line, begin in column 1 and must be terminated with a
colon (except after GOTO and THEN [in classic PBASIC] where they appear at the end of the line
and without a colon).

BS1:
Print_String:
 READ eeAddr, char
 IF char = 0 THEN Print_Done
 DEBUG #@char
 eeAddr = eeAddr + 1
 GOTO Print_String

Print_Done:
 RETURN

© Parallax, Inc. � The Elements of PBASIC Style � 01/2005 Page 4

9. PBASIC Keywords

All PBASIC language keywords, including SYMBOL, CON, VAR, PIN and serial/debugging format
modifiers (DEC, HEX, BIN) and constants (CR, LF) should be uppercase. The BASIC Stamp
editor will correctly format PBASIC keywords automatically, and allow you to set color highlighting
by category to suit your personal tastes.

BS1/BS2:
Main:
 DEBUG "BASIC Stamp", CR
 END

10. Indent Nested Code

Nesting blocks of code improves readability and helps reduce the introduction of errors. Indenting
each level with two spaces is recommended to make the code readable without taking up too much
space.

BS2:
Main:
..DO
....FOR testLoop = 1 TO 10
......IF (checkLevel < threshold) THEN
........lowLevel = lowLevel + 1
........LEDokay = IsOff
......ELSE
........LEDokay = IsOn
......ENDIF
......PAUSE 100
....NEXT
..LOOP WHILE (testMode = Yes)

Note: The dots are used to illustrate the level of nesting and are not a part of the code.

11. Condition Statements

Enclose condition statements in parenthesis for clarity (BS2 only � parenthesis are not allowed
when using the BS1).

BS2:
Check_Temp:
 IF (indoorTemp >= setPoint) THEN
 AcCtrl = IsOn
 ELSE
 lowLevel = lowLevel + 1
 ENDIF

Fill_Water_Tank:
 DO WHILE (waterLevel = IsLow)
 TankFill = IsOn
 PAUSE 250
 LOOP

© Parallax, Inc. � The Elements of PBASIC Style � 01/2005 Page 5

Get_Delay:
 DO
 DEBUG HOME, "Enter time (5 � 30)... ", CLREOL
 DEBUGIN DEC2 tmDelay
 LOOP UNTIL ((tmDelay >= 5) AND (tmDelay =< 30))

12. Be Generous With White Space

White space (spaces and blank lines) has no effect compiler or BASIC Stamp performance, so be
generous with it to make listings easier to read. As suggested in #8 above, allow at lease one
blank line before program labels (two blanks lines before a subroutine label is recommended).
Separate items in a parameter list with a space.

BS2:
Main:
 DO
 ON task GOSUB Update_Motors, Scan_IR, Close_Gripper
 LOOP

Update_Motors:
 PULSOUT leftMotor, leftSpeed
 PULSOUT rightMotor, rightSpeed
 PAUSE 20
 task = (task + 1) // NumTasks
 RETURN

An exception to this guideline is with the bits parameter used with SHIFTIN and SHIFTOUT, the
REP modifier for DEBUG and SEROUT, and the byte count and terminating byte value for SERIN.
In these cases, format without spaces.

 SHIFTIN A2Ddata, A2Dclock, MSBPOST, [result\9]

 DEBUG REP "*"\25, CR

 SERIN IRbSIO, IRbBaud, [buffer\8\255]

13. Use Conditional Compilation for Compatibility

Some commands such as SERIN and SEROUT use different parameters based on the target
BASIC Stamp. Use conditional compilation for maximum compatibility of your programs.

BS2:
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
#ENDSELECT

