
Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 1

Chapter 6: Light-Sensitive Navigation with
Phototransistors (Supplementary Activity #7..9)

The example programs from Robotics with the Boe-Bot v3.0 in Chapter 6, Activity #4
through #6 depended on calls to the Light_Shade_Info subroutine for information
about ambient light level and differential light/shade measurement. Example programs
from the chapter that utilize Light_Shade_Info and its nested subroutines include:

 LightSensorValues.bs2
 LightSensorDisplay.bs2
 LightSeekingDisplay.bs2
 LightSeekingDisplayBetterRAM.bs2
 LightSeekingBoeBot.bs2
 Some of the project solution example files.

LightSensorValues.bs2 is printed in Robotics with the Boe-Bot v3.0, Chapter 6, Activity
#4. Robotics with the Boe-Bot is available for free download from
www.parallax.com/go/BoeBot. The rest of the programs referenced in Activity #4
through #6, are in LightSensorExamples.zip, which is also available from
www.parallax.com/go/BoeBot.

 Before continuing here, make sure to complete all of Chapter 6 in Robotics with

the Boe-Bot v3.0.

In review, a call to Light_Shade_Info:

 Loads a value into the light variable that indicates the total amount of light
both sensors detect so that a program can decide if one area is darker than
another as it roams.

 Loads a value into the ndShade variable that supplies a normalized, differential
light/shade measurement on a scale of –500 to 500. A program can use this
value to determine if the Boe-Bot detects brighter or dimmer light on one side.
The Boe-Bot’s program can in turn use this information for roaming toward or
away from light sources.

Page 2 · Robotics with the Boe-Bot

 Makes incremental adjustment to the duty variable for automatic light
sensitivity adjustment. By making calls between each servo pulse, the Boe-
Bot’s program can rapidly adjust to lighter or darker rooms.

As you may have noticed a single call to Light_Shade_Info results in a lot of code
execution. All tolled, there are 41 lines of executable code in Light_Shade_Info its
three nested subroutines. The four jobs Light_Shade_Info and its helpers perform are:

1) Measure decay times of both photoresistor QT circuits using variable PWM Duty
to charge the circuits’ capacitors to starting voltages that can be used to help
keep the sum of the decay times in a certain range.

2) Use the duty variable that controls PWM in step 1 to calculate a value that
corresponds to the ambient light levels in the room. If duty is at one of the ends
of its range, use the sum of the two sensor decay time measurements for
extended values.

3) Check to see if the sum of the left and right QT decay measurements are in the
desired range. If not, adjust the duty variable for the next iteration.

4) Normalize the differential light measurement so that it fits in a scale of -500 to
500.

Optional Activity #7, #8, and #9 chronicle some of the development and tests that went
into Light_Shade_Info and its nested subroutines. These optional activities also
examine how each subroutine contributes to completing the four jobs listed above.
Activity #7 takes a closer look at normalized, differential measurements from the
standpoint of why it’s useful and how the code accomplishes it. Activity #8 examines
how automatic light sensitivity works when Light_Shade_Info is called repeatedly, and
Activity #9 explains how Light_Shade_Info extracts a number that indicates overall
light level.

Light_Shade_Info Subroutine Overview

The Light_Shade_Info subroutine and the subroutines it calls are listed below. They
are a modified excerpt from LightSensorValues.bs2. Comments that explain the 5 major
steps the code completes have been added. Below each ' Step... comment is the code
that completes the task.

 Read the comments that start with “Step 1”, “Step 2”, up through “Step 5” in the

Light_Shade_Info subroutine below.

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 3

 Optional, follow each subroutine call, examine the code, and try to understand
what it’s doing. Make a list of questions about portions that do not immediately
make sense. Hopefully, they will all be answered by the time you make it
through this document. Otherwise, contact the author through
forums.parallax.com. His username is Andy Lindsay (Parallax).

'-----[Subroutine - Light_Shade_Info]---------------------------------------
' Uses tLeft and tRight (RCTIME measurements) and pwm var to calculate:
' o light - Ambient light level on a scale of 0 to 324
' o ndShade - Normalized differential shade on a scale of -500 to + 500
' (-500 -> dark shade over left, 0 -> equal shade,
' +500 -> dark shade over right)

Light_Shade_Info: ' Subroutine label

 ' Step 1:
 ' Call the Light_Sensors Subroutine. This subroutine uses a variable
 ' named duty to set the initial voltage it applies to the phototransistor
 ' QT circuit capacitors before measuring the decay. The decay is controlled
 ' by incident light.
 GOSUB Light_Sensors ' Get raw RC light measurements

 ' Step 2:
 ' Calculate light variable (ambient light level) using duty variable.
 ' If duty is below its minimum or above its maximum, use tLeft and tRight
 ' for more info.
 sumdiff = (tLeft + tRight) MAX 65535 ' Start light level with sum
 IF duty <= 70 THEN ' If duty at min
 light=duty-(sumdiff/905) MIN 1 ' Find how much darker
 IF sumdiff = 0 THEN light = 0 ' If timeout, max darkness
 ELSEIF duty = 255 THEN ' If duty at max
 light=duty+((1800-(sumdiff))/26) ' Find how much brighter
 ELSE ' If duty in range
 light = duty ' light = duty
 ENDIF ' Done with light level

 ' Step 3:
 ' Call the Duty_Auto_Adjust subroutine. This subroutine checks to find out
 ' if tLeft + tRight add up to something in the 1800 to 2200 range. If it's
 ' in range, the subroutine takes take no action. If not, the subroutine
 ' increases or decrease the duty variable to make the Light_Sensors
 ' subroutine return larger or smaller light measurements the next time it
 ' gets called (next time through the Main Routine's DO...LOOP).
 GOSUB Duty_Auto_Adjust ' Adjust PWM duty for next loop

Page 4 · Robotics with the Boe-Bot

 ' Step 4:
 ' Divide tLeft into tLeft + tRight. Start by copying tLeft to a variable
 ' named n (for numerator) and tLeft + tRight into a variable named d (for
 ' denominator). Then, call Fraction_Thousandths, a subroutine that performs
 ' long division with a result of q = n ÷ d. The subroutine stores the four
 ' digit result in a variable named q. This result can range from 0 to 1000
 ' and is the fractional portion of the actual quotient in terms of
 ' thousandths.
 n = tLeft ' Set up tLeft/(tLeft+tRight)
 d = tLeft + tRight
 GOSUB Fraction_Thousandths ' Divide (returns thousandths)

 ' Step 5:
 ' Copy 500 – q to the ndShade variable. This makes the result range from
 ' -500 to 500 with 0 indicating equal light levels measured by both
 ' QT sensors.
 ndShade = 500-q ' Normalized differential shade

 RETURN ' Return from subroutine

'-----[Subroutine - Light_Sensors]--
' Measure P6 and P3 light sensor circuits. Duty variable must be in 70...255.
' Stores results in tLeft and tRight.

Light_Sensors: ' Subroutine label
 PWM 6, duty, 1 ' Charge cap in P6 circuit
 RCTIME 6, 1, tLeft ' Measure P6 decay
 PWM 3, duty, 1 ' Charge cap in P3 circuit
 RCTIME 3, 1, tRight ' Measure decay
 RETURN ' Return from subroutine

'-----[Subroutine - Duty_Auto_Adjust]---------------------------------------
' Adjust duty variable to keep tLeft + tRight in the 1800 to 2200 range.
' Requires sumdiff word variable for calculations.

Duty_Auto_Adjust: ' Subroutine label
 sumDiff = (tLeft + tRight) MAX 4000 ' Limit max ambient value
 IF sumDiff = 0 THEN sumDiff = 4000 ' If 0 (timeout) then 4000
 IF (sumDiff<=1800) OR (sumDiff>=2200) THEN ' If outside 1800 to 2200
 sumDiff = 2000 - sumDiff ' Find excursion from target val
 sign = sumDiff.BIT15 ' Pos/neg if .BIT15 = 0/1
 sumDiff = ABS(sumDiff) / 200 ' Max sumDiff will be +/- 10
 sumDiff = sumDiff MAX ((duty-68)/2) ' Reduce adjustment increments
 sumDiff = sumDiff MAX ((257-duty)/2) ' near ends of the range
 IF sign=NEGATIVE THEN sumDiff=-sumDiff ' Restore sign
 duty = duty + sumDiff MIN 70 MAX 255 ' Limit duty to 70 to 255
 ENDIF ' End of if outside 1800 to 2200
 RETURN ' Return from subroutine

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 5

'-----[Subroutine - Fraction_Thousandths]-----------------------------------
' Calculate q = n/d as a number of thousandths.
' n and d should be unsigned and n < d. Requires Nib size temp & i variables.

Fraction_Thousandths: ' Subroutine label
 q = 0 ' Clear quotient
 IF n > 6500 THEN ' If n > 6500
 temp = n / 6500 ' scale n into 0..6500
 n = n / temp
 d = d / temp ' scale d with n
 ENDIF
 FOR i = 0 TO 3 ' Long division ten thousandths
 n = n // d * 10 ' Multiply remainder by 10
 q = q * 10 + (n/d) ' Add next digit to quotient
 NEXT
 IF q//10>=5 THEN q=q/10+1 ELSE q=q/10 ' Round q to nearest thousandth
 RETURN ' Return from subroutine

ACTIVITY #7: NORMALIZED LIGHT/SHADE MEASUREMENTS

The overall brightness or darkness in a room is called the ambient light level. Ambient
light can have a huge effect on phototransistor light measurements, which can in turn
make programming the Boe-Bot to recognize shadows and light sources a tricky job. For
example, if you tried to test for some shade and light values in one room, they might not
work in another room that’s brighter or darker. That’s because a brighter room will cause
the light measurements to be much smaller, and a darker room will cause the light
measurements to all be much larger. So without some extra processing, the Boe-Bot’s
program might not detect any shadows at all in the brighter room, and it might think all
its measurements in the darker room are shadows.

As you’ve already seen in Activity #3, darker rooms pose a another problem because
they can make the light measurements take so long that they cause delays in servo pulses.
This can in turn cause jittery or halting servo control. Activity #8 examines the
Duty_Auto_Adjust subroutine that automatically adjusts the PWM command’s Duty
argument for better performance in the ambient light levels it senses.

Fortunately, the solution to the “tricky” problem of quantifying differences between left
and right light levels is fairly simple, even in different ambient light levels. All your
program has to do is calculate the percentage of the total lighting that each light sensor
circuit detects. Then, it won’t matter if ambient lighting causes the measurements to be
large or small because the same shadow condition will still result in roughly the same
difference in left/right percent measurements.

Page 6 · Robotics with the Boe-Bot

When the left and right sensors are expressed as percents of the total light measurement
(left + right), it is called a normalized measurement. A normalized measurement is one
that has been fit to a more useful scale. For example, the Boe-Bot’s right light sensor
might be under pretty dark shade compared to its left. With all the lights in the room on,
the tLeft might be 100 and tRight might be 400. With some of the lights turned off,
the same shade condition might be measured as tLeft = 500 and tRight = 2000. In
both cases, the left sensor is 20% of the total measurement and the right sensor is 80%.
By going through the calculations to express what each sensor sees as a percent of the
total, the measurements are being normalized.

Example: percent of total when
tLeft = 100 and tRight = 400:

%20

%100
500

100

%100
400100

100

%100%

tRighttLeft

tLeft
left

Example: percent of total when tLeft =
500 and tRight = 2000:

%20

%100
2500

500

%100
2000500

500

%100%

tRighttLeft

tLeft
left

 Repeat the calculations for tRight.
 Can you just calculate tLeft and then subtract from 100% to get tRight? Try

it.

Example Program: LightPercentDifference.bs2

LightPercentDifference.bs2 displays each decay measurement as a percentage of the
total. It does this by dividing tLeft into tLeft + tRight using a subroutine called
Fraction_Thousandths. This subroutine is designed to divide a variable named n
(numerator) into a variable named d (denominator) and store the result in a variable
named q (quotient). The result the subroutine stores in q is a value that could be
anywhere from 0 to 1000, and it expresses the amount of light tLeft detects in tenths of
a percent. The tRight variable’s percent is calculated by simply subtracting tLeft from
1000. It could also be calculated by calling Fraction_Thousandths again with tRight
stored in the n variable, but that would be less efficient.

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 7

 Either carefully enter and save LightPercentDifference.bs2, or use the BASIC
Stamp Editor to open it from the same zip that contains this PDF. The zipped
package is available for download from forums.parallax.com -> Forums ->
(Education) Stamps in Class -> Stamps in Class “Mini Projects” -> More Light
Seeking Activities. Download RwtBBCH6A7to9.zip.

 Unzip it to a folder. These activities assume you will name the folder
RwtBBCH6A7to9.

 Run LightPercentDifference.bs2; the display should resemble Figure 6-21.
 Try casting a shadow over the right sensor. Even though your first row of values

may be entirely different from the first row in Figure 6-21, you will be able to
find a level of shade that results in about a 75% measurement for the right
sensor, like the bottom-right measurement in the Debug Terminal, which is
75.2%.

Figure 6-21: Example with about 75% Shade over Right Sensor

'-----[Title]---
' Robotics with the Boe-Bot - LightPercentDifference.bs2
' Normalize tLeft and tRight to a scale of 0 to 1000 and display as percents
' of the sum of both measurements.

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

'-----[Variables]---

tLeft VAR Word ' Stores left sensor decay time

tLeft and tRight RCTIME measurements

tLeft ÷ (tleft + tRight) and tRight ÷ (tLeft + tRight)

Percent measurements

No Shadow Shadow

Page 8 · Robotics with the Boe-Bot

tRight VAR Word ' Stores right sensor decay time
 ' Fraction_Thousandths variables
n VAR Word ' Numerator
d VAR Word ' Denominator
q VAR Word ' Quotient result
i VAR Nib ' Index
temp VAR Word ' Temporary value

'-----[Initialization]--

PAUSE 1000 ' Wait 1 s before any DEBUG

'-----[Main Routine]--
DO ' Main loop
 GOSUB Light_Sensors ' Get tLeft and tRight

 DEBUG HOME, " Left Right", CR, ' Display times as 2 us units
 "----- -----", CR,
 DEC5 tleft, " ", DEC5 tright,
 " x 2 us"

 n = tLeft ' Set up for n/d calculation
 d = tLeft + tRight
 GOSUB Fraction_Thousandths ' Divide n into d
 tLeft = q ' Store normalized results in
 tRight = 1000 – q ' tLeft and tRight

 DEBUG CR, " ", ' Display thousandths of total
 DEC3 tLeft, " ", DEC3 tRight,
 " thousandths"
 DEBUG CR, " ",
 DEC2 tLeft/10, ".", DEC1 tLeft, ' Display percent
 " ",
 DEC2 tRight/10, ".", DEC1 tRight,
 " percent"

 PAUSE 250 ' Wait 0.25 seconds

LOOP ' Repeat main loop

'-----[Subroutine - Light_Sensors]--

Light_Sensors: ' Check P6 & P3 light sensors
 PWM 6, 184, 1 ' Charge cap to 3.59 V
 RCTIME 6, 1, tLeft ' P6->input, measure decay time
 PWM 3, 184, 1 ' Charge cap to 3.59 V
 RCTIME 3, 1, tRight ' P3->input, measure decay time
 RETURN ' Return from subroutine

'-----[Subroutine - Fraction_Thousandths]-----------------------------------

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 9

' Calculate q = n/d as a number of thousandths.
' n and d should be unsigned and n < d. Requires a Nib size temp variable.
' All the variables this subroutine uses should be word size, except i and
' temp, which can be nibbles.

Fraction_Thousandths: ' Fraction_thousandths subroutine
 q = 0 ' Clear quotient
 IF n > 6500 THEN ' If n > 6500
 temp = n / 6500 ' scale n into 0..6500
 n = n / temp
 d = d / temp ' scale d with n
 ENDIF
 FOR i = 0 TO 3 ' Long division ten thousandths
 n = n // d * 10 ' Multiply remainder by 10
 q = q * 10 + (n/d) ' Add next digit to quotient
 NEXT
 IF q//10>=5 THEN q=q/10+1 ELSE q=q/10 ' Round q to nearest thousandth
 RETURN ' Return from subroutine

Test the Same Shade in Different Ambient Light Conditions

The Boe-Bot’s program needs to determine if each light sensor sees a shadow or light.
For this type of sensing, Figure 6-22 shows an example of why it’s better to use percents
of the total sensor measurements. For both measurements, the same shadow was cast
over the Boe-Bot’s left light sensor. Then, the ambient light level was changed. These
measurements show that for the same shadow, the 2 μs RCTIME measurements vary
drastically with changes in ambient light, but the percent measurements hardly change at
all. Since the shadow condition didn’t change, the fact that the percent measurements
don’t change means that they can give us a much better indicator of how much shade or
light one of the sensors detects. Note also that the larger percent measurement means that
there’s more shade, and the smaller percent measurement indicates less shade (or more
light).

Page 10 · Robotics with the Boe-Bot

Figure 6-22: Two Measurements for the Same Shadow with Different Ambient Light Levels

The test setup for the measurements in Figure 6-22 involved placing the Boe-Bot in the
middle of a well lit room and facing it toward a window that let light in from outside (but
not direct sunlight). Then, a shade was placed between the left sensor and the window;
the right sensor still had a clear view. The measurement on the left side of Figure 6-22,
was with all overhead lights in the room on. The measurement on the right side was with
half the lights off.

Your Turn: Test Different Shades in Same Ambient Light Conditions

Figure 6-23 shows an example with four different shade conditions, no shade, shade over
both sensors, and shade over just the left and just the right sensors. Light following
applications in Chapter 6 used the tLeft value from the thousandths row in Figure 6-23
to calculate the value of the ndShade variable, which was used to determine which sensor
detected darker shade. So it’s a good idea to experiment with determining how much
shade each sensor detects by watching the thousandths row.

 Try casting shadows over the right and left sensors, like the example in Figure

6-23.
 Repeat the same sequence of shadows, but this time make them darker. What

changed?
 Repeat again, this time with shadows that are less dark. Again, what changed.

Big Change
(Bad) All Overhead Lights On Only Half Overhead Lights On

Small
Change
(Good)

Shadow No Shadow

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 11

Figure 6-23: Four Measurements with Different Shade in the Same Ambient Light

Inside LightPercentDifference.bs2

The Main Routine calls the Light_Sensors subroutine, and then displays the values of
tLeft and tRight with a DEBUG command. Then, it copies tLeft to the n variable and
tLeft + tRight to the d variable. After a call to Fraction_Thousandths, the result
of n/d is stored in the q variable. The program copies that value back to tLeft. Note
that tRight gets calculated with 1000 – tLeft. As mentioned earlier it’s a more
efficient to subtract tLeft from 1000 than to repeat the division a second time with
tRight as the numerator. If tLeft contains a certain number of thousandths of (tLeft
+ tRight), then tRight has to contain the rest of the thousandths.

No Shade Shade over both

Shade over right Shade over left

Page 12 · Robotics with the Boe-Bot

The main routine has a second DEBUG command that displays tLeft and tRight as
numbers of thousandths, followed by a display in percents. The DIG operator is useful
for picking certain digits to print to the left of the decimal point, and another to the right
of the decimal point for a display in tenths of a percent.

 In the BASIC Stamp Editor, click Help and select BASIC Stamp Manual. The

document should open into your computer’s Adobe Acrobat Reader software.
 Click Edit and select Search.
 Type DIG into the search field.
 Since there are a lot of references to digit, refine your search by clicking two

checkboxes: Whole words only, and Case sensitive.
 Click the Search button.
 The first result of the search should be DIG in the table of contents. Use this to

find the page with documentation about the DIG operator and read it.
 Make sure to uncheck those PDF search options so that they don’t interfere with

your next search.
 Read about DIG and use what you learned to decipher how the code by the

Display Percent comment in LightPercentDifference.bs2’s main routine works.

How the Fraction_Thousandths Subroutine Works

The Fraction_Thousandths subroutine divides n into d and stores a result, which is a
number of thousandths, in q. This subroutine is designed for calculating the number of
thousandths in a fraction where the denominator is larger than the numerator, in other
words, d > n. Fraction_Thousandths uses an approach you may have first seen in
grade school –calculating the quotient one digit at a time. Figure 6-24 shows an example
of a hand calculation for the tLeft percentage value from Figure 6-21 on page 7.

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 13

Figure 6-24: Example of How the Fraction_Thousandths Subroutine Performs Long Division

In Figure 6-24, a digit in the quotient is calculated by figuring out how many times the
divisor fits into the dividend. The result of the divisor multiplied by the quotient digit is
then subtracted from the remainder of the previous iteration. This new remainder is then
multiplied by 10 and used to find the next quotient digit in the next long division
iteration.

Of course, the division problem can also be expressed as a fraction, like in Figure 6-25.
This illustrates the names of each of the variables better, because the
Fraction_Thousandths uses a variable named n to store the numerator, one named d to
store the denominator and q to store the fractional portion of the quotient result, which
again is in terms of thousandths.

divisor dividend

quotient

remainder

Page 14 · Robotics with the Boe-Bot

Figure 6-25
Division problem from
Figure 6-24 expressed as
a fraction

Example Program: LongDivSteps.bs2

LongDivSteps.bs2 uses a slightly expanded version of the Fraction_Thousandths
subroutine that relates the division steps in the FOR…NEXT loop to the long division steps
shown in Figure 6-24. Figure 6-26 shows an example of Debug Terminal output from
LongDivsSteps.bs2 with n set to 343 and d set to 343 + 1041 = 1384.

 Compare the steps in Figure 6-26 to the steps in Figure 6-24.
 Find the matching values in the two figures.

Numerator (n)

Denominator (d)

Decimal
equivalent

or quotient (q)

The fractional portion of
q is 248, as in 248/1000

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 15

Figure 6-26
LongDivSteps.bs2 Debug
Terminal Output

 Examine the code in LongDivSteps.bs2.
 Run the program as-is and verify the output.
 Try the long division problem by hand with n = 1041 and d = 1041 + 343.
 Change the value of n from 343 to 1041.
 Re-run the program and reconcile the output to your long division steps.

'-----[Title]---
' Robotics with the Boe-Bot - LongDivSteps.bs2
' Display the main division steps performed by the Fraction_Thousandths
' subroutine.

Page 16 · Robotics with the Boe-Bot

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

n VAR Word ' Numerator
d VAR Word ' Denominator
r VAR Word ' Remainder
q VAR Word ' Quotient result
temp VAR Word ' Temporary value storage
i VAR Nib ' Index

PAUSE 1000 ' Wait 1 s before any DEBUG

n = 343 ' Set numerator
d = 343 + 1041 ' Set denominator
r = 0 ' Clear remainder
q = 0 ' Clear quotient

DEBUG ? n, ? d, ?r, ? q, CR ' Display division components

IF n > 6500 THEN ' If n > 6500
 temp = n / 6500 ' scale n into 0..6500
 n = n / temp
 d = d / temp ' scale d with n
ENDIF

FOR i = 0 TO 3 ' Long division ten thousandths
 r = n // d ' Calculate remainder
 DEBUG "r(",DEC i,") = n//d = ",DEC r,CR ' Display remainder
 n = r * 10 ' Multiply remainder by 10
 DEBUG "n(",DEC i,") = r * 10 = ",DEC n,CR ' Display remainder * 10
 q = q * 10 + (n/d) ' Add next digit to quotient
 DEBUG "q(", DEC i, ") = q * 10 + (n/d) = ",' Display next quotient iteration
 DEC q, CR, CR
NEXT ' Repeat long division loop

DEBUG ? q//10 ' Display ten-thousandths digit
IF q//10>=5 THEN q=(q/10)+1 ELSE q=q/10 ' Round q to nearest thousandth
DEBUG ? q ' Display result q

DEBUG "Done!" ' Display done
END ' Go into low power mode

Notes

Before starting the long division loop, the subroutine makes sure that the numerator n is
smaller than 6500. If it has to scale n down, it also scales d. There will be a slight loss of
precision if the subroutine scales down n and d because the BASIC Stamp’s integer math

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 17

always rounds down. This is not an issue with the example we just tried because the
values are well below 6500. It’s also not an issue in Chapter 6 because the navigation
programs that utilize this subroutine for navigation also limit n to 4000.

Notice that the last step in Figure 6-24 is to check the fourth digit in the result and use it
to round the third digit up if the fourth digit is greater than or equal to 5. The code that
does this is a simple IF…THEN…ELSE statement. This code ensures that the result will
match values entered into a hand calculator for numerators of 6500 or less. The
FOR…NEXT loop that does the long division calculates the number of ten-thousandths, and
uses the fourth digit (number of ten thousandths) to decide whether or not to round the
third digit up or down. If the fourth digit is 5 or larger, the third digit gets rounded up. If
the fourth digit is instead in the 0 to 4 range, the third digit is left as-is.

ACTIVITY #8: INSIDE AUTOMATIC LIGHT SENSITIVITY ADJUSTMENT

There is still one programming ingredient that has not been covered for making the Boe-
Bot seek light effectively. For best results, and especially to prevent halting in darker
rooms, the program needs a subroutine that automatically adjusts to different ambient
light levels. In other words, the program needs a subroutine that makes the PWM
command charge the capacitors in the light sensing circuits to lower levels in darker
rooms and higher levels in brighter rooms.

 Review Chapter 6, Activity #3 before continuing here.

AutoLightSensitivity.bs2 shows an example of how this can be accomplished. Instead of
a constant value like 184 or 128, the PWM command’s Duty arguments rely on a variable
named duty. At the beginning of the program, this variable is initialized to 128. After
taking and displaying each light measurement, the program calls a subroutine named
Duty_Auto_Adjust. This subroutine checks to find out if the light measurements add up
to somewhere in the 1800 to 2200 range. If not, it adjusts the duty variable so that it will
be closer in the next measurement.

Figure 6-27 shows an example of the program’s Debug Terminal display after the
adjustments have settled down. Notice that the two RC decay measurements (tLeft and
tRight) add up to 1951, which is in the 1800 to 2200 range. To get the measurements
into that range, the program’s Duty_Auto_Adjust subroutine had to adjust the
program’s duty variable to 152. The program initialized the duty variable to 128, and it
took several repetitions of the main routine for the program to home in on this value.

Page 18 · Robotics with the Boe-Bot

Although this is a slow process when the main loop repeats every 0.25 seconds, it will
respond to new lighting conditions in less than a second when it’s repeating rapidly
enough to send servo pulses.

Figure 6-27: Duty Variable Automatically Adjusted for Ambient Light

Keep in mind as you test AutoLightSensitivity.bs2 that the ambient light can still be too
bright or too dim. If the Debug Terminal shows that the sum of the light measurements
are below 1800 and the duty variable is at 255, it means the light is too bright for the
program to compensate enough with PWM. Likewise, if the measurements are above 2200
and the duty variable’s value is at 70, it means the light is too dark for the program to
compensate. In both of those cases, the program compensates as much as it can.

Also keep in mind that the program does not have to keep the values in the 1800 to 2200
range for the sake of determining how much shade or light one sensor sees compared to
the other. The Fraction_Thousandths subroutine from the previous activity takes care
of that by normalizing each sensor’s measurements to a scale of –500 to 500. The
Duty_Auto_Adjust subroutine in this activity’s example program is mainly responsible
for reducing the duty variable for the PWM command if the room gets darker or increasing
it if the light gets brighter. It also improves the servo’s behavior it helps keep the delays
between control pulses uniform as well.

 Find AutoLightSensitivity.bs2 in the RwtBBCH6A7to9 folder and open it with

the BASIC Stamp editor. (Optionally, you can hand enter it, but be very careful
if you do.)

 Load the program into the BASIC Stamp.
 Test the program’s response to different ambient lighting conditions.

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 19

 Note that it doesn’t matter if the light measurements are different because the
program is working to keep the sum of the two light measurements in a certain
range. So there should still be differences to indicate which light sensor detects
brighter light.

 Also, keep in mind that these are still raw voltage decay time measurements that
can be normalized.

'-----[Title]---
' Robotics with the Boe-Bot - AutoLightSensitivity.bs2
' Automatically adjusts to keep the sum of tLeft + tright in the
' 1800 to 2200 range.

' {$STAMP BS2} ' Target module = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

'-----[Constants/Variables]---

NEGATIVE CON 1 ' For use with sign variable

tLeft VAR Word ' Stores left sensor decay time
tRight VAR Word ' Stores right sensor decay time
tDiff VAR Word ' Stores right/left difference
tSum VAR Word ' Sum of left/right times
duty VAR Byte ' Stores duty value
sign VAR Bit ' 1 -> negative, 0 -> positive

'-----[Initialization]--

PAUSE 1000 ' Wait 1 s before any DEBUG
duty = 128 ' Initialize duty value

'-----[Main Routine]--

DO ' Main loop
 GOSUB Light_Sensors ' Call Light_Sensors subroutine
 GOSUB Display ' Call Display subroutine
 GOSUB Duty_Auto_Adjust ' Call Duty_Auto_Adjust subrtn
LOOP ' Repeat main loop

'-----[Subroutine - Light_Sensors]--

Light_Sensors: ' Check P6 & P3 light sensors
 PWM 6, duty, 1 ' Charge cap to duty value
 RCTIME 6, 1, tLeft ' P6->input, measure decay time
 PWM 3, duty, 1 ' Charge cap to duty value
 RCTIME 3, 1, tRight ' P3->input, measure decay time
 RETURN ' Return from subroutine

'-----[Subroutine - Display]--

Page 20 · Robotics with the Boe-Bot

Display: ' Display times, L/R, and duty
 DEBUG HOME, "tLeft = ", DEC5 tLeft, ' Display results
 " ", "tRight = ", DEC5 tRight
 DEBUG CR, "Light brigther on "
 IF tLeft < tRight THEN DEBUG "Left "
 IF tleft > tRight THEN DEBUG "Right"
 PAUSE 250 ' Wait 0.25 seconds
 DEBUG CR, "duty = ", DEC duty, CLREOL
 RETURN ' Return from subroutine

'-----[Subroutine - Duty_Auto_Adjust]---------------------------------------

' Adjust duty variable to keep tLeft + tRight in the 1800 to 2200 range.
' Requres tSum word variables for calculations.
Duty_Auto_Adjust: ' Duty Automatic Adjustment
 tSum = (tLeft + tRight) MAX 4000 ' Limit max tSum value
 IF tSum = 0 THEN tSum = 4000 ' If 0 (timeout) then 4000
 IF (tSum<=1800) OR (tSum>=2200) THEN ' If outside 1800 to 2200
 tDiff = 2000 - tSum ' Find excursion from target val
 sign = tDiff.BIT15 ' Pos/neg if .BIT15 = 0/1
 tDiff = ABS(tDiff) / 200 ' Max tDiff will be +/- 10
 tDiff = tDiff MAX ((duty-67)/2) ' Reduce adjustment sizes near
 tDiff = tDiff MAX ((257-duty)/2) ' ends of the range
 IF sign=NEGATIVE THEN tDiff=-tDiff ' Restore sign
 duty = duty + tDiff MIN 70 MAX 255 ' Limit duty to 70 to 255
 ENDIF ' End of outside 1800 to 2200
 RETURN ' Return from subroutine

Optional/Advanced Topic: Inside the Duty_Auto_Adjust Subroutine

In review, the Duty_Auto_Adjust subroutine tests the value of tLeft + tRight to see
if it’s in the 1800 to 2200 range. If it is, the subroutine doesn’t have to make any
changes. On the other hand, if the sum of those two variables is out of that range, the
subroutine adjusts the value of the duty variable. If it increases the value of the duty
variable, the PWM commands in the Light_Sensors subroutine will charge the capacitors
to higher voltages, resulting in larger RCTIME measurements for a given light level. If it
decreases the value, the opposite will occur. The capacitors will get charged to lower
voltages which result in smaller RCTIME measurements for that same light level.

This is an earlier revision of Duty_Auto_Adjust. The version in the book uses one
variable named sumDiff in place of two variables: tSum and tDiff.

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 21

The first thing Duty_Auto_Adjust does is add tLeft to tRight and store the result in a
variable named tSum. Then, it limits this result to 4000, which is twice the ideal target
value of 2000. So the range of tSum is 0 to 4000. Lower values of tSum indicate brighter
light, but 0 is a special case. If both the RCTIME commands return 0, it means that both
decay measurements took so long that they exceeded 65535 × 2 μs = 0.13107 s. If that’s
the case, it means it’s not actually bright in the room, it’s really dark. So, an IF…THEN
statement checks for this and changes tSum to 4000 if it happens to be 0.

Duty_Auto_Adjust:
 tSum = (tLeft + tRight) MAX 4000
 IF tSum = 0 THEN tSum = 4000

Next the subroutine checks to find out if tSum is in the 1800 to 2200 range. If it is, all
that’s left for the subroutine to do is RETURN. If it’s not, the subroutine will have to do
some work to decide how much to increase or decrease the duty variable’s value. It
starts by subtracting tSum from 2000 and storing the result in a variable named tDiff.
This new result is the difference between tSum and the target value of 2000. Since tSum
can range from 0 to 4000, the tDiff result will be in the –2000 to +2000 range.
Negative values mean the duty variable’s value needs to be decreased because it’s too
dark and the measurements are too large. Positive values mean the duty variable’s value
needs to be increased because it’s too bright and the measurements are too small.

 IF (tSum<=1800) OR (tSum>=2200) THEN
 tDiff = 2000 - tSum

Next the program has to divide tDiff, which stores a signed value in the +/– 2000 range,
by 200. The result should be in the +/– 10 range, which causes a maximum change in the
duty variable of +/– 10. PBASIC programs have to remember the sign of the number
before performing division. Then, they have to do a division on the absolute value of the
number (with an always-positive result), and then restore its sign when done.

Below are the first two of three steps required for dividing 200 into the signed value of
the tDiff variable. A rule of signed word variables (–32768 to 32767) is that the highest
bit in the variable (that’s BIT 15) will store a 1 if the variable is negative or a 0 if it’s
positive. For more information on this, use the PDF search tool to look up references to
“two’s complement” in the BASIC Stamp Manual. So, by copying the value of
tDiff.BIT15, into the sign bit variable, the program remembers the sign of the variable

Page 22 · Robotics with the Boe-Bot

before the division started. Then, it divides the absolute value of tDiff by 200. The
result that gets stored in tDiff is positive.

 sign = tDiff.BIT15
 tDiff = ABS(tDiff) / 200

Before the sign of the variable can be restored, the value of the adjustment has to be
checked to make sure it’s not too close to the ends of the duty variable’s valid range of
70 to 255. When it gets to below 80 or above 245, the two lines of code below prevent
the value of tDiff from a step size that’s larger than 6. In the next iteration of the loop,
it is limited to a maximum step size of 3, then a maximum step size of 1. The result for
big light changes will be that it skips in increments of 10 with each repetition of the main
routine, but when it reaches 80 or 245, it has to take progressively smaller steps to reach
the endpoints of the range. This step size limiting near the end points prevents a situation
where the program could get stuck skipping back and forth between 70 and 80, or
between 245 and 255. If this was allowed to happen, the program would never make the
fine adjustment to a value like 72 or 251.

 tDiff = tDiff MAX ((duty-67)/2)
 tDiff = tDiff MAX ((257-duty)/2)

As mentioned earlier, the third step in signed division with PBASIC is to restore the sign
of the variable. This is done by comparing the sign variable to the NEGATIVE constant (a
value of 1). If the sign variable is equal to 1, it means tDiff.BIT15 stored a 1 indicating
the original value was negative. In that case, the program has to make tDiff equal to –
tDiff to restore its sign.

 IF sign=NEGATIVE THEN tDiff=-tDiff

Finally, the value is limited from stepping outside the 70 to 255 range.

 duty = duty + tDiff MIN 70 MAX 255
 ENDIF
 RETURN

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 23

The MIN and MAX operators limit a result to above or below certain values. For example
the command variable = variable MIN 100 MAX 200 limits variables value to
a range of 100 to 200. If it’s value before the command was 55, it would get changed to
100. If its value was in the 100 to 200 range, its value would not be changed. If its value
was above 200 before the command, it would be changed to 200.

ACTIVITY #9: UNDERSTANDING LIGHT VARIABLE CALCULATIONS

The Boe-Bot can use differential light measurements for deciding whether to turn away
from or toward a light source, but tasks like detecting when it’s under a bright lamp at the
end of a course also requires an ambient light measurements, in other words, a
measurement of how bright or dark it is.

Earlier versions of the Light_Shade_Info subroutine were just for normalized
differential measurements and automatic light sensitivity adjustment. When the question
of determining overall brightness came up, a few additional calculations had to be added
to Light_Shade_Info for reporting ambient levels. The measurement is not precise, but
it’s good enough for general Boe-Bot navigation.

The code that was added to Light_shade_Info for ambient light detection is between
calls to Light_Sensors and Duty_Auto_Adjust. At that point, the Light_Sensors
subroutine had loaded new measurements into tLeft and tRight, and the duty value
used to set light sensitivity was determined during the previous call, which was only a
fraction of a second before and still useful.

 GOSUB Light_Sensors ' Get raw RC light measurements
 sumdiff = (tLeft + tRight) MAX 65535 ' Start light level with sum
 IF duty <= 70 THEN ' If duty at min
 light=duty-(sumdiff/905) MIN 1 ' Find how much darker
 IF sumdiff = 0 THEN light = 0 ' If timeout, max darkness
 ELSEIF duty = 255 THEN ' If duty at max
 light=duty+((1800-(sumdiff))/26) ' Find how much brighter
 ELSE ' If duty in range
 light = duty ' light = duty
 ENDIF ' Done with light level
 GOSUB Duty_Auto_Adjust ' Adjust PWM duty for next loop

Let’s start by looking at the ELSE condition. That block gets executed if the duty
variable is in the 71…254 range. If its in this range, it typically means that the
Duty_Auto_Adjust subroutine is succeeding at keeping the sum of tLeft + tRight in

Page 24 · Robotics with the Boe-Bot

the 1800 to 2000 range. In this case, the program just copies whatever value the duty
variable stores to the light variable for the indicator of incident light.

 ...

 ELSE ' If duty in range
 light = duty ' light = duty
 ...

Remember from Activity #3 that the PWM command cannot charge the capacitor high
enough for an RCTIME measurement if it’s below 1.4 V. Charging a capacitor up to this
value requires a PWM command with its Duty argument of 72 or higher. In practice, the
code still works at slightly lower levels. Duty_Auto_Adjust uses 70 as a minimum in
Activity #4-#6, and the code for calculating the ambient light level (light variable) uses 71.
.

The Duty_Auto_Adjust subroutine in LightSensorValues.bs2 prevents the duty
variable from falling below a value of 70. When the duty variable is stuck at 70, it
indicates that the light is too dim for the Duty_Auto_Adjust subroutine to do anything
more to correct. Since the duty variable is 70, the Light_Sensors subroutine is only
charging the capacitors up to 1.4 V, and there is almost no room for decay time. That’s
fine, because the phototransistors conduct very little current under low light conditions,
so the capacitors discharge very slowly.

Because the capacitors discharge so slowly in low light, even though they are being
charged to a minimum value, they can still take different amounts of time to decay, which
indicates different light level values for calculating the ndShade variable. So the Boe-
Bot may still be able to navigate, it just depends on how low the light levels are.

When the duty variable is stuck at 70, the program needs information from another
source to find out what the light level is. After a call to the Light_Sensors subroutine,
the decay time measurements are stored in the tLeft and tRight variables. The first
thing the Light_Shade_Info subroutine does is store the sum of tLeft and tRight in a
variable named sumdiff. Under the low light conditions, this variable should store a
value in the 2200 to 65535 range, with larger values indicating lower light. In the interest
of limiting this larger range to 70 levels (69 to 0), we can simply divide 70 into (65535 –
2200), which turns out to be 904.8 ≈ 905. So, when duty is stuck at 70, the expression
light = duty – (sumdiff/905) MIN 1 is roughly equivalent to 70 – (sumdiff /

Light-Sensitive Navigation with Phototransistors (Supplementary Activities #7..#9) · Page 25

905). Keep in mind that sumdiff will be somewhere in 2200 to 65535 range. This puts
sumdiff / 905 in the 2 to 72 range. In the end, the light variable will return values
from 1 to 68. So, it might actually be better to rewrite the expression: light=duty-
(sumdiff/905) – 2.

 ...

 GOSUB Light_Sensors ' Get raw RC light measurements
 sumdiff = (tLeft + tRight) MAX 65535 ' Start light level with sum
 IF duty <= 70 THEN ' If duty at min
 light=duty-(sumdiff/905) MIN 1 ' Find how much darker
 IF sumdiff = 0 THEN light = 0 ' If timeout, max darkness
 ...

In the code above, the last line is IF sumdiff = 0 THEN light = 0. This covers the
situation where both capacitors still take so long to discharge that they time out, even
though the PWM command only charges them up to about 1.4 V. This is a really low light
situation, and when the measurement times out, instead of a really large value in tLeft
and tRight, the result is 0. So, when both light sensor measurements time out, the
IF…THEN statement makes the light variable 0 instead of 70.

If it instead turns out that the light is bright, the phototransistors will conduct much more
current, causing more rapid capacitor voltage decay. The Duty_Auto_Adjust
subroutine responds by increasing the duty variable. Since the duty variable is used by
the Light_Sensors subroutine to set the initial voltage across the capacitors, it results in
larger starting voltages, which will increase decay times. But, at some point, the light
gets too bright and the decay times become more rapid, and their sum falls below 1800
even when the Duty_Auto_Adjust subroutine has the duty variable maxed out at 255.

When this situation occurs, the sumdiff variable, which stores the result of tLeft +
tRight, will be somewhere between 1800 and 1. The value of sumdiff will be smaller
as the light gets brighter, so sumdiff has to be subtracted from 1800 for an intermediate
result that gets larger with brighter light. This intermediate result is divided by 26 to give
69 extra levels above 255, and then added to duty, which has to be 255 for this code to
get executed. The end result? Values in the 255 to 324 range.

 ELSEIF duty = 255 THEN ' If duty at max
 light=duty+((1800-(sumdiff))/26) ' Find how much brighter

