

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

Sales:sales@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 1 of 6

Debugging with ViewPort

ViewPort is a graphical interface for the Propeller chip. On the Propeller side, ViewPort objects
utilize one or more of the Propeller’s processors for streaming variable and/or I/O pin information to
the PC. On the PC side, ViewPort software makes it possible to choose from a variety of display
formats, including debugging, terminal, logic analyzer, oscilloscope, xy plotter, spectrum analyzer,
custom instruments, fuzzy logic, and OpenCV video.

The ViewPort PE Kit Lab introduced how to get started with ViewPort and demonstrated several
applications with its oscilloscope, logic analyzer and spectrum analyzer features.

ViewPort PE Kit Lab – Logic Analyzer and Oscilloscope
ViewPort PE Kit Lab – Oscilloscope and Spectrum Analyzer

This article focuses on how to incorporate a Spin program into ViewPort’s debugging environment.

 To get familiar with the ViewPort’s IDE style debugging environment, take a few minutes to
watch this video.

Code Modifications
Here is a simple timekeeping program. Testing the minutes portion of the code either takes a
program modification, or you’ll have to wait a minute to verify the output. With ViewPort, you can
set a breakpoint in the program and then verify that it increments the various counters like it should.

'' Second and Minute Counter.spin
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

VAR

 long ms, s, m

PE Kit Tools

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 2 of 6

 long t, dt

PUB TestTimekeeping

 t := cnt
 dt := clkfreq/1000
 repeat
 waitcnt(t+=dt)
 ms++
 if ms//1000 == 0
 s++
 if s//60 == 0
 m++

Here are the steps modifying a program for ViewPort debugging.

1) Copy your application files to ViewPort’s mycode directory. Currently, that’s C:\Program
Files\ViewPort41\mycode\
2) Open ViewPort, click the code tab, and use the dropdown menu next to the Browse button to
set the working directory to MyCode.
3) Double-click the file you want to work with in ViewPort’s Spin Files list to open it.
3) Add vp : “conduit” to the OBJ block, or if the object does not already have an OBJ block, add
one with the vp declaration.
4) Add long frame[400] to the VAR block. (Or add a VAR block with this declaration if the
program doesn’t have one.)
5) Make sure any variables you want to examine are long variables the global VAR section.
6) Optionally, add a vp.config call that assigns names to the variables you have shared. For
example:

 vp.config(string("var:ms,s,m"))

7) Pass the start and end addresses of a contiguous group of long variables (not bytes or words)
that you want ViewPort to display to the conduit object’s share method. These long variables
should be located in the program’s VAR block. It’s also a good idea to add a one second delay,
especially if you want to set a breakpoint immediately after vp.share.

 vp.share(@ms, @m)
 waitcnt(clkfreq + cnt)

8) Modify any instance of waitcnt that uses t+=dt so that it instead uses dt+cnt. (For precise
timekeeping, make sure to change it back when you are done with the debugging session.)

When you have completed these steps, your code should look like this:

Debugging with ViewPort

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 3 of 6

Now, you can go through the debugging steps featured in the YouTube clip.

 To start debugging the code, click the run button.
 Set a breakpoint at ms++.
 Change the value of the ms variable to something that ends in 999
 Change the value of the s variable to something some multiple of 60, minus 1 (59, 119, or

179 for example).
 Single-step through the repeat loop, and verify that the second counter and minute counter

when ms reaches 1000 and s reaches a multiple of 60.

PE Kit Tools

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 4 of 6

Examine it Graphically
ViewPort’s most significant strength is in its ability to provide graphical information about a
program’s performance. If ViewPort detects a variable named io, or use of its quicksample object, it
will automatically update the I/O pins, either with the quicksample object, or an the value stored in io.

Here is a modified version of the program that stores ina in the io variable each time through the
repeat loop. If you debug this version of the program, the pin map in the code window indicates high
signals with red. Pay close attention to P4..P6 in the pin map as you repeat the loop by setting a
breakpoint and then repeatedly clicking run. Repeat the test for advancing by seconds and minutes.

Debugging with ViewPort

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 5 of 6

'' Second and Minute Counter (with ViewPort Debugging and IO).spin
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

OBJ
 vp : "conduit"

VAR

 long frame[400]
 long ms, s, m, io ' Add io variable
 long t, dt

PUB TestTimekeeping

 vp.config(string("var:ms,s,m,io")) ' Add io variable
 vp.share(@ms, @io) ' Add io variable
 waitcnt(clkfreq + cnt)

 dira[6..4]~~
 t := cnt
 dt := clkfreq/1000

 repeat
 io := ina ' Update io variable
 'waitcnt(t+=dt)
 waitcnt(dt+cnt)
 ms++
 outa[4] := ms
 if ms//1000 == 0
 s++
 outa[5] := s
 if s//60 == 0
 m++
 outa[6] := m

You can also click the LSA tab, and the Plot button next to the io variable to display io in the logic
analyzer. As with the pin map in the code tab, the I/O pins of interest are correspond to bits 4..6. The
time/division dial should be adjusted according to which signal you want to examine. It is set to 500
ms/division to get a good look at bit 5. You can also click next just to the left f bit 5 to make the
display refresh based on bit 5. 1 ms/division with the trigger set to bit 4 will allow for a close-up on
the ms timing.

PE Kit Tools

Copyright © Parallax Inc. ● Debugging with ViewPort ● 5/3/2009 ● Page 6 of 6

You can customize this display to only show bits 4..6. See ViewPort PE Kit Lab – Logic Analyzer
and Oscilloscope for more info.

