
Chapter 6: Chapter Name · Page 189

Chapter #6: Accelerometer Projects

There are three types of projects in this chapter. The first type is a direct application of
hardware and programs that were used in earlier chapters. The second type requires
datalogging of the acceleration measurements, and so several activities devote themselves
to a datalogging program. The third type of project requires datalogging to figure out
what kind of measurements the accelerometer will report. Then, based on the results of
the datalogging, you will have enough information to write a program to make the device
work reliably.

ACTIVITY #1: MEASURE HEIGHTS OF BUILDINGS, TREES, ETC.
Climbing to the top of an object to measure its height is not always convenient, practical,
or even safe. This activity introduces a novel way to use some of the accelerometer
measurements developed in Chapter #3 to make height measurements from a safe
vantage point on the ground.

Sighting the Top and Determining Height

Figure_Next shows a scheme for measuring the height of an object with the an
accelerometer. While running the LCD display version of the vertical angle of rotation
program from, Chapter 3, Activity #5, site the top of the object with the edge of your
board, and record the measured angle. Then, measure the distance between the spot you
took your measurement and the object, which is the adjacent side shown in Figure_next.
The adjacent distance, the angle θ, and the height of the accelerometer above the ground
are the three key pieces of information you need to calculate the object height.

 Figure_Determining Height with Line of Sight

Page 190 · Smart Sensors and Applications

Parts List and Circuit

Use the parts list and circuit from Chapter #3, Activity #2 for your rotating site with LCD
display.

Example Program

Use the example program from Chapter #3, Activity #5, along with the modifications for
LCD display introduced in the Your Turn - LCD Display section.

Procedure

√ Use your board to site the top of the object and record the angle.
√ Measure the distance between the site point and the object.
√ Measure the height at which the accelerometer was held.
√ Use the calculations introduced next to determine the object's height.

Calculations

We know from earlier chapters that tan θ is the opposite side divided by the adjacent side
of a right triangle. Multiplying both sides by the adjacent distance results in an
expression for solving the opposite height. It's the adjacent distance multiplied by the
tangent of the angle.

Chapter 6: Chapter Name · Page 191

After determining the opposite height (shown in Figure_Previous), all you have to do is
add to that, the height from which you took the measurement.

Example

Let's say that the adjacent distance to an object is 10 m, and at that distance the
accelerometer was held 1.5 m from the ground to get the line of sight of the top of an
object. The angle reported by the accelerometer unit was 61°. From this, we can
estimate the height of the object to be 19.54 m, as shown below.

Page 192 · Smart Sensors and Applications

ACTIVITY #2: RECORD AND PLAYBACK
With accelerometer projects, it will often be necessary to record and play back lots of
accelerometer measurements. In some cases, recording the value is the desired function,
like datalogging how a radio controlled car handles a turn. In other cases, like to detect
the human walking motion, it will be necessary to understand what the measurements are
before a program can be written that tracks steps. In either case, recording and playing
back acceleration measurements is a necessary ingredient. This activity introduces a
program with subroutines that demonstrate how to record, play back, and erase values
stored in the unused portion of the BASIC Stamp's EEPROM program memory.

EEPROM Storage with DATA, WRITE and READ

While not required for recording and playing back measurements, DATA directives can
be used to set aside chunks of unused program memory. The DATA directive's optional
Symbol name is especially useful for recordkeeping. The Records DATA directive does
not actually store any values in EEPROM addresses 0 to 9. It just reserves these bytes for
your PBASIC code, and gives the address of the first byte the name Records. The
RecordsEnd DATA directive reserves a single byte of at EEPROM address 10.

Chapter 6: Chapter Name · Page 193

Records DATA (10)
RecordsEnd DATA

The Symbol names (Records and RecordsEnd) become constants that store the starting
address of the EEPROM DATA directives they precede. Figure_Next shows how it
works for the two DATA directives. Since Records is the first DATA directive, it sets
aside the first ten bytes (addresses 0 to 9). Since address 0 is the beginning address,
Records becomes a constant for the value 0 in the program. Likewise, since the
RecordsEnd DATA directive sets aside a byte at address 10, RecordsEnd becomes the
constant value 10 in the program.

 Figure_DATA Directives and EEPROM Addresses

The EEPROM bytes don't necessarily contain zero. With the command Records DATA
(10), whatever values are already there will not be changed. If you want to initialize the
EEPROM values to zero, use Records DATA 0 (10). This will store 0 in EEPROM
addresses 0 to 9. The BASIC Stamp Editor only does this when it downloads the program.
If you press and release your board's Reset button or disconnect and reconnect power, no
values are written to those EEPROM addresses. This is a handy feature, as you will see in
the next activity.

The Clear_Data subroutine in the next example program has a FOR...NEXT loop that
repeats from Records to RecordsEnd (0 to 10). Each time through the loop, the eeIndex
variable increases by 1, so WRITE eeIndex, 100 stores 100 in each of the EEPROM
bytes, from address 0 to address 10.

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

The Record_Data subroutine in the next example program collects values that you enter
into the Debug Terminal's transmit windowpane. In the next activity, this subroutine will

Page 194 · Smart Sensors and Applications

be modified to store accelerometer values instead. The FOR...NEXT loop again starts at
Records and repeats until eeIndex exceeds RecordsEnd. Each time through the loop, the
value variable receives a signed decimal number from the Debug Terminal's transmit
windowpane and stores it in the EEPROM address selected by eeIndex with WRITE
eeIndex, value.

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Before each value variable's contents is copied to EEPROM, 100 is added to it. So
instead of a value between −100 and 100, a value between 0 and 200 is stored in the
EEPROM.

value = value + 100

Before each value variable's contents is copied to EEPROM, 100 is added to it. So instead
of a value between −100 and 100, a value between 0 and 200 is stored in the EEPROM.
Byte size values between 0 and 255 can be stored in each EEPROM memory cell.

Word size values can also be stored with DATA directives if you place the Word modifier
before the DataItem. For example WRITE eeIndex, Word value. Keep in mind that this
command uses two EEPROM bytes to store the word size value, so eeIndex will have to be
incremented by 2 before the next value is written.

To retrieve and display the values that were stored, the Display_Data subroutine has a
FOR...NEXT loop with READ eeIndex, value. Since 100 was added to each value before
it was stored with the write command, 100 is subtracted from the value variable after the
READ command to bring value back into the −100 to 100 scale.

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100

Chapter 6: Chapter Name · Page 195

 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Example Program: EepromDataStorage.bs2

This example program displays a three choice menu in the Debug Terminal's receive
windowpane shown in Figure_Next. By typing C into the Debug Terminal's transmit
windowpane, the values in the EEPROM set aside for storage are cleared. If R is typed,
the program records values you enter into the receive windowpane in EEPROM. If D is
typed, the values that were stored in EEPROM are displayed.

Figure 6-1 Entering Values for EepromDataStorage.bs2

√ Enter, save, and run EepromDataStorage.bs2.
√ Click the Debug Terminal's transmit windowpane.
√ Type R, and then enter eleven values between −100 and 100. Press the Enter

key when prompted after the eleventh value to get back to the menu.
√ Type D and verify that the values you entered are correctly displayed. Press the

enter key to return to the menu.
√ Type C to clear the memory.
√ Type D to verify that the memory values have been cleared (set to zero).

' -----[Title]--
' Smart Sensors and Applications - EepromDataStorage.bs2
' Demonstrates storing, retrieving and erasing values in EEPROM memory.

Transmit
Windowpane

Receive
Windowpane

Page 196 · Smart Sensors and Applications

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Records DATA (10)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."

Chapter 6: Chapter Name · Page 197

 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn - How Many Bytes do You Want to Store?

EepromDataStorage.bs2 uses the Records and RecordsEnd for all loops that perform
READ and WRITE operations. Because of this, you can change the number of values the
program stores by simply changing the number of elements in the Records DATA
directive.

√ Try changing the number of elements the program stores from 11 to 7. All you
have to do is change Records DATA (10) to Records DATA (6).

√ Test and verify that it works.

In activity #4, we'll use this feature to change the number of records the program stores to
1000 with Records DATA (1000).

Page 198 · Smart Sensors and Applications

ACTIVITY #3: USE EEPROM TO TOGGLE MODES
This activity introduces an EEPROM trick you can use to turn the Board of Education's
Reset button into a switch for selecting different program modes.

Code that Makes the Reset Button a Mode Selector

If you set aside one byte of EEPROM, it can give you the ability to select between up to
256 different program modes. In the next example program. we'll just use two modes, a
menu mode, and a mode that jumps to datalogging after a slight delay. Here is a DATA
directive that names an EEPROM byte Reset, and initializes the value stored by this byte
to zero.

Reset DATA 0

The simplest form of the initialization is an on/off switch configuration. This is where
the value from the Reset EEPROM byte is read, 1 is added to it, and then the modified
value is written to the Reset byte. The modified value is also examined to see if it is odd
or even with IF value // 2 = 0 THEN... In the example below, if that condition is true, the
program ends right there. The next time you press and release your board's Reset button,
value will be odd, the condition will be false, and the code block will not halt the
program before it has gotten to the main routine. If the Reset button is pressed and
released yet again, the code block will halt the program again. The time after that, it does
not halt the program, and so on. So the program converts your Board of Education's
Reset button into an on/off toggle button.

READ Reset, value
value = value + 1
WRITE Reset, value
IF value // 2 = 0 THEN END

Below is an example that uses the code block in a different way. Instead of halting or
allowing the program to continue, the IF...THEN code block is skipped the first time the
program is run, then executed the second time the program is run (after pressing and
releasing the Reset button). It is then skipped the next time and executed again the time
after that. The net effect is that the program either counts down and jumps straight to the
Record_Data subroutine, or moves on to the main menu in the program, depending on
whether your Board's Reset button has been pressed/released an odd or even number of
times.

' -----[Initialization]---------------------------------------

Chapter 6: Chapter Name · Page 199

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 15 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOTO Record_Data

ENDIF

Example Program: EepromDataStorageWithReset.bs2

This program demonstrates how to use an address in EEPROM to control the way the
program behaves, depending on whether the program has been run or re-run an odd or
even number of times. The number of times the program has been run will be controlled
by the Reset button after download. If the Reset button has been pressed/released an
even number of times, the program starts with the menu from the previous activity. If it
has been pressed/released an odd number of times, it performs a countdown, and then
calls the Record_Data subroutine.

√ Open and run EepromDataStorageWithReset.bs2.
√ Verify that you can toggle the mode the program starts in by pressing and

releasing the reset button.
√ Test the program's features, and make sure they all work.

' -----[Title]--
' Smart Sensors and Applications - EepromDataStorageWithReset.bs2
' Demonstrates storing, retrieving and erasing values in EEPROM memory.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (10)

Page 200 · Smart Sensors and Applications

RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word

' -----[Initialization]---------------------------------------

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 15 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOTO Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"

Chapter 6: Chapter Name · Page 201

 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Page 202 · Smart Sensors and Applications

Your Turn - The DATA Directive's Automatic EEPROM Addressing

Did you notice that the record numbers changed in this program? Instead of 0 to 10, they
were 1 to 11. Try moving the Reset DATA directive after the other two. Then, run the
modified program and examine the result. Draw diagrams similar to Figure_Previous
that illustrate the values stored by Reset, Records, and RecordsEnd. Draw the first
diagram to illustrate the original program, and the second one to illustrate the modified
program in which you changed the order of the DATA directives.

ACTIVITY #4: REMOTE DATALOGGING ACCELERATION
In this activity, you will add a piezospeaker to the existing accelerometer circuit. Then,
you will modify the program so that it provides you with a remote datalogging tool that's
easy to operate.

A Piezospeaker to Indicate Countdown, Start and Stop

The accelerometer circuit will the same one used in Chapter #3, and the piezospeaker will
be added below it on the breadboard.

Parts List

(1) Memsic 2125 Accelerometer
(2)220 Ω resistors
(7) jumper wires

Circuit

Figure_Next shows the schematic and a wiring diagram for the accelerometer and
piezospeaker.

√ Build it.

Figure_Accelerometer and Piezospeaker Circuit and Wiring Diagram

Chapter 6: Chapter Name · Page 203

Program Modifications

The next example program has been modified so that you can start, stop and restart
datalogging with your board's Reset button. You can disconnect the board from your
computer to perform the datalogging, and reconnect it to display the measurements in the
Debug Terminal. This is a crucial feature for taking field measurements and then
displaying them later.

DataloggingAcceleration.bs2 has a modified initialization section that makes the
piezospeaker beep every second for ten seconds before it starts datalogging.

' -----[Initialization]--

Init:
 .
 .
 .
 FOR char = 10 TO 0
 .
 .
 .
 FREQOUT 4, 50, 3750
 PAUSE 950

Page 204 · Smart Sensors and Applications

 NEXT
 .
 .
 .

DataloggingAccleration.bs2 also has a modified Record_Data subroutine that gets the x
and y values from the accelerometer, scales them to (-100 to 100), and writes both of
them to EEPROM. The FOR...NEXT loop increments in steps of 2 with the STEP 2
argument since each time through the loop, the routine saves two bytes. The
Display_Data subroutine has similar modifications so that it displays both the x and y
values in t a table.

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 10538
 y = (y MIN 1875 MAX 3125) - 1875 ** 10538

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

The piezospeaker also beeps twice at a higher pitch right at the beginning of the
datalogging. One important feature of this ten second countdown is that you can stop the
datalogging before it starts by simply pressing and releasing your board's Reset button.
Then, to restart the countdown, just press and release the Reset button a again.

Chapter 6: Chapter Name · Page 205

Example Program: DatalogAcceleration.bs2

This program takes and stores 500 accelerometer x and y-axis measurements in about 15
seconds. This equates to a sampling rate of about 33 measurements per second. This is
good for a variety of measurements. To measure longer and slower processes, the
Record_Data subroutine can be slowed down with a PAUSE command.

√ Open and run DatalogAcceleration.bs2.
√ Click the Debug Terminal's transmit windowpane.
√ Type R to start recording, and tilt your accelerometer this way and that for

fifteen seconds.
√ When prompted, press Enter to return to the program's menu.
√ Type D to display the measurements. Review them and verify that they

correspond to how you tilted the accelerometer.
√ Disconnect your board from the serial cable. If it starts beeping as you do so,

press and release the reset button to make it stop.

When you are ready to start tilting the accelerometer for fifteen seconds, press and
release the Reset button. The datalogger will beep for a ten second countdown, then end
with two higher pitched beeps signaling the start of the datalogging. It will make a single
high-pitched beep when it's finished.

√ Press and release the reset button. Wait the ten seconds, then tilt your
accelerometer in a pattern that you can remember for 15 seconds.

√ Plug your accelerometer back into your computer. If it starts beeping, press and
release the reset button to stop the countdown.

√ Click the BASIC Stamp Editor's Run button to download the program to the
BASIC Stamp and refresh the Debug Terminal's Menu display.

√ Type D to display the datalogged measurements.
√ Compare them to the directions you tilted the board and make sure they

correspond.

' -----[Title]--
' Smart Sensors and Applications - DatalogAcceleration.bs2
' Datalogs 500 x and y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Page 206 · Smart Sensors and Applications

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

Chapter 6: Chapter Name · Page 207

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 DEBUG CR, "Clearing..."
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 10538
 y = (y MIN 1875 MAX 3125) - 1875 ** 10538

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

 NEXT

Page 208 · Smart Sensors and Applications

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR
 FOR eeIndex = Records TO RecordsEnd STEP 2
 READ eeIndex, x
 x = x - 100
 READ eeIndex + 1, y
 y = y - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn - Datalogging Rotation Angle

Chapter #3, Activity #5 introduced vertical rotation measurements with the
accelerometer. Since binary radians are values from 0 to 255, you can store a single
angle measurement in one EEPROM byte. This will double the number of measurements
the application will take. It only takes a few modifications to DatalogAcceleration.bs2 to
make it store rotation angle instead. Here's how:

√ Save DatalogAccleration.bs2 as DatalogAngle.bs2.
√ Update the comments in the Title section.
√ Remove the STEP 2 arguments from the FOR...NEXT loops in the Record_Data

and Display_Data subroutines.
√ In the Record_Data subroutine, replace these two WRITE commands

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

with this ATN operation and WRITE command

Chapter 6: Chapter Name · Page 209

 value = x ATN y
 WRITE eeIndex, value

√ Modify the display heading in the Display_Data subroutine so that it looks like
this

 DEBUG CR, "Index angle ",
 CR, "----- ------",
 CR

√ Replace these four commands

 READ eeIndex, x
 x = x - 100
 READ eeIndex + 1, y
 y = y - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR

with these

 READ eeIndex, value
 value = value */ 361
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR

√ Save your changes and test the modified program.

ACTIVITY #5: RC CAR ACCELERATION STUDY
This activity demonstrates how use DatalogAcceleration.bs2 from the previous activity to
analyze the acceleration forces on a radio controlled (RC) car during a variety of
maneuvers.

Parts, Equipment and Circuit Diagrams

In addition to the parts for Activity #4, you will need an RC car and controller. The
circuit diagrams that should be built on your board are at the beginning of Activity #4 in
this chapter.

Hardware and Setup

Figure_Next (a) shows an inexpensive RC car that can be obtained at many hobby shops
and retail electronics outlets. Figure_Next (b) shows how the board was mounted.
Rubber feet were affixed to the underside of the board in a way that prevented any of it's
electrical connections from coming in contact with any of the RC car's electrical metal

Page 210 · Smart Sensors and Applications

parts and . Another option would be to use double-stick tape to affix the board to the roof
of the plastic shell.

Figure_RC Car with Acceleration Datalogger

 (a) (b)

Avoid accidental short-circuits. Make sure your board is mounted on the car so that
exposed metal underneath the board has no way of coming in contact with any of the RC
car's metal parts or electrical connections.

How it Works

Figure_Next shows a graph of the accelerometer's y-axis measurements as the car
accelerated forward, slowed to a stop, and then accelerated backwards. The
measurements were acquired with DatalogAcceleration.bs2 from Activity #4. After
displaying them in the Debug Terminal, they were shaded, copied and pasted into
Windows Notepad. From there, they were imported into the Microsoft Excel spreadsheet
program and then graphed.

Chapter 6: Chapter Name · Page 211

Figure 6-2 Forward/Backward Acceleration Measurements

The reason the forward acceleration is negative is because the ym sensing axis is pointing
to the back of the RC car as shown in Figure_Next. So, as the car is accelerating
forward, the acceleration is negative. When a car slows down, it is actually accelerating
backwards. This is shown in Figure Previous. First, the car accelerated forward, then, it
applied the breaks and slowed down (decelerated). The y measurement was positive, so
acceleration was negative. After a brief stop, the car accelerated backwards. Notice that
the y is again negative. Then, when it slows down (decelerates) from its backwards
speed to stop again, the car is, in effect, accelerating forward, and the y measurement is
negative again.

Figure_Acceleration vs. Accelerometer Sensing Axes

 RICH - Bottom-right correction a = ym

RC Car Forward and Backward

-40

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300

seconds/30

gr
av

ity
/1

00

Accelerate
Forward

Decelerate

Stop

Accelerate
Backward

Decelerate

Page 212 · Smart Sensors and Applications

 (a) (b)

If you're in a passenger in a car, when the car accelerates forward, you can feel the seat
pushing you forward. Well, if the driver makes a sharp left turn, the right side of the car
pushes you to the left. That's because you are accelerating left as you turn. This is
shown in Figure_Next, which illustrates how an object can be traveling forward at a
constant velocity, and to make it turn, it always has to be turning toward the center of the
circle it is traveling in.

 Figure_Traveling in a Circle, Always Accelerating Toward the Center.

Figure_Next shows a graph of the accelerometer's x-axis measurements as the RC car is
first driven in circles turning left, then in circles turning right. Notice how the x-axis
measurement shows positive acceleration as the RC car circles to the left, and negative
acceleration as the car circles to the right.

Chapter 6: Chapter Name · Page 213

Figure 6-3 Accelerometer Measurements while Driving in Circles

Figure_Next shows how the accelerometer's x-axis is oriented, and the acceleration it
measures. For a left turn, the car is accelerating to the left, which for the accelerometer is
a positive x-axis acceleration measurement. When it turns right, acceleration is in the
opposite direction of the positive x-axis, so the x-axis measurement it negative.

 Figure_Sensing Acceleration in Turns

 (a) (b)

Procedure

The procedure for measuring and then graphing RC car acceleration is as follows.

√ Attach your board to the RC car.
√ Download DatalogAcceleration.bs2 into the BASIC Stamp.

RC Car Left then Right

-100

-80

-60

-40

-20

0

20

40

60

0 100 200 300 400 500 600

seconds/30

gr
av

ity
/1

00

Left Turn
Circles

Right Turn
Circles

Straighten
Out

Page 214 · Smart Sensors and Applications

√ Take it to an open area and press/release the board's Reset button.
√ Wait for the countdown to indicate that datalogging has started.
√ Accelerate the car forward, then come to a stop. Accelerate the car backward

then come to a stop, then drive an a figure-eight. When the board beeps again
(after about fifteen seconds) it means the datalogging is over.

√ Connect the board back to your PC.
√ Run DatalogAcceleration.bs2 again.
√ Click the Debug Terminal's transmit windowpane.
√ Type D to display the data.
√ Use your mouse to shade the table headings and all the measurements in the

Debug Terminal's blue receive windowpane. (Don't shade the menu.)
√ Press CRTL + C to copy the records.
√ Open Notepad.
√ Click Edit and select Paste.
√ Save the file.

These next instructions explain how to import the .txt file into Microsoft Excel 2002 and
graph it. If you are using a different spreadsheet program, the keywords such as space
delimited, XY scatter plot may provide leads on how to accomplish it with your
particular spreadsheet software.

√ Click File and select Open.
√ In the files of type field, select All files (*.*).
√ Find the .txt file you saved with notepad, select it, and click the Open button.
√ In Text Import Wizard Step 1, click the Delimited radio button, then click Next.
√ Click the checkbox next to Space to indicate that the file is space delimited.
√ Make sure the checkbox for "Treat consecutive delimiters as one" box is also

checked, then click next.
√ Make sure the radio button for General column data format is selected, then click

finish.
√ Your spreadsheet should be three columns wide and about 503 rows long.

The next step, which is also documented for Microsoft Excel 2002, is to run the chart
utility and tell it what to graph and how you want it to look.

√ Place the cursor in a cell somewhere to the right of your three columns of data.
√ Click Insert and select Chart.

Chapter 6: Chapter Name · Page 215

√ In the Standard Types tab, select XY (Scatter). Also click the graphic that
configures it to "Scatter with data points connected to smoothed Lines without
markers". Then, click Next.

√ Assuming your y-axis data is begins in C3 and ends in C503, type C3..C503 in
the Data range. Click the radio button next to Columns to indicate that the series
of data points is in a column. Then, click Next.

√ Fill in the chart title and axis information, then click Finish.
√ Repeat for the x-axis.

!-box: Only portions of each graph are relevant.
Keep in mind that the data that will make sense for the y-axis is the portion of time the
car accelerated forward and backward. Likewise, the part of the graph that will make
sense for the x-axis is the portion of the graph when the car was turning.

ACTIVITY #6: SKATEBOARD TRICK ACCELERATION STUDY
This activity looks at a second acceleration study example. This one datalogs a
skateboard trick called the ollie. The setup for datalogging the ollie shown in
Figure_Next is a BASIC Stamp HomeWork Board duct taped to the underside of a
skateboard.

About the Ollie

The first documented ollie was done by Allan (Ollie) Gelfand in the late 1970s. Gelfand
pioneered it in ramps and bowls. The flatland version of the ollie evolved in the early
1980s, and when a skater does an ollie, he jumps, and it looks like his board is attached to

Page 216 · Smart Sensors and Applications

his feet, even though it's not. Regardless of the environment or skating style, most
skateboard tricks today are variations of the ollie.

Ollie Mechanics

Figure_Next shows the mechanics of an ollie. As the skater jumps, (a) his feet are both
pushing the board down. Just before the skater is about to become airborne, (b) he lifts
his front foot and at the same time extends his back foot to tiptoe, and the tail of the board
smacks the concrete. The momentum of the front of the board keeps it rising (c), and the
skater now lifts his back foot, and kicks his front foot forward. This causes the back of
the board to rise (d), and move slightly forward. As the deck meets the skater's back foot
(e), the skater applies just enough pressure to keep the board against his feet as it falls
back to the ground (f). The highest ollie to date, performed by Danny Wainright, was in
excess of five feet high.

Figure 6-4 Ollie Mechanics

Graphing Ollie Acceleration

Figure_Next shows a graph of the acceleromiter's y-axis for the first of two ollies that
were datalogged with the next example program. Each step from Figure_Previous is
marked on the graph. This particular ollie was a little deficient in Figure_Previous steps
b and c, so the back of the board didn't quite meet the back foot in step e. Note that the
impact of the board during step f was 3.5 g. The highs and lows that follow step f,
resemble the oscillations when a bell is struck. This is partially due to the board's
vibration and partially due the turbulence of the gas inside the accelerometer caused by
the impact.

a b c

d e f

Chapter 6: Chapter Name · Page 217

Figure 6-5 Figure with Drawing Canvas

Figure_Next shows the data for a slightly better ollie. It was a little higher, and it made it
to step e gracefully. Notice that step a to b is steeper, and gets to -1.25 g before rising to
over 1 g for steps c and d. These values, which are larger than the ones from the previous
graph, indicate a higher ollie. Notice also that the impact was below 3 g because the
skater was not trying to catch up with the board on the way down.

Figure 6-6 Figure with Drawing Canvas

Acceleration vs Time for Second Ollie

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

775 795 815 835 855 875

time (ms)

gr
av

ity
, (

g)

a, b c, d
e

f

Acceleration vs Time for First Ollie

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

170 190 210 230 250 270

time (ms)

gr
av

ity
 (g

)

a, b c, d e

f

Page 218 · Smart Sensors and Applications

Datalogging an Ollie

Figure_Next shows how the accelerometer's y sensing axis is aligned to sense the
skateboard's various tilts and rotations. This is the only axis we want to log in the next
example program.

The program from the Activity #4 was modified to store just the raw y-axis accelerometer
measurements with no scale or offset. The value of y would range from 1875 to 3125
(for ± 1 g) if no acceleration is involved. When the acceleration measurement is 3.5 g,
that would result in a measurement of 4687. In any event, these are word values, and so
the WRITE command in the Record_Data subroutine has to be modified so that it stores
word variables. Since a word takes up two bytes, the FOR...NEXT loop still has to count
in steps of 2.

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 7, 1, y

 WRITE eeIndex, Word y

 NEXT

Similar modifications are made to the FOR...NEXT loop in the Display_Data subroutine
shown here.

 FOR eeIndex = Records TO RecordsEnd STEP 2

 READ eeIndex, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC y, CR

 NEXT

Example Program: DatalogYaxisUnscaled.bs2

This next example program was used to log the data graphed in Figure_Previous_2 and
Figure_Previous_3. It gives you about ten seconds of datalogging, which is enough time
for two or three ollies. Moving the data to a spreadsheet and graphing it is based on the

Chapter 6: Chapter Name · Page 219

procedure in Activity #5. The spreadsheet was modified to generate the graphs shown in
this activity by adding a column with a formula that takes the y-axis data, subtracts 2500
from it, and then divides it by 625. This gives a measurement in units of earth-gravity
(g).

' -----[Title]--
' Smart Sensors and Applications - DatalogYaxisUnscaled.bs2
' Datalogs 500 word size y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

Page 220 · Smart Sensors and Applications

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:

 DEBUG CR, "Clearing..."

 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT

 DEBUG CR, "Records cleared."
 PAUSE 1000

 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:

Chapter 6: Chapter Name · Page 221

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 7, 1, y

 WRITE eeIndex, Word y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR

 FOR eeIndex = Records TO RecordsEnd STEP 2

 READ eeIndex, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC y, CR

 NEXT

 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

Your Turn - What Makes a High Ollie?

It would be interesting to datalog and compare different skaters' ollies. The best way to
do it would be to take video of each ollie, and then watch the video and examine the
graph at the same time. Another thing that can be measured is the time in the air, which
is the time between steps a and f in the graphs.

Page 222 · Smart Sensors and Applications

ACTIVITY #7: BICYCLE DISTANCE
Figure_Next shows how the board and accelerometer can be mounted inside a bicycle
wheel. As the bicycle is upright, this might at first seem like an angle of rotation
problem, like in Chapter #3, Activity #5. However, there is also an acceleration toward
the center of the wheel that the axes will measure. This is because the accelerometer is
traveling in a circular path, just like the RC car from the previous activity. This
acceleration toward the center of the wheel will be different at different speeds, and will
result in skewed angle measurements. The accelerometer measurements will also be
effected when the bike rider applies the brakes, speeds up, and leans into turns. In
addition, what criteria should be used to add one to the number of full circles the bike
wheel has turned? This activity introduces hysteresis as a way of measuring wheel
rotation and demonstrates how the datalogging techniques used in earlier activities can be
used to examine each of these issues and test for prototype reliability.

 Figure_Bike Wheel Test Setup

!-Box: Do not let the metal on the underside of your board come into contact with the
spokes. Use an insulating material (such as the folded up plastic bag shown in
Figure_Previous) to insulate the underside of the board from the spokes.

Counting Wheel Revolutions with Hysteresis

One problem with counting wheel revolutions is making sure that the program doesn't
advance the count if the wheel hasn't turned full circle. The most common mistake that is
made when measuring wheel revolutions is setting a single threshold. What if the rider is
waiting at a stop light, and is moving his/her bike back and forth by an inch or two? If
there is a single threshold, the wheel revolution counter will keep increasing every time
the rider rocks back and forth.

Chapter 6: Chapter Name · Page 223

The next example program demonstrates a way of solving this problem with hysteresis.
Hysteresis is the process of setting two different values that have to be crossed before a
change in state occurs. In our case, the change of state is an increase in the wheel
revolution count. With hysteresis, the measurement must fall below a low value, and
then the program waits until it has risen up above a higher value before acknowledging
an upward change. Then, the measurement will have to go below the low threshold again
before a change from high to low is acknowledged. Each time the program
acknowledges that the measurement went below the low value and then above the high
value, it increases the wheel revolution count by 1.

Here is some code that performs hysteresis. In the first of the two nested DO...LOOPs,
the program waits until the y axis rises above 2650. Then, the second of the two nested
DO...LOOPs waits until the y axis measurement drops below 2350. Only then will it add
1 to the counter variable. After that, the program makes the peizospeaker beep, and then
repeats the outer DO...LOOP. At this pint, the program is back to waiting for the y axis
measurement, which was below 2350 to rise back above 2650 again. Keep in mind that
this is not necessarily the optimum way to measure wheel revolutions. That's for you to
determine.

DO

 DO UNTIL y > 2650
 PULSIN 7, 1, y
 LOOP

 DO UNTIL y < 2350
 PULSIN 7, 1, y
 LOOP

 counter = counter + 1
 FREQOUT 4, 200, 3750

LOOP

i-box: The range between 2350 and 2650 in the code block above is referred to as
deadband.

Example Program: TestWheelCounter.bs2

√ Mount your board inside a bicycle wheel as shown in Figure_Previous. Make
sure to keep a good insulator between the spokes and the underside of the board.

√ Enter, save, and run WheelCounter.bs2.

Page 224 · Smart Sensors and Applications

√ Spin the wheel, and verify that it beeps once per revolution.

' TestWheelCounter.bs2
' Tracks bicycle wheel revolutions.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word
counter VAR Word

DEBUG CLS

DO

 DO UNTIL y > 2650
 PULSIN 7, 1, y
 LOOP

 DO UNTIL y < 2350
 PULSIN 7, 1, y
 LOOP

 counter = counter + 1
 FREQOUT 4, 200, 3750

LOOP

Datalogging Various Operating Conditions

It might seem at this point like the application is ready for some code that converts
revolutions to distance, and maybe an LCD display and a couple of buttons for selecting
LCD menu items. The problem here is we only examined the wheel turning two speeds.
What about when the rider is leaning into sharp turns. Does the acceleration change
then? What about in cold and hot temperatures. Will they cause the measurements to be
different? It certainly wouldn't do to have a product on the market that only tracked
bicycle distance some of the time. The product would get a bad reputation very quickly.

Figure_Next shows a datalogged acceleration study for the bicycle at two slightly
different speeds. The area around 400 ms is where the wheel was slowed down. The
important thing to note from this graph is the offset of the x and y-axis measurements. At
the higher speed, the y-axis signal varied between 1 and −0.5 g while the x-axis
measurements varied between −1.5 and 0.25 g. After slowing the wheel down, the y-axis

Chapter 6: Chapter Name · Page 225

measurement varied between 1 and -1 g, while the x-axis measurement varied between
about 0.7 and −1.3 g.

Figure 6-7 Figure with Drawing Canvas

Figure_Previous is just a graph of two different speeds. True, the hysteresis code from
wheel counter works under both of these conditions, but does it work under ALL
conditions? With this kind of question, engineers might apply a few equations to predict
the accelerations under various extreme conditions that they can predict. Simulation
software could also be used to verify the outcomes. Even if this kind of expertise is
available, the product still has to be tested in a variety of "real life" conditions, especially
to rule out the possibility of incorrect assumptions on the part of the engineers. That's
where datalogging comes back into the picture. The actual prototype still has to be taken
through the various conditions that it might experience on anybody's bicycle before it's
safe to make the investment in the plastic case, refined electronic design that features low
cost parts, mass production and inventory costs.

With this in mind, we are back to performing acceleration studies, under as many
different situations as possible. Here is the program that was used to log the data for the

Bike Wheel at Two Different Speeds

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000

time, ms

gr
av

ity
, g

Accelerometer
y-axis

Accelerometer
x-axis

Page 226 · Smart Sensors and Applications

graph in Figure_Previous. Notice that it is logging Word values for both the x and y-axis
measurements. The spreadsheet is given the job of changing the raw accelerometer
PULSIN measurements into gravity measurements.

Example Program: BikeWheelAcceleration.bs2

As a project, test the bicycle meter in different temperatures, riding conditions, turns, up
hill, down hill, slow, fast, etc. Look for a sequence of changes in measurements that can
be tracked regardless of the conditions. If there is not a hysteresis range for all
conditions, your code may need to periodically update the most recent high and low
values, and then look for hysteresis within that range.

' -----[Title]--
' Smart Sensors and Applications - BikeWheelAcceleration.bs2
' Datalogs 500 x and y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,

Chapter 6: Chapter Name · Page 227

 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 DEBUG CR, "Clearing..."
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

Page 228 · Smart Sensors and Applications

' -----[Subroutine - Record_Data]---

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 4

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 WRITE eeIndex, Word x
 WRITE eeIndex + 2, Word y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR
 FOR eeIndex = Records TO RecordsEnd STEP 4
 READ eeIndex, Word x
 READ eeIndex + 2, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Chapter 6: Chapter Name · Page 229

Your Turn

Another thing to examine is how vertical plane rotation measurements performs under the
various bicycle wheel conditions.

√ The Your Turn section of Activity #4 datalogs brad measurements. Use it to
datalog your bicycle wheel rotation in brads.

√ Graph the rotation over time in under the various riding conditions discussed in
this Activity.

Is there an angle measurement behavior that can be hysteresis can be applied under all
riding conditions?

Page 230 · Smart Sensors and Applications

SUMMARY
This chapter introduced a variety of accelerometer applications and datalogging
techniques that can be used to study the accelerometer's measurements in various
conditions, and in some cases, use them to refine your programs. When sighting the top
of an object, vertical plane rotation measurements can be used with the distance to the
object and some trigonometry to determine the object's height.

DATA directives with optional Symbol names were introduced as a way to simplify
recordkeeping in datalogging programs. They can be used to define ranges of unused
EEPROM program memory. Since Symbol names store the starting address of DATA
directives, they can be used in FOR...NEXT loops that perform READ/WRITE
operations over the range of EEPROM bytes defined by the beginning and ending DATA
directives.

A technique was also introduced for using a DATA directive to set aside one byte for
setting the program mode. Each time the program starts, an initialization routine reads
the byte, adds one to it, and replaces the old value in EEPROM with the modified value.
Each time the program is restarted by pressing and releasing the board's Reset button, the
program can use the new value in EEPROM to select between different modes. For
toggling a feature in the program on and off, an IF...THEN statement that examines
whether the remainder of the value divided by two is zero is used. This makes it possible
to start and stop datalogging without being connected to the computer.

Accelerometer applications with datalogging included RC car acceleration, skateboard
trick measurements, and bicycle wheel measurements. Each of these used a program that
was a variation of the remote datalogging program introduced in Activity #4. The data
displayed in the Debug Terminal was shaded, copied, and pasted into text files. The text
files were then imported into a spreadsheet program and graphed. The graphs were
analyzed to determine to examine accelerations, tilts, and angles involved RC car,
skateboard, bicycle wheel motions.

Questions

1. What three pieces of information do you need to measure the height of a building
from a distance?

2. How many bytes does this DATA directive set aside? DATA (50)
3. What's the difference between DATA (100) and DATA 20 (100)?

Chapter 6: Chapter Name · Page 231

4. What does the command WRITE eeIndex, 100 do? What function does it serve
in EepromDataStorage.bs2?

5. What's wrong with this command? WRITE eeIndex, 1000. How can you fix it?
6. What data directive is used for mode selection with the Reset button in this

chapter's activities?
7. What other directives and commands have to be present for IF value // 2 = 0

THEN... to make it possible to toggle program modes with your board's Reset
button?

8. How does IF value // 2 = 0 THEN... allow you to toggle between different
program modes?

9. What does the peizospeaker do in DatalogAcceleration.bs2?
10. What does the SELECT...CASE code block in DatalogAcceleration.bs2 do?
11. How can you modify a DATA directive to make it set aside more values?
12. What's the storage capacity difference between datalogging x and y byte values

and datalogging brad angle measurements?
13. How does forward acceleration differ from forward deceleration?
14. How is backward acceleration similar to forward deceleration?
15. When driving in circles at a constant velocity and radius, what direction is the

acceleration?
16. If you drive around in circles in the opposite direction, how does the acceleration

change and how does it stay the same?
17. How does the datalogging program that measures a skateboarder's ollie differ

from the program that measures RC car motions? How are they similar?
18. What changes with speed in bicycle rotation measurements?

Exercises

1. The top of a building was sighted to be 75° from a vantage point 15 m from the
building and 1 m from the ground. How tall is the building?

2. A tower was sighted to be 20° from a vantage point 100 m from the its base and
2 m from the ground. How tall is the tower?

3. Write a pair of DATA directives that reserve 1501 bytes. Use symbol names.
4. Write a FOR...NEXT loop that retrieves and displays 1500 bytes. Assume your

DATA directive Symbol names are Begin and Quit.
5. Write a FOR...NEXT loop that retrieves 751 words. Assume that your DATA

directive Symbol names are StartData and EndData.
6. Write a segment of code that will allow you to toggle between three different

program modes with your Board's Reset button. Hint: use SELECT (value // 3),
and then use CASE statements for 0, 1, and 2.

Page 232 · Smart Sensors and Applications

7. Modify a block of code in DatalogAcceleration.bs2 so that its countdown is five
seconds.

8. Extend the Your Turn section of Activity #4 so that the program stores degree
measurements from 0 to 359.

Projects

1. Use Google to find the slope above which snow is likely to avalanche. Prototype
a measuring device that warns you if a slope is too steep.

2. Complete the bicycle wheel project in Activity #7.
3. Use the datalogging and programming techniques introduced in this chapter to

develop a pedometer. This is a device that calculates the distance you have
walked based on how many steps you have taken.

4. Figure_Next shows an RC airplane. Review servo control in What's a
Microcontroller, then write a program that causes the wing flaps to correct for tilt
to keep the plane level.

<<<<Rich, we need a picture of the Parallax airplane in the purple room>>>>>

17.

Chapter 7: Chapter Name · Page 233

Chapter #7: LCD Bar Graphs for Distance and Tilt

Defining and displaying custom characters with the Parallax Serial LCD was introduced
in Chapter #1, Activity #4. This chapter introduces some more custom character
techniques, and then applies them to bar graph displays. These displays will indicate the
distance of an object from the Ping))) ultrasonic sensor and the tilt of the Memsic 2125
Dual Axis Accelerometer.

ACTIVITY #1: CUSTOM CHARACTER SWAPPING
The Parallax Serial LCD can display up to eight custom characters at any given time.
However, there can be many more than eight custom characters in the application
because custom characters can be defined and redefined as needed. The only limitation is
that only eight can be displayed at any given time, and eight is ample for most projects.

The place where you can define and store more than eight custom characters is in the part
of the BASIC Stamp's EEPROM memory that does not used for program storage. Since
PBASIC programs rarely fill the BASIC Stamp's entire EEPROM memory, there is
typically room for all the custom characters an application might need.

One important trick to getting for conserving custom characters is using just one of the
LCD's eight custom character definitions to display a sequence of custom characters that
are stored in the BASIC Stamp's EEPROM. This is especially useful for animation, but it
will also be important for bar graph displays. This activity provides an animation
example.

From EEPROM Storage to LCD Character Memory

The next example program will demonstrate a convenient way to store custom characters
in the BASIC Stamp's EEPROM. Two of the program's fifteen custom character
definitions are shown below. Each custom character gets a unique Symbol name, like
Char0, Char1, Char2, and so on, up through Char14. Each of these Symbol names
represent the EEPROM address of the first byte in the DATA directive. The subroutine
that transfers the custom character definition from EEPROM to the LCD's custom
character memory uses these Symbols as a reference point for reading the bytes from
EEPROM. After reading each byte from EEPROM, the subroutine sends it to the serial
LCD.

 .

