Column #118: The Sheer Joy of Experimenting

O
) d:‘ The Nuts & Volts of BASIC Stamps

Parallax, Inc. Nuts & Volts

www.parallax.com www.nutsvolts.com

Column #118 February 2005 by Jon Williams:

The Sheer Joy of Experimenting

For aslong as | can remember I've been interested in electricity and electronics. My first
"way cool" experiment happened when | was in the second grade: | (correctly) deduced that a
flashlight bulb would burn brighter if | connected wires to it and plugged them into a 120
VAC outlet. Yesindeed, | was correct — for about a millisecond before the bulb exploded. I'm
not sure if it was the explosion of the bulb, or the explosion of my mom (she's got 'pipes when
she needs them) that hooked me, but | am forever hooked..

Thankfully, most of my experiments since that fateful day have had better results, and my
dear mom is more smiles than fearful for her first-born's life. You're probably wondering by
now where in the world I'm going with this; well, let me tell you.

As I've stated many times, I'm a very lucky guy: great job(s), a wonderful life, a wonderful
family ... | really have no reason to complain whatsoever. Part of my great job with Parallax
is the myriad BASIC Stamp users | have contact with, and on many occasions | get to assist.
And that is something | truly enjoy doing. But here's the thing ... in our instant-gratification
society, it seems like many BASIC Stamp users, especially those that are young and facing
the deadline of a school project, are too easily willing to skip the experimentation part of the
learning process. My friend and colleague, John Barrowman, calls this "the big bang

The Nuts and Volts of BASIC Stamps (Volume 6) » Page 29

Column #118: The Sheer Joy of Experimenting

technique." They want it all at once; no reading of spec sheets, manuals, or experimenting
with parts desired — just results, please. Right now!

To be candid, this is a little disappointing. Why? Well, those that "shotgun” their projects
miss out on the sheer joy of experimenting, and al the learning that comes with those
experiments. It took Thomas Edison nearly 1000 attempts to get a practical working light
bulb — and he was a heck of alot smarter than most of us. Do you think the Wright brother's
looked up at a bird then headed for Kitty Hawk with a working version of the airplane? Of
course not; there was a lot of incremental experimenting before the made a successful
powered flight.

With my exposure | get bombarded with questions, some nearly as silly as: "Jon, what would
happen if | stuck my finger into alight socket?' My standard answer is, "I don't know — give
itatry." Okay, okay, I'm being a bit melodramatic (I am an actor in my other job) to illustrate
apoint, and of course | would never suggest that someone attempt something that would harm
any person or BASIC Stamp module. | guess my point is that for many of those questions,
the answer would have been derived more quickly, and with much deeper understanding
through an experiment versus waiting for an e-mail from me.

| will quite preaching now ... but please let me beseech you — especially those that are young
and just getting started — to experiment. It'sfun; it'salot of fun. And | promise that what you
learn from your experiments you won't soon forget — especialy those experiments with
unexpected resullts.

Analog Fun

Okay, let's experiment. For reasons | can't explain, a bunch of customers seem to have come
up with the ADC0832 (2-channel ADC) and are wondering why the application code for the
ADCO0831 floating around doesn't work with it (That sound you just heard was the old-timers
smacking themselves on the forehead and exclaiming, "Duh!"). The reason, of course, is that
the ADC0832 is NOT the same as the ADCO0831. It'sin the same family, yes, but it is not the
same part so it will require different connections and code.

For our experiments this month, we will need just a few parts: the ADC0831 and ADC0832
(or ADC08832) that we just mentioned, a couple 10K trim pots, and a project board to
connect things to the BASIC Stamp. Y ou can use anything handy: the BOE, the NX-1000, or
— my new favorite — the Parallax Professional Development Board.

Page 30 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

Let's start with the ADC0831. | will admit that I've kind of glossed over the details of this
part in the few projects where | used it, because | (incorrectly) assumed that it — and code for
it — had been around for such along time that everybody who used the BASIC Stamp had an
understanding of how the ADCO0831 works and how to apply it. Asisoccasionally the case ...
| was wrong.

Grab your parts and connect the circuit shown in Figure 118.1. For the time being, make sure
that you have the pot connected to Vref moved to the +5v position (confirm with a
multimeter). Before we get on to the code, let's have alook at a couple technical details that
the manufacture provides: atiming diagram. The timing diagram shows the signalsin and out
of a device and the relationships vis-a-vis time. Figure 118.2 shows the essentia signals
timing for the ADCO083L1.

+5
+5
ADC0831 —»; 10 kQ
8
1 Vce 5
P15 [1cs Vref —
= =
P14 [CLK
6 2
P13 <O DO Vin (+)
. 3 +5
Vin (-)
GND
4
10 kQ

Figure 118.1: ADC0831 Connections to a BASIC Stamp

The Nuts and Volts of BASIC Stamps (Volume 6) e Page 31

Column #118: The Sheer Joy of Experimenting

Figure 118.2: ADC0831 Signal Diagram

What this diagram shows us is that the must take the CS (chip select line) low to initiate a
read of the ADC0831. Why? Well, maybe we can't find an ADC0832 and we need two
distinct channels. By using separate CS lines to control each device, two ADCO0831s can
share the Clock (CLK) and Data Out (DO) lines. After the CS line is brought low, the CLK
line needs to be pulsed activate the device. After that, eight additional clock pulses cause the
data bits to be shifted out of the ADCO0831.

At first we may beinclined to write a subroutine that looks like this:

Read_0831:
LOW CS
PULSQUT O k, 50
SHI FTIN Di o, dk, MSBPOST, [adc\8]
H GH CS
RETURN

It all makes sense, right? We bring the CS line low, blip the clock line with a pulse to wake
the ADCO0831, shift eight bits in, and then finish up by returning the CS line high. Anything
wrong with that? Nope, not athing. Can the routine be improved? Y ou bet.

Through understanding and experimenting (there's that dreaded "€"-word....) we find that we
can remove the PULSOUT instruction, and shorten the code to look like this:

Page 32 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

Read_0831:
LOW CS
SH FTIN Dio, Ok, MSBPOST, [adc\9]
H GH CS
RETURN

The first question that probably comes to mind is, "How can you use nine clock pulses with
an eight-bit value?' We can do that by understanding what happens to a value when we use
SHIFTIN. Let's get gory with details, shall we?

When using MSB mode, the target variable is shifted left (MSB goesinto la-la-land, and a0 is
placed in Bit0), then the data line is sampled (in this case after the clock — POST mode,
because the ADC0831 makes data bits available after the clock pulse falls) and that bit is
placed into the BitO of our target variable. When we get to that ninth clock, the first bit
sampled gets shifted from the MSB (Bit7 in this case) into the great bit-bucket and is
discarded. Here's how we could simulate the SHIFTIN using aloop:

Shi ft_I n_MSBPOST:
FORidx =1 TO 8
adc = adc << 1
PULSOQUT CLK, 50
target.Bit0 = Do
NEXT

For obvious reasons using SHIFTIN is easier, but understanding the mechanics is helpful
when we want to optimize code, or — if needed — port to a lower-featured controller like the
BS1.

Now that we can read the ADC0831, it'safairly afairly simple matter to display the data:

Mai n:
DO
GO0SUB Read_0831
nmvolts = adc */ Raw2mv
DEBUG CRSRXY, 10, 2,

DEC3 adc,

CRSRXY, 10, 3,

DEC nvolts DIG 3, ".", DEC3 nVolts
LOOP
END

The Nuts and Volts of BASIC Stamps (Volume 6) » Page 33

Column #118: The Sheer Joy of Experimenting

This code uses a constant called Raw2mV that is used to convert the input voltage to
millivolts — just keep in mind that the value in the program is for +5 on Vref. The value of
Raw2mV is $139B which isthe equivalent of 19.6 when using the */ (star-dlash) operator.

Remember that star-slash multiplies by units of 1/256, so it's a convenient way to multiply
fractional values. How'd we get $139B7? First we take the Vref voltage of 5.00 and divide it
by 255 which is the maximum output value from the ADC0831. This gives us 0.019607. If
we multiplied directly by 0.019607 we would end up with very small output values, so what
wel'll do is multiply by 1000 which will cause the result of our multiplication to be millivolts
(1/1000 of avolt). Now we take 19.607 and multiply that by 256 for the star-slash operator.
We get 5019. My habit isto convert to hex, $139B, as this puts the whole portion of the value
in the high-byte, the fractional portion of the value in the low-byte.

After calculating the millivolts value, the display is handled with DEBUG, and a couple neat
tricks using the DIG operator and the DEC modifier (see Figure 118.3). If you don't fully
understand what's happening with the output, here's your big chance: open the help file, read
up on DEBUG, DIG (in the operators section), and using formatters (like DEC). Then ... you
got it ... experiment. A few minutes experimenting will save you hours of frustration later.

Once you've got the display figured out, it's time to play with the Vref voltage and examine its
affect on the output data. Using your multimeter you should be able to prove the following
behavior of the ADCO831.:

counts = (Vin/ Vref) x 255

What you'll also see is that when Vin exceeds Vref the output hits a ceiling of 255 — we need
to keep thisin mind with designs when Vin could exceed Vref.

One last thing before moving on, and again, you're on your own after | give you alittle push.
The ADCO0831 is typicaly used as a single-ended device, but can also be used in differential
mode. The Vin discussed above is really the difference between Vin(+) and Vin(-). Let's say
we had an application where we wanted to know how much greater one voltage is of another.
We can do it with the ADC0831 by connecting the greater voltage to Vin(+), and the lesser
voltage to Vin(-). The output will be the difference between the two values, relative to Vref.
What happensif Vin(+) goes lower than Vin(-)? | know — because | did an experiment to find
out. It'syour turn....

Page 34 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

#3 Debug Terminal #1 -10] x|
Com Port: Baud Fate: Parity:
SR S EEE o R
[ata Bits: Flaws Control; & T~ [DTR [RTS
e = Joi =zl @ mx eoDsR e crs

I |
: o

ADCOB31

Counts: 119
Yolts: 2.333

Macru:us...l Pausze | Clear | Cloze | [~ Echao Off

Figure 118.3: Using DEBUG with DIG and DEC modifiers is helpful

Two for the Price of One

Okay, let's give the ADC0832 (or ADC08832) a try, shall we? | think part of the problem
some users have had with this chip is that it comes in the same physical format as the
ADCO0831 (8-pin DIP). But the connections aren't the same, and neither is the code (it's close,
though).

The Nuts and Volts of BASIC Stamps (Volume 6) e Page 35

Column #118: The Sheer Joy of Experimenting

Connect the circuit shown in Figure 118.4. Immediately you'll notice a couple things: the
ADCO0832 has a DI (Data In) line, and there is no Vref pin (Vref istied internaly to Vcc).
One of the nice things about using the BASIC Stamp is that it can change an IO pin's state on
the fly, so we don't need separate lines for DI and DO — we can tie them together. But, we
don't want to connect them directly to the BASIC Stamp. Why? Well, asyou'll seein just a
moment the DI line is three expecting control bits after the CS line falls, then it activates the
DO line and starts pumping out data. If we made a programming error that caused
SHIFTOUT to send more bits than required, we could end up with a data collision. Worse,
one side could be high while the other is low, causing a direct short and perhaps doing
damage to the ADC0832, the BASIC Stamp, or both. A five-cent resistor is cheap insurance;
it will protect us from a problem and has no ill affect on communication between the BASIC
Stamp and the ADC0832.

Figure 118.5 shows the ADC0832 interface timing. As with the ADC0831, we start by taking
the CSlinelow. Thistime, though, the start bit is output (by the Stamp) on the Dio line, and
must be a 1. The next two bits configure the ADC0832. The first of those two bits sets single-
ended or differential mode. The final bit serves as the channel indicator when in single-ended
mode, or which input is positive when using differential mode.

Let'scodeit up:

Read_0832:
LOW CS
SHI FTQUT Dio, Ck, MSBFIRST, [%\1, sglDif\1l, oddSign\1]
SH FTIN Dio, Ok, MBPOST, [adc(oddSign)\8]
H GH CS
RETURN

Once again, the code matches the timing diagram without a lot of mystery. After taking the
CS line low, we have to shift out a"1" to get things started. Since we only want to send a
single hit, the \1 parameter is used with the value. Next comes the mode bit: 1 indicates
single-ended, 0 indicates differential. Finally, we shift out a bit that indicates the channel for
single-ended mode, or the positive (+) channel for differential mode. When the data is shifted
in we place it into the selected element of atwo-byte array.

Page 36 ¢ The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

+5
+5
ADCO0832 . 10 kQ
1 Vee/Vref
P15 [Ics —
P14 [! CLK CHO ?
P13 O—W\'—ES DI Ghi -
1 kQ ° DO X3
GND
4

Figure 118.4: ADC0832 Connections to a BASIC Stamp

o TULTUH R

DI - S/ID| OIS

Figure 118.5: ADC0831 Timing Diagram

The Nuts and Volts of BASIC Stamps (Volume 6) e Page 37

Column #118: The Sheer Joy of Experimenting

The neat thing about the ADC0832 and the circuit we put together is we can try its various
modes without changing any wires. While the demo for this device is a little more involved
than with the ADCO0831, it's really no more complicated:

Mai n:
DO
sglDi f = Sgl
FOR oddSign = 0 TO 1
GOSUB Read_0832
nVol t s(oddSi gn) = adc(oddSi gn) */ Raw2nV
DEBUG CRSRXY, 7, (4 + oddSign),
DEC3 adc(oddSi gn), TAB,
DEC nVol t s(oddSi gn) DI G 3,
DEC3 nVol t s(0oddSi gn)
NEXT

sglDif =D f
FOR oddSign = 0 TO 1
GOSUB Read_0832
nVol t s(oddSi gn) = adc(oddSi gn) */ Raw2nV
DEBUG CRSRXY, 7, (9 + oddSign),
DEC3 adc(oddSi gn), TAB,
DEC nVol ts(oddSign) DIG 3, ".",
DEC3 n\ol t s(oddSi gn)
NEXT
LOOP

The program simply loops though both channels in each of the two operating modes,
displaying the raw counts and calculated voltage output as before. Figure 118.6 shows the
results. If you look very closely at that display you'll notice that the differential mode differs
from the single-ended mode by about two counts — this had to do with a noisy test setup, and |
could never really get a single-ended reading to hard zero.

Finally, Figure 118.7 shows you the result of an experiment of mine with the ADCO0832 setup.
| recently purchased a digital scope/logic analyzer and | hadn't had a chance to use the logic
analyzer portion of it. So | connected three probes (one each for CS, Clk, and Dio) and
captured a part of the transmission that corresponds to the valuesin Figure 118.6.

What's interesting to note is the spacing between the configuration bits versus the data bits.
Why do you suppose thisis? If you go back and look at the subroutine you will seethisline:

SHI FTQUT Dio, Ck, MSBFIRST, [%\1, sglDif\1l, oddSign\1]

Page 38 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

This is actually quite complicated. We're asking the BASIC Stamp to send one bit of a
constant value, then go retrieve a variable and send one bit fromit, then go get another bit and
send a single bit from it. This explains the wider timing between the clock pulses going out
versus the pulses for the data coming in (which only hasto deal with asingle variable).

Debug Terminal #1 N [=] |
Corm Part; Baud Fate: Parity:
[comt 7] Joseoo F More [F
Data Bits: Flows Control; & T [DTR [RTS
o =l Jof =zl @m¢ eoDsm e cis

ADCOB=x32
Single-Ended

0%9&

Differential

Macrns...l Pauze | Clear | Cloze | [T Echa OFff

Figure 118.6: ADC0832 Output

The Nuts and Volts of BASIC Stamps (Volume 6) » Page 39

Column #118: The Sheer Joy of Experimenting

+If BitScope DSO 1.2 i

=10l x|
M TriGGER [20m0 [ERi. spu] [Powier
SEI'UPl
ALT
CHOP |
[Locic
men|
cia | _cue | [T
mse | _FaLL | [sTate
[Fast _PLter| apsust|
[=] -l
BitScope
TB =100 us F5 = 500 kHz
B ZOOM TIMEBASE [RV x1 | _ac | M o e _|‘=Y="‘
_~ T - || ~ T - | ==
m:l L“:I m ;l HIDE |
DELAYl [repeaT TRACEl [on lw| POD| HIRES || DOTS KEEP | | cr
| D50 1.204091605 | BSO05000 | COM& | 4.94kBfs | CONNECTED -

Figure 118.7: ADC0832 Timing Diagram

I'm leaving it up to you know — go forth and EXPERIMENT! Remember that Rome wasn't
built in a day, and neither will all of your projects. What you'll find is that after you've
experimented for a while, you internal knowledge base will grow to the point where projects
will come faster. That said, don't be afraid to try little things, as lots of little things add up to
greatness.

Allow me to wish you and your sweetie a Happy Vaentine's Day (Guys, robots do NOT

make cool gifts — unless your girlfriend is an engineer, or reads Nuts & Volts and Servo.
Remember, chocolate still works), and until next time, Happy Stamping.

Page 40 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

' File...... ADC0831. BS2

' Pur pose. .. Experinents with the ADC0831 ADC

' Author.... Jon WIIiamns

' E-mail.... jwilliams@arall ax. com
Started...

' Updat ed. .. 06 DEC 2004

{ $STAMP BS2}
{ $PBASI C 2. 5}

BT [ProgramDescription J-------------oommmmmmmm oo

' This program denpstates the ADC0831 ADC.

BT [Revision History J-------------cmommmmm oo

Cs PI'N 15 ' ADC0831.1
a k PI'N 14 ' ADC0831. 7
Di o PI'N 13 ' ADC0831. 6

————— [Constants J-----------ccommmmm oo

Raw2mv CON $139B ' 19.6 nV per count
BT [Variables J------------------omo
adc VAR Byt e ' raw adc val ue
mvol t s VAR Wor d "mllivolts
BT [EEPROMData J----------------mmmmm oo oo
BT [Initialization J------------------------- -
Reset :

H GH CS ' desel ect ADC

The Nuts and Volts of BASIC Stamps (Volume 6) e Page 41

mailto:jwilliams@parallax.com

Column #118: The Sheer Joy of Experimenting

DEBUG CLS, ' output screen
"ADC0831", CR, CR,
Counts:", CR
" Volts: "

GOSUB Read_0831
mvolts = adc */ Raw2nV
DEBUG CRSRXY, 10, 2,

DEC3 adc,

CRSRXY, 10, 3,

DEC mvolts DIG 3, ".", DEC3 nMolts
LOOP
END

Reads ADC0831

Read_0831:
LOW CS
SH FTIN Dio, dk, MSBPOST, [adc\9]
H GH CS
RETURN

Page 42 e The Nuts and Volts of BASIC Stamps (Volume 6)

Column #118: The Sheer Joy of Experimenting

File...... ADC08x32. BS2

Purpose... Experiments with the ADCO8x32 ADC
' Author.... Jon WIlians
' E-nail.... jwillians@arallax.com
' Started...

Updated... 06 DEC 2004

' {$STAWP BS2}
' {$PBASIC 2.5}

' This program denpbstates the various nodes of the ADCO8x82 ADC.

BT [Revision History J-------------cmommmmm oo

Cs PI'N 15 ' ADC0832. 1
ak PI'N 14 ' ADC0832. 7
Di o PI'N 13 ' ADC0832.5 / ADC0832. 6

————— [Constants J----------cccoommmmi oo

Sol CON % ' single ended
Di f CON % ' differential
Raw2nv CON $139B ' 19.6 nV per count

————— [Variables J---------ccccmmmmmin -

sgl D f VAR Bi t ' adc nobde (1 = SE)
oddSi gn VAR Bi t ' chan (Sgl), sign (Dif)
adc VAR Byt e(2) ' channel val ues

nmvol ts VAR Wor d(2) "mllivolts

----- | [EEER0Y [DERE) |00 Ao o0 500 5156 50 510 56 815 S5 S 5 S8 6 Q5 E A5 GG E BE E S5 A5 E A

oo [Initialization J-------------------------- -

The Nuts and Volts of BASIC Stamps (Volume 6) e Page 43

mailto:jwilliams@parallax.com

Column #118: The Sheer Joy of Experimenting

Reset :
H GH CS ' desel ect ADC
DEBUG CLS,
" ADCO8x 32",
CRSRXY, 0, 2, "Single-Ended", CR CR
" ChO:", CR
" Chil:", CR
CRSRXY, 0, 7, "Differential", CR CR
" ChO:", CR
Chl: "
BT [ProgramCode J----------------------- -
Mai n:
DO
sglDf = Sql

FOR oddSign = 0 TO 1
GOSUB Read_0832
nVol t s(0ddSi gn) = adc(oddSi gn) */ Raw2nV
DEBUG CRSRXY, 7, (4 + oddSign),
DEC3 adc(oddSi gn), TAB,
DEC mVol ts(oddSign) DIG 3, ".", DEC3 nmVolts(oddSi gn)
NEXT

sglDif =Dif
FOR oddSign = 0 TO 1
GOSUB Read_0832
nVol t s(oddSi gn) = adc(oddSi gn) */ Raw2nV
DEBUG CRSRXY, 7, (9 + oddSign),
DEC3 adc(oddSi gn), TAB,
DEC mVol ts(oddSign) DIG 3, ".", DEC3 nVolts(oddSi gn)
NEXT
LooP

END

' Reads ADC08x32

Read_0832:

LOW CS

' send start, node, channel

SH FTQUT Dio, C k, MSBFIRST, [9%d\1, sglDif\1l, oddSign\1]
read raw counts from ADC

SH FTIN Dio, Ok, MSBPOST, [adc(oddSign)\ 8]

H GH CS

RETURN

Page 44 « The Nuts and Volts of BASIC Stamps (Volume 6)

