
Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 119

Column #83 March 2002 by Jon Williams:

Where in the World is My BASIC Stamp?

A few days before I started writing this article, President Bush submitted his budget proposal to
Congress. Part of the new budget calls for dramatic increases in military spending to make up for
lack of technological progress in the past several years. I'm not trying to be political here. I
simply want to point out that we, as civilians, do and will benefit from technology developed by
our military and space programs.

Case in point: GPS, the Global Positioning System. GPS was originally developed by the military
to provide precise location and navigation capabilities in a wide range of military applications.
We've certainly all heard of GPS-guided "smart" bombs. The American military dropped quite a
few of them on those Taliban idiots in Afghanistan. Yes, a few of them missed the mark with
tragic consequences. This wasn't the fault of the weapon or the GPS system; it was a problem
with the location data loaded into the bombs.

Lucky for us, the technology has been made available to the civilian world and the uses for GPS
are far more friendly. GPS navigation systems in cars are very useful, particularly for those
driving in an unfamiliar city. Not long ago I went to lunch with a friend who has his car equipped
with such a system. From a menu he selected his favorite restaurant and the system, using GPS
and voice synthesis, "talked" us all the way there ... with a very friendly female voice, no less. He

Column #83: Where in the World is My BASIC Stamp?

Page 120 • The Nuts and Volts of BASIC Stamps (Volume 3)

even made a deliberate mistake to show me how the system could compensate for the error. The
system was very cool, telling us about approaching intersections and to be prepared to turn. It was
a very impressive demonstration of GPS technology.

On a smaller scale, GPS receivers have become incredibly popular with hikers and others involved
in outdoor recreational activities. One of the most popular consumer GPS units for these
applications in the eTrex GPS from Garmin. Garmin actually has a family of eTrex GPS
receivers. At the low end, the unit goes for about $120 retail. That's not too bad for a piece of
equipment that can tell you where you are on the planet with an accuracy of down to 150 feet or so
– much better depending on conditions. I routinely see estimated accuracies of less than 20 feet on
my eTrex. While any of the models of the eTrex family will work with this month's program, the
entry-level model works just fine and is what I used to test the code.

GPS Basics

There are several excellent explanations of the GPS system on the Internet (see sidebar), so I won't
go into a lot of detail here. Fundamentally, the system works like this: there are 24 GPS satellites
in orbit around the planet. The orbit of these satellites is very carefully controlled by the U.S.
Department of Defense. Each satellite broadcasts the precise time (using an atomic clock) and
other information required by GPS receivers. The GPS unit on the ground receives signals from
three or more satellites and, using some fairly tricky math, is able to triangulate its planetary
position.

And all of this happens in a unit the size of a cellular telephone. Beyond basic position, the GPS
receiver can tell us accurate time, speed, heading and other information relevant to navigation. It's
very neat stuff.

Getting Connected To The BASIC Stamp

Most GPS receivers output a stream of data so that it can be used by other devices. The most
common format is NMEA 0183 (National Marine Electronics Association). This data is provided
as a series of comma-delimited ASCII strings, each preceded with an identifying header. The data
output rate is very tame: 4800 baud, N-8-1. This is no problem for the BASIC Stamp.

The trickiest part about connecting the eTrex to a BASIC Stamp is the mechanical connection.
The eTrex uses a proprietary connector and the cables from Garmin a fairly pricey – about a third
the cost of the receiver itself. I can vouch for the quality though; they are made very well.

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 121

Figure 83.1: BS2p to GPS Connection

It seems that the popularity of the eTrex GPS has created a cottage industry of third party
connector and cable manufacturers. In the web sites sidebar you'll find a list of sites that will sell
you the connectors and a variety of prefabricated cables that will work with your eTrex. For the
this month's program I used the Garmin bare wire cable (#010-10205-00). You can either
purchase that cable from Garmin or go the DIY route. If using the Garmin cable, the wire colors
are shown in Figure 83.1.

Web Sites Worth Checking Out

How GPS Works
• celia.mehaffey.com/dale/theory.htm

Decoding NMEA 0183 Strings

• celia.mehaffey.com/dale/nmea.htm
• home.mira.net/~gnb/gps/nmea.html

eTrex Related

Column #83: Where in the World is My BASIC Stamp?

Page 122 • The Nuts and Volts of BASIC Stamps (Volume 3)

• www.garmin.com
• www.firstwaypoint.com
• www.etrex.webz.cz
• www.geocities.com/etrexkb

Alternate Sources for eTrex Cables and Connectors

• www.pfranc.com
• www.gpsmemory.com
• www.blue-hills-innovations.com

BASIC Stamps and GPS

• www.parallaxinc.com/downloads/Resources/Aero%20GPS%20Brief.PDF
• www.stoneflyers.com/gps_guided_truck.htm

Decoding The GPS Output

The purpose of the program this month is to "listen" to the GPS output until a certain string is
transmitted, grab it when it is and then pull all the data out of it and convert it to numbers that can
be used or manipulated. To do this we will be using the BS2p. The BS2p has a (undocumented)
serial modifier called SPSTR. This modifier collects serial input and saves it in the scratchpad
RAM, starting at location zero. Once the string is in the scratchpad, it can be parsed and
converted as required.

The main string the program waits for is called $GPRMC -- Recommended minimum specific
GPS/Transit data. If you connect your eTrex to a terminal program you'll see that the $GPMRC
sentence is the first line of several that are output every two seconds (Figure 83.2). The baud rate
and number of characters transmitted for all of the sentences are what determine the two-second
delay between transmissions.

After I had the basic code working, I decided to add another piece: altitude. This is transmitted in
the same format using a Garmin-specific string: $PGRMZ. As it turns out, the altitude can be
intercepted and decoded within the SERIN statement -- without buffering it into the scratchpad
RAM. And with the speed of the BS2p (program speed, not ground speed...), there is plenty of
time between the arrival of $GPRMC and $PGRMZ to decode the $GPRMC data.

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 123

The Code, The Code

Since the connection between the Stamp and the eTrex is electrically trivial, I'll jump right into the
code. This looks like a long program but it really is fairly straightforward and there are a few neat
tricks inside. Again, the purpose is to capture the GPS output and then parse out specific data and
convert it to numeric form so that it can be manipulated. The output of the program is a report
sent to the DEBUG screen. You can use the guts of this program as a jump-off point for your own
GPS-based projects.

Figure 83.2: HyperTerminal GPS Output from Garmin eTrex

The Initialization section opens the DEBUG screen, draws a ruler to help us analyze the
$GPMRC sentence and sets up some labels where the GPS data is displayed. This is all pretty
easy stuff. I've started using the more of the built-in formatting functions available with DEBUG.
Notice the constant called MoveTo. This code will causes the cursor to move to a specific X/Y
location in the DEBUG screen. Another that is used a little later is ClrRt. The ClrRt code will
clear everything from the current cursor position to the end of the current line. This code is handy
for keeping the screen neat and uncluttered with old data.

Column #83: Where in the World is My BASIC Stamp?

Page 124 • The Nuts and Volts of BASIC Stamps (Volume 3)

The first line in the Main section does the work of waiting on the $GPMRC sentence and storing
it in the BS2p's scratchpad RAM. As you can see, the SERIN command is setup for 4800 baud
with a timeout of three seconds (3000 milliseconds). This value make sense since the sentence
should show up every two seconds. And notice that the program is actually waiting on "GPRMC,"
instead of "$GPRMC" as you might expect. The reason for this twofold: the WAIT modifier is
limited to six characters and I want the first data character (position UTC) to be placed in address
zero of the scratchpad.

When using SPRSTR we have to tell the Stamp how many characters to buffer. In this case I've
set the character count to 65. Usually, the $GPMRC string will be about 60 characters long. I'm
going allow 65 so that when I take this project "on the road" and the variable-width speed field
gets wider, everything will be captured. Be careful when using the length specification in SPSTR
– it's okay if the length is specified short, too long and the Stamp will be left waiting for more
characters. That's not a problem for this program since several hundred bytes of data are
transmitted after the $GPMRC string.

Now comes the real work: extracting numeric data from the string.

Some of you may have seen a little project we did at Parallax with GPS and model airplanes. Just
for fun, we created a little GPS data logger from a BS2p and strapped the receiver and Stamp to
the wing of a trainer aircraft. My boss, Ken, flew the plane while the program was running and
when we got back to the office we were able to graph the flight path of the airplane. It was a lot of
fun.

As I look back on that code it was a bit, well ... inelegant ... and I really wanted to clean it up and
make it easier to use with different GPS strings. That's what I'm presenting here.

One the key elements of the program is a subroutine called String_To_Value. The purpose of the
routine is to convert an ASCII string to a 16-bit number. The string is stored in the scratchpad.
The subroutine starts by knowing the position of the first digit in the string and how many digits to
convert.

Take a look at the code. The routine starts by clearing the return variable workVal. Next, the field
width is checked to make sure it falls in range. We have to be a little careful when specifying a
field width of five since 65,535 is the largest value that a Stamp variable can hold.

The heart of the routine retrieves a character from the scratchpad, converts it from ASCII to a
number by subtracting "0" (decimal 48) and then adding the digit value into the return variable.
The field width is decremented and checked for zero. If it's zero, the routine is done and the value

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 125

the field is returned in workVal. If not, the digits in workVal are shifted left to make room for the
next. Since we're dealing with decimal numbers, this is accomplished by multiplying workVal by
ten. Quite a lot of the work in the program is done with this routine. After calling
String_To_Value, the value is moved from workVal to the specific variable used for storage.

Just a couple notes on the numeric values. The decimal portion of the latitude and longitude
values are fractional minutes. To convert fractional minutes to seconds we multiply by 60. In the
case, we actually use 0.06 to get tenths since the routine returns the fractional value multiplied by
1000.

In the past I've used the */ (star-slash) operator for fractional values. In this case, the ** (star-star)
operator is used for better precision. Star-star can only be used with fractional values of less than
one. To get the value for this operator, multiply the fraction by 65,536. So, 0.06 x 65,536 is 3932
($0F5C). To use a star-star with fractional values greater than one, you need to multiply the whole
portion separately. Take a look the code that converts knots to miles per hour.

Authors Note: For more hints and tricks on using star-star, be sure to visit Dr. Tracy Allen's web
site at www.emesys.com/BS2math1.htm. Tracy is the coolest Ph.D. you'll ever meet – a Stamp
guru and a real regular guy!

The next step in the decoding process is getting the signal validity, latitude indicator and longitude
indicator. These arrive in the $GPRMC string as letters. Since there's really no need to waste
eight bits of storage for what are, essentially, binary values, the program uses a variable called
flags to hold them as bits. Simple comparisons are used to set or clear the associated bits in flags.

Next comes speed. The speed value (knots) starts in a fixed position but is a variable-width field.
The legal values are from 0.0 to 999.9. Decoding speed is not much different from what has
previously been done – the difference, of course, is that the field width is not known. The routine
Mixed_To_Tenths deals with this problem by looking for the decimal point in the field. Since
the decimal point is expected, the return value is in tenths.

The last bit of data that I want to collect from the $GPRMC string is the location date. This is a
fixed-with field, but is it located after the variable-width speed field so finding it requires a
strategy. The way it's done in this program is by counting the field-delimiting commas. I created
a subroutine called Move_To_Field to handle this. To use the routine, I put the field number in
field, then call the routine. When it RETURNs, the variable idx holds the position of the first digit
in that field. Once the position of the date field is known, the rest is easy.

One last thing to do with the $GPMRC data ... I live in Dallas, Texas which is six hours behind
UTC time reported by the GPS receiver. Correcting for the offset isn't very hard, it just takes a bit

Column #83: Where in the World is My BASIC Stamp?

Page 126 • The Nuts and Volts of BASIC Stamps (Volume 3)

of code because there may be a date change as well. The time and date correction code looks for a
day cross, the adds or subtracts a day based on the UTC offset specified by the program. The only
thing this code doesn't do is account for leap years.

Since negative values are stored in two's-compliment form, bit 15 will be set in negative numbers.
This fact is used by the BRANCH line to direct the code to adding or subtracting a day – with
month and year correction if necessary.

I mentioned earlier that we've played with attaching GPS units to model airplanes. Doing that, it
would be nice to know the altitude. One thing to understand is that GPS altitude from civilian
receivers is terribly inaccurate, but we're willing to pull it out anyway. Later we'll experiment
with some of the higher-end Garmin units that have barometric altimeters for better accuracy.

The altitude is broadcast in the Garmin-specific $PGRMZ string. The cool thing about this is that
it's a whole value in a single field so we can grab it on-the-fly using the DEC modifier. When the
comma after the altitude field is hit, DEC terminates and the value is stored in altitude.

We Got, Let's Show It

Okay, now the latest $GPRMC string is safely stored in RAM, its data is parsed out, so it's time to
display the results the program's cool code. First comes the display of the raw $GPMRC string.
The display routine is fairly simple. Since the header isn't actually captured with SERIN, it gets
printed manually. Then, one-by-one, characters are retrieved (with GET) from the scratchpad and
displayed on screen. Remember that these are ASCII characters so there is no conversion
requirement.

Since the string length can vary, what the program does is look for the asterisk which comes right
before the two-digit checksum. Once the asterisk is detected and printed, it's a simple matter to
GET and print the next two characters. Finally, the rest of the line is cleared with ClrRt in case
the current string was shorter than the previous.

Next, the signal validity is printed. To make the display a little user-friendly, zero-terminated
strings are stored in EEPROM and printed using Print_Z_String. If the signal was good, the
values are printed, otherwise the screen is cleared. Done! The final output of the program is
shown in Figure 83.3. Notice that that the time and date have been corrected for the six hour
difference between Dallas and UTC time.

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 127

Figure 83.3: GPS Debug Window Shows $GPRMC

Column #83: Where in the World is My BASIC Stamp?

Page 128 • The Nuts and Volts of BASIC Stamps (Volume 3)

What Will You Do With It?

Okay, it's your turn. Now that you know how to get GPS data into your Stamp, what will you do
with it? Me? Well, I'm thinking about driving to my brother's house in Ohio this summer so I
have this idea about creating a "head up" speedometer reading (reflecting large 7-segment displays
off the front windshield) and, using a Quadravox QV306, having the system tell me the time,
inside and outside temperatures, estimated time to my next waypoint ... and anything else I can
figure out. It should be fun. If it works like I hope, I'll write about it when I get back to "Big D."

Until next month, have fun with GPS and Happy Stamping!

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 129

' -----[Title]--
'
' Program Listing 83.1
' File...... SIMPLE GPS.BSP
' Purpose... Simple GPS Interface
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
' Started... 16 JUL 2001
' Updated... 07 FEB 2002

' {$STAMP BS2p}

' -----[Program Description]--
'
' Reads NMEA data string from GPS receiver and parses data. GPS string is
' buffered into scratchpad RAM with SPSTR modifier. Once in SPRAM, data is
' parsed out based on its position.
'
' $GPRMC,POS_UTC,POS_STAT,LAT,LAT_D,LON,LON_D,SPD,HDG,DATE,MAG_VAR,MAG_REF,*CC
'
' POS_UTC - UTC of position. Hours, minutes and seconds. (hhmmss)
' POS_STAT - Position status. (A = Data valid, V = Data invalid)
' LAT - Latitude (ddmm.ffff)
' LAT_D - Latitude direction. (N = North, S = South)
' LON - Longitude (dddmm.ffff)
' LON_D - Longitude direction (E = East, W = West)
' SPD - Speed over ground. (knots) (0.0 - 999.9)
' HDG - Heading/track made good (degrees True) (x.x)
' DATE - Date (ddmmyy)
' MAG_VAR - Magnetic variation (degrees) (x.x)
' MAG_REF - Magnetic variation (E = East, W = West)
' *CC - Checksum
'
' Custom Garmin string:
'
' $PGRMZ,ALT,F,X*CC
'
' ALT,F - Altitude in feet
' X - Position fix dimensions (2 = user, 3 = GPS)
' *CC - Checksum

' -----[Revision History]---
'

' -----[I/O Definitions]--
'
GPSpin CON 0 ' GPS serial input

Column #83: Where in the World is My BASIC Stamp?

Page 130 • The Nuts and Volts of BASIC Stamps (Volume 3)

' -----[Constants]--
'
N4800 CON 16884 ' baud rate for GPS

MoveTo CON 2 ' DEBUG positioning command
LF CON 10 ' linefeed
ClrRt CON 11 ' clear line right of cursor

EST CON -5 ' Eastern Standard Time
CST CON -6 ' Central Standard Time
MST CON -7 ' Mountain Standard Time
PST CON -8 ' Pacific Standard Time

EDT CON -4 ' Eastern Daylight Time
CDT CON -5 ' Central Daylight Time
MDT CON -6 ' Mountain Daylight Time
PDT CON -7 ' Pacific Daylight Time

UTCfix CON CST ' for Dallas, Texas
Comma CON ","
DegSym CON 176 ' degrees symbol for report
MinSym CON 39 ' minutes symbol
SecSym CON 34 ' seconds symbol

' -----[Variables]--
'
idx VAR Byte ' index into GPS data in SPRAM
flags VAR Byte ' holds bit values
valid VAR Flags.Bit3 ' is data valid?

tmHrs VAR Byte ' time fields
tmMins VAR Byte
tmSecs VAR Byte

latDeg VAR Byte ' latitude
latMin VAR Byte
latSec VAR Word
latNS VAR flags.Bit0 ' 0 = N

longDeg VAR Byte ' longitude
longMin VAR Byte
longSec VAR Word
longEW VAR flags.Bit1 ' 0 = E

speed VAR Word ' in tenths of mph
altitude VAR Word ' in feet

day VAR Byte ' day of month, 1 - 31

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 131

month VAR flags.Nib1 ' month, 1 - 12
year VAR Byte ' year, 00 - 99

char VAR Byte ' byte pulled from SPRAM
workVal VAR Word ' for numeric conversions
eeAddr VAR workVal ' pointer to EE data

field VAR Nib ' field #
fldWidth VAR field ' width of field

' -----[EEPROM Data]--
'
NotValid DATA "No", 0
IsValid DATA "Yes", 0
DaysInMon DATA 31,28,31,30,31,30,31,31,30,31,30,31
MonNames DATA "JAN",0,"FEB",0,"MAR",0,"APR",0,"MAY",0,"JUN",0
 DATA "JUL",0,"AUG",0,"SEP",0,"OCT",0,"NOV",0,"DEC",0

' -----[Initialization]---
'
Initialize:
 PAUSE 250 ' let DEBUG open
 DEBUG CLS ' clear the screen
 DEBUG "Simple GPS Interface",CR
 DEBUG "===================="

Draw_Ruler:
 FOR idx = 0 TO 65
 IF (idx = 0) THEN Print_Ones
 IF (idx // 10) > 0 THEN Print_Ones
 DEBUG MoveTo, (7 + idx), 3, DEC1 (idx / 10)
 Print_Ones:
 DEBUG MoveTo, (7 + idx), 4, DEC1 (idx // 10)
 Print_Ticks:
 IF (idx // 10) > 0 THEN Next_Digit
 DEBUG MoveTo, (7 + idx), 5, "|"
 Next_Digit:
 NEXT

Draw_Data_Labels:
 DEBUG MoveTo, 0, 8, "Signal Valid: "
 DEBUG MoveTo, 0, 10, " Local Time: "
 DEBUG MoveTo, 0, 11, " Local Date: "
 DEBUG MoveTo, 0, 13, " Latitude: "
 DEBUG MoveTo, 0, 14, " Longitude: "
 DEBUG MoveTo, 0, 15, " Altitude: "
 DEBUG MoveTo, 0, 16, " Speed: "

Column #83: Where in the World is My BASIC Stamp?

Page 132 • The Nuts and Volts of BASIC Stamps (Volume 3)

' -----[Main Code]--
'
Main:

 ' wait for $GPRMC string and store data in SPRAM

 SERIN GPSpin, N4800, 3000, No_GPS_Data, [WAIT("GPRMC,"), SPSTR 65]
 GOSUB Parse_GPS_Data ' extract data from SPRAM

 ' wait for GARMIN custom string
 ' -- use DEC to extract altitude

Get_Altitude:
 SERIN GPSpin, N4800, 2000, Show_GPMRC_String, [WAIT("PGRMZ,"), DEC altitude]

Show_GPMRC_String:
 DEBUG MoveTo, 0, 6, "$GPRMC," ' print header
 idx = 0 ' start at position UTC

Print_GPRMC_Char: ' print the $GPRMC data string
 GET idx, char ' get char from SPRAM
 DEBUG char ' display it
 IF char = "*" THEN Print_Checksum ' look for checksum indicator
 idx = idx + 1 ' point to next char
 GOTO Print_GPRMC_Char

Print_Checksum:
 GET (idx + 1), char ' get first checksum char
 DEBUG char ' display
 GET (idx + 2), char ' get second checksum char
 DEBUG char, ClrRt ' display, clear to end of line

Show_Report:
 DEBUG MoveTo, 14, 8 ' was the signal valid?
 LOOKUP valid, [NotValid, IsValid], eeAddr ' get answer from EE
 GOSUB Print_Z_String ' print it
 DEBUG ClrRt ' clear end of line
 IF (valid = 0) THEN Signal_Not_Valid

Signal_Is_Valid:
 DEBUG MoveTo, 14, 10, DEC2 tmHrs, ":", DEC2 tmMins, ":", DEC2 tmSecs

 DEBUG MoveTo, 14, 11, DEC2 day, " "
 eeAddr = (month - 1) * 4 + MonNames ' get address of month name
 GOSUB Print_Z_String ' print it
 DEBUG " 20", DEC2 year

 DEBUG MoveTo, 15, 13, DEC2 latDeg, DegSym, " ", DEC2 latMin, MinSym, " "
 DEBUG DEC2 (latSec / 10), ".", DEC1 (latSec // 10), SecSym, " "
 DEBUG "N" + (latNS * 5)

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 133

 DEBUG MoveTo, 14, 14, DEC3 longDeg, DegSym, " ", DEC2 longMin, MinSym, " "
 DEBUG DEC2 (longSec / 10), ".", DEC1 (longSec // 10), SecSym, " "
 DEBUG "E" + (longEW * 18)

 DEBUG MoveTo, 14, 15, DEC altitude, " Feet"
 DEBUG MoveTo, 14, 16, DEC (speed / 10), ".", DEC1 (speed // 10), " MPH "
 GOTO Main

Signal_Not_Valid:
 DEBUG MoveTo, 14, 10, "?", ClrRt ' clear all fields
 DEBUG MoveTo, 14, 11, "?", ClrRt
 DEBUG MoveTo, 14, 13, "?", ClrRt
 DEBUG MoveTo, 14, 14, "?", ClrRt
 DEBUG MoveTo, 14, 15, "?", ClrRt
 DEBUG MoveTo, 14, 16, "?", ClrRt
 GOTO Main

' -----[Subroutines]--
'
No_GPS_Data:
 DEBUG CLS, "Error: No GPS data detected"
 PAUSE 2500
 GOTO Initialize ' try again

Parse_GPS_Data:
 idx = 0 : fldWidth = 2 ' UTC hours
 GOSUB String_To_Value
 tmHrs = workVal

 idx = 2 : fldWidth = 2 ' UTC minutes
 GOSUB String_To_Value
 tmMins = workVal

 idx = 4 : fldWidth = 2 ' UTC seconds
 GOSUB String_To_Value
 tmSecs = workVal

 idx = 9 : fldWidth = 2 ' latitude degrees
 GOSUB String_To_Value
 latDeg = workVal

 idx = 11 : fldWidth = 2 ' latitude minutes
 GOSUB String_To_Value
 latMin = workVal

 idx = 14 : fldWidth = 4 ' latitude fractional minutes
 GOSUB String_To_Value
 latSec = workVal ** $0F5C ' x 0.06 --> tenths of seconds

Column #83: Where in the World is My BASIC Stamp?

Page 134 • The Nuts and Volts of BASIC Stamps (Volume 3)

 idx = 21 : fldWidth = 3 ' longitude degrees
 GOSUB String_To_Value
 longDeg = workVal

 idx = 24 : fldWidth = 2 ' longitude minutes
 GOSUB String_To_Value
 longMin = workVal

 idx = 27 : fldWidth = 4 ' longitude fractional minutes
 GOSUB String_To_Value
 longSec = workVal ** $0F5C ' x 0.06 --> tenths of seconds

 ' get non-numeric data

Get_Valid:
 GET 7, char
 valid = 1 ' assume valid
 IF (char = "A") THEN Get_Lat_Dir ' it is, so skip
 valid = 0 ' set to 0 if not valid

Get_Lat_Dir:
 latNS = 0 ' assume North
 GET 19, char ' check it
 IF (char = "N") THEN Get_Long_Dir ' confirm
 latNS = 1 ' set to 1 if South

Get_Long_Dir:
 longEW = 0 ' assume East
 GET 33, char ' check it
 IF (char = "E") THEN Get_Speed ' confirm
 longEW = 1 ' set to 1 if West

 ' get variable length data

Get_Speed:
 idx = 34
 GOSUB Mixed_To_Tenths ' convert "xxx.x" to number
 ' speed = workVal ' speed in knots (tenths)
 speed = workVal + (workVal ** $2699) ' x 1.1507771555 for mph

 ' get date
 ' -- past variable data, so we need to use field search

Get_Date:
 field = 8 ' set field to find
 GOSUB Move_To_Field ' go get position
 PUT 125, idx ' save date position

 fldWidth = 2
 GOSUB String_To_Value
 day = workVal ' UTC day, 1 - 31

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 135

 GET 125, idx ' get stored position
 idx = idx + 2 : fldWidth = 2
 GOSUB String_To_Value
 month = workVal ' UTC month, 1 - 12

 GET 125, idx ' get stored position
 idx = idx + 4 : fldWidth = 2
 GOSUB String_To_Value
 year = workVal ' UTC year, 0 - 99

 ' adjust date for local position

Correct_Local_Time_Date:
 workVal = tmHrs + UTCfix ' add UTC offset
 IF (workVal < 24) THEN Adjust_Time ' midnight crossed?
 workVal = UTCfix ' yes, so adjust date
 BRANCH workVal.Bit15, [Location_Leads, Location_Lags]

Location_Leads: ' east of Greenwich
 day = day + 1 ' no, move to next day
 eeAddr = DaysInMon * (month - 1) ' get days in month
 READ eeAddr, char
 IF (day <= char) THEN Adjust_Time ' in same month?
 month = month + 1 ' no, move to next month
 day = 1 ' first day
 IF (month < 13) THEN Adjust_Time ' in same year?
 month = 1 ' no, set to January
 year = year + 1 // 100 ' add one to year
 GOTO Adjust_Time

Location_Lags: ' west of Greenwich
 day = day - 1 ' adjust day
 IF (day > 0) THEN Adjust_Time ' same month?
 month = month - 1
 IF (month > 0) THEN Adjust_Time ' same year?
 month = 1 ' no, set to January
 eeAddr = DaysInMon * (month - 1)
 READ eeAddr, day ' get new day
 year = year + 99 // 100 ' set to previous year

Adjust_Time:
 tmHrs = tmHrs + (24 + UTCfix) // 24 ' localize hours
 RETURN

' ***
' Convert string data (nnnn) to numeric value
' -- idx - location of first digit in data
' -- fldWidth - width of data field (1 to 5)
' -- workVal - returns numeric value of field
' ***

Column #83: Where in the World is My BASIC Stamp?

Page 136 • The Nuts and Volts of BASIC Stamps (Volume 3)

String_To_Value:
 workVal = 0
 IF (fldWidth = 0) OR (fldWidth > 5) THEN String_To_Value_Done

Get_Field_Digit:
 GET idx, char ' get digit from field
 workVal = workVal + (char - "0") ' convert, add into value
 fldWidth = fldWidth - 1 ' decrement field width
 IF (fldWidth = 0) THEN String_To_Value_Done
 workVal = workVal * 10 ' shift result digits left
 idx = idx + 1 ' point to next digit
 GOTO Get_Field_Digit

String_To_Value_Done:
 RETURN

' ***
' Convert string data (nnn.n) to numeric value (tenths)
' -- idx - location of first digit in data
' -- workVal - returns numeric value of field
' ***

Mixed_To_Tenths:
 workVal = 0

Get_Mixed_Digit:
 GET idx, char ' read digit from speed field
 IF (char = ".") THEN Get_Mixed_Last ' skip decimal point
 workVal = (workVal + (char - "0")) * 10 ' add digit, move data left
 idx = idx + 1 ' point to next digit
 GOTO Get_Mixed_Digit

Get_Mixed_Last:
 GET (idx + 1), char
 workVal = workVal + (char - "0") ' speed in knots
 RETURN

' **
' Find field location after variable-length data (i.e., speed)
' -- field - field number
' -- idx - returns position of first digit in field
' **

Move_To_Field:
 idx = 0
 IF (field = 0) THEN Move_To_Field_Done ' if zero, we're there

Get_Char:
 GET idx, char ' get char from SPRAM
 IF (char = Comma) THEN Found_Comma ' is it a comma?

Column #83: Where in the World is My BASIC Stamp?

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 137

 idx = idx + 1 ' no, move to next char
 GOTO Get_Char

Found_Comma:
 field = field - 1 ' was comma, dec field coutner
 idx = idx + 1 ' point to next char
 IF (field = 0) THEN Move_To_Field_Done ' if field = 0, we're there
 GOTO Get_Char

Move_To_Field_Done:
 RETURN

' ***
' Print Zero-terminated string stored in EEPROM
' -- eeAddr - starting character of string
' ***

Print_Z_String:
 READ eeAddr, char ' get char from EE
 IF (char = 0) THEN Print_Z_String_Done ' if zero, we're done
 DEBUG char ' print the char
 eeAddr = eeAddr + 1 ' point to the next one
 GOTO Print_Z_String

Print_Z_String_Done:
 RETURN

