
At this point we should be able to get in and out of PASM and do some math and create and target specific array cells.
We are now going to revisit those objects and create subroutines with each one.

Let’s start with the counting program that counts up from zero.
[image:]
[image:]
Now we are going to add three lines of code, the code definitions are as follows as seen on lines 44,45 and 61 on the next listing:
[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

Adding line 44 will call the subroutine named “wait”. The routine will execute the code that is listed there. Upon completion of the code routine the “ret” command will send the code back to the next line of code after the “call” in this case it is a “jmp” meaning a jump to the address listed in the jmp command, which in this case is “loop” which is where the “add” command will add 1 to the value. You should see this:
[image:]

Now lets get a little deeper and make a couple of other changes. The above code will be modified and will have two subroutines.
[image:]

[image:]

[image:]

We now have two subroutines. The first called is the adding routine that increments the value. The second goes to the wait routine that keeps PASM in lockstep with SPIN both are in a nested loop that loops forever.
[image:]You should see this:

[bookmark: _GoBack]

	
image5.png
3: Assembly Language Reference - CALL

ncrucion i eally st 3 P insrucion withot 3 bard-codad desiztion addres, wnd thic
sun-tme scion provides it with he “retun” 3ddre: to jup back o. Afer toring fhe etum
2ddres, CALL jumap fo th destnaton addres: Symbol.

The dizgram below wes 2 hort program example to demenstrte the CALL instrucion’s un-
fme behavior;the tore operation (o) 2nd he jumnp-evecute-reum operaion (ight).
Figure 3-1: Run-time CALL Procedure

Store operation Jump, exccute and retarn operation

o

.
i srescine 7 e
g it e

Routine (D) <nore code>

Routina rat % rux pcit
G s

In s example the following occurs when the CALL instraction i reached at run ime:
© The cog stores the refum address (PC+1; that of vt snacrussior?) o the source
(-Beld) ofthe rgiseratRoueine e seelet image).
@ The cog jumps toRaseine (s rightimage).
@ Roueine’s instructons are exscuted, eventually leading fo the Roueine_roc ine

® Since the Routine_ret location contsns 3 AET istracion with 5 updited e
(-Beld), which i th retum ddrez witen by 2tp L, it refus, o s, bck t0
the oo znacrucsiors e,

image6.png
CALL — Assembly Language Reference

This natu ofthe CALL nstruction ditse: he following:

* The refernced rovtine must have only ose RET instuction associated with it If 2
soutie nesds more than one exit pont, make one of those exit points the RET
nctraction and make al ofhe exit poiats branch (1., M) o that RET insruction.

 The referenced rouine can no be recursive. Making 2 nested call o the routne will
overnrite the et sddbess of the previons cal.

AL i rally 2 subset of the JWPRET insruction; in fct, it i the same opcode 25 WPRET but

with the 1.6eld 26t (cince CALL ses an immedite valus only) and the &-Beld 2t by the

sembler to the des: of the sbel ammed Symbol_tt.

The retum address (P + 1 is wviten o the source (-ield) of th Symbol_re regiter wnless

the WA effect is specified Of cous, specfying WA is ot recommended for the CALL

incrucion since that s it o 3 AP, o RET, imvtuction.|

image7.png
RET
Tustruction: Retum to previously ecorded addess.

image8.png
JMP
Tnstructon: Jump to sddeess.

P (3) Adress

 Adess (-l is the register or 2 9-bit itral hose value i he addres t jump fo.

image9.png
CON

_clknode = xtall + pllix

"_xinfreq = 6_250_000 MY BOARD AT 100MHZ
_xinfreq = 5_000_800 ' QUICKSTART 80 MHZ

var
long count
ob
pst:“parallax serial terninal®
pub main
pst. start (115000
uaitent (clifreqs5 +cnt) “hold tuo sed to open the
“serial terminal and enable it
cogneu (8asn, Bcount)
repeat
pst. dec (count~) "post clear p 157

pst.newline
waitent (clkfreq +cnt

image10.png
30\dat

31 {{First subroutine. we are going to add three lines. First line

32 to add is call #uait, this tells the program to go and find a set of code named
33 it”. at the bottom of the wait subroutine the follouwing is added

3t " uait_ret ret ”, this signals the end of the subroutine and to jump
35 back to the next line of code after the “call”.

36 jmp #loop is added as the next line of code to execute which sends the
37 code back to execute an “add” directive.}}

38/asm org

38

40 mov addr, par

t1| loop add value,#1 counting variable

&2

43|

image11.png
call #uait <<<AlD
jmp #loop " <<<ADD
uait rdlong prev, addr uz 'uhat is in par??
ifnz jmp #uait if the value in
“par is zero continue to next command
‘if the value in par “addr” has not been cleared
“meaning the value that was put in “value" from
" addr uhich has the address of par “parameter’

urlong value, addr
“now write the value to the addr which has been assigned
“the same address as par and uhere the address of count in

“memory uhere the spin program can read it then jump back
“to the top of the loop and continue after the variable
" called count has been cleard to zero
jmp #loop

uait_ret ret <<<AlD

addr long 0

value long 0

prev long @

image12.png
oHNm

image13.png
CON

_clknode = xtall + pllix

"_xinfreq = 6_250_000 MY BOARD AT 100MHZ
_xinfreq = 5_000_800 ' QUICKSTART 80 MHZ

var
long count
ob
pst:“parallax serial terninal®
pub main
pst. start (115000
uaitent (clifreqs5 +cnt) “hold tuo sed to open the
“serial terminal and enable it
cogneu (8asn, Bcount)
repeat
pst. dec (count~) "post clear p 157

pst.newline
waitent (clkfreq +cnt

image14.png
dat

asn

repeat_

loop

{{First subroutine. we are going to add three lines. First line
to add is call #uait, this tells the program to go and find a set of code named
wait”. at the botton of the wait subroutine the follouing is added
" uait_ret ret ”, this signals the end of the subroutine and to jump
back to the next line of code after the “call”.
jmp #loop is added as the next line of code to execute which sends the
code back to execute an “add” directive.}}
org

mov addr, par
call #loop '<<<ADD
call #uait <<<ADD
jmp #repeat_

add value,#1 counting variable

loop_ret ret ADD <<<<<<<<<

wait

" call Suait ' <<<AlD

" jmp #loop " <<<ADD

rdlong prev, addr uz “what is in par??

ifnz jmp #uait if the value in

“par is zero continue to next command

‘if the value in par “addr” has not been cleared
“meaning the value that was put in “value" from
" addr uhich has the address of par “parameter’

image15.png
56| wrlong value, addr

57, nou write the value to the addr uhich has been assigned
58 “the same address as par and uhere the address of count in
59 “memory uhere the spin program can read it then jump back
60) “to the top of the loop and continue after the variable
61 " called count has been cleard to zero

62 " jmp #loop

63

6Ljuait_ret ret <<<ADD

65,

66,

67|addr long @
66|value long 0
65|prev long @

image16.png
OHNMS WM~ ®

image1.png
CON

_clknode = xtall + pllix

"_xinfreq = 6_250_000 MY BOARD AT 100MHZ
_xinfreq = 5_000_800 ' QUICKSTART 80 MHZ

var
long count
ob
pst:“parallax serial terninal®
pub main
pst. start (115000
uaitent (clifreqs5 +cnt) “hold tuo sed to open the
“serial terminal and enable it
cogneu (8asn, Bcount)
repeat
pst. dec (count~) "post clear p 157

pst.newline
waitent (clkfreq +cnt

image2.png
dat
asm org
mov addr, par
loop add value,#1 counting variable
uait rdlong prev, addr uz 'uhat is in par??
ifnz jmp #uait if the value in
“par is zero continue to next command
‘if the value in par “addr” has not been cleared
“meaning the value that was put in “value" from
" addr uhich has the address of par “parameter’
urlong value, addr
“now urite the value to the addr which has been assigned
“the same address as par and uhere the address of count in
“memory uhere the spin program can read it then jump back
“to the top of the loop and continue after the variable
" called count has been cleard to zero
jmp #loop
addr long 0
value long 0
prev long 0

image3.png
CALL

Tnstruction: Jump to address with nfenion o refum o nextimstruction.

CALL s5ymbol
“Reruls PC 1 & v to e -5ald of e regier ifcntad by e A0

 Symbol (:-ild) is 2 9-bit litral whose value s the address fo jump to. This Seld
nt contin 3 AT bl specified 2 3 liersl (Ssyanbol) 20d the comesponding
code should eventually execute 2 RET ixsructon abeled st the ame ymbol plas 2
suffix of “_yet” (Symbol_ret RET).

image4.png
Explanation
CRLL records the address of the next insruction (PC - 1) then jumps o Symbol. The routine
at Symbol should eventually execute 3 RET nstruction to retum o the recorded address
(PC1: the instraction following the CALL). For the CRLL to compile and run properly, the
Symbol ontine RET inctruction st bs sbeld i th form Symbol with - se€” appendad to
. The reacon for this i explained below.

Propeler Ascembly does not wse 2 call stack, 5o the refum address st be stored i 3
@ffrent manner. At compile me the 2ssembler locats the destnation rouine 2 well 5 i
RET instrcton (beled. Symbol and Symbol_ret, respectvel) nd encode: those addresses
it the AL izstrction's +-feld 204 d-fld. This provides the CALL nviruchion wih the
knowledge of both where i’ going o jup to snd exactly where it will etun Som.

At rum time the it thing the CAL intruction does i tore the return address (PC+1)ino the
Tocaton where it wil refum fom: the “Symbol_ret RET” izcructon location. The RET

Fage 28— Propater i 12

