P1/P8X32A-Propeller-Datasheet-v1.4.0_0.pdf

[image: image3.png]Propeller 1 Table 15: Cog RAM Special Purpose Registers
Cog RAM Map Address _|Name _[Type Description
S1FO &= Reag-Ony' | Boot Parameter
S0 ER) o ReagOny” | System Caunter
H StF2 E Read-Ony’ | Input States for P31 - PO
H S1Fs Read-Only” Inpust States for P63- P32°
H SiFe Readirte Otout States for P31 - PO
| [—— STFS Readirte___| Output Sates for P63~ P32
1| Regisers: STF6 Reaiiite___| Direcion Sates for P31-PO
H (60 x22) StFT Readirte Direction States for P63 - Pa2"
H B& Readirte Counter A Gontrol
H E&) Read/Wite. Counter B Gontrol
: St ReadMirte___| Counter A Frequency
SIEF stF8 Readirte___| Counter B Frequency
siFo ST stFc ReadMiite" | Counter A Phase
sIFFl__ (16x32) B ReagMiite" | Courter & Phase
StFE Readiiite___|\ideo Gonfiguration
SIFF ReadWite | Video Scale.

http://insonix.ch/propeller/prop_pasd.html#Download
	

	development contact

	PASD (Debugger) Project
PASD is the abbreviation for Propeller Assembler Sourcecode Debugger. It is possible to debug assembler programs comfortably. PASD can set breakpoints and stitch through the assembler code line by line. In addition, the main RAM and the Cog-RAM can be viewed in detail.
Concept
The debugger system consists of a PC program, a spin object, and a short debug kernel that must be inserted at the beginning of the code to be debugged. The debug kernel is only 12 longs in size, and allows communication with the PASD spin driver, which runs in its own cog. This spin driver communicates with the PC and the display program running on it via the serial programming interface. In addition to pins 30 and 31, all IOs of the propeller remain freely available during debugging.

In addition to the 2 pins and the 12 longs in the code, the debugger still occupies the top 8 bytes of the main RAM and of course 1 cog. Everything else can be used without restrictions. Currently, only 1 Cog can be "debugged" at once, but a version of PASD could be conceivable that could debug all remaining 7 Cogs.

Operation
The code is created normally in the propeller tool and then loaded into the propeller (F10). The code must contain the PASDebug object, and the small debugger kernel must be inserted at the beginning of the assembler code. After that, PASD.exe is started and the created file is loaded in it with "Open Spin-File". The spin file must have been freshly saved in the propeller tool to match the code in the propeller. PASD now loads the code through the spin driver and maps it to each line of the source code. It contains a simple parser that recognizes whether a line contains instructions or not. Complicated source code constructions can be the parser evt. not recognize correctly. The correct mapping can be recognized relatively easily on initialized data at the end of the code, if the hex numbers in the first column correspond to the initialization values.
The light blue line indicates the next line to run. You can now work with F7/F8 line by line in single steps, or start the code from there with F5. Before you put a check, you should set a breakpoint at the beginning of the desired line. At this point, the execution of the code stops, and you can view the RAM and the flags (at the bottom of the status line). You can also set several breakpoints. IMPORTANT: You must not set breakpoints on rows that are modified during the runtime. Often values to be modified are called 0-0, in which case PASD recognizes the danger and issues a warning (even with a "ret" instruction is warned, as this is also changed at runtime, by call).
If the code never reaches a breakpoint, F6 (Stop) can be used to cancel. Unfortunately, it is not possible to detect the location where the aborted was detected, for this the propeller lacks an interrupt possibility. Instead, the Cog is stopped and restarted so that you are back at the beginning after an F6. The whole CogRAM is reloaded, so the content unfortunately does not correspond to the state that prevailed during the abort.
Memory Viewer
After each step or break, the contents of the entire Cog-RAM are transferred, as well as a portion of the main RAM (or -RAM). This data can be displayed in 2 additional windows by selecting the corresponding menu item in the debugger menu.
In the Cog-RAM Viewer, all 512 longs are displayed in individual rows. The values are available as a hex and a decimal number, and the label of the code location or variable is also displayed behind it. The last 16 longs are the SpecialPurposeRegister, the label is also displayed.
If a value has changed since the last display, it is light green. Light red lines indicate that there is a breakpoint there and the value does not match the actual code executed (at breakpoints the instruction is replaced by a jmpret break and after the break the correct instruction from a copy of the code is replaced as single step).
The CogRAM is also displayed to the left of the source code, and refreshed at each break or step. Here, however, the instructions to be carried out there are also displayed at break positions. The fact that the CogRAM is displayed 2 times in different ways allows you to view the current code location together with the currently affected variables or SpecialPurposeRegisters.
If a row is selected by clicking in the first column, the value is displayed below as a 32bit binary number. You can also enter a new value for this location in this field. To do this, delete the binary number and then write "=decimal" or "="hex" in the field (instead of decimal and hex the desired value in this format), and then click on Update.

Only 128 longs are loaded and displayed from the main RAM/ROM because the full 64 kByte transfer takes too long. The range can be selected simply by specifying the start address. If one specifies "PAR" (default) as the address, the range from the address stored in the PAR register is displayed. Most of the time there are the common assembler/spin variables.
Various display modes are possible, which can be selected at the bottom of the window: longs, words or bytes, in hex, decimal or binary representation.
Installation
Unzip the ZIP file to any directory and copy the PASDebug.spin file to the same directory as the other spin drivers (Keyboard.spin, etc.).
PASD.exe is the direct running application and not a self-extracting archive or setup program. If desired, create a desktop icon by right-clicking on the application and then in the PopUp Menu: Send to. / Desktop.
When applying the debugger, it is important that only one program is allowed to occupy the COM port to the propeller at a time. So if you load the code from the propeller tool into the propeller, PASD must have released the port beforehand, after which it should be as easy as possible to reopen. For this purpose, the auto mode (in the COM menu) was created, which always releases the COM port when minimizing the main window, and when the window is restored, the COM port is used again (minimizing means shrinking to the taskbar below by clicking on the [_] box above right in the window).
Further information on the individual menu items can be found in the file: PASD_manual.pdf.
Download PASD
The latest version of PASD with all drivers and demos as ZIP file:
Download: PASD_03.zip (240 kB) Version 0.3 for Windows
Download: PASD_04.zip (247 kB) Version 0.4 for Windows
Download: PASD_05.zip (248 kB) Version 0.5 for Windows
Download: PASD_06.zip (248 kB) Version 0.6 for Windows (also for BST)
Download: PASD_07.zip (248 kB) Version 0.7 for Windows (also for BST)
This is the latest version of PASD with all the drivers and demos. Look at the PASD_manual.pdf for a description in english.

harprit.sandhu@gmail.com
https://github.com/rosco-pc/propeller-wiki/wiki
https://learn.pimoroni.com/tutorial/propeller-hat/writing-your-first-propeller-assembly-program
http://www.rayslogic.com/propeller/Programming/DeSilvaAssemblyTutorial.pdf
http://forums.parallax.com/discussion/download/52004/assembly_07.pdf
http://18.223.231.191/discussion/download/49618/Propeller_Tricks_n_Traps.pdf
