




PropBASIC Syntax Guide
Version 0.13

January 17, 2010

Hitt Consulting



WARRANTY

PropBASIC is provided at no charge and  without any warranty, expressed or implied, for
merchantability or fitness for any purpose.  Use is at your own risk.

COPYRIGHTS AND TRADEMARKS

This documentation is Copyright 2009-10 by Hitt Consulting. By downloading or obtaining a
printed copy of this documentation or software you agree that it is to be used exclusively
with Parallax products. Any other uses are not permitted and may represent a violation of
copyrights, legally punishable according to Federal copyright or intellectual property laws.
Any duplication of this documentation for commercial uses is expressly prohibited.

Duplication  for  educational  use  is  permitted,  subject  to  the  following  Conditions  of
Duplication: Hitt Consulting grants the user a conditional right to download, duplicate, and
distribute this text without permission. This right is based on the following conditions: the
text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated
only for educational purposes when used solely in conjunction with Parallax products, and
the user may recover from the student only the cost of duplication.

Propeller and Spin are trademarks of Parallax Inc. BASIC Stamp, Stamps in Class, Boe-Bot,
SumoBot, Toddler, and SX-Key are registered trademarks of Parallax, Inc. If you decide to
use any trademarks of Parallax Inc. on your web page or in printed material, you must state
that (trademark) is a (registered) trademark of Parallax Inc.” upon the first appearance of the
trademark name in each printed document or web page. 

Other  brand  and  product  names  herein  are  trademarks  or  registered  trademarks  of  their
respective holders.

DISCLAIMER OF LIABILITY

Neither  Hitt  Consulting  nor  Parallax,  Inc.  is  responsible  for  special,  incidental,  or
consequential  damages resulting from any breach of warranty,  or under  any legal  theory,
including  lost  profits,  downtime,  goodwill,  damage  to  or  replacement  of  equipment  or
property, or any costs of recovering, reprogramming, or reproducing any data stored in or
used with Parallax products. Neither Hitt Consulting nor Parallax, Inc. is responsible for any
personal damage, including that to life and health, resulting from use of any of our products.
You take full responsibility for your Propeller microcontroller application, no matter how
life-threatening it may be.

CREDITS

PropBASIC Compiler Design/Implementation: Terry Hitt (Hitt Consulting)

Documentation Design: Jon McPhalen

Documentation Contributors: Jon McPhalen, Terry Hitt, Parallax, Inc.

Material from Parallax, Inc. is used with permission.

http://www.hittconsulting.com
http://www.jonmcphalen.com
http://www.parallax.com


Contents

About PropBASIC.....................................................................................................................8

Directives...................................................................................................................................9
DEVICE...................................................................................................................................9
XIN.......................................................................................................................................10
FREQ.....................................................................................................................................10
DATA, WDATA, LDATA.............................................................................................................10
PROGRAM...............................................................................................................................10
FILE.....................................................................................................................................10
LOAD.....................................................................................................................................11
INCLUDE...............................................................................................................................11

Conditional Compilation..........................................................................................................12

IO Pins.....................................................................................................................................14
Constants..................................................................................................................................15
Variables...................................................................................................................................16
Operators..................................................................................................................................17

PropBASIC Aliases..................................................................................................................18
Propeller Aliases......................................................................................................................19

Subroutines and Functions.......................................................................................................20
Using Subroutines...............................................................................................................20
Using Functions..................................................................................................................21
Using Variable Parameters..................................................................................................22

Tasks........................................................................................................................................23

The Anatomy of a PropBASIC Program.................................................................................24

ASM..ENDASM............................................................................................................................26
BRANCH......................................................................................................................................27
COGID........................................................................................................................................28
COGINIT....................................................................................................................................29
COGSTART..................................................................................................................................30
COGSTOP....................................................................................................................................31
COUNTERA, COUNTERB................................................................................................................32
DEC............................................................................................................................................33
DJNZ..........................................................................................................................................34
DO..LOOP..................................................................................................................................35
END............................................................................................................................................37
EXIT..........................................................................................................................................38
FOR..NEXT................................................................................................................................40

PropBASIC Syntax Guide  �  5



GETADDR....................................................................................................................................41
GOSUB........................................................................................................................................42
GOTO..........................................................................................................................................43
HIGH..........................................................................................................................................44
I2CREAD....................................................................................................................................45
I2CSTART..................................................................................................................................46
I2CSTOP....................................................................................................................................47
I2CWRITE..................................................................................................................................48
IF..THEN..ELSE..ENDIF........................................................................................................49
INC............................................................................................................................................50
INPUT........................................................................................................................................51
LET............................................................................................................................................52
LOCKCLR....................................................................................................................................53
LOCKNEW....................................................................................................................................54
LOCKRET....................................................................................................................................55
LOCKSET....................................................................................................................................56
LOW............................................................................................................................................57
NOP............................................................................................................................................58
ON..GOSUB................................................................................................................................59
ON..GOTO..................................................................................................................................60
OUTPUT......................................................................................................................................61
OWREAD......................................................................................................................................62
OWRESET....................................................................................................................................63
OWWRITE....................................................................................................................................64
PAUSE........................................................................................................................................65
PAUSEUS....................................................................................................................................66
PULSIN......................................................................................................................................67
PULSOUT....................................................................................................................................68
RANDOM......................................................................................................................................69
RCTIME......................................................................................................................................70
RDBYTE, RDWORD, RDLONG..........................................................................................................71
RETURN (from Subroutine)........................................................................................................72
RETURN (value from Function).................................................................................................73
REVERSE....................................................................................................................................74
SERIN........................................................................................................................................75
SEROUT......................................................................................................................................77
SHIFTIN....................................................................................................................................82
SHIFTOUT..................................................................................................................................83
STR............................................................................................................................................84
TOGGLE......................................................................................................................................85
WAITCNT....................................................................................................................................86
WAITPEQ....................................................................................................................................87
WAITPNE....................................................................................................................................88
WAITVID....................................................................................................................................89
WRBYTE, WRWORD, WRLONG..........................................................................................................90

Programming Examples...........................................................................................................91

6  �  PropBASIC Syntax Guide



PropBASIC Errors and Warnings............................................................................................92
Errors...................................................................................................................................92
Warnings..............................................................................................................................94

PropBASIC Syntax Guide  �  7



About PropBASIC

PropBASIC is a BASIC language compiler for the  Propeller (P8X32A) microcontroller from
Parallax, Inc.  PropBASIC was designed to meet specific goals:

✔ Expedite the task of the professional engineer by creating a simple, familiar, yet robust
high-level  language  for  the  Propeller  microcontroller.   This  allows  Propeller-based
projects to be prototyped and coded quickly without having to learn to program in Spin or
PASM.

✔ Assist  the  student  programmer  wishing  to  make  the  transition  from  pure  high-level
programming to low-level programming (Propeller Assembly language [PASM]). 

PropBASIC  is  a  non-optimizing,  inline  compiler.  What  this  means  is  that  each  BASIC
language statement is converted to a block of assembly code in-line at the program location;
no attempt is made to remove redundant instructions that would optimize code space. This
allows  the  advanced  programmer  to  modify  code  as  required  for  specific  projects  and,
perhaps  more  importantly,  provides  an  opportunity  for  the  student  to  learn  Propeller
Assembly language techniques by viewing a 1-for-1 (from BASIC to Assembly language)
output. 

Conventions Used in this Document 

In syntax descriptions, curly braces { } are used to indicate optional items. For example:

PULSIN Pin, State, Variable {, Timeout} 

In this case, the parameter for Timeout is optional.

In syntax descriptions, brackets [ ] indicate that the parameter must be one of the presented
items (separated with the pipe | character). For example:

DO {[WHILE | UNTIL] Condition} 
  Statement(s) 
LOOP 
 
In this case, the use of Condition with DODODODO requires WHILEWHILEWHILEWHILE or UNTILUNTILUNTILUNTIL

Example code is presented on a tinted background:

SUB FLASH_LED
  DO WHILE Alarm = IsActive
    TOGGLE AlarmLed
    DELAY_MS 250
  LOOP
  LOW AlarmLED
  ENDSUB

8  �  PropBASIC Syntax Guide



Directives

Directives are used to configure the PropBASIC program.

DEVICEDEVICEDEVICEDEVICE P8X32A, {OscType {, PLL}}

The DEVICEDEVICEDEVICEDEVICE directive specifies the hardware device type (P8X32A), oscillator type, and PLL
configuration.

In the (minimal) configuration that follows the oscillator type is assumed to be RCFASTRCFASTRCFASTRCFAST and a
PLL setting of PLL1XPLL1XPLL1XPLL1X; the effective frequency is assumed to be 12 MHz:

DEVICE          P8X32A

In this very typical configuration the oscillator type is a 5 MHz crystal and a PLL setting 16x
for an effective frequency of 80 MHz.

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

Note that when a crystal oscillator type is specified the XINXINXINXIN (recommended) or FREQFREQFREQFREQ directive
must also be used.

Oscillator Type and PLL Settings

Setting
XO

Resistance
XI / XO

Capacitance
Description

RCFAST Infinite n/a Internal fast oscillator (~12 MHz) 1

RCSLOW Infinite n/a Internal slow oscillator (~20 kHz) 1

XINPUT Infinite 6 pF External oscillator (DC to 80 MHz); XIN pin only

XTAL1 2 kΩ 36 pF External low-speed crystal (4- to 16 MHz)

XTAL2 1 kΩ 26 pF External medium-speed crystal (8- to 32 MHz)

XTAL3 500 Ω 16 pF External high-speed crystal (20- to 80 MHz)

PLL1X n/a n/a Multiply external frequency by 1

PLL2X n/a n/a Multiply external frequency by 2

PLL4X n/a n/a Multiply external frequency by 4

PLL8X n/a n/a Multiply external frequency by 8

PLL16X n/a n/a Multiply external frequency by 16

1 RC modes are not recommended for programs that  require accurate timing or use
instructions that rely on accurate timing (e.g., SEROUTSEROUTSEROUTSEROUT, SERINSERINSERINSERIN).

PropBASIC Syntax Guide  �  9



XIN Frequency

The  XINXINXINXIN directive  specifies  the  hardware  input  frequency (pre  PLL multiplier)  when  an
external crystal or crystal-oscillator is used.  The “standard” Propeller crystal setting is five
megahertz (5 MHz).

XIN             5_000_000 

The XINXINXINXIN setting will be multiplied by the PLL setting to determine the operating frequency of
the PropBASIC program.  This value is used by the compiler for calculating delays in time-
sensitive instructions (e.g., PAUSEPAUSEPAUSEPAUSE, SERINSERINSERINSERIN, SEROUTSEROUTSEROUTSEROUT).

FREQ Frequency

The FREQFREQFREQFREQ directive specifies the operating frequency (post PLL multiplier) of the PropBASIC
program.   This  value  is  used  by  the  compiler  for  calculating  delays  in  time-sensitive
instructions (e.g., PAUSEPAUSEPAUSEPAUSE, SERINSERINSERINSERIN, SEROUTSEROUTSEROUTSEROUT) and should, therefore, be the product of the external
input frequency and the PLL setting.  An incorrect  FREQFREQFREQFREQ setting may allow the PropBASIC
program to compile but not operate as intended hence the use of  XINXINXINXIN instead of  FREQFREQFREQFREQ is
recommended.

{Label}         DATA    Const0 {, Const1 {, Const2...}}
{Label}         WDATA   Const0 {, Const1 {, Const2...}}
{Label}         LDATA   Const0 {, Const1 {, Const2...}}

The DATADATADATADATA directives allow the programmer to create tables of a defined type (byte, word, or
long) in the Hub RAM space.  Using  DATADATADATADATA,  WDATAWDATAWDATAWDATA, or  LDATALDATALDATALDATA is a convenient way to store
output patterns and text messages, and to share information between cogs.  A table can be
written to, if desired, using WRxxxxWRxxxxWRxxxxWRxxxx, and read from using RDxxxxRDxxxxRDxxxxRDxxxx.

PROGRAM Label 

The PROGRAMPROGRAMPROGRAMPROGRAM directive sets the execution start point (at Label) for the PropBASIC program.
Note that the PROGRAMPROGRAMPROGRAMPROGRAM directive should be placed immediately before the Label that defines
the beginning of the user program.  Auto-generated start-up code will be inserted between the
PROGRAMPROGRAMPROGRAMPROGRAM directive and Label.

{Label}         FILE    "filename.ext"

The FILEFILEFILEFILE directive is used to insert external [Byte] data (stored in filename.ext) at the current
location, usually as named (using Label) data

10  �  PropBASIC Syntax Guide



LOAD "filename.ext"

The LOADLOADLOADLOAD directive is used to insert a PropBASIC source code file at the current location.

INCLUDE "filename.ext"

The INCLUDEINCLUDEINCLUDEINCLUDE directive is used to insert a Propeller Assembly code file at the current location.

PropBASIC Syntax Guide  �  11



Conditional Compilation

PropBASIC supports several conditional compilation directives that allow the programmer to
adjust the program without major editing/recoding.  Conditional compilation directives are
only evaluated at compile time.

'{$DEFINE Symbol}

Defines  a  conditional-compilation  symbol that  could,  for  example,  be evaluated as  True

when using $IFDEF$IFDEF$IFDEF$IFDEF (see below).

'{$UNDEFINE Symbol}

Removes a conditional-compilation symbol that could, for example, be evaluated as  False

when using $IFDEF$IFDEF$IFDEF$IFDEF (see below).

'{$IFDEF Symbol}

Evaluates as True if Symbol has been defined, allowing a specific section to be executed that
corresponds to the presence of Symbol.

'{$IFNDEF Symbol}

Evaluates as True if Symbol has not been defined, or has been undefined, allowing a specific
section to be executed that corresponds to the absence of Symbol.

'{$ELSE}

Allows for an alternate set of code to run when $IFxxxx$IFxxxx$IFxxxx$IFxxxx statement evaluates as False.

'{$ENDIF}

Terminates a compound $IFxxxx..$ELSE$IFxxxx..$ELSE$IFxxxx..$ELSE$IFxxxx..$ELSE structure

'{$IFFREQ [= | <> | > | < | >= | <=] Value}

Allows the program to evaluate the FREQFREQFREQFREQ setting of the program

12  �  PropBASIC Syntax Guide



'{$ERROR Message}

Inserts an error message in the compiled output listing and the termination of the compilation
process.

'{$WARNING Message}

Inserts a warning message into the compiled output listing; this directive does not stop the
compilation process.

PropBASIC Syntax Guide  �  13



IO Pins

PropBASIC IO pins and pin groups are defined using the PINPINPINPIN declaration.

Symbol          PIN     #{..#} {[INPUT | OUTPUT | LOW | HIGH]}

The minimal requirement for a pin definition is the pin’s symbolic name, the PINPINPINPIN declaration,
and the pin number, 0 to 31.  Special consideration should be given to pins 31 and 30 as these
serve as the Propeller’s programming port, as well as pins 29 and 28 as these serve as the
Propeller’s I2C pins for the boot EEPROM.  Use caution if any of these pins are required by
the program.

GreenLed        PIN     0

The above definition names pin P0 to ‘GreenLED.’  When no option is specified the pin is
assumed an INPUTINPUTINPUTINPUT.  The programmer may specify an output mode with OUTPUTOUTPUTOUTPUTOUTPUT, LOWLOWLOWLOW, or HIGHHIGHHIGHHIGH.
The LOWLOWLOWLOW and HIGHHIGHHIGHHIGH options modify the OUTAOUTAOUTAOUTA register as well as the DIRADIRADIRADIRA register for the pin.

LEDS            PIN     16..23 LOW      ' make outputs and low

In the above example pins 16-23 (which correspond to the LEDs on the Propeller Demo
Board)  are  set  to  output  mode  and  low.   Note  that  the  use  of  a  pin  group  allows  the
programmer to write a value to, or read a value from, that group of pins without concern for
the  actual  physical  connections;  this  simplifies  code  changes  to  accommodate  hardware
modifications.

PropBASIC allows the programmer to specify how a pin definition is used.  For example:

TestPin         PIN     3

To read the current state of TestPin the following syntax is used:

  result = TestPin

To treat TestPin as an absolute value (i.e., 3) use the following syntax:

  thePin = #TestPin

To treat TestPin as a mask value use this syntax:

  testMask = @TestPin

After the above line testMask will hold %1000.

Note: When passing a defined pin as a parameter to a subroutine or function the pin number
(#pin) is used unless the @ (mask) modifier is specified in the call.

14  �  PropBASIC Syntax Guide



Constants

PropBASIC constants are defined using the CONCONCONCON declaration.

Symbol          CON     Value

Examples:

RoomTemp        CON     72
MaxEEPROM       CON     $7FFF
PinMask         CON %00000000_00000000_00000000_00001000
qBits           CON     %%0123

Values may be specified in decimal (no prefix), hexadecimal ($), binary notation (%), or
quaternary (%%) notation with the underscore character used, if desired, as a separator.  The
legal range for numeric constants is NEGXNEGXNEGXNEGX (-2,147,483,648) to POSXPOSXPOSXPOSX (2,147,483,647).

Single-character alpha constants may also be defined; for example:

First           CON     "A"
Last            CON     "Z"

Baudmode constants for SERINSERINSERINSERIN and SEROUTSEROUTSEROUTSEROUT appear as a string, enclosed in quotes:

Baud            CON     "T115200"

In the above example Baud is defined at True mode at 115.2K baud.

PropBASIC Syntax Guide  �  15



Variables

PropBASIC supports two variable types:  HUBHUBHUBHUB variables, which are stored in the Propeller's
hub RAM and may be shared between cogs, and local variables which are only available
within the cog in which they are defined (e.g, the main program or a task).  

Hub variables may be bytes, words, or longs and are defined with the HUBHUBHUBHUB declaration:

Symbol          HUB     VarType{(Elements)} {= Value}

Example: a hub-based long variable:

bufhead         HUB     Long

Example: a hub-based byte array:

buffer          HUB     Byte(16) = 0

Note: Hub variables can only be accessed with RDBYTERDBYTERDBYTERDBYTE,  WRBYTEWRBYTEWRBYTEWRBYTE,  RDWORDRDWORDRDWORDRDWORD,  WRWORDWRWORDWRWORDWRWORD,  RDLONGRDLONGRDLONGRDLONG,
and WRLONGWRLONGWRLONGWRLONG.

Local variables within a cog or task are defined using the VARVARVARVAR declaration. 

Symbol          VAR     Long{(Elements)} {= Value}

As PropBASIC is compiled to PASM, the only variable type supported is Long.

idx             VAR     Long

Note  that  PropBASIC  does  not  pre-initialize  variables  to  any  value  unless  specifically
directed by the programmer.  For example:

idx             VAR     Long = 0

16  �  PropBASIC Syntax Guide



Operators

PropBASIC includes the following unary and binary operators.  

Note: Only one operator per line of code is allowed.

Unary Operators

Operator Alternate Description

ABS Returns the absolute value

SGN Returns the sign of a value: 1, 0, -1

Binary Operators

Operator Alternate Description

+ Addition

- Subtraction

/ Division

// Remainder of a division

* Multiplication (returns lower 32 bits of 64-bit product)

*/ Multiply middle (returns middle 32 bits of 64-bit product)

** Multiply high (returns high 32 bits of 64-bit product)

& AND 1 Bitwise AND

| OR 1 Bitwise OR

^ XOR Bitwise XOR

&~ ANDN Bitwise AND-NOT

MIN Return minimum of two values

MAX Return maximum of two values

<< SHL Shift left

>> SHR Shift right

1 May be used as logical operator in compound IF..THENIF..THENIF..THENIF..THEN block.

PropBASIC Syntax Guide  �  17



PropBASIC Aliases

PropBASIC creates and uses the following symbols.

PropBASIC Aliases

Alias Alternate Description

__InitDirA Initial diradiradiradira settings (based on PINPINPINPIN definitions)

__InitOutA Initial outaoutaoutaouta settings (based on PINPINPINPIN options)

_FREQ System frequency in Hertz

__temp1 __remainder Used in code generated by PropBASIC

__temp2

__temp3

__temp4

__temp5

__remainder __temp1 Remainder of a division

__param1 Parameter passed to SUB or FUNC, or returned from FUNC

__param2

__param3

__param4 1

__paramcnt Number of parameters passed to a SUB or FUNC

1 Parameters  __param1 through  __param4 are  always  created;  __param5 up  to
__param20 are optionally created based on subroutine and function declarations.

18  �  PropBASIC Syntax Guide



Propeller Aliases

The following Propeller symbols may be used in a PropBASIC program.

Propeller Aliases

Alias R/W Description

dira R/W Direction Register for 32-bit port A

dirb R/W Direction Register for 32-bit port B (future use)

ina R Input Register for 32-bit port A

inb R Input Register for 32-bit port B (future use)

outa R/W Output Register for 32-bit port A

outb R/W Output Register for 32-bit port B (future use)

cnt R 32-bit System Counter Register

ctra R/W Counter A Control Register

ctrb R/W Counter B Control Register

frqa R/W Counter A Frequency Register

frqb R/W Counter B Frequency Register

phsa R/W Counter A Phase-Locked Loop (PLL) Register

phsb R/W Counter B Phase-Locked Loop (PLL) Register

vcfg R/W Video Configuration Register

vcl R/W Video Scale Register

par R Cog Boot Parameter Register

PropBASIC Syntax Guide  �  19



Subroutines and Functions

Subroutines and functions allow the programmer to improve program readability and save
code space by incorporating frequently-used code blocks that may be called with a custom
name.  For example, the PAUSEPAUSEPAUSEPAUSE instruction generates the following Assembly code:

                mov         __temp1,cnt
                adds        __temp1,_1mSec
                mov         __temp2,#1
__L0001
                waitcnt     __temp1,_1mSec
                djnz        __temp2,#__L0001

As PropBASIC is a single-pass, non-optimizing compiler this code will be generated for each
use of PAUSEPAUSEPAUSEPAUSE, potentially consuming valuable code space within the cog.  This space can be
saved by encapsulating PAUSEPAUSEPAUSEPAUSE in a custom subroutine and calling that.  The working code for
PAUSEPAUSEPAUSEPAUSE will be compiled just once – within the body of the subroutine – saving code space.

Using Subroutines

Name            SUB     {MinParams {, MaxParams}}

✔ Name is is the name of the subroutine; this cannot be a reserved word.

✔ MinParams is  the minimum number of [long] parameters that  must  be passed to the
subroutine.

✔ MaxParams is  the maximum number of [long] parameters that  can be passed to the
subroutine.

For a subroutine that handles PAUSEPAUSEPAUSEPAUSE you might use the following declaration:

DELAY_MS        SUB     1

This declaration tells us that the DELAY_MS subroutine requires one parameter which, in this

case, will be the delay in milliseconds.

The working code for a subroutine will typically appear at the end of the program listing (see
Anatomy of  a  PropBASIC Program)  and will  be enclosed in a  SUB..ENDSUBSUB..ENDSUBSUB..ENDSUBSUB..ENDSUB block.   For
example:

SUB DELAY_MS
  PAUSE __param1
  ENDSUB

In the course of the program any PAUSEPAUSEPAUSEPAUSE statements can no be replaced with DELAY_MS.  The

delay value is passed to the subroutine in __param1 which gets used by the subroutine code.

20  �  PropBASIC Syntax Guide



Using Functions

Name            FUNC    {MinParams {, MaxParams}}

✔ Name is is the name of the subroutine; this cannot be a reserved word.

✔ MinParams is  the minimum number of [long] parameters that  must  be passed to the
subroutine.

✔ MaxParams is  the maximum number of [long] parameters that  can be passed to the
subroutine.

Functions are very similar to subroutines in that they encapsulate frequently-used code to
save program space.  The difference is that functions are expected to return one or more
parameters, even if no parameters are passed to the function.  For example, you might write a
function that monitors a temperature sensor and use that function like this:

  currentTemp = READ_TEMP

Values returned by a function are passed in the __paramx variables, typically __param1 but
if two or more parameters are returned then other variables will be used.

Let’s look at a simple example.  Multiplication generates a lot of assembly code and you
should, if your program needs to do multiplication in more than one place, be encapsulated in
a function.  Start with the declaration:

MULT            FUNC    2

This declaration tells the compiler that we will pass two parameters to the function called
MULT. And now the working code:

FUNC MULT
  __param1 = __param1 * __param2
  RETURN __param1
  ENDFUNC

RETURNRETURNRETURNRETURN is used to load the __paramx variable(s) to pass information back to the calling code.
To return multiple values they are separated by a comma within the RETURNRETURNRETURNRETURN statement.  For
example:

FUNC DIV
  __param1 = __param1 / __param2
  RETURN __param1, __remainder

When two or  more  parameters  are  returned by a function the programmer must  retrieve
__param2 and higher manually, as shown here:

  wholeParts = DIV x, y                 ' wholeParts = x / y
  leftOver = __param2                   ' leftover = __remainder

PropBASIC Syntax Guide  �  21



It is important that additional parameters be captured before another subroutine or function is
called that could overwrite the returned value.

Using Variable Parameters

Subroutines and functions can make use of a variable parameter count.  For example, we
could create a subroutine shell for SEROUTSEROUTSEROUTSEROUT that allows us to transmit a character one or more
times.   Let’s start with the declaration:

TX_BYTE         SUB     1, 2  

The declaration tells us that TX_BYTE requires at least one parameter and will work with up

to two.  PropBASIC passes the number of parameters used in a subroutine or function call in
__paramcnt.  This can be used in TX_BYTE as follows:

SUB TX_BYTE
  IF __paramcnt = 1 THEN
    __param2 = 1
  ELSE
    __param2 = __param2 MIN 1
  ENDIF
  DO WHILE __param2 > 0
    SEROUT TX, Baud, __param1
    DEC __param2
  LOOP
  ENDSUB

When we want to transmit a single character the TX_BYTE subroutine is used like this:

  TX_BYTE "*"

In this case __paramcnt will be set to one before the call which will cause the subroutine to
load one into __param2,  which is then used in  DO-LOOPDO-LOOPDO-LOOPDO-LOOP to control  how many times the
character (passed in __param1) is transmitted.

To create a line of 10 stars you would call TX_BYTE like this:

  TX_BYTE "*", 10

22  �  PropBASIC Syntax Guide



Tasks

PropBASIC Syntax Guide  �  23



The Anatomy of a PropBASIC Program

Like most programming languages, PropBASIC is very flexible and there are infinite correct

ways to write any given program.  That stated, it is in the programmer’s interest to use a
clean, logical structure when writing PropBASIC applications.  The template that follows
provides such a structure.

' ----------------------------------------------------------------------
' File...... template.pbas
' Purpose...
' Author....
' Email.....
' Started...
' Updated...
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' Device Settings
' ----------------------------------------------------------------------

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

' ----------------------------------------------------------------------
' Conditional Compilation Symbols
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' Constants
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' IO Pins
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' Shared (hub) Variables (Byte, Word, Long) - use RDxxxx/WRxxxx
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' User Data (DATA, WDATA, LDATA, FILE) - use RDxxxx/WRxxxx
' ----------------------------------------------------------------------

24  �  PropBASIC Syntax Guide



' ----------------------------------------------------------------------
' TASK Definitions
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' Local Variables (Long only)
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' SUB and FUNC Definitions
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
  PROGRAM Start
' ----------------------------------------------------------------------

Start:
  ' setup code

Main:

  ' program code

  GOTO Main
  END

' ----------------------------------------------------------------------
' SUB and FUNC Code
' ----------------------------------------------------------------------

' ----------------------------------------------------------------------
' TASK Code
' ----------------------------------------------------------------------

PropBASIC Syntax Guide  �  25



ASM..ENDASM, \

ASM
  PASM instructions
ENDASM

\ PASM instruction

Function

ASMASMASMASM allows the insertion a block of Propeller Assembly language (PASM) statements into the
PropBASIC program. The PASM block is terminated with ENDASMENDASMENDASMENDASM.  Code in the ASM..ENDASMASM..ENDASMASM..ENDASMASM..ENDASM
block is inserted into the program verbatim.  A single line of Propeller Assembly code may
be inserted by prefixing the line with \\\\.

Explanation

Certain time-critical routines are best coded in straight assembly language, and while the \
symbol allows the programmer to insert a single line of assembly code, it is not convenient
for large blocks.

The following program toggles an LED on P16 every 125 milliseconds (1/8 second).

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

LED             PIN     16  OUTPUT      ' make LED an output   

tic             VAR     Long
delay           VAR     Long

PROGRAM Start

Start:
  ASMASMASMASM
    rdlong      tic, #0                 ' read system frequency
    shr         tic, #3                 ' divide by 8
    mov         delay, cnt              ' get system counter
    add         delay, tic              ' add tic timing

Main
    xor         outa, LED               ' toggle LED pin
    waitcnt     delay, tic              ' wait one tic, reload
    jmp         #Main                   ' repeat
  ENDASMENDASMENDASMENDASM

Note: Program labels within the  ASM..ENDASMASM..ENDASMASM..ENDASMASM..ENDASM block do not use the terminating colon as
with PropBASIC labels (see the label, Main, above).

26  �  PropBASIC Syntax Guide



BRANCH

BRANCH Offset, Label0 {, Label1, Label2, ...}

Function

Jump to the program Label specified by Offset. Note that the value of Offset should not be
greater  than  the  number  of  labels  minus  one,  otherwise  the  BRANCHBRANCHBRANCHBRANCH instruction  will  be
skipped.

✔ Offset is simple variable or array element. 

✔ Label is a valid program label that is followed by operational code.

Explanation

The BRANCHBRANCHBRANCHBRANCH instruction is useful when you want to write something like this:

Check_Value:
  IF value = 0 THEN Case_0              ' if value is 0, jump to Case_0
  IF value = 1 THEN Case_1              ' if value is 1, jump to Case_1
  IF value = 2 THEN Case_2              ' if value is 2, jump to Case_2

No_Match:

The above code is simplified with BRANCHBRANCHBRANCHBRANCH as follows:

Check_Value:
  BRANCHBRANCHBRANCHBRANCH value, Case_0, Case_1, Case_2

No_Match:

Related instructions: ON..GOTOON..GOTOON..GOTOON..GOTO,  IF..THENIF..THENIF..THENIF..THEN

PropBASIC Syntax Guide  �  27



COGID

COGID Variable

Function

Moves the ID of the cog, 0 to 7, to Variable.

Related instructions: COGINITCOGINITCOGINITCOGINIT, COGSTARTCOGSTARTCOGSTARTCOGSTART, COGSTOPCOGSTOPCOGSTOPCOGSTOP

28  �  PropBASIC Syntax Guide



COGINIT

COGINIT TaskName, CogNum

Function

Starts the task defined by TaskName in the cog specified by CogNum.

✔ TaskName is the name of the task code to be launched into a new cog

✔ CogNum is the cog ID, 0 to 7, of the target cog.

Related instructions: COGIDCOGIDCOGIDCOGID, COGSTARTCOGSTARTCOGSTARTCOGSTART, COGSTOPCOGSTOPCOGSTOPCOGSTOP

PropBASIC Syntax Guide  �  29



COGSTART

COGSTART TaskName {, Variable}

Function

Starts the task defined by TaskName in a new cog (if one is available).

✔ TaskName is the name of the task code to be launched into a new cog

✔ Variable holds the ID, 0 to 7, of the newly-launched cog.  If no cog was available then
COGSTARTCOGSTARTCOGSTARTCOGSTART will return 8 in Variable.

Related instructions: COGIDCOGIDCOGIDCOGID, COGINITCOGINITCOGINITCOGINIT, COGSTOPCOGSTOPCOGSTOPCOGSTOP

30  �  PropBASIC Syntax Guide



COGSTOP

COGSTOP CogNum

Function

Stops a cog.

✔ CogNum is a variable or constant value, 0 to 7, which specifies the cog to stop.

Explanation

A cog can be started by a PropBASIC program using  COGINITCOGINITCOGINITCOGINIT or  COGSTARTCOGSTARTCOGSTARTCOGSTART.  Should the
programmer wish to stop a previously-launched cog the  COGSTOPCOGSTOPCOGSTOPCOGSTOP instruction will  do this.
The ID of the cog to stop, 0 to 7, must be provided.  

Note: The main PropBASIC program runs in cog 0.

Related instructions: COGIDCOGIDCOGIDCOGID, COGINITCOGINITCOGINITCOGINIT, COGSTARTCOGSTARTCOGSTARTCOGSTART

PropBASIC Syntax Guide  �  31



COUNTERA, COUNTERB

COUNTERx Mode {, APin {, BPin {, FRQx, {, PHSx}}}} 

32  �  PropBASIC Syntax Guide



DEC

DEC Variable {, Delta}

Function

Decrement (decrease) the value of Variable.

✔ Variable is simple variable or array element. 

✔ Delta is the value to subtract from Variable.  If not specified, Delta is set to one.

Explanation

DECDECDECDEC is a short-form version of:

  Variable = Variable - Delta

The DECDECDECDEC instruction subtracts Delta from Variable.  If  Delta is not specified it will be set to
one (1). Signed operators are used, so subtracting a negative  Delta has he same effect as
adding a positive Delta.

Main:
  result = 4 
  DECDECDECDEC result                            ' result is now 3
  DECDECDECDEC result, -2                        ' result is now 5
  result = 1 
  DECDECDECDEC result, 2                         ' result is now -1 ($FFFF_FFFF)

Related instructions: DJNZDJNZDJNZDJNZ, INCINCINCINC

PropBASIC Syntax Guide  �  33



DJNZ

DJNZ Variable, Label

Function

Decrement (decrease) value of Variable by one and jump to Label if Variable is not equal to
zero.

✔ Variable is simple variable or array element. 

✔ Label is a program label that is followed by operational code.

Explanation

The  DJNZDJNZDJNZDJNZ instruction  decrements  Variable (decreases  by  one)  and  if  the  result  of  that
operation is not zero the program will jump to the location specified by Label.

Start:
  flashes = 5

Main:
  HIGH AlarmLed
  DELAY_MS 100
  LOW AlarmLed
  PAUSE 400
  DJNZDJNZDJNZDJNZ flashes, Main                    ' loop until flashes = 0
  DELAY_MS 2_000
  GOTO Start

Related instruction: DECDECDECDEC

34  �  PropBASIC Syntax Guide



DO..LOOP

DO {[WHILE | UNTIL] Condition} 
  Statement(s) 
LOOP

DO
  Statement(s) 
LOOP {[UNTIL | WHILE] Condition}

DO
  Statement(s)
LOOP Variable

Function

Create a repeating loop that executes the program lines between  DODODODO and  LOOPLOOPLOOPLOOP,  optionally
testing before or after the loop statements.

✔ Condition is a simple statement, such as idx = 7idx = 7idx = 7idx = 7  that can be evaluated as True or False.
Only one comparison operator is allowed (see IF..THENIF..THENIF..THENIF..THEN for valid condition operators). 

✔ Statement is any valid PropBASIC statement.

✔ Variable is a simple variable or array element.

Explanation

The DO..LOOPDO..LOOPDO..LOOPDO..LOOP structure allows your program execute a series of instructions indefinitely, or
until a specified condition terminates the loop. The simplest form is shown here: 

Alarm_On:
  DODODODO
    HIGH AlarmLED
    DELAY_MS 500
    LOW AlarmLED
    DELAY_MS 500
  LOOPLOOPLOOPLOOP

In the above example the alarm LED will flash until the Propeller is reset. DO..LOOPDO..LOOPDO..LOOPDO..LOOP allows
for condition testing before and after the loop statements as show in the examples below. 

Alarm_On:
  DO WHILEDO WHILEDO WHILEDO WHILE AlarmStatus = 1
    HIGH AlarmLED
    DELAY_MS 500
    LOW AlarmLED
    DELAY_MS 500
  LOOPLOOPLOOPLOOP
  GOTO Main

PropBASIC Syntax Guide  �  35



Alarm_On:
  DODODODO
    HIGH AlarmLED
    DELAY_MS 500
    LOW AlarmLED
    DELAY_MS 500
  LOOP UNTILLOOP UNTILLOOP UNTILLOOP UNTIL AlarmStatus = 0
  GOTO Main

When the second form is used the loop statements will run at least once before the condition
is tested.

DO..LOOPDO..LOOPDO..LOOPDO..LOOP can also be used to emulate a DJNZDJNZDJNZDJNZ loop without the need of a specific label; for
example:

SUB ALARM_BURST
  bCount        VAR     Long

  bCount = __param1                     ' capture burst count
  DODODODO
    TOGGLE AlarmLED                     ' toggle the output
    PAUSE 50                            ' hold briefly
  LOOPLOOPLOOPLOOP bCount                           ' loop while bCount > 0
  LOW AlarmLED                          ' make sure LED is off
  ENDSUB

In this form the variable (bCount) is decremented at the end of the loop and if not zero, the
loop statements will be run again.  As above, using this form will cause the loop statements
to be run at least one time before Variable is tested.

Related instructions: FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT, DJNZDJNZDJNZDJNZ, EXITEXITEXITEXIT

36  �  PropBASIC Syntax Guide



END

END

Function

Ends program execution.

Explanation

ENDENDENDEND prevents the PropBASIC program from executing any further instructions and places the
Propeller in low-power mode until it is reset (via RESn pin).  

PropBASIC Syntax Guide  �  37



EXIT

{IF Condition THEN} EXIT

Function

Causes  the  immediate  termination  of  a  loop  construct  (FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT or  DO..LOOPDO..LOOPDO..LOOPDO..LOOP)  when
Condition evaluates as True.

✔ Condition is a simple statement, such as idx = 7 that can be evaluated as True or False.
Only one comparison operator is allowed (see IF..THENIF..THENIF..THENIF..THEN for valid condition operators).. 

Explanation

The EXITEXITEXITEXIT instruction allows a program to terminate a loop construct before the loop limit test
is executed. For example:

Main:
  FOR idx = 1 TO 15 
    IF idx > 9 THEN EXITEXITEXITEXIT 
    SEROUT TX, Baud, "*"
  NEXT

In  this  program,  the  FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT loop  will  not  run  past  nine  because  the  IF..THENIF..THENIF..THENIF..THEN test
contained within will force the loop to terminate when idx is greater than nine. Note that the
EXITEXITEXITEXIT command only terminates the loop that contains it. In the above program, only nine
asterisks will be transmitted on the TX pin.

Here is the DO..LOOPDO..LOOPDO..LOOPDO..LOOP version of the same program:

Start:
  idx = 1

Main:
  DO 
    IF idx > 9 THEN EXITEXITEXITEXIT 
    SEROUT TX, Baud, "*"
    INC idx
  LOOP WHILE idx <= 15

38  �  PropBASIC Syntax Guide



EXITEXITEXITEXIT may also be used by itself when part of a larger IF..THEN..ENDIFIF..THEN..ENDIFIF..THEN..ENDIFIF..THEN..ENDIF or DO..LOOPDO..LOOPDO..LOOPDO..LOOP block:

  IF idx > 9 THEN
    SEROUT TX, Baud, CR
    idx = 1
    EXITEXITEXITEXIT  
  ENDIF

Related instructions: IF..THENIF..THENIF..THENIF..THEN,  DO..LOOPDO..LOOPDO..LOOPDO..LOOP

PropBASIC Syntax Guide  �  39



FOR..NEXT

FOR Variable = StartVal TO EndVal {STEP {-}StepVal} 
  Statement(s) 
NEXT 

Function

Create a repeating loop that executes the program lines between FORFORFORFOR and NEXTNEXTNEXTNEXT, incrementing
or decrementing Variable according to StepVal until the value of Variable reaches or passes
the EndVal.

✔ Variable is simple variable or array element.

✔ StartVal is a constant or variable that sets the starting value of the counter.

✔ EndVal is a constant or a variable that sets the ending value of the counter.

✔ StepVal is  an  optional  constant  or  a  variable  by  which  Variable is  incremented  or
decremented (when negative) during each iteration of the loop.

✔ Statement is any valid PropBASIC statement.

Explanation

The  FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT loop allows a program to execute a  series of instructions for  a specified
number of repetitions. By default, each time through the loop Variable is incremented by one.
It will continue to loop until the value of the  Variable reaches or surpasses  EndVal. Also,
FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT loops always execute at least once. The simplest form is shown here::

Blink_LED:
  FORFORFORFOR idx = 1 TO 10                     ' blink 10 times
    HIGH LED                            ' light the LED
    PAUSE 200                           ' wait 0.2 secs
    LOW LED                             ' extinguish the LED
    PAUSE 300                           ' wait 0.3 secs
  NEXTNEXTNEXTNEXT

In above example the FORFORFORFOR instruction initializes idx to one. Then the HIGHHIGHHIGHHIGH,  PAUSEPAUSEPAUSEPAUSE,  LOWLOWLOWLOW, and
PAUSEPAUSEPAUSEPAUSE instructions are executed. At NEXTNEXTNEXTNEXT, idx is incremented and then checked to see if it is
less than or equal to 10.  If it is the loop instructions run again, otherwise the program falls
through to the line that follows NEXTNEXTNEXTNEXT.

Related instructions: DO..LOOPDO..LOOPDO..LOOPDO..LOOP,  EXITEXITEXITEXIT

40  �  PropBASIC Syntax Guide



GETADDR

GETADDR HubSymbol, Variable

Function

Returns the address of a Hub variable or xDATAxDATAxDATAxDATA element.

✔ HubSymbol is the variable or named xDATAxDATAxDATAxDATA element in the Hub

✔ Variable is the local variable that will hold the address of HubSymbol

Explanation

GETADDRGETADDRGETADDRGETADDR is used to retrieve the address of a hub-based entity (variable or xDATAxDATAxDATAxDATA element) for
use with the RDxxxxRDxxxxRDxxxxRDxxxx and WRxxxxWRxxxxWRxxxxWRxxxx instructions.  For example:

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

LEDs            PIN     16..23 LOW

Pattern         DATA    %00011000, %00100100, %01000010, %10000001

addr            VAR     Long
idx             VAR     Long
bits            VAR     Long

PROGRAM Main

Main:
  GETADDRGETADDRGETADDRGETADDR Pattern, addr                 ' get hub address of Pattern
  FOR idx = 1 TO 4                      ' run 4x
    RDBYTE addr, bits                   ' read pattern bits
    LEDs = bits                         ' output to Demo Board LEDs
    PAUSE 100                           ' hold 0.1s
    INC addr                            ' point to next pattern
  NEXT
  GOTO Main
  
In this example the address of Pattern, a Hub-based table, is placed in the local variable addr.
This variable is used with RDBYTERDBYTERDBYTERDBYTE to retrieve LED patterns from the table.

Related instructions: RDxxxxRDxxxxRDxxxxRDxxxx, WRxxxxWRxxxxWRxxxxWRxxxx

PropBASIC Syntax Guide  �  41



GOSUB  (Obsolete)

GOSUB Label

Function

Jump to the point in the program specified by Label with the intention of returning to the line
that follows the GOSUBGOSUBGOSUBGOSUB instruction.
 

✔ Label is a valid program label that is followed by operational code; this code block is
terminated with RETURNRETURNRETURNRETURN.

Explanation

GOSUBGOSUBGOSUBGOSUB is used to call a block of code (undeclared subroutine) that will be terminated with
RETURNRETURNRETURNRETURN.  

Note: GOSUBGOSUBGOSUBGOSUB is considered obsolete and existing programs should be updated to use declared
subroutines (SUBSUBSUBSUB) and functions (FUNCFUNCFUNCFUNC).

Related instructions: RETURNRETURNRETURNRETURN, SUBSUBSUBSUB, FUNCFUNCFUNCFUNC

42  �  PropBASIC Syntax Guide



GOTO

GOTO Label 

Function

Jump to the point in the program specified by Label.

✔ Label is a valid program label that is followed by operational code.

Explanation

The GOTOGOTOGOTOGOTO instruction forces the PropBASIC program to jump to a Label and execute the code
that follows.  A common use for GOTOGOTOGOTOGOTO is to create endless loops; programs that repeat a group
of instructions over and over.

Main:
  HIGH RedLed                           ' Red LED on
  LOW GreenLed                          ' Green LED off
  DELAY_MS 250                          ' hold 0.25s

  LOW RedLed                            ' Red LED off
  HIGH GreenLed                         ' Green LED on
  DELAY_MS 750                          ' hold 0.75s

  GOTOGOTOGOTOGOTO Main 

Related instruction: ON..GOTOON..GOTOON..GOTOON..GOTO

PropBASIC Syntax Guide  �  43



HIGH

HIGH [PinName | PinNum]

Function

Make the specified Pin an output and high (1).

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

The HIGHHIGHHIGHHIGH instruction makes the specified Pin an output, and then sets its value to 1 (Vdd).
For example:

  HIGHHIGHHIGHHIGH AlarmLed

...does the same thing as: 

  OUTPUT AlarmLed
  AlarmLed = 1

While using the HIGHHIGHHIGHHIGH instruction is more convenient, it does arbitrarily make the designated
IO pin  an  output,  even  if  that  pin  is  already in  an  output  state,  potentially resulting  in
unnecessary code space use. If the pin was previously made an output with  LOWLOWLOWLOW,  HIGHHIGHHIGHHIGH, or
OUTPUTOUTPUTOUTPUTOUTPUT (or by using the OUTPUTOUTPUTOUTPUTOUTPUT modifier of the PINPINPINPIN declaration) you can make the pin "high"
by writing a "1" to it as shown in the example above.

Related instructions: LOWLOWLOWLOW,  TOGGLETOGGLETOGGLETOGGLE,  OUTPUTOUTPUTOUTPUTOUTPUT

44  �  PropBASIC Syntax Guide



I2CREAD

I2CREAD SDAPin, SCLPin, Variable {, AckValue}

PropBASIC Syntax Guide  �  45



I2CSTART

I2CSTART SDAPin, SCLPin 

46  �  PropBASIC Syntax Guide



I2CSTOP

I2CSTOP SDAPin, SCLPin

PropBASIC Syntax Guide  �  47



I2CWRITE

I2CWRITE SDAPin, SCLPin, Value {, AckVariable} 

48  �  PropBASIC Syntax Guide



IF..THEN..ELSE..ENDIF

IF Condition THEN
  statement(s)
{ [ELSE | ELSEIF Condition]
  statement(s)}
ENDIF

IF Condition {[OR | AND]
   Condition} THEN
  statement(s)
{ [ELSE | ELSEIF Condition]
  statement(s)}
ENDIF

  

PropBASIC Syntax Guide  �  49



INC

INC Variable {, Delta}

Function

Increment (increase) the value of Variable.

✔ Variable is simple variable or array element. 

✔ Delta is the value to add to Variable.  If not specified, Delta is set to one.

Explanation

INCINCINCINC is a short-form version of:

  Variable = Variable + Delta

The INCINCINCINC instruction adds Delta to Variable.  If Delta is not specified it will be set to one (1).
Signed operators are used, so adding a negative  Delta has he same effect as subtracting a
positive Delta.

Main:
  result = 7
  INCINCINCINC result                            ' result is now 8
  INCINCINCINC result, -1                        ' result is now 7
  result = $FFFF_FFFF                   ' result is -1
  INCINCINCINC result                            ' result is now $0000_0000

Related instruction: DECDECDECDEC

50  �  PropBASIC Syntax Guide



INPUT

INPUT [PinName | PinNum]

Function

Make the specified Pin an input by writing a zero (0) to the corresponding bit of the  DIRADIRADIRADIRA
register.

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note:  Exercise  care  with  pins  31  and  30  (Propeller  programming  port)  and  29  and  28
(program EEPROM I2C port).

Explanation

There are several ways to make a pin an input. When a PropBASIC program is reset, all of
the  IO  pins  are  made  inputs.  Instructions  that  rely  on  input  pins  (e.g.,  PULSINPULSINPULSINPULSIN,  SERINSERINSERINSERIN)
automatically change the specified pin to input mode. Writing 0s to particular bits of the DIRADIRADIRADIRA
register makes the corresponding pins inputs. The programmer can manually set any pin to
input mode with the INPUTINPUTINPUTINPUT instruction. 

Related instructions: OUTPUTOUTPUTOUTPUTOUTPUT,  REVERSEREVERSEREVERSEREVERSE

PropBASIC Syntax Guide  �  51



LET  

{LET} Variable = Value 
{LET} Variable = {Value} Operator Value 
{LET} PinGroup = Value 

Function

Assign a Value or result of an expression to Variable, or a Value to an output pin group.

✔ Variable is a simple variable or array element

✔ Value is a variable or constant

✔ PinGroup is a [contiguous] group of output pins

Explanation

LETLETLETLET is used when assigning a Value (or result of an expression) to a Variable, or a Value to a
pin group (defined with PINPINPINPIN).  LETLETLETLET is optional and generally not used in modern programs.

This line:

  propBASIC = 100

does exactly the same as:

  LETLETLETLET propBASIC = 100

52  �  PropBASIC Syntax Guide



LOCKCLR

LOCKCLR ID {, Variable}

Function

Clear lock to False and copies its previous state to Variable

✔ ID is a variable or constant, 0 to 7, that specifies the lock to clear.

✔ Variable is a simple variable or array element that will receive the previous lock state.

Explanation

LOCKCLRLOCKCLRLOCKCLRLOCKCLR is one of four lock instructions (LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive.  LOCKCLRLOCKCLRLOCKCLRLOCKCLR clears the
lock described by Value to zero (0) and returns the previous state of that lock in Variable.

Locks

There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs (e.g., the main PropBASIC program and a task that is running) at once and that
block  consists  of  more  than  one  long  (four  bytes),  the  cogs  will  each  have  to  perform
multiple reads and writes to retrieve or update that memory block. This leads to the likely
possibility of read/write contention on that memory block where one cog may be writing
while another is reading, resulting in misreads and/or miswrites.

The  locks  are  global  bits  accessed  through  the  Hub  via  the  hub  instructions:  LOCKNEWLOCKNEWLOCKNEWLOCKNEW,
LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR. Because locks are accessed only through the Hub, only one
cog  at  a  time  can  affect  them,  making  this  an  effective  control  mechanism.  The  Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time.

Related instructions: LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET

PropBASIC Syntax Guide  �  53



LOCKNEW

LOCKNEW Variable

Function

Check out a new lock and store its ID in Variable

✔ Variable is a simple variable or array element that will receive the new lock ID.

Explanation

LOCKNEWLOCKNEWLOCKNEWLOCKNEW is one of four lock instructions (LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive. LOCKNEWLOCKNEWLOCKNEWLOCKNEW checks out
a unique lock, from the hub, and retrieves the ID of that lock, storing it in Variable.

Locks

There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs (e.g., the main PropBASIC program and a task that is running) at once and that
block  consists  of  more  than  one  long  (four  bytes),  the  cogs  will  each  have  to  perform
multiple reads and writes to retrieve or update that memory block. This leads to the likely
possibility of read/write contention on that memory block where one cog may be writing
while another is reading, resulting in misreads and/or miswrites.

The  locks  are  global  bits  accessed  through  the  Hub  via  the  hub  instructions:  LOCKNEWLOCKNEWLOCKNEWLOCKNEW,
LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR. Because locks are accessed only through the Hub, only one
cog  at  a  time  can  affect  them,  making  this  an  effective  control  mechanism.  The  Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time.

Related instructions: LOCKCLRLOCKCLRLOCKCLRLOCKCLR, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET

54  �  PropBASIC Syntax Guide



LOCKRET

LOCKRET ID

Function

Release lock back for future “new lock” requests.

✔ ID is a variable or constant, 0 to 7, that specifies the lock to return to the lock pool.

Explanation

LOCKRETLOCKRETLOCKRETLOCKRET is one of four lock instructions (LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive.  LOCKRETLOCKRETLOCKRETLOCKRET returns a
lock, by ID, back to the Hub’s lock pool so that it may be reused by other cogs at a later time.

Locks

There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs (e.g., the main PropBASIC program and a task that is running) at once and that
block  consists  of  more  than  one  long  (four  bytes),  the  cogs  will  each  have  to  perform
multiple reads and writes to retrieve or update that memory block. This leads to the likely
possibility of read/write contention on that memory block where one cog may be writing
while another is reading, resulting in misreads and/or miswrites.

The  locks  are  global  bits  accessed  through  the  Hub  via  the  hub  instructions:  LOCKNEWLOCKNEWLOCKNEWLOCKNEW,
LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR. Because locks are accessed only through the Hub, only one
cog  at  a  time  can  affect  them,  making  this  an  effective  control  mechanism.  The  Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time.

Related instructions: LOCKCLRLOCKCLRLOCKCLRLOCKCLR, LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKSETLOCKSETLOCKSETLOCKSET

PropBASIC Syntax Guide  �  55



LOCKSET

LOCKSET ID {, Variable}

Function

Set lock to true and get its previous state.

✔ ID is a variable or constant, 0 to 7, that specifies the lock to set.

✔ Variable is a simple variable or array element that will receive the previous lock state.

Explanation

LOCKSETLOCKSETLOCKSETLOCKSET is one of four lock instructions (LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR) used to
manage resources that are user-defined and deemed mutually exclusive.  LOCKSETLOCKSETLOCKSETLOCKSET sets the
lock described by the register ID to one (1) and returns the previous state of that lock in
Variable.

Locks

There are eight lock bits (also known as semaphores) available to facilitate exclusive access
to user-defined resources among multiple cogs. If a block of memory is to be used by two or
more cogs (e.g., the main PropBASIC program and a task that is running) at once and that
block  consists  of  more  than  one  long  (four  bytes),  the  cogs  will  each  have  to  perform
multiple reads and writes to retrieve or update that memory block. This leads to the likely
possibility of read/write contention on that memory block where one cog may be writing
while another is reading, resulting in misreads and/or miswrites.

The  locks  are  global  bits  accessed  through  the  Hub  via  the  hub  instructions:  LOCKNEWLOCKNEWLOCKNEWLOCKNEW,
LOCKRETLOCKRETLOCKRETLOCKRET, LOCKSETLOCKSETLOCKSETLOCKSET, and LOCKCLRLOCKCLRLOCKCLRLOCKCLR. Because locks are accessed only through the Hub, only one
cog  at  a  time  can  affect  them,  making  this  an  effective  control  mechanism.  The  Hub
maintains an inventory of which locks are in use and their current states, and cogs can check
out, return, set, and clear locks as needed during run time.

Related instructions: LOCKCLRLOCKCLRLOCKCLRLOCKCLR, LOCKNEWLOCKNEWLOCKNEWLOCKNEW, LOCKRETLOCKRETLOCKRETLOCKRET

56  �  PropBASIC Syntax Guide



LOW

LOW [PinName | PinNum]

Function

Make the specified Pin an output and high (1).

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

The LOWLOWLOWLOW instruction makes the specified Pin an output, and then sets its value to 0 (Vss). For
example:

  LOWLOWLOWLOW AlarmLed

… does the same thing as: 

  OUTPUT AlarmLed
  AlarmLed = 0

While using the LOWLOWLOWLOW instruction is more convenient, it does arbitrarily make the designated
IO pin  an  output,  even  if  that  pin  is  already in  an  output  state,  potentially resulting  in
unnecessary code space use. If the pin was previously made an output with  LOWLOWLOWLOW,  HIGHHIGHHIGHHIGH, or
OUTPUTOUTPUTOUTPUTOUTPUT (or by using the OUTPUTOUTPUTOUTPUTOUTPUT modifier of the PINPINPINPIN declaration) you can make the pin "low"
by writing a "0" to it as shown in the example above.

Related instructions: HIGHHIGHHIGHHIGH,  TOGGLETOGGLETOGGLETOGGLE,  OUTPUTOUTPUTOUTPUTOUTPUT

PropBASIC Syntax Guide  �  57



NOP

NOP

Function

NNNNo  OPOPOPOPeration  –  does  nothing except  consume one  PASM instruction  (four  clock  cycles).
Useful for allowing IO pins to settle after a change of state.

58  �  PropBASIC Syntax Guide



ON..GOSUB  

ON Offset GOSUB Label0 {, Label1 …, }
ON Variable = Value0 {, Value1, …} GOSUB Label0 {, Label1 …, }

Function

Jump to the program Label specified by Offset (if in range) with the intent of returning to the
line that follows ON..GOSUBON..GOSUBON..GOSUBON..GOSUB. If Offset-1 is greater than the number of elements in the address
table the GOSUBGOSUBGOSUBGOSUB is ignored. Alternate syntax allows Variable to be compared to a list of Values

to create an internal offset.

✔ Offset is simple variable or array element. 

✔ Label is a valid program label that is followed by operational code; this code block is
terminated with RETURNRETURNRETURNRETURN. 

✔ Variable is a simple variable or array element.

✔ Value is a numeric or character constant (e.g., “A”).

Explanation

The ON..GOSUBON..GOSUBON..GOSUBON..GOSUB instruction is useful when you want to write something like this:

Process_Cmd:
  IF cmd = 0 THEN
    ROBOT_STOP
  ELSEIF cmd = 1 THEN
    ROBOT_RT
  ELSEIF cmd = 2 THEN
    ROBOT_LF
  ENDIF

The above code is simplified with ON..GOSUBON..GOSUBON..GOSUBON..GOSUB as follows:

Process_Cmd:
  ONONONON cmd GOSUBGOSUBGOSUBGOSUB ROBOT_STOP, ROBOT_RT, ROBOT_LF

Alternate syntax allows a non-contiguous list of values to be converted to an internal offset,
for example:

Process_Cmd:
  ONONONON cmd = "S", "R", "L" GOSUBGOSUBGOSUBGOSUB ROBOT_STOP, ROBOT_RT, ROBOT_LF

Note: ON..GOSUBON..GOSUBON..GOSUBON..GOSUB should only be used with subroutines that do not expect parameters, as
parameter passing with ON..GOSUBON..GOSUBON..GOSUBON..GOSUB is not possible.

Related instruction(s): GOSUBGOSUBGOSUBGOSUB, ON..GOTOON..GOTOON..GOTOON..GOTO 

PropBASIC Syntax Guide  �  59



ON..GOTO

ON Offset GOTO Label0 {, Label1 …, }
ON Variable = Value0 {, Value1, …} GOTO Label0 {, Label1 …, }

Function

Jump to the program Label specified by Offset (if in range). If  Offset-1 is greater than the
number  of  elements  in  the  address  table,  the  program  continues  at  the  line  following
ON..GOTOON..GOTOON..GOTOON..GOTO.  Alternate syntax allows  Variable to be compared to a list of  Values to create an
internal offset.

✔ Offset is simple variable or array element. 

✔ Label is a valid program label that is followed by operational code; this code block is
terminated with RETURNRETURNRETURNRETURN. 

✔ Variable is a simple variable or array element.

✔ Value is a variable or constant.

Explanation

The ON..GOTOON..GOTOON..GOTOON..GOTO instruction is useful when you want to write something like this:

Check_Value:
  IF value = 0 THEN Case_0              ' if value is 0, jump to Case_0
  IF value = 1 THEN Case_1              ' if value is 1, jump to Case_1
  IF value = 2 THEN Case_2              ' if value is 2, jump to Case_2

No_Match:

The above code is simplified with ON..GOTOON..GOTOON..GOTOON..GOTO as follows:

Check_Value:
  ONONONON value GOTOGOTOGOTOGOTO Case_0, Case_1, Case_2

No_Match:

ON..GOTOON..GOTOON..GOTOON..GOTO is useful for creating command handlers; for example:

Get_Cmd:
  SERIN RX, Baud, cmd
  ONONONON cmd = "S", "R", "L" GOTOGOTOGOTOGOTO Cmd_Stop, Cmd_Right, Cmd_Left

Bad_Cmd:
  ' handle bad command here
  GOTO Get_Cmd

Related instructions: BRANCHBRANCHBRANCHBRANCH, ON..GOSUBON..GOSUBON..GOSUBON..GOSUB 

60  �  PropBASIC Syntax Guide



OUTPUT

OUTPUT [PinName | PinNum]

Function

Make the specified Pin an output by writing a one (1) to the corresponding bit of the DIRADIRADIRADIRA
register.

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note:  Exercise  care  with  pins  31  and  30  (Propeller  programming  port)  and  29  and  28
(program EEPROM I2C port).

Explanation

There are several ways to make a pin an output. When a PropBASIC program is reset, all of
the IO pins are made inputs. Instructions that rely on output pins (e.g.,  PULSOUTPULSOUTPULSOUTPULSOUT,  SEROUTSEROUTSEROUTSEROUT)
automatically change the specified pin to output mode. Writing 1s to particular bits of the
DIRADIRADIRADIRA register makes the corresponding pins outputs. The programmer can manually set any
pin to output mode with the OUTPUTOUTPUTOUTPUTOUTPUT instruction. 

Related instructions: INPUTINPUTINPUTINPUT,  REVERSEREVERSEREVERSEREVERSE

PropBASIC Syntax Guide  �  61



OWREAD

OWREAD DQPin, Variable{\Bits}

62  �  PropBASIC Syntax Guide



OWRESET

OWRESET DQPin {, StatusVar}

PropBASIC Syntax Guide  �  63



OWWRITE

OWWRITE DQPin, Value{\Bits}

64  �  PropBASIC Syntax Guide



PAUSE

PAUSE Duration 

Function

Pause the program (do nothing) for a number of milliseconds.

✔ Duration is a variable or constant value, 0 to POSXPOSXPOSXPOSX (2,147,483,647).

Note: When a constant is used the value may be fractional, e.g., 10.25.

Explanation

PAUSEPAUSEPAUSEPAUSE delays the execution of the next program instruction for a number of milliseconds,
specified in Duration.
 
Flash:
  FOR flashes = 1 TO 10
    HIGH AlarmLed
    PAUSEPAUSEPAUSEPAUSE 500
    LOW AlarmLed
    PAUSEPAUSEPAUSEPAUSE 500
  NEXT

When this code runs the AlarmLed pin will go high for 500 milliseconds and then go low for
500 milliseconds.   This process will run a total of 10 times controlled by the  FOR..NEXTFOR..NEXTFOR..NEXTFOR..NEXT
loop.

Note that a PAUSEPAUSEPAUSEPAUSE duration of up to 2,147,483.6 seconds is possible with the Propeller’s 32-
bit variable/constant values.

As delays are so frequently used in programs, code space can be conserved by encapsulating
the PAUSEPAUSEPAUSEPAUSE instruction in a subroutine.  Start by defining a shell routine for PAUSE like this:

DELAY_MS SUB 1, 1

Then code the subroutine like this:

SUB DELAY_MS
  PAUSE __param1
  ENDSUB

To use this subroutine you would simply substitute DELAY_MS for PAUSEPAUSEPAUSEPAUSE in the body of your

program.  Note that when using this subroutine only whole values may be specified.

Related instrucRelated instrucRelated instrucRelated instructions: PAUSEUSPAUSEUSPAUSEUSPAUSEUS, WAITCNTWAITCNTWAITCNTWAITCNT

PropBASIC Syntax Guide  �  65



PAUSEUS

PAUSEUS Duration 

Function

Pause the program (do nothing) for a number of microseconds.

✔ Duration is a variable or constant value, 0 to POSXPOSXPOSXPOSX (2,147,483,647).

Note: When a constant is used the value may be fractional, e.g., 10.25.

Explanation

PAUSEUSPAUSEUSPAUSEUSPAUSEUS delays the execution of the next program instruction for a number of microseconds,
specified in Duration.
 
Tone:
  OUTPUT Speaker
  FOR timer = 1 TO 2_000
    TOGGLE Speaker
    PAUSEUSPAUSEUSPAUSEUSPAUSEUS 500
  NEXT

When this code runs the Speaker pin will output a ~1kHz square wave for one second (1,000
milliseconds).

Note that a PAUSEUSPAUSEUSPAUSEUSPAUSEUS duration of up to 2,147.48 seconds is possible with the Propeller’s 32-bit
variable/constant values.

As delays are so frequently used in programs, code space can be conserved by encapsulating
the  PAUSEUSPAUSEUSPAUSEUSPAUSEUS instruction in a subroutine.  Start by defining a shell routine for  PAUSEUSPAUSEUSPAUSEUSPAUSEUS like
this:

DELAY_US SUB 1, 1

Then code the subroutine like this:

SUB DELAY_US
  PAUSEUS __param1
  ENDSUB

To use this subroutine you would simply substitute DELAY_US for PAUSEUSPAUSEUSPAUSEUSPAUSEUS in the body of

your program.  Note that when using this subroutine only whole values may be specified.

Related instructions: PAUSEPAUSEPAUSEPAUSE, WAITCNTWAITCNTWAITCNTWAITCNT 

66  �  PropBASIC Syntax Guide



PULSIN

PULSIN Pin, State, Variable

Function

Measure the width of a pulse (in microseconds) on Pin described by State and store the result
in Variable.

✔ Pin is a symbol, variable or constant (0 to 31) that specifies the Propeller IO pin to use.
This pin will be set to input mode.

✔ State is a constant (0 or 1) that specifies whether the pulse to be measured is low (0) or
high (1). A low pulse begins with a 1-to-0 transition, and a high pulse begins with a 0-to-
1 transition..

✔ Variable is simple variable or array element. 

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

PULSINPULSINPULSINPULSIN is like a fast stopwatch that is triggered by a change in state (0 or 1) on the specified
pin. The entire width of the specified pulse (high or low) is measured, in microseconds and
stored in Variable.

Many  analog  properties  (voltage,  resistance,  capacitance,  frequency,  duty  cycle)  can  be
measured in terms of pulse duration. This makes PULSINPULSINPULSINPULSIN a valuable form of analog-to-digital
conversion.

PULSINPULSINPULSINPULSIN makes Pin an input and then waits for the desired pulse, for up to the maximum pulse
width  it  can  measure  POSXPOSXPOSXPOSX (2,147,483,647)  microseconds.  If  it  sees  the  desired  pulse  it
measures the time until the end of the pulse and stores the result in Variable. If it never sees
the start of the pulse, or the pulse is too long (greater than the POSXPOSXPOSXPOSX microseconds), PULSINPULSINPULSINPULSIN
"times out" and store 0 in Variable. 

Related instruction: PULSOUTPULSOUTPULSOUTPULSOUT

PropBASIC Syntax Guide  �  67



PULSOUT

PULSOUT Pin, Duration 

Function

Generate a pulse on Pin with a width of Duration microseconds.

✔ Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use.  This pin
will be set to output mode.

✔ Duration is a variable or constant that specifies the pulse width in one-microsecond units.

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

PULSOUTPULSOUTPULSOUTPULSOUT sets  Pin to  output  mode,  inverts  the  state  of  that  pin;  waits  for  the  specified
Duration (in microseconds); then inverts the state of the pin again returning the bit to its
original state.

Note that a PULSOUTPULSOUTPULSOUTPULSOUT duration of up to 2,147.48 seconds is possible with the Propeller’s 32-bit
variable/constant values.

Start:
  LOW Servo

Main:
  FOR position = 1_000 TO 1_999 STEP 10
    PULSOUTPULSOUTPULSOUTPULSOUT Servo, position
    DELAY_MS 20
  NEXT

  FOR position = 2_000 TO 1_001 STEP -10
    PULSOUTPULSOUTPULSOUTPULSOUT Servo, position
    DELAY_MS 20
  NEXT

  GOTO Main

Related instruction: PULSINPULSINPULSINPULSIN

68  �  PropBASIC Syntax Guide



RANDOM

RANDOM Seed {, Duplicate}

Function

Generate a pseudo-random number using Variable as the seed.

✔ Seed is a variable or array element that serves as the seed and result for  RANDOMRANDOMRANDOMRANDOM. Each
pass through RANDOMRANDOMRANDOMRANDOM stores the next number, in the pseudo-random sequence, in Seed.

✔ Duplicate is  an  optional  variable that,  if  provided,  will  receive a  copy of  Seed after
RANDOMRANDOMRANDOMRANDOM. This variable may be modified without affecting the value of Seed for the RANDOMRANDOMRANDOMRANDOM
instruction.

 
Explanation

RANDOMRANDOMRANDOMRANDOM generates  pseudo-random numbers  ranging from  $0$0$0$0 to  $FFFF_FFFF$FFFF_FFFF$FFFF_FFFF$FFFF_FFFF.  The value is
called "pseudo-random" because it appears random, but is generated by a logic operation that
uses the initial value in Seed  to "tap" into a sequence of essentially random numbers. If the
same initial value, called the "seed", is always used, then the same sequence of numbers will
be generated.

The code below [pseudo-] randomly selects and lights one of the LEDs on the Propeller
Demo board:

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

LEDs            PIN     16..23  OUTPUT  ' make LEDs outputs

seed            VAR     Long
theLed          VAR     Long

PROGRAM Start

Start:
  RANDOMRANDOMRANDOMRANDOM seed                           ' stir seed
  theLed = seed // 8                    ' randomize, 0 to 7
  theLed = theLed + 16                  ' offset, 16 to 23
  HIGH theLed                           ' LED on
  PAUSE 100                             ' hold 0.1s
  LOW theLed                            ' LED off
  GOTO Start

PropBASIC Syntax Guide  �  69



RCTIME

RCTIME Pin, State, Variable

70  �  PropBASIC Syntax Guide



RDBYTE, RDWORD, RDLONG

RDxxxx HubAddress{(Offset)}, Variable {, Variable, ...}

Function

Read one or more values from an address in the Hub.

✔ HubAddress is  the base address,  in the Hub,  of  the value(s) to  read.   With multiple
variables in one instruction this is the address of the first item.

✔ Offset is a zero-indexed offset which is added to HubAddress.

✔ Variable is a simple variable or array element. 

Explanation

RDxxxxRDxxxxRDxxxxRDxxxx reads  the value at  HubAddress and stores  it  in  Variable.  The following example
program uses RDBYTERDBYTERDBYTERDBYTE to retrieve LED patterns from a Hub-based DATADATADATADATA table.

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

LEDs            PIN     16..23 LOW

Pattern         DATA    %00011000, %00100100, %01000010, %10000001

idx             VAR     Long
bits            VAR     Long

PROGRAM Main

Main:
  FOR idx = 0 TO 3                      ' run 4x
    RDBYTERDBYTERDBYTERDBYTE Pattern(idx), bits           ' read pattern bits
    LEDs = bits                         ' output to Demo Board LEDs
    PAUSE 250                           ' hold 1/4s
  NEXT
  GOTO Main

Related instructions: WRxxxxWRxxxxWRxxxxWRxxxx, GETADDRGETADDRGETADDRGETADDR

PropBASIC Syntax Guide  �  71



RETURN  (from GOSUB – Obsolete)

RETURN {Value}

Function

Return from a subroutine (previously called with GOSUBGOSUBGOSUBGOSUB).

✔ Value is a variable or constant value to be returned to the calling code.

Explanation

RETURNRETURNRETURNRETURN sends the program back to the address (instruction) immediately following the most
recent  GOSUBGOSUBGOSUBGOSUB.    Use of this form is considered obsolete and existing programs should be
rewritten to use declared subroutines and functions.  If this form is used with the optional
return  Value the programmer should retrieve this value from internal variable __param1 in
the line that follows GOSUBGOSUBGOSUBGOSUB.

Related instructions: GOSUBGOSUBGOSUBGOSUB, SUBSUBSUBSUB, FUNCFUNCFUNCFUNC

72  �  PropBASIC Syntax Guide



RETURN  (value from declared Function)

RETURN Value {, Value, {, Value, {, Value}}}

Function

Return one or more values from a declared function.

✔ Value is a variable or constant value to be returned to the calling code.

Explanation

PropBASIC functions allow the programmer to return from one or more values to the calling
code.  For example, the following function:

FUNC TRIPLE_IT
  __param2 = __param1 << 1              ' __param2 = __param1 x 2
  __param1 = __param1 + __param2
  RETURNRETURNRETURNRETURN __param1
  ENDFUNC

...would be called like this:

  variable = TRIPLE_IT value

See  the section on defining and using functions (page ??) for additional details.

Related instructions: FUNCFUNCFUNCFUNC

PropBASIC Syntax Guide  �  73



REVERSE

REVERSE [PinName | PinNum]

Function

Reverse the data direction register (DIRADIRADIRADIRA) bit of the specified pin.

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

REVERSEREVERSEREVERSEREVERSE is convenient way to switch the IO direction of a pin. If the pin is an input, REVERSEREVERSEREVERSEREVERSE
makes it an output; if it’s an output, REVERSEREVERSEREVERSEREVERSE makes it an input.

Remember that "input" really has two meanings: (1) Setting a pin to input makes it possible
to check the state (1 or 0) of external circuitry connected to that pin. The current state is in
the corresponding bit of the INAINAINAINA register. (2) Setting a pin to input also disconnects the output
driver, possibly affecting circuitry being controlled by the pin.

Related instructions: INPUTINPUTINPUTINPUT,  OUTPUTOUTPUTOUTPUTOUTPUT

74  �  PropBASIC Syntax Guide



SERIN

SERIN Pin, BaudMode, Variable

Function

Receive an asynchronous serial byte (e.g., RS-232).

✔ Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use.

✔ BaudMode is a string constant that specifies serial timing and configuration. PropBASIC
will raise an error if the baud rate specified exceeds the ability of the target  XIN/FREQXIN/FREQXIN/FREQXIN/FREQ
setting.

✔ Variable is a variable that will store the received value.

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28

Using SERINSERINSERINSERIN inline:

  SERINSERINSERINSERIN 31, T9600, rxResult

In the above example the Propeller will receive a byte from an external device at 9600 baud,
in True mode on pin 31 (the RX pin of the Propeller's programming port) and store it in the
variable rxResult. Since SERINSERINSERINSERIN requires a substantial amount of Assembly code a good way to
save program space is by placing SERINSERINSERINSERIN in a function.  For example:

' Use: result = RX_BYTE rxpin

FUNC RX_BYTE
  __param2 = param1
  SERINSERINSERINSERIN __param2, Baud, __param1, Baud
  ENDFUNC

PropBASIC Syntax Guide  �  75



This function requires just one parameter: the pin to use for receiving the serial data. The
baud rate for RX_BYTE is set in a program constant.  By using a variable RX pin this routine

can be used for multiple devices that use the same baud rate.

Understanding BaudMode

The SERINSERINSERINSERIN instruction requires a  BaudMode parameter which defines the baud rate (in bits
per second) and the polarity with which the bits arrive.

There are two modes of serial reception:

✔ True (“Txxxx”)

✔ Inverted  (“Nxxxx”)

…where “xxxx” is the baud rate in bits per second (e.g., 9600).

In True mode communications the line idle state is high, the start bit (S) is low, data bits can

inverted) are functionally the same as TTTT (true) and NNNN (inverted).

Related instruction: SEROUTSEROUTSEROUTSEROUT

76  �  PropBASIC Syntax Guide



SEROUT

SEROUT Pin, BaudMode, [Value | String | Label]

Function

Transmit an asynchronous serial byte or string (e.g., RS-232).

✔ Pin is variable or constant (0 to 31) that specifies the Propeller IO pin to use.

✔ BaudMode is a string constant that specifies serial timing and configuration. PropBASIC
will raise an error if the baud rate specified exceeds the ability of the target  XIN/FREQXIN/FREQXIN/FREQXIN/FREQ
setting.

✔ Value is a variable or constant (0 to 255) to be transmitted (only the lower eight bits of
the value will be transmitted).

✔ String is an inline string, e.g., “PropBASIC”

Using SEROUTSEROUTSEROUTSEROUT inline:

  SEROUTSEROUTSEROUTSEROUT 30, T9600, "A"

In the above example the Propeller will transmit the letter "A" (decimal 65) to an external
device at 9600 baud, in True mode on pin 30 (the TX pin of the Propeller’s programming
port). Since  SEROUTSEROUTSEROUTSEROUT requires a substantial amount of Assembly code a good way to save
program space is by placing SEROUT in a subroutine.  For example:

PropBASIC Syntax Guide  �  77



' Use: TX_BYTE txpin, byteout
' -- shell for SEROUT
' -- allows selection of TX pin for multiple devices (e.g., LCD & terminal)
' -- Baud is set as program constant

SUB TX_BYTE
  SEROUTSEROUTSEROUTSEROUT __param1, Baud, __param2
  ENDSUB

This subroutine takes two parameters: the first is the pin to use for transmitting, the second is
the value to send.  The baud rate for  TX_BYTE is set in a program constant.  By using a

variable TX pin this routine can be used for multiple devices that use the same baud rate.

Understanding BaudMode

The SEROUTSEROUTSEROUTSEROUT instruction requires a BaudMode parameter which defines the baud rate (in bits
per second) and the mode in which the transmission pin is controlled.  The mode actually
defines two aspects of the output: signal polarity and how the transmission pin operates when
sending a bit.

There are four modes of transmission:

✔ True (“Txxxx”)

✔ Inverted  (“Nxxxx”)

✔ Open-True (“OTxxxx”)

✔ Open-Inverted (“ONxxxx”)

…where “xxxx” is the baud rate in bits per second (e.g., 9600).

In True mode communications the line idle state is high, the start bit (S) is low, data bits can
be read directly from the line, and the stop bit (X) is high.  If you looked at the output from a
Propeller transmitting the value $CF you would see this:

Inverted mode uses the opposite polarity; the line idle state is low, the start bit is high, data
bits are inverted (low = 1, high = 0), and the stop bit is low.  This is what $CF looks like
when transmitting using Inverted mode:

In both True and Inverted modes the Propeller drives the line high and low.  When using a
single pin to send and receive serial information an Open baud mode must be used.  In these
modes the Propeller drives the output pin in just one direction and relies on a pull-up (Open-

True) or pull-down (Open-Inverted) resistor to set the other line state.

78  �  PropBASIC Syntax Guide



For Open-True mode the Propeller will pull the line low for a start bit or “0” bit, and let it
float (high-impedance, input state) for a “1” bit or stop bit.  This mode requires a pull-up on
the serial pin to set the line for a “1” bit or the stop bit.

For Open-Inverted mode the Propeller will drive the line high for a start and zero bit, and let
it float for a one bit and stop bit.  Since the polarity is inverted we need to add a pull-down
resister to the serial pin.

Related instruction: SERINSERINSERINSERIN 

PropBASIC Syntax Guide  �  79



SEROUT Demo

' ======================================================================
'
'   File...... serout_demo.pbas
'   Purpose... SEROUT demo using Propeller Demo Board
'   Author....
'   E-mail....
'   Started... 
'   Updated... 
'
' ======================================================================

' ----------------------------------------------------------------------
' Device Settings
' ----------------------------------------------------------------------

DEVICE          P8X32A, XTAL1, PLL16X
XIN             5_000_000

' ----------------------------------------------------------------------
' Constants
' ----------------------------------------------------------------------

Baud            CON     "T115200"

' Parallax Serial Terminal (PST) Constants

HOME            CON     1
BKSP            CON     8
TAB             CON     9
LF              CON     10
CLREOL          CON     11
CLRDN           CON     12
CR              CON     13
CLS             CON     16

' ----------------------------------------------------------------------
' I/O Pins
' ----------------------------------------------------------------------

TX              PIN     30  HIGH                ' output and high (idle)
LED             PIN     16  LOW                 ' output and low

' ----------------------------------------------------------------------
' Variables
' ----------------------------------------------------------------------

80  �  PropBASIC Syntax Guide



alpha           VAR     Long

' ======================================================================
' Subroutine / Function Declarations
' ======================================================================

TX_BYTE         SUB     2                       ' shell for SEROUT
DELAY_MS        SUB     1                       ' shell for PAUSE

' ======================================================================
  PROGRAM Start
' ======================================================================

Start:
  DELAY_MS 10                                   ' TX idle for 10ms
  TX_BYTE TX, CLS

Main:
  DO
    FOR alpha = "A" TO "Z"
      TOGGLE LED
      TX_BYTE TX, alpha
      DELAY_MS 50
    NEXT
    TX_BYTE TX, CR
  LOOP

' ----------------------------------------------------------------------
' Subroutine / Function Code
' ----------------------------------------------------------------------

' Use: TX_BYTE txpin, byteout
' -- shell for SEROUT
' -- allows selection of TX pin for multiple devices
' -- Baud is set as program constant

SUB TX_BYTE
  SEROUT __param1, Baud, __param2
  ENDSUB

' ----------------------------------------------------------------------

' Use: DELAY_MS milliseconds
' -- shell for PAUSE

SUB DELAY_MS
  PAUSE __param1
  ENDSUB

PropBASIC Syntax Guide  �  81



SHIFTIN

SHIFTIN DataPin, ClockPin, Mode, Variable{\Bits}

82  �  PropBASIC Syntax Guide



SHIFTOUT

SHIFTOUT DataPin, ClockPin, Mode, Value{\Bits}

PropBASIC Syntax Guide  �  83



STR

STR ArrayName, Variable, Digits

84  �  PropBASIC Syntax Guide



TOGGLE

TOGGLE [PinName | PinNum] 

Function

Make the specified Pin an output and inverts its state.

✔ PinName is the symbol of a named (with PINPINPINPIN) IO pin.

✔ PinNum is a variable or constant (0 to 31).

Note: Exercise  care  with  pins  31  and  30  (Propeller  programming port)  and  29  and  28
(program EEPROM I2C port).

Explanation

The TOGGLETOGGLETOGGLETOGGLE instruction sets a pin to output mode and inverts the output state, changing 0 to 1
and 1 to 0.

Flash:
  LOW AlarmLed                          ' start off
  FOR flashes = 1 TO 20                 ' loop 20 times
    TOGGLETOGGLETOGGLETOGGLE AlarmLed                     ' invert state of LED
    DELAY_MS 500                        ' wait 0.5s
  NEXT

Related instructions: HIGHHIGHHIGHHIGH,  LOWLOWLOWLOW,  OUTPUTOUTPUTOUTPUTOUTPUT

PropBASIC Syntax Guide  �  85



WAITCNT

WAITCNT Target, Delta

Function

Pause a cog’s execution temporarily.

✔ Target is the the target value to compare against the System Counter (CNTCNTCNTCNT). When the
System Counter  has  reached  Target’s value,  Delta is  added  to  Target and  execution
continues at the next instruction.

✔ Delta is  the  value  is  added  to  Target’s  value  in  preparation  for  the  next  WAITCNTWAITCNTWAITCNTWAITCNT
instruction. This creates a synchronized delay window.

Explanation

WAITCNTWAITCNTWAITCNTWAITCNT,  “Wait for System Counter,” is one of four wait instructions (WAITCNTWAITCNTWAITCNTWAITCNT,  WAITPEQWAITPEQWAITPEQWAITPEQ,
WAITPNEWAITPNEWAITPNEWAITPNE,  and  WAITVIDWAITVIDWAITVIDWAITVID)  used  to  pause  execution  of  a  cog until  a  condition  is  met.  The
WAITCNTWAITCNTWAITCNTWAITCNT instruction pauses the cog until the global System Counter equals the value in the
Target register, then it adds Delta to Target and execution continues at the next instruction.

The following snippet will toggle an LED every 250ms.

Main:
  RDLONG 0, delta                       ' read system frequency
  delta = delta >> 2                    ' divide by 4
  target = cnt + delta                  ' sync with system counter
  DO
    TOGGLE 16                           ' toggle led on P16
    WAITCNTWAITCNTWAITCNTWAITCNT target, delta               ' wait 1/4s (synchronized)
  LOOP

Related instructions: PAUSEPAUSEPAUSEPAUSE, PAUSEUSPAUSEUSPAUSEUSPAUSEUS 

86  �  PropBASIC Syntax Guide



WAITPEQ

WAITPEQ State, Mask

Function

Pause a cog’s execution until selected IO pin(s) match designated State.

✔ State is the value to compare against INAINAINAINA ANDed with Mask.

✔ Mask is the value that is bitwise-ANDed with INAINAINAINA before the comparison with State.

Explanation

WAITPEQWAITPEQWAITPEQWAITPEQ,  “Wait for Pin(s) to Equal,” is one of four wait instructions (WAITCNTWAITCNTWAITCNTWAITCNT,  WAITPEQWAITPEQWAITPEQWAITPEQ,
WAITPNEWAITPNEWAITPNEWAITPNE,  and  WAITVIDWAITVIDWAITVIDWAITVID)  used  to  pause  execution  of  a  cog until  a  condition  is  met.  The
WAITPEQWAITPEQWAITPEQWAITPEQ instruction pauses the cog until the result of  INAINAINAINA ANDed with  Mask matches the
value of State.

  WAITPEQWAITPEQWAITPEQWAITPEQ %0011, %1111

In the above example the Propeller will wait until the inputs P0..P3 (Mask = %1111) until P0
and P1 are high (1), and P2 and P3 are low (0).

Related instructions: WAITPNEWAITPNEWAITPNEWAITPNE

PropBASIC Syntax Guide  �  87



WAITPNE

WAITPNE State, Mask

Function

Pause a cog’s execution until selected IO pin(s) do not match designated State.

✔ State is the value to compare against INAINAINAINA ANDed with Mask.

✔ Mask is the value that is bitwise-ANDed with INAINAINAINA before the comparison with State.

Explanation

WAITPNEWAITPNEWAITPNEWAITPNE, “Wait for Pin(s) Not to Equal,” is one of four wait instructions (WAITCNTWAITCNTWAITCNTWAITCNT, WAITPEQWAITPEQWAITPEQWAITPEQ,
WAITPNEWAITPNEWAITPNEWAITPNE,  and  WAITVIDWAITVIDWAITVIDWAITVID)  used  to  pause  execution  of  a  cog until  a  condition  is  met.  The
WAITPNEWAITPNEWAITPNEWAITPNE instruction pauses the cog until the result of INAINAINAINA ANDed with Mask does not match
the value of State.

  WAITPNEWAITPNEWAITPNEWAITPNE %1, %1

Assuming an active-low input on P0, the above line would cause the Propeller to wait until
P0 goes low.

Related instructions: WAITPEQWAITPEQWAITPEQWAITPEQ

88  �  PropBASIC Syntax Guide



WAITVID

WAITVID Colors, Pixels

Function

Pause a cog’s execution until its Video Generator is available to take pixel data.

✔ Colors is a value with four byte-sized color values, each describing the four possible
colors of the pixel patterns in Pixels.

✔ Pixels is the value that is the next 16-pixel by 2-bit (or 32-pixel by 1-bit) pixel pattern to
display.

Explanation

WAITVIDWAITVIDWAITVIDWAITVID, “Wait for Video Generator,” is one of four wait instructions (WAITCNTWAITCNTWAITCNTWAITCNT,  WAITPEQWAITPEQWAITPEQWAITPEQ,
WAITPNEWAITPNEWAITPNEWAITPNE,  and  WAITVIDWAITVIDWAITVIDWAITVID)  used  to  pause  execution  of  a  cog until  a  condition  is  met.  The
WAITVIDWAITVIDWAITVIDWAITVID instruction pauses the cog until its Video Generator hardware is ready for the next
pixel  data,  then  the  Video  Generator  accepts  that  data  (Colors and  Pixels)  and  the  cog
continues execution with the next instruction.

Make sure to start the cog’s Video Generator module and Counter A before executing the
WAITVIDWAITVIDWAITVIDWAITVID command or it will wait forever.

PropBASIC Syntax Guide  �  89



WRBYTE, WRWORD, WRLONG

WRxxxx HubAddress{(Offset)}, Value {, Value, ...}

Function

Write one or more values to an address in the Hub.

✔ HubAddress is  the base address,  in the Hub, of the value(s) to write.   With multiple
values in one instruction this is the address of the first item.

✔ Offset is a zero-indexed offset which is added to HubAddress.

✔ Value is a variable or constant.

Explanation

WRxxxxWRxxxxWRxxxxWRxxxx writes  Value(s) to the Hub RAM at  HubAddress, unless a non-zero  Offset is used.
WRxxxxWRxxxxWRxxxxWRxxxx is a useful tool for passing values to processes running in other cogs (i.e., TASKs).

Related instructions: RDxxxxRDxxxxRDxxxxRDxxxx, GETADDRGETADDRGETADDRGETADDR

90  �  PropBASIC Syntax Guide



Programming Examples

The examples that follow are in no way meant to provide an exhaustive demonstration of the
features and capabilities of PropBASIC, but should give the inquisitive programmer ample
inspiration for developing PropBASIC his/her own projects.

PropBASIC Syntax Guide  �  91



PropBASIC Errors and Warnings

Errors

01 INVALID VARIABLE NAME
You have used a reserved word for a variable name.

02 DUPLICATE VARIABLE NAME
You have declared a variable more than once.

03 CONSTANT EXPECTED
This parameter is required to be a constant.

 
04 INVALID UNARY OPERATOR

---- and ~~~~ are the only allowed unary operators.
 
05 INVALID PARAMETER

Generic invalid parameter error.
 
06 SYNTAX ERROR

Generic "I didn't understand what you meant." error message.
 
07 INVALID NUMBER OF PARAMETERS

You have too few or too many parameters given.
 
08 NOT A "FOR" CONTROL VARIABLE

You have specified a parameter after NEXTNEXTNEXTNEXT that is not a FORFORFORFOR control variable.
 
09 BAUDRATE IS TOO HIGH

Cannot achieve the desired baud rate.
 
10 UNKNOWN COMMAND

Command was not recognized.
 
11 COMMA EXPECTED

A comma is required between parameters.

12 FOR WITHOUT NEXT
 
13 NEXT WITHOUT FOR
 
14 TOO MANY SUBS DEFINED

Only 127 subroutines may be defined.
 

92  �  PropBASIC Syntax Guide



15 ELSE OR ENDIF WITHOUT IF
You are missing an IF statement before ELSE or ENDIF

16 LOOP WITHOUT DO
You are missing a DODODODO statement before LOOP.LOOP.LOOP.LOOP.

 
17 EXIT NOT IN FOR-NEXT OR DO-LOOP

The EXITEXITEXITEXIT instruction must be inside a FOR-NEXTFOR-NEXTFOR-NEXTFOR-NEXT or DO-LOOPDO-LOOPDO-LOOPDO-LOOP.
 
18 NO "PROGRAM" COMMAND USED

You must use the PROGRAMPROGRAMPROGRAMPROGRAM directive.
 
19 TOO MANY DEFINES

Only 512 defines are allowed.
 
20 NOT IN A SUB OR FUNC

ENDSUBENDSUBENDSUBENDSUB and ENDFUNCENDFUNCENDFUNCENDFUNC can only be used inside a SUBSUBSUBSUB or FUNC.FUNC.FUNC.FUNC.
 
21 SUB OR FUNC CANNOT BE NESTED

SUBs and FUNCs cannot be nested.
 
22 NOT VALID INSIDE SUB

Command cannot be used inside a SUBSUBSUBSUB or FUNCFUNCFUNCFUNC.
 
23 COULD NOT READ SOURCE FILE

LOADLOADLOADLOAD, INCLUDEINCLUDEINCLUDEINCLUDE or FILEFILEFILEFILE could not read the file specified.
 
24 DIRECTIVE ERROR

The program has used the $ERROR$ERROR$ERROR$ERROR directive to cause an error.
 
25 NO FREQ SPECIFIED

The FREQFREQFREQFREQ directive must be used before PROGRAMPROGRAMPROGRAMPROGRAM.
 
26 LONG VAR EXPECTED

A Long (32-bit) VARVARVARVAR parameter is expected.

PropBASIC Syntax Guide  �  93



Warnings

01 NOT RECOMMENDED WITH INTERNAL CLOCK
SERINSERINSERINSERIN and SEROUTSEROUTSEROUTSEROUT are not recommended with the internal clock.

 
02 ENDFUNC USED WITHOUT RETURN

Function ended without a RETURNRETURNRETURNRETURN.
 
03 DIRECTIVE WARNING:

The program has used the $WARNING$WARNING$WARNING$WARNING directive to cause a warning.

94  �  PropBASIC Syntax Guide


