
Catalina Geany Getting Started

Getting Started with the Catalina Geany IDE

Table of Contents
Getting Started with the Catalina Geany IDE .. 1
Introduction ... 1
Using the IDE to build and run a program from scratch .. 2
Using the IDE to build and run an existing simple program .. 12
Using the IDE to build and debug a complex program .. 19
Using the IDE to build and run a program using XMM RAM ... 25
Additions to the Geany IDE for Catalina .. 30

Project Properties ... 30
Catalina Build Commands ... 32

Introduction
Catalina has a new Integrated Development Environment (IDE), supported on both Windows
and Linux. It is a customized version of the "Geany" IDE1.

Geany is a "lightweight" IDE, much simpler than the Code::Blocks IDE. It is easier to use, easier
to configure, more user-friendly, and more suitable in general for the types of small C programs
typically written for the Propeller.

However, Geany is not as flexible or powerful as Code::Blocks, so Code::Blocks will also remain
supported for the forseeable future, so those who are familiar with it may continue using it.

The Catalina Geany IDE is recommended for those who want to use an IDE but are not familiar
with Code::Blocks.

This document introduces the new IDE, and gives some examples of how to use it:

• Using the IDE to build and run a program from scratch.

• Using the IDE to build and run an existing simple program.

• Using the IDE to build and debug a complex program.

• Using the IDE to build and run a program using XMM RAM.

Finally, there is a section that discusses the additions made to the standard Geany IDE
specifically for Catalina.

This document assumes you are running the Catalina Geany IDE under Windows. There are

1 Don't ask me - I guess the spelling "Genie" was already used by another program!

Copyright 2020 Ross Higson Page 1 of 34

Catalina Geany Getting Started

minor cosmetic differences under Linux, but the functionality is identical.

Using the IDE to build and run a program from scratch
On Windows, start the Catalina Geany IDE from the Start Menu shortcut of that name.

On Linux, open a terminal window, and execute the command catalina_geany (this command
can be found in the “/opt/catalina/bin” directory2).

You should see a window similar to this:

2 Note that Catalina’s version of Geany expects to be installed in /opt/catalina/catalina_geany, which is
where it will end up if you install Catalina to its default location (i.e. /opt/catalina). To install it
elsewhere, Geany may need to be recompiled from source.

Copyright 2020 Ross Higson Page 2 of 34

Catalina Geany Getting Started

The first thing we typically want to do is create a new project. So select the Project->New ...
menu entry. You should see a dialog like this:

By default in Windows, all projects are created in your Windows User directory, in a subdirectory
called "projects" (on Linux, this will be in a subdirectory of your home directory).

All you need to do here is enter the project name - in this case, enter the name Hello World
and press Create. You will be prompted to create the project directory. Just press OK.

Next we will create a file, using one of Geany's many built-in file templates. To do this, select
File->New (With Template)->main.c. You will see the new file in a window called "untitled.c" -
something like this:

Copyright 2020 Ross Higson Page 3 of 34

Catalina Geany Getting Started

The first thing we want to do is rename and save the file. To do this select File->Save As ... -
the following dialog box will appear. Enter "Hello World.c" as the file name and press Save. This
file will be saved in your project's directory:

Next, scroll to the bottom of the file in the right hand pane, and enter the following two lines in
the main function, just before the line that says "return 0;". Note that the IDE will assist you as
you type.

printf("Hello World\n");
while(1);

Copyright 2020 Ross Higson Page 4 of 34

Catalina Geany Getting Started

Your window should now look like this:

Copyright 2020 Ross Higson Page 5 of 34

Catalina Geany Getting Started

And now we are ready to try building the project. To do so, select the Build->Build menu entry,
or press the Build button. Note: we will get undefined symbols from this step - this is expected!
We will explain why, and fix this error in the next step. This is what you should see:

The reason the compilation failed is that "printf" is undefined. This is because we have not told
the IDE which version of the C Library to link with. Catalina has several different versions of the
C Libraries you can choose from, and it does not have a default setting.

The reason for this is that the standard C libraries are significantly smaller if you exclude
specific things you know you won't need in your program. Catalina has four versions of the
standard C libraries:

-lci an integer version that does not include floating point I/O in functions such as
printf (note that you can still use floating point – you just cannot perform I/O on
them).

-lc a version that includes floating point I/O in functions such as printf.

-lcix an extended version that does not support I/O of floating point, but does
include file I/O (on platforms that have an SD Card).

-lcx an extended version that includes floating point I/O, plus file I/O (on platforms
that have an SD Card).

Copyright 2020 Ross Higson Page 6 of 34

Catalina Geany Getting Started

To set Catalina-specific project options, such as which version of the C library to use, select the
Project->Properties menu item. You will see a window like this:

If you are familiar with the Geany IDE, you will notice your first differences from standard Geany
in the additions to this dialog box. They are the Catalina Options, Baudrate and Loader fields.
For now, all we really need to do is add -lci to the Catalina Options field - this tells the IDE we
want to link our project with the integer version of the standard C library.

Copyright 2020 Ross Higson Page 7 of 34

Catalina Geany Getting Started

The dialog box should then look like this:

However, while we are adding Catalina options, we can take this opportunity to also add any
necessary options for our platform, and also tell the project we want to use the TTY plugin for
serial I/O (in case this is not the default). This is not required if you are using a standard
Propeller platform that is compatible with Catalina's CUSTOM configuration because this is the
default, but let's assume you instead have a C3 board. In that case, you would need to also add
-C C3 -C TTY to the Catalina options.

Copyright 2020 Ross Higson Page 8 of 34

Catalina Geany Getting Started

To make the options more readable, you can enter each one on a new line in the Catalina
Options field. For example:

Press OK to close the dialog, and then select the Build->Build menu item again, or press the
Build button again.

This time, the compilation should succeed.

Copyright 2020 Ross Higson Page 9 of 34

Catalina Geany Getting Started

Now we can download and execute the program. Because we are using serial I/O as our
interface, we want to choose the Build->Download and Interact menu item. Otherwise, we
would not see any output:

When we do so, we should see an interactive terminal window open up, displaying the output
from the program:

Copyright 2020 Ross Higson Page 10 of 34

Catalina Geany Getting Started

For programs that consists of a single C source file, that's all there is to it! You can now close
this terminal window.

Just to complete this example, shut down and restart the IDE from the Catalina Geany IDE
menu item (or the catalina_geany command). When you do so, you will notice is that the IDE
always restarts where it left off. Normally, this is what you want to do. If it is not, you should
close the open project.

Note that to close the project, you must use Project->Close menu item. If you just press the
Close button, it closes the current file, but not the project - which is not usually what you want to
do3

3 Geany is a little ambiguous about the state of open files - it is not always obvious whether a file has
been opened as part of a project or not. You may find you close the project but some files are left open.
Or vice-versa. If you accidentally close a file that is part of a project instead of closing the project, don't
panic! The file hasn't disappeared - you just need to re-open the file within the project again using the
File->Open command when the project itself is open.

Copyright 2020 Ross Higson Page 11 of 34

Catalina Geany Getting Started

Using the IDE to build and run an existing simple program
If the IDE is not running, start the Catalina Geany IDE from the Start Menu shortcut of that
name (on Linux, execute the command catalina-geany).

If there is a project open, close it by selecting Project->Close, and if there are any C files left
open, close them by selecting File->Close. You should see a window like this (there may or
may not be a file called "untitled" still open - that doesn't matter):

Next, create a new project by selecting the Project->New ... menu enty. You should see a
dialog like this:

Copyright 2020 Ross Higson Page 12 of 34

Catalina Geany Getting Started

Enter the name Othello and press Create. You will be prompted to create the project directory.
Press OK.

The next thing we want to do with our new project is include the "othello.c" program code
provided as a Catalina demo program. Select File->Open ... or press the Open button on the
Toolbar. You will be presented with an Open File dialog. Navigate to the "demo" directory
where Catalina is installed (typically, "C:\Program Files (x86)\Catalina_4.1\demos" on Windows,
or "/opt/catalina/demos" on Linux) and select the file "othello.c" from this directory, as shown
below. Then press Open:

Copyright 2020 Ross Higson Page 13 of 34

Catalina Geany Getting Started

The "othello.c" program will appear in the right hand pane. The symbols defined in the file will
appear in the left hand pane:

Copyright 2020 Ross Higson Page 14 of 34

Catalina Geany Getting Started

Before we can build the project, we need to set up some Catalina-specific options, such as
which C library to use. This is very easy to do - select the Project->Properties menu item to
open the properties dialog box:

Copyright 2020 Ross Higson Page 15 of 34

Catalina Geany Getting Started

For now, all we really need to do is add -lci to the Catalina Options field - this tells the IDE we
want to link our project with the integer version of the standard C library. The dialog box should
then look like this:

However, as in the previous example, while we are adding the library option, we can also add
any necessary options for our platform and also tell the project we want to use the TTY plugin
for serial I/O. This is not required if you are using a standard Propeller platform that is
compatible with Catalina's CUSTOM configuration because it is the default, but let's assume
you instead have a C3. In that case, you would need to add -C C3 -C TTY to the Catalina
options.

Copyright 2020 Ross Higson Page 16 of 34

Catalina Geany Getting Started

To make the options more readable, you can enter each one on a new line in the Catalina
Options field:

Press OK to close the dialog, and then select the Build->Build menu item, or press the Build
button.

The compilation should succeed without any errors.

Copyright 2020 Ross Higson Page 17 of 34

Catalina Geany Getting Started

Now we can run the program. Because we are using serial I/O as our interface, we want to
choose the Build->Download and Interact menu item. Otherwise, we would not see any
output:

When we do so, we should see an interactive terminal window open up, displaying the output
from the program:

Copyright 2020 Ross Higson Page 18 of 34

Catalina Geany Getting Started

That;s it! A similar procedure can be used to build most of the programs in the "demo" folder.

In the next example, we will demonstrate compiling a program that consists of multiple files, and
also using the debugger from within the IDE.

Using the IDE to build and debug a complex program
If the IDE is not running, start the Catalina Geany IDE from the Start Menu shortcut of that
name (on Linux, execute the command catalina-geany).

If there is a project open, close it by selecting Project->Close, and if there are any C files left
open, close them by selecting File->Close. You should see a window like this (there may nor
may not be a file called "untitled" still open - that doesn't matter):

Now we can create a new project using the Project->New menu item. This time, we will name
our project Debug.

The first thing we want to do with this project is tell the IDE we want a debug compilation. To do
that, select the Project->Properties menu item and enter the Catalina Options -lci -g3 -C
NO_HMI, plus any other platform options (such as -C C3) in the Catalina Options field.

The -lci identifies the C library we want to use, -g3 enables debugging, and -C NO_HMI
disables the HMI, which might otherwise use the serial port (which in this case we want to use
for debugging). We don't actually care about the output, as this is simply a demo of the
compilation and debugging process.

Copyright 2020 Ross Higson Page 19 of 34

Catalina Geany Getting Started

Your project properties should now look something like this:

In the last example, we compiled a program that existed in the Catalina demo folder, without
copying it into our project. In this example, we are actually going to copy the relevant *.c and *.h
files to our project folder. This is what you would normally want to do to modify the files, and in
this case it is required to allow us to use the Compile All and Link commands (which we must
use instead of Build to compile this project).

Copyright 2020 Ross Higson Page 20 of 34

Catalina Geany Getting Started

The easiest way to copy the files is in a Catalina Command Line window. Open a Catalina
Command Line using the Start Menu shortcut of that name, then execute the following
commands:

On Windows:

copy demos\debug*.c %HOMEPATH%\projects\Debug
copy demos\debug*.h %HOMEPATH%\projects\Debug

On Lunix:

cp /opt/catalina/demos/debug/*.c $HOME/projects/Debug
cp /opt/catalina/demos/debug/*.h $HOME/projects/Debug

Now in the IDE you can select File->Open, or press the Open button to open the files we just
copied to the project folder. Note that you can select multiple files to open at once:

Unlike Code::Blocks, the Catalina Geany IDE has no knowledge about project dependencies,
and no built-in knowledge of how to make complex programs that consist of multiple source
files. However, we can simply compile all the C files that are in the project folder by selecting the
Build->Compile All menu item. In this case, this is exactly what we want to do. However, to
use the Compile All command, the program files to be compiled must exist in the project folder
- they cannot just be references to files stored elsewhere, as we did in the previous example.
This is why we had to copy them into the project folder.

If simply compiling all the C source files is not all you need to do to build your program, or they

Copyright 2020 Ross Higson Page 21 of 34

Catalina Geany Getting Started

have to be compiled or otherwise processed in a particular order, then you will have to use the
Compile command on each of the files individually.

When we compile the source files, we may get some warning messages, but the complation
should complete successfully:

Now, we have compiled all the C files in the project (into ".obj" files under Windows, or “.o” files
under Linux), but we have not yet linked them together in an executable binary.

Before we do so, it is important to select the "main" C file, because the IDE uses the name of
that file for the output binary. So, in this case, select the file "debug_main.c" in the left hand
pane, or using the tabs at the top of the right hand pane, and then select Build->Link. The
project should link all the compiled objects into an executable binary (in this case, it will be
called "debug_main.binary").

The use of the Compile (or Compile All) command and then the Link command is an
alternative to the single-step Build command, and is generally required for complex programs
that consist of multiple source files.

When you use the Compile or Compile All commands, you may sometimes get warning
messages – this is because some of the Catalina options (such as libraries) are not actually
required during the compilation phase, only during the linking phase - and so you may see
messages saying that some options are being ignored. This is normal.

Copyright 2020 Ross Higson Page 22 of 34

Catalina Geany Getting Started

After executing the Link, this is what you should see:

The next step is to download the program for debugging. Since we don't want a terminal to see
any I/O, we do that by selecting the Build->Download and Execute menu item, or just
pressing the Execute button. Again, it is important to ensure the main program file is selected in
the left hand pane, as this will be used to determine the name of the binary file to be
downloaded.

When the download is complete, close the window (you should see the message (program
exited with code: 0) - this message refers to the download, not the program itself).

Copyright 2020 Ross Higson Page 23 of 34

Catalina Geany Getting Started

Finally, select Build->Debug with BlackBox. You should see a window like this:

We can now interact witht the BlackBox debugger. For instance, enter n <CR> to step through
the program line by line. To step into a function on the line about to be executed, instead enter
the command s i <CR>. Enter h <CR> for help, or q <CR> to quit.

There is a separate document ("Getting Started with BlackBox") that gives more information
about using the BlackBox debugger, and it uses this demo program as an example.

Copyright 2020 Ross Higson Page 24 of 34

Catalina Geany Getting Started

Using the IDE to build and run a program using XMM RAM
NOTE 1: To execute this example, you must have a Propeller 1 platform supported
by Catalina that has XMM RAM. This example assumes you are using a Credit Card
Computer (C3).

NOTE 2: This example assumes you have worked throught the prevous examples,
so it does not give screenshots of all the screens you will see along the way.

If the IDE is not running, start the Catalina Geany IDE from the Start Menu shortcut of that
name (on Linux, execute the command catalina-geany).

If there is a project open, close it by selecting Project->Close, and if there are any C files left
open, close them by selecting File->Close.

Create a new project by selecting Project->New and enter the name Startrek.

In this example, we can compile the file from its original location, so select File->Open, or press
the Open button. Navigate to the "demo" directory where Catalina is installed (typically,
"C:\Program Files (x86)\Catalina_4.1\demos" on Windows, or "/opt/catalina/demos" on Linux)
and select the file "startrek.c" from this directory, as shown below. Then press Open. You
should see this:

Copyright 2020 Ross Higson Page 25 of 34

Catalina Geany Getting Started

Now, we must set the project's Catalina Options. Select Project->Properties.

For this program, we must use the standard C library (-lc) and also a maths library (-lma). We
must also specify the platform to use (-C C3) and that we want to use serial I/O (-C TTY).
Finally, we must also specify the memory model (-C SMALL) and the caching option to be used
(-C CACHED_1K).

For the first time, we also need to specify something in the Loader field. We will specify SRAM
here, because we are compiling the program to execute from SRAM (this platform also has
FLASH that we could use).

So your project properties will end up looking something like this:

Copyright 2020 Ross Higson Page 26 of 34

Catalina Geany Getting Started

Now we are ready to build the project. Select Build->Build or press the Build button.

The program should compile successfuly.

However, before we can execute the program, we must build the XMM utilities (if we have not
already done so). We can do that from within the IDE. Select Build->Build Utilities. A terminal
window should appear:

You must step through the build_utilities program, specifying the following options:

• Your platform (C3)

• Your XMM board (in the case of the C3 the XMM RAM is built-in, so you do not
need to specify anything here)

• Your FLASH cache size (1)

• Your FLASH Boot options (nothing is required here)

• Your SRAM cache size (1)

• Whether you want to use FLASH or SRAM (S).

The build_utilities window will close automatically when it is complete.

It is important that the options entered in build_utilities match the options in the Project
Properties – in particular, the platform and the cache size.

Copyright 2020 Ross Higson Page 27 of 34

Catalina Geany Getting Started

Now we are ready to download the program – since we want to see the serial I/O, we do so by
by selecting Build->Download and Interact:

Copyright 2020 Ross Higson Page 28 of 34

Catalina Geany Getting Started

You should see the program download using the first and second loaders (the SRAM loader will
be used automatically here), and then an interactive terminal window will appear:

We're done! You can build other Catalina demo programs that require XMM RAM using similar
steps.

Copyright 2020 Ross Higson Page 29 of 34

Catalina Geany Getting Started

Additions to the Geany IDE for Catalina
Geany is a very flexible IDE. However, some minor changes have been made to better support
the Catalina C compiler. These are in the form of Catalina-specific additions to the standard
Geany project handling.

Project Properties
We have already seen the main changes to Geany for Catalina - they are the new fields on the
Project tab of the Project Properties dialog:

Copyright 2020 Ross Higson Page 30 of 34

Catalina Geany Getting Started

The three additional fields on this dialog, and their use, are as follows:

Catalina Options: This is a multi-line text box that is used to specify all the project options.
They should be separated by spaces or new line characters (i.e. not commas). For example:

platform options: -C C3, -C CUSTOM, -C P2_EVAL etc

library options: -lc, -lci, -lcx, -lcix, -lm, -lma, -lmb, -lmc, -lthreads, -linterrupts etc

memory model options: -C TINY, -C LARGE, -C SMALL, -C COMPACT, -C NATIVE etc

miscellaneous options: -p2, -O5, -g3, -e etc

See the Catalina documentation for a full set of such options. The value in this field can be used
in build commands using %o (see below for Catalina Build Commands).

Baudrate: This is the baudrate for payload to use. On the Propeller 1, this would usually be
115200 (which is the default), but on the Propeller 2 it may need to be manually specified (e.g.
as 230400). The value in this field can be used in build commands using %b (see below for
Catalina Build Commands).

Loader: This is for Propeller 1 XMM programs that require a special loader (which must be build
using the build_utilities batch script). Possible values include XMM, SRAM, FLASH, or
EEPROM. This field should be left blank for normal Propeller 1 and Propeller 2 Hub RAM loads.
The value in this field can be used in build commands using %x (see below for Catalina Build
Commands).

Copyright 2020 Ross Higson Page 31 of 34

Catalina Geany Getting Started

Catalina Build Commands
The other change to the standard Geany IDE is in the form of customized build commands.
Here is the Build tab of Catalina's version of the Project Properties dialog for C programs (this
version is for Windows – see later for the Linux version, which has very slight command
differences):

The first thing to note is that Catalina has many more customizable build commands than the
normal Geany IDE. This reflects the many more things that must typically be done to support a
separate external processor.

The default values for the customized build commands for C files are as shown. (in grey text – if
they are modified from the default commands, they are shown in black text).

Copyright 2020 Ross Higson Page 32 of 34

Catalina Geany Getting Started

Note the use of the standard Geany IDE placeholders: %d, %e, %f and %p, plus the Catalina-
specific additions: %b, %o and %x.

Here is the Linux version of the Build commands:

The build commands can be customized per project if required.

For example, if you decide you would rather use the BlackCat debugger rather than BlackBox
for debugging a particular project, simply replace the command blackbox "%e" in Execute
command 3 with a command like blackcat -P COM9 -D "%e" (note that BlackCat does not
detect the port to use automatically - it must be specified). Note that the name of the command
can be modified as well - just press the command button.

Note that Catalina retains the Geany IDE make commands, which can be used to make
complex projects - but you must install make separately. Neither Catalina nor the Geany IDE
include a version of make. The easiest way to install make in Windows is by installing MinGW

Copyright 2020 Ross Higson Page 33 of 34

Catalina Geany Getting Started

(see www.mingw.org). When using make, note that the Catalina options are passed in to make
using the CATALINA_OPTIONS variable.

Note that Geany is an open source IDE. The source code for the changes to the standard
Geany IDE are included in each Catalina release. See the file “catalina_geany_source.zip” in
the catalina_geany subdirectory.

Copyright 2020 Ross Higson Page 34 of 34

http://www.mingw.org/

	Getting Started with the Catalina Geany IDE
	Introduction
	Using the IDE to build and run a program from scratch
	Using the IDE to build and run an existing simple program
	Using the IDE to build and debug a complex program
	Using the IDE to build and run a program using XMM RAM
	Additions to the Geany IDE for Catalina
	Project Properties
	Catalina Build Commands

