Using the Propeller 2 Monitor
DRAFT 0.8

Doug Dingus, January 2013

Using the Propeller 2 Monitor Doug Dingus 2012

Table of Contents

UsSING the Propeller 2 MONITOLcouuui e e e e e e et e e e e ea e e e eeaan s e e e eeranas 1
TabIE Of CONLENTS ...ttt e ettt r et et e e e e e e eeeeeeas 2
Ta 1 goo [N Tei 1 o] o N TP PUUUPPPUPUPTPPTN 3
Propeller 2 ROM / RAM MeMOIY LaYOUL..........oiiiiiiiiiiiiiiiissees i ee et e e e e e ee e eesea e e eeeanns 3
(o] o=y [T =T Yo ST To (U= o ot = 4
Recommended SOftWAIE TOOIS. ettt e e e e e e e enbanaa s 5
Propeller Serial TermMiNal...........oooviiiiiiiiii e e e e e e e e e e e e eeeeees 5

P U T T Y e ettt e e e e e e e e e e 5

[(0T o T =11 00T = PSPPI 5
Configure YOUr Serial dEVICE.uiiiiiiiii i e e e e e e e e e e eeran s 6
Connect and Identify COM Port for Prop PIUQcoooeeiiiriieiiicie e 6
Connect Prop Plug to Emulated Propeller 2...........oeeuuiiiiiieieeeee e e e 8
(@] 1110 T8 1= = N I I 10
POWET UP QUICK TOSE .uuiiiiiiiiiii ittt ee et e s e e e et e e e e e e e e e e et e s e e e aan e e e aeataaaeeestanaaaaens 10
USING the MONITOT BASICSiiiiiiiiiiiiiiie e et e e e e e e e e e et e e e e abaaeeee st aeaens 11
2011 T T 1= o TR == o S 11
(@] 4] 1= TaTo €] o 18] o 11
BaSIiC TASK EXAMIPIES ...ciiie it s e ettt e e e e e e e e e e e e et e e e e e eeeeeaeenannan s 12
Display Contents Of HUB MEIMOIYuuiiiieiee et ie s e e e e e e e s e e e e e e e e aeeaneanaeneee e 12
Modify Contents of HUB MEMOIYuuiiiiiiiii et e s e e e e et eeaees 13
Patterns, BIOCK MOVES and SEarCHc.oiiiiiiiiiii e 14
Write Multiple Values to an AddreSs RaNQe........ccovvvvuiiiiiiiiieie e e e e ee s 14
Block Move Linear ChUNKS Of RAMuuiiiiiiiiiiiiiiii ettt 14
Perform a Search within Data RANQEoooiiiiiiiiiiiie e 15

L o T T =B] o RSP 16
Watch Pins, Addresses and Set Various States...........coouiuuiuiiiiiniiiiee et 16
WALCH @N AGAIESS. ...ttt e et e e e e e e e bbb e e e 16
Configure 1/O Pin and Set PiN STAteccoiviiiiiiiiiiie et eeeee e e e e e e e aeeeeees 16

LAV Lo g 1= 1 1@ N o1 o U 17

SET COG DAC VAIUES ...ttt e 17

Set the Propeller ClIOCK (CLKSET)iuuiiiiii i cee ittt e e s e e e e et as s e e aaaa s e e s e aaa e e eennans 18
More AAVanCed EXAMPIES..........uuuuueiiiei et e ettt e e e e e e e e e e e et e e e e e e e e e 19
Transfer small PASM program to HUB and run it on @ COGcccovivvviiiiiiiieiieeeeeeeeeeeiiieen 19
Display COG State Map, Run the Program On Various COGSccoovvviiiiiiiieiiiiieeeeiiineeeens 20
Set BYTE, WORD, LONG MOGESuuuutuiiiiiiiiiiiieiieitette et teete e e e e e e e aa s sbe e e 20
Use Paste to Upload Programs and Data through Monitor.............cccviiiiiiiiiiiiieiiie e 21
Copy Data File into Propeller 2 through MONItOr..........c.cuuiiiiiiiiiiiccc e 22
(@] 4] o101 (== W @ 0 1= Tod YU o o 23
Launch Monitor From Within YOUFr Program........cccuuuieiieiiinieiei e eee s e e e e e e eeeens 23
Modify RUNNING PASIM PrOQIaMiiiiiiiieiiieiiis e ee it e s e e ee e e e e e et ae s e e et eeeaeaanaeaaestanaaaeens 24
(@4 0] o o PSP 27
Appendix A Propeller 2 ROM Program LiStiNgScocviviiiiieiiiiii e et e e 28
@ 1Y I =To o) L= S TP PUPPPRRPPPIN 28
ROM _SHAZS5B ...ttt e et e et e oo oo e bbbt e e ettt ettt e et e e e e e e aeaeea s 32
L@ 11 Y, (o 1 (o) PSPPI 37
Appendix B PASM Program Listings and Object Codeccceiiiiiiieiiiiiieiiiiiie e eeeee e, 50
DE2-Counter-TO-LED-BIINKETcoiiiiiieieieiie et e e e e e e e e s 50
RUNNING MUIIPIE MONIEOIS ..ot e e e e e e e e e e e e et e s e e e e e eeeeeeseennnnn s 50
Start Monitor From HUB RAM MEIMOIYuuiiiieiieiie e ee e e e ee ettt e s e e e e e e e e eaesanenneeneee e 51
REPIACE_EXAMPIE.SPIN. .. ittt e e e e e e e e e e e e a e e e aan 51

Using the Propeller 2 Monitor Doug Dingus 2012 2

Introduction

Every Propeller 2 chip comes with a built in system monitor that you can use to have a low level
conversation with the chip as needed for your development, testing or experimentation using just
about any serial device capable of ASCIl communications. No programming tools are required to
use the monitor, though they are recommended to generate code to be uploaded or better
understand the contents of shared HUB or core COG memory.

This book contains information on how to use the monitor in a variety of practical and useful ways
as well as basic chip information, such as ROM contents, memory layout and other things related
to the monitor. This book does not cover PASM programming beyond a simple example or two
necessary to demonstrate some advanced monitor functions.

For many users, the monitor can be the very first thing you do to get familiar with the Propeller 2!

Propeller 2 ROM / RAM Memory Layout

The Propeller 2 chip has three core PASM programs in ROM. These are: ROM_booter,
ROM_SHA256, and ROM_Monitor. Please see program listings in Appendix A at the end of the
document to examine them in detail and read the basic explanation text at the start of each
listing.

Both the Monitor and SHA256 ROM routines can be used from within your program. This guide
only covers starting the monitor.

Propeller 2 Memory Map

$0000 (0) Start of ROM
Booter

3.5Kb ROM SHA236

Monitor (

$0E7F (3711) End of ROM

|

HUB
Shared RAM

$OE80 (3712) Start of RAM

]
124.5Kb RAM ®
]

HUB
Shared RAM

$1FFFF (131071)

Propeller 2 has a 128Kb, 17bit memory address space ranging from $00000 to $1FFFF. Both
ROM and RAM exist within this address space. Addresses $000 to $OE7F contain the built in
ROM programs. Writable, shared HUB memory extends from $E80 all the way through to
$1FFFF, for a total of 3.5Kb ROM and 124.5Kb RAM.

Using the Propeller 2 Monitor Doug Dingus 2012 3

Propeller 2 Boot Sequence

When powered up, the Propeller 2 runs the booter program which controls the boot sequence.
There are three possible boot options, in this order:

1. Serial
2. SPI Flash
3. Monitor

Serial and Flash both require external data be sent to the chip, and optionally pass encryption
authentication tests.

If both of those fail, the monitor is activated on pins 90(rx) and 91(tx) by default. The monitor
will not activate if the encryption fuses have been set on a particular Propeller 2 chip. A
value of 0 is required to be present for the monitor to operate so that the chip is secure when it's
fuse bits are set for that purpose.

Once the monitor is activated, pressing the space bar on your serial capable device allows the
auto baud routine to synchronize and enable communications.

This is the default way to enter the monitor. Since it can be initiated from your program, the
monitor can be assigned to other I/O pins and started in a variety of ways.

Here is what the monitor looks like after it has been activated and you have pressed the space
bar to sync up the auto baud task:

#2 COMY - PuTTY

=== Propeller II Monitor

Using the Propeller 2 Monitor Doug Dingus 2012

Recommended Software Tools

Basically the only tool you need to interact with the monitor is some kind of serial terminal
emulation. Just about any device you can think of which is capable of plain ASCIl communication
will operate just fine with the Propeller monitor. Your author has used an Apple 2 home
computer, and is eager to try a TRS-80 Model 100 portable computer.

The monitor does not output any special ASCII characters, other than the system bell on user
input error. Only standard ASCII characters $20 - $7E are communicated.

Here is a short list of common terminal software options.

Propeller Serial Terminal

You can obtain the Propeller Serial Terminal via download from Parallax.com here:
http://www.parallax.com/Portals/0/Downloads/sw/propeller/Parallax-Serial-Terminal.zip

PUTTY

Putty is a very capable, configurable, fast and flexible serial terminal interface. Your author highly
recommends PUTTY as a serial terminal. PUTTY can be obtained here: http://www.putty.org/

PUTTY will be used for most examples in this book. Feel free to use whatever terminal software
or device you prefer.

Prop Terminal

This program was written by Andy Schenk. (Ariba) and is maintained and distributed on the
Parallax Support Forums. Here is a thread that has an updated P2 version capable of utilizing
the monitor to upload object files to a Propeller 2:

http://forums.parallax.com/showthread.php?144199-Propeller-11-Emulation-of-the-P2-on-DEO-
NANO-amp-DE2-115-FPGA-boards&p=1150859&viewfull=1#post1150859

And an older forum thread where updates are regularly posted:

http://forums.parallax.com/showthread.php?94310-Updated-the-PropTerminal

The Prop Terminal is special in that it renders the terminal session to a graphics window and
supports many graphics functions through the serial connection. If you need graphical data
verification and do not have video support connected to your Propeller 2 chip yet, this terminal is
a great option.

Using the Propeller 2 Monitor Doug Dingus 2012 5

Configure your Serial device.

Let’s test the Propeller 2 chip and serial terminal software you have chosen. Since the monitor
does auto baud, you need only know which COM port your serial device is talking through.

Due to the extremely wide variety of serial options available, this guide will only cover the Prop
Plug USB Serial Interface at this time. These instructions also work well for the onboard Serial
Interfaces found on many Parallax development boards, though the monitor is specific to
Propeller 2.

Connect and Identify COM Port for Prop Plug

Connect your Prop Plug to your PC USB port and verify the device has been recognized and

enumerated. You can use the Windows Device Manager for this. Either navigate through the
Control Panel, System applets, or input “mmc devmgmt.msc” into your Windows Start Menu, Run
dialog, or a DOS command prompt to launch Device Manager, as seen on the following page.

Device Manager Showing Two Prop Plugs Connected to Windows XP
System. (Other Windows Operating Systems Similar.)

%bevice Manager @@
Ele Afction Wiew Help
a 2 =Ba

= #58 Network adapters
~E8 11afb/fg/n Wirsless LAN Mini-PCI Express Adapter
-~ H8 [ntel(R) PRO/1000 PL Network Connection
B8 Sonic\WALL Yirtual NIC Prop Pl ug 2
= [PCMCIA adapters
= Ports (COM & LPT)
S USB Serial Port: (COME)

|- Prop Plug 1

- o7 LS Serial Port (COMQ) e— :
4| <P -Cerial Conroler 3 Other Senal
« ¥ Processors v Device Not FU“y

Installed

To determine the port when multiple serial devices are present,
disconnect, then connect the Prop Plug USB while viewing the Device
Manager to see it's COM port assignment appear in the list.

Only one Prop Plug is needed, however two can be advantageous when the monitor is called
from a user program. Two are shown in the screen capture above along with another generic
USB to Serial device which could be used with the monitor. Note the little yellow or red icon that
may appear next to your COM port assignment, as seen on the generic USB device above. If
those are present, yellow means the driver isn’t correctly installed and red means hardware
failure of the Prop Plug.

If other USB devices operate correctly, assume the trouble is your Prop Plug driver and reload it
from here: http://www.parallax.com/usbdrivers

When you can connect the Prop Plug and just see a COM port assignment without any status
icons, note the COM port as that will be needed to tell the terminal software which device to
communicate through. In this guide, COM 9 will be used.

Using the Propeller 2 Monitor Doug Dingus 2012

You can optionally change the COM port assignment in the Device Manager screen. Select the
device port you want to change, right click on it to access its properties and navigate to the Port
Settings tab. Select the advanced button to see the port assignment screen shown below and
input your desired COM port.

Advanced Settings for COM9 PR

USE Transfer Sizes
Select lower settings to correct performance problems at low baud rates,
Defaults
Select higher settings For Faster performance.
Receive (Bytes): 4096 e
Transmit (Bytes): 4096 e
B Options Miscellaneous Options
Select lower settings to correct response problems, Serial Enumeratar
Serial Prink
Latency Timer {msec): 16 e SriaFrinter 0
Cancel If Pawer OFF [F
Timeouts Ewvent On Surprise Removal D
Minimum Read Timeout {msec): 0 w Set RTS On Close O
Minirum Write Timeout (msec): 0 3 Disable Modem Ctrl At Startup O

If you see a “port in use message”, you may have assigned multiple devices to the same port,
and or may require a restart of your computer to fully assign the port. If you have trouble after a
port assignment, try another port or use the default port assignment.

You are now ready to connect to the Propeller 2 chi p.

Using the Propeller 2 Monitor Doug Dingus 2012

Connect Prop Plug to Emulated Propeller 2

Connect your Prop Plug to the Propeller 2 board. At the time of this writing, only ALTERA FPGA
Propeller 2 emulation boards are available. This section will be revised and some content added
to the document overall when that changes.

Two FPGA emulation kits are available: DE2-115 and DEO-NANO. The DE2 emulation supports
6 COGS and has LED connections and switches available for testing and the DEO board supports
1 COG. This document was authored using the DE2 board. Not all examples shown are
possible with the DEO due to the lack of concurrent COGS in that emulation.

Additionally, this document does not cover the specifics of the FPGA emulation setup as that is
temporary and subject to change when real hardware becomes available. Again, this document
will be revised when that occurs. Until then, it's useful to understand how the monitor works and
a lot of things you can do with it now on an emulated P2.

Here is a connection diagram for the DEO-NANO emulation:

£
» CEELS
o

8n|ddoid

(=3 |
(=)
(=
F 3
(=
(i

gLl

Using the Propeller 2 Monitor Doug Dingus 2012 8

And this is the one or two Prop Plug connection diagram for the DE2-115 emulation:

.

Fii i IR R T iidiiiianey -@

Coginit monitar_pgm,monitor_ptr 'relaunch cogd with manitor

onitor_pgm ‘monitor program address

‘monitor_ptr

Jong $70C
long 15<<3 + 13

Second Prop
Plug to run
Maonitor

Using the Propeller 2 Monitor Doug Dingus 2012

Configure PUTTY

PUTTY requires very little configuration to operate well with the monitor. The key to using
PUTTY quickly is to configure a setup and save it for future use. A two Prop Plug configuration
will be shown, with COM 9 being the main Prop Plug, used for both programming the Propeller 2
and monitor communications, and COM 8 being the secondary Prop Plug used to access the
monitor after a user loaded program calls the monitor on the secondary communication pins
designated.

A minimum PUTTY setup looks like this:

E% PuTTY Configuration

Specify the COM port, a baud rate and

Cateqgory: w i
=I- Session Basic options for your PuTTY seszion SeleCt the Se”al bUtton'
T L.oglging Specify the destination you want to connect to
= erminal L 1
Kepboard S;ﬂn:;ne SS?SE?D PUTTY requires that you populate the setup
Bel values, assign a hame to them then select
Features Connection type: “ ” :
= it O R O Tabnet O Rlogin O55H ® Serial the “save” option to preserve them for future
Appearance . use.
Behaviour Load, zave or delete a stored sezzion
Translation Saved Seszions .
Selection Fropeller If you don’t do the save step, PUTTY will
o Defau Setings 1 | launch with those values and forget them
! =
Dat e —— when your session is done. This is good for
F'ri:y Propeller_Secondary teSti n gy g
Telnet '
FRilogin
x gsﬂl Many options are available, such as colors,
e Close window on exi: _ system bell, etc... The minimum ones
O slways OMever () Only on clean exit . . .
needed to interact with the monitor are
shown on this setup screen.
[oom J(cows]

Power Up Quick Test

It's time to power up your Propeller 2 board and access the monitor. Make sure there are no
bootable devices attached to your Propeller 2, turn on the power, launch PUTTY or your preferred
terminal emulation software and press the space bar once to see the monitor reply:

COM9 - PuTTY

=== Propeller II Monitor ===

Success! Now it's time to start using the monitor.

Using the Propeller 2 Monitor Doug Dingus 2012 10

Using the Monitor Basics

Now let’s take a tour of the P2 chip using the monitor. Despite the fact that no program has been
loaded, there are a number of things to do at this early stage. From this stage onward, monitor
screen shots will only be used when there is some value in doing so. For most use case
explanation, plain text works. A different font will be used to differentiate monitor interaction text
from the explanatory text, along with color used to highlight specific things..

The monitor prompt is a single “>" sign. When that is present, you can input commands.
When it's not, the monitor is either not running or busy processing some command already given.

Built in help screen

Input a question mark and the CR / Enter key to see the built in command help text displayed on
your terminal:

=== Propeller II Monitor ===

>?7
- HUB -
{adr{.adr}} - View
{adr{.adr}}/{dat{ dat}} - Search
{adr{.adr}}:{dat{ dat}} - Enter
adr.adr[</>]adr - Move
adr.adrA - Checksum
adr@ - watch
[Y/w/N] - Byte/word/long
- COGS -
cog+adr{+adr} - Start
cog- - Stop
M - Map
- PINS -
{pin}[H/L/T/Z/R] - High/low/toggle/off/read
pin# - watch
pin|cfg - Configure
dat\ - Set DACs
- MISC -
dat* - Set clock
! - Repeat
Q - Quit
>

For clarity, the monitor prompt is colored blue, your input green and the output text red. Despite
the small amount of text output by necessity so as to keep the Propeller 2 ROM size at a
minimum, there is a lot of information on this simple reminder screen. In fact, it's the entire
command reference for the monitor!

Command Groups

Commands are broken down into four groups based on what areas of the Propeller 2 they impact
the most.

HUB

Hub commands operate on the shared HUB memory space, both RAM and ROM. To the
monitor, there is no difference between the two. It's all HUB memory. To us, there is a difference
in that the ROM is read only, and the RAM is writable. HUB commands can display memory
contents for us, write values, search for occurrences of unique values, watch memory addresses
and declare the unit display, such as bytes, words and longs.

Using the Propeller 2 Monitor Doug Dingus 2012 11

COGS
Cog commands operate on COGS. It's possible to stop, start and map the state of the Propeller
2 COGS, even while a program is running!

PINS
These commands affect the state of the 1/O pins. It is possible to set pin states, such as high,
low, toggle, off, read; watch pins, configure them and set the DAC values associated with pins.

MISC

These commands are grouped because they don't fit well into the other categories.
Miscellaneous commands include being able to set the clock, repeat input data and exit the
monitor.

Basic Task Examples

Of these groups, the HUB commands are probably the easiest, so I'll start with those first. Feel
free to follow along on your P2. Rather than write up an exhaustive detail on syntax, an
interactive task based approach will be used. The syntax isn't difficult and should become
obvious once you have worked through a few of these tasks.

Display Contents of HUB Memaory

You can start out by just typing in an address. The monitor expects hexadecimal addresses,
which consist of the numbers 0-9, and the letters A-F and addresses are not case sensitive, nor
are they required to contain leading characters. If you are not familiar with hexadecimal
addressing, Wikipedia, http://en.wikipedia.org/wiki/Hexadecimal along with many other sources
have tutorials you can use.

For windows users, the system calculator has a programmer mode that includes quick and easy
hex to decimal conversion. Select “view” from the calculator menu to access the scientific or
programmer mode, depending on what version of Windows you are using. A tutorial on that can
be found here: http://grok.lsu.edu/article.aspx?articleid=8220

Let’s start with very low memory:

=== Propeller Il Monitor ===

>4

00004- 32 ‘2!
>a

0000A- 7C Y
>A

0000A- 7C Y
>0.f

00000- 50 72 6F 70 32 2E 30 20 00 20 7C OC 03 CA 7C OC '"Prop2.0 . |...]."'
>

Again, the same conventions are used: Blue for the prompt, your input in green and the monitor
output in red.

Going from top to bottom, the first address input was “4”. The monitor output confirms the
address in 5 digit form, followed by its contents as both a hex value 32 and an ASCII character,

HZH.

00004- 32 '2'

The next address input was “a”, which is 10 decimal, and the value returned was 7C, character
“|”. Notice the third input “A” and that there is no difference in the output.

>a
0000A- 7C "
>A

Using the Propeller 2 Monitor Doug Dingus 2012 12

0000A- 7C '|"'
Remember, addresses are not case sensitive.

The final input is an address range! Two addresses separated by a period “.” will cause the
monitor to display the full range of addresses. In this case, address 0 through F is 0 through 15

decimal, the first 16 addresses in the Propeller 2.
>0.f
00000- 50 72 6F 70 32 2E 30 20 00 20 7C OC 03 CA 7C OC 'Prop2.0 . |...|.'

These outputs feature some delimiters, highlighted in black above. Whenever the monitor
outputs memory contents, it states the start address for the line, then one or more values, up to
16 per line separated by spaces. An ASCII text representation inside of single quotes follows to
complete the line.

You read this as: Address 00000 = 50, address 00001 = 72, and so on until the end of the line,
address 0000F = OC.

Now let’s look at the end of ROM.

>E70.E8F
00E70- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
00E80- 00 00 00 00 OO 00 00 00 00 OO 00 OO 00 00 0O 00 e !

Note the series of text characters, “== end of rom ==" form a useful marker to help you see where
ROM ends and RAM begins.

When working with the monitor, it's just simple letters, numbers and characters. Really, the bare
minimum needed to get stuff done. When we write addresses formally, a very common
convention for hex addresses is to precede them with a dollar sign to differentiate them from
decimal numbers. Until this point in the guide, that has been ignored to keep things simple.
Dollar sign hex addresses will be used in the explanatory text from now on where it makes sense
to do so.

The end of ROM is $0E7F, and the beginning of RAM is $0E80. If we want to store values in the
HUB, we must do that with addresses that are in the RAM region, which runs from $0E80 to
$1FFFF. Notice the highest HUB memory address is 5 digits? That's why the monitor formats alll
address output to 5 digits. You don’t have to worry about that on input however. When the
monitor does it, really this just makes everything look nice and easy to read on the terminal.

One thing we can see from this simple HUB memory display is the RAM memory contents are all

zeros! HUB memory is cleared during the Propeller boot process and we can see the results of
that here.

Modify Contents of HUB Memory
Modifying HUB memory values works a lot like displaying HUB memory does.

Let's say you want to put the number $FF into address $E80, the first available one. All you need
to do is input the address, a colon and the value desired.

>e80: ff

Notice there is no output on this one. Technically, a write operation doesn't yield output. The
write just happens, if possible.

Here are two more:

Using the Propeller 2 Monitor Doug Dingus 2012 13

>e83.e8f: ff
>e83.e8f:AA

These are simple range fills. First, the address range from $E83 to $ES8F is filled with the value
$FF, then filled again with $AA.

Now display to verify the results are as expected:

>e80.e8f
00E80- FF 00 00 AA AA AA AA AA AA AA AA AA AA AA AA AA e !

It's also possible to populate address sequentially:

>E90: 11 22 33 44 55 66 77 88 99 00
>E90.E9f
00E90- 11 22 33 44 55 66 77 88 99 00 00 00 00 00 00 00 YL"3DUfw. L !

Patterns, Block Moves and Search

The monitor can either look through an address range for a specific pattern of values, or fill a
range with a specific pattern of values, or block move the contents of HUB memory.

Write Multiple Values to an Address Range

Let’s do reverse order this time. First, a fill address range with pattern. That end of ROM
message is nice.

>e70.e7f

00E70- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
>1000.103f: 3d 3d 20 45 6e 64 20 6f 66 20 52 4f 4d 20 3d 3d

>1000.103f

01000- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
01010- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
01020- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
01030- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
>

The only difference here is simply supplying more values to the range fill operation. That is the
pattern. Here is another example:

>2000.20ff: 00
>2000.2024: 11 22 33 44 55

>2000.2024

02000- 11 22 33 44 55 11 22 33 44 55 11 22 33 44 55 11 '."3Du."3DuU."3DU. "
02010- 22 33 44 55 11 22 33 44 55 11 22 33 44 55 11 22 '""3pu."3DpU."3DU.""
02020- 33 44 55 11 22 "3pu."’

>

First zero the address range $2000 - $20FF. Then pattern fill $2000 - $2024 with the byte values,
$11, $22, $33, $44, $55, and finally display them to verify what happened.

Block Move Linear Chunks of RAM

Instead of typing all those in, just ask the monitor to move them instead! You use the greater
than and less than characters to indicate which direction the move is to happen. In the example
below, the address range containing that End of ROM string is copied to the destination address
$2000.

>e70.e7f

00E70- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
>e70.e7f>2000

>2000.201f

Using the Propeller 2 Monitor Doug Dingus 2012 14

02000- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM =='
02010- 00 00 00 00 OO 00 00 00 00 OO 00 OO 00 00 0O 00 e !

Much shorter and faster! Moves also come with no worries about fat fingering one of the values
at the keyboard either. In this context, just like in Propeller Assembly Language, move really
means copy.

The greater than character “>" means, block copy the address range ($E70 - $E7f) starting at the
destination address. ($2000)

Here is another move example:

>1000.2000:0

>1000.101f<0

>1000.102f

01000- 50 72 6F 70 32 2E 30 20 00 20 7C OC 03 CA 7C 0OC '"Prop2.0 . |...]."
01010- 45 FE C1 OD E3 B6 FC 0C 01 Cc4 7C O0C 01 ¢4 7C OD "Eeriinens [...]."
01020- 00 00 00 00 OO 00 00 00 00 OO 00 OO 00 00 0O 00 e !
>

In this example, the range $1000 - $2000 is filled with zeroes. The move is specified reversed
from the example above.

>1000.101f<0

This means “fill the range $1000 to $101f with sequential and incrementing addresses beginning
at $0.” Unlike the “>" example above, the range is now a target instead of a source, which is
specified by the “<” character shown.

Finally, that range is displayed to verify the move was the one intended. “Prop2.0” is found at the
very beginning of ROM, indicating the right move did happen.

Perform a Search within Data Range

You can quickly find where a specific set of data values appears in the HUB memory space.
Here is a quick search for the word “ROM™:

>0.e80/52 4f 4d
00E7A- 52 4F 4D 'ROM'
>

Sometimes there may be multiple occurrences of the target data string. The monitor includes a
repeat command, a single quote “” and the colon “:” for this purpose. You start a search by the
usual address range input shown above, then use the colon to continue with next address and
the desired data followed by repeatedly using the single quote key to display multiple occurrences
one at a time:

>100.e80/3d 3d
005AB- 3D 3D f==!
>:/ 3d 3d

005Cc4- 3D 3D t=="

00E70- 3D 3D '=='
00E7E- 3D 3D '=='

The repeat character does not display. Instead, it just puts your input back on the line to process
again quickly. For the search above, there were four occurrences. If you follow that example and
continue to hit repeat, the search will begin again and display the four occurrences’ repeatedly.
This is useful if you are expecting some data to change, or you want to glance through the
various occurrences again.

Using the Propeller 2 Monitor Doug Dingus 2012 15

Plain Text Input

Use the single quote character to denote text input as shown. First, “now is the time” is written as
ASCII text starting at $2000, and then addresses $2000 - $200F are displayed to show the text in
the HUB. Finally, a search is run from $1500 - $2200 for the string “is the”, which is found at
$2004.

>2000: "now is the time'

>2000.200f

02000- 6E 6F 77 20 69 73 20 74 68 65 20 74 69 6D 65 00 'now is the time.'
>1500.2200/"'is the'

02004- 69 73 20 74 68 65 'is the'

>

“ou

You only need the leading single quote character when the text is the only input; otherwise
use two of them if the input is mixed hex and text:

>2000:ff 'hello' aa bb

>2000.200f

02000- FF 68 65 6C 6C 6F AA BB 00 00 00 00 00 00 00 00 '.hello.......... !
>

Watch Pins, Addresses and Set Various States

The monitor can watch a pin state change, or watch address values change. You can also set
pin states and DAC Values.

Watch an Address

When running the monitor in tandem with other processes, it's often useful to observe HUB
memory values change. The watch command “@” does this.

Here is a short sample watch session:

>1000@
50 00 02 04 FF
>

In another instance of the monitor running on a different COG and pins, | changed the contents of
$1000 a few times so that there was something to watch:

>1000:00
>1000:02
>1000:04
>1000: ff
>

Once a watch is initiated, the monitor returns the current value of the address right away. When
the monitor sees the value change, it outputs it. Press any key to end the watch and return the
monitor prompt.

It's possible that the values change more quickly than both the monitor can watch, and your serial
device can display. Watch will simply return what it sees.

See Appendix B for another address watch example.

Configure I/O Pin and Set Pin State

The full details of I1/O pin configuration are beyond the scope of this monitor reference guide;
however, the simple example of setting a pin high or low will demonstrate how to use the
command. I/O pins have many configuration options documented elsewhere. At this time, there
is community reference documentation available here:

Using the Propeller 2 Monitor Doug Dingus 2012 16

The unofficial P2 documentation project - Google Drive

To set a given pin, you specify the pin number in hex, followed by its configuration value. A
configuration value of O sets the pin to be a simple logic output.

Pin numbers and configuration values are HEX values

On the DE2, pins $20 (32) to $31 (49) are connected to the onboard LED’s. For the NANO, you
need to connect an LED through a suitable current limiting resistor or view the pin state with your
meter or scope.

Let’s set pin $21 (33) to output and set it high, then low, then high:

>21|0
>21H
>211
>21h

There is no monitor output on this command. Verify the pin status visually with an LED, meter or
scope.

The first line configures the pin with two arguments separated by the pipe “|” character. “21|0"
reads as “configure pin $21 to I/O configuration state 0”

Once a pin has been configured, you can then set its state as shown, “H” for high , “L” for low .
See the documentation for more information on other pin states possible.

Watch an 1/O pin

In addition to watching addresses, the monitor can watch an I/O pin for you. This is useful for
quick notification that the pin state is changing when there isn’'t an external indicator to use. As
with addresses, the monitor will only report what it sees and it may not see every pin state
change if the state changes are faster than the monitor can scan the pin.

In this example, any pin state change can be used. On the DE2, there are pushbuttons mapped
to I/O pins $32 (50) - $34 (52). For the NANO, any of the I/O pins may be used with a suitable
current limiting resistor.

Here is a sample watch session. It's very simple, input pin number and “#” and when you hit
enter watching begins! Any key ends the watch.

>32#
101010101010101010101010101010101
>33#

101010101

>

First watch pin $32, press the “Key 0” button a few times, end the watch. Watch pin $33, press
button “Key 1" a few times, end the watch.

SET COG DAC Values

Each COG has 4 hardware DACS. Emulation hardware is not yet available for testing. This
command sets all four DACS to 8 bit values:

>1155CCFF\
>

DACO=FF, DAC1=CC,DAC2=55 DAC3=11

Using the Propeller 2 Monitor Doug Dingus 2012 17

More information on the DAC values will be provided in the future.

Set the Propeller Clock (CLKSET)

This command takes a single data value and passes it directly to the CLKSET assembly
language instruction, which then changes the Propeller 2 clock mode. Because this also involves
establishing new baud rate metrics, you are prompted to hit the space bar so that communication
with the monitor can continue with the new clock settings.

For reference, the CLKSET command takes 9 bits of data. ($0 - $1FF) The bit fields are:

CLKSET Bit Field Function Definition
8 7.4 3210

%0 = continue operating across clock change X XXXX XX XX

%1 = hardware reset

%0000 = PLL disabled
%0001 = 2X PLL Multiplier
%0010 = 3X PLL Multiplier

&

&

%1111 = 16X PLL Multiplier

%00 = Xl reads low, XO floats

%01 = Xl input, XO floats

%10 = X1/ X0 xtal oscillator 15pf int load, 1M-ohm feedback
%11 = X1/ X0 xtal oscillator 30pf int load, 1M-ohm feedback

%00 = RCFAST (~20 Mhz)
%01 = RCSLOW (~20 Khz)
%10 = XTAL (10Mhz — 20Mhz)
%11 =PLL

Here is an example where the clock is first set to RCFAST, then RCSLOW:

>0%
Hit SPACE

>0.

00000- 50 72 6F 70 32 2E 30 20 00 20 7c 0OC 03 cA 7cC OC '"Prop2.0 . |...|."
>1:’:

Hit SPACE

>0.f

00000- 50 72 6F 70 32 2E 30 20 00 20 7c 0OC 03 cA 7c OC '"Prop2.0 . |...|."
>

Using the Propeller 2 Monitor Doug Dingus 2012 18

More Advanced Examples

These examples all go beyond simple memory operations and into tasks that you may find useful
when your programs are running or you are developing new tools.

Transfer small PASM program to HUB and run it on a COG

In this example, the Propeller 2 chip is running and the monitor is also running on one of the
COGS. ltis possible to directly transfer a PASM program to the Propeller 2 chip through the
monitor and run it on one of the COGS without having to reset the chip, or utilize one of the

Propeller loader utilities.

Here is a short PASM program that writes the counter to the output pins, which blink the LEDS in
a binary pattern. On the DE2-115 board, those LEDS are connected to the Port B output pins.
(P49..P32). The higher 8 bits are written so they can be seen blinking at a human scale rate.

' Terasic DE2-115 Prop2 Multi LED Blinker

DAT
org
mov dirb, outmask 'make the port B I/Os outputs

:Toop getcnt A 'fetch Tlower 32 bits of global counter
shr A, #16 'shift away the fast incrementing digits
and A, outmask 'zero Tower bits
mov pinb, A 'write slow digits to LED's on DE2 board
jmp #:1o0p 'keep doing 1it!

outmask long $00_00_FF_00 'write higher bits only

A res 'storage

Here is the object code listing from the Pnut.exe P2 compiler, with the program bytes of interest in

red:

Object Code:

TYPE: 4B VALUE: 00040004 NAME: LOOPOO
TYPE: 4B VALUE: 00180018 NAME: OUTMASK
TYPE: 4C VALUE: 001C001C NAME: A

OBJ bytes: 28

_CLKMODE: 00
_CLKFREQ: 00B71B00

0000- 06 FA BF AO OD OE FC OC 10 OE FC 28 06 OE BC 60

0010- 07 F2 BF A0 01 00 7C 1C 00 FF 00 00

Now it's time to enter the monitor, directly input this program and run it on one of the COGS.

=== Propeller II Monitor ===
>1000: 06 fa bf a0 0d Oe fc Oc 10 Oe fc 28 06 Oe bc 60
>1010: 07 f2 bf a0 01 00 7c 1c 00 ff 00 00

Display them to verify the correct bytes were entered.

>1000.101f
01000- 06 FA BF A0 OD OE FC OC 10 OE FC 28 06 OE BC 60
01010- 07 F2 BF A0 01 00 7C 1c 00 FF 00 00 00 00 00 00

Using the Propeller 2 Monitor Doug Dingus 2012

19

Display COG State Map, Run the Program On Various COGS

The monitor can display the state of the COGS. On the DE2 board, 6 cogs are available. On the
NANO, only a single COG is available.

Display COG Map to see monitor running on COG 0, other COGS free.

>m
0000000M

Start up COG 2 with the Program found at $1000

>2+1000

Map that to see COG 2 busy, and LED'’s blinking on the DE2.

>m
0000010M

Start up COG 4 with the same program

>4+1000

Map now shows COG 2 and COG 4 active, monitor on COG 0

>m
0001010Mm

Kill off both COGS. Many commands can be stacked.

>2-4-
>m
000000O0M

A COG number “+” program address starts a COG. A COG number “-* ends that COG. “M”
displays the map.

Set BYTE, WORD, LONG modes

The Propeller 2 is a little endian CPU. This means data is stored least significant bytes first, with
more significant bytes stored sequentially toward higher RAM. This can be very confusing and
error prone on both input and display of data.

The monitor can operate in byte (Y), word(W) and long(N) modes to assist you.

Here is that same program listing at $1000 shown in all three modes. Notice you can stack
commands here, declaring the mode right on the same line as an operation.

>1000.101f
01000- 06 FA BF A0 OD OE FC OC 10 OE FC 28 06 OE BC 60 e ...
01010- 07 F2 BF A0 01 00 7C 1c 00 FF 00 00 00 00 00 00 B !

>W

>1000.101f

01000- FAO6 AOBF OEOD OCFC OE10 28FC OE06 60BC e (T
01010- F207 AOBF 0001 1c7C FFOO 0000 0000 0000 e [veennt !

>N1000.101f

01000- AOBFFAO06 OCFCOEOD 28FCOE10 60BCOEQ06 T IFI ..
01010- AOBFF207 1C7c0001 0000FFO0 00000000 P

Using the Propeller 2 Monitor Doug Dingus 2012 20

Use Paste to Upload Programs and Data through Monitor

You may find it useful to upload data and programs into a running Propeller 2. The monitor can
do this quickly and easily. All you need to do is send the data through the terminal emulation, or
via the operating system into the monitor which will write it directly to the HUB for you.

You format the data the same way you would enter the data into a live monitor window.

If you want to input words or longs, simply include the appropriate command in the data text. Eg:
n1000: would specify long input starting at address $1000.

Here is an example using the default byte input mode:

Copy this text into your clipboard, and optionally put it into a file named data.txt

1000: EO 06 FC OC 04 06 3C 0C 03 00 7Cc OC OCc 07 00 00
1010: FF FF FF FF FF

: OD 1E 00 00 5B B4 00 00

103A: 11 22 33 44

: 66 77 88 99
1000: FO

Then paste into the terminal emulation:

2% PuTTY Reconfiguration

Categony:
= Session Options contralling copy and paste
Logging
= Teminal ool ol moee Doing this varies according to your terminal
ction of mouse buttons: . .
Keyhaard & Wwindows [Middle extends, Right bings up meny) SOftWare documenta“On . Some emu |atI0nS

Bel () Compromize [Middle extends, Right pastes)
) Featuies O wterm [Right extends, Middie pastes)
" Wlniow Shift overrides application's use of mouse
Ppeatance Default selection mode [<+drag does the other one:

Behaviour (& Mormal (O Bectangular block
Translation

allow a direct paste into the text window,
others require configuration first. In PUTTY,
your input device settings might require you
declare what the paste action is. In the
settings screen, the option “windows” is set so

Control the zelect-one-word-at-a-time mode

Colours

Character classes:

- 30"223‘;'0" o (o 0 ~ that a right click in the terminal window brings
2 (0402 0 up “paste” as a menu option.
3 [0=03) 1]
4 [004] i b
Set to class Set

Formatting of pasted characters
[Paste to clipboard in RTE as well as plain test

Apply] [Cancel

Here is the result of doing that paste: (paste text shown black)

=== Propeller II Monitor ===

>1000: EO 06 FC 0C 04 06 3Cc OC 03 00 7c 0Oc Oc 07 00 00
>1010: FF FF FF FF FF

>: 0D 1E 00 00 5B B4 00 00

>103A: 11 22 33 44

>: 55

>: 66 77 88 99

>1000: FO

>1000.104f

01000- FO 06 FC OC 04 06 3C 0C 03 00 7c OC 0C 07 00 00

01010- FF FF FF FF FF OD 1E
01020- 00 00 00 00 00 00 00
01030- 00 00 00 00 00 00 00
01040- 77 88 99 00 00 00 00
>

Using the Propeller 2 Monitor

00 00 5B B4 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 11 22 33 44 55 66
00 00 00 00 00 00 00 00 00

Doug Dingus 2012

21

Notice the monitor knows what the last address it operated on is. Any line beginning with just

a colon means “continue on using current address + 1" That allows for irregular or large
amounts of data to be uploaded without having to format each line individually with an address.
Simply start with one address, then use the colon character “.” to continue data input from where
ever the last line left off.

Input is up to 16 bytes at a time, due to the line input limit built into the monitor itself.

Data upload starts with some byte data input at address $1000. The next line explicitly specifies
the address $1010, which is also the next address to accept data. This alignment is nice, but not
necessary at all. Notice the address $1000 is specified again in the last line of the pasted text!
That value, $F0 overwrites the original value of $EO placed at the start of the operation.

Use explicit addresses when you want to initiate a block of data, then use the colon “:” to continue
to supply data allowing the monitor to automatically increment the destination address for you.
This way, it's possible to lightly edit an input file to place data somewhere else in memory quickly
and easily.

Note the colon following address $1010 and compare the bytes to the memory dump to see that
the line with the colon simply means, “Next address” If the address $103A were to be changed to
$2000, those 4 bytes on that input line along with the five bytes on the next two lines would be
located starting at $2000 with only that one change required, because the colon works relative to
the last explicit address given to the monitor.

You can perform a memory display or have the monitor compute a checksum to verify all lines
input correctly.

Copy Data File into Propeller 2 through Monitor

If it works with a paste operation, it will also work with a simple file copy to the serial device. A
Windows example will be shown. UNIX works in a similar way, but you will have to identify your
serial device table entry for use with the “cat” command. (cat data.txt > /dev/ttyds5 for
example)

Here is the same example text placed into a file:

I data.txt - Notepad FEX

Fle Edit Format View Help

#1000: EO 06 FC OC 04 06 3C 0OC 03 00 7C OC OC OF 00 00 A
1010: FF FF FF FF FF

: 0D 1E 00 00 5B B4 00 00

1034: 11 22 33 44

55
65 F¥ B8 99
1000: FO

The red dot indicates a single space is in the file, because that is the character the monitor uses
for its auto baud rate function. There is a single new line at the bottom to complete the input of
the last line as well.

Copy this file to the COM port you know is connected to the monitor using the copy command in a
standard Windows command prompt:

Microsoft windows XP [Version 5.1.2600]
(C) copyright 1985-2001 Microsoft Corp.

Using the Propeller 2 Monitor Doug Dingus 2012 22

C:\users\parallax>copy data.txt com8
1 file(s) copied.

C:\users\parallax>

You may find it necessary to change directory or drive or type a longer path to properly identify
your data file. If there are two monitors running, simply use one to verify the data input correctly,
or when the copy is complete, connect your terminal to the COM port to interact with the monitor
directly. It is still there waiting for more input.

@
? - Help
>1000.104f

01000- FO 06 FC OC 04 06 3C 0C 03 00 7C OC OC 07 00 00
01010- FF FF FF FF FF OD 1E 00 00 5B B4 00 00 00 00 00
01020- 00 00 00 00 OO 00 00 00 00 00 OO 00 00 0O 00 00
01030- 00 00 00 00 OO 00 00 00 00 OO0 11 22 33 44 55 66
01040- 77 88 99 00 00 00 00 00 00 00 00 00 00O 00O 00 00
>

Switching like this live sometimes takes a bit of practice. | find inputting a space character or two,
followed by a carriage return generally gets me the system bell, followed by a prompt. Once | see
the prompt, the monitor has adapted to the new connection and can then display results. Be
careful not to input addresses, or if you do, make sure they are low read only addresses so that
data isn’t overwritten by mistake.

You may also find using the windows “type” command more effective depending on whether or
not you want to send multiple files or make use of the operating system redirection and or pipe
capability: “type data.txt > com8”

Compute a Checksum
To do this with the monitor, specify an address range followed by the caret “” character:

>1000.104fA
00000C20

The monitor computes a standard 32 bit sum of the values contained in the address range
specified. Here is the PASM code listing for the checksum command routine, with some added
comments:

cmd_checksum call #check_range 'check range 1is valid
setptra vl 'prepare to sum all the bytes
: Toop cal #rdxxxx 'get a byte, returned in value
add y,value 'accumulate sum in y
djnz z,#:Toop 'Do all the bytes
mov value,y 'prepare to print sum (value)
mov hsize,#8 'number of digits to return to user
call #tx_hex 'send digits over serial
jmp #cmd_next_cr1f 'next command

Launch Monitor From Within Your Program

This is useful on both the single COG NANO as well as the DE2 multi-cog FPGA emulations.
Since the NANO only offers a single COG, it's very useful to end a program with a call to the
monitor for debugging and examining results! On the DE2, the monitor can run alongside your
program allowing for inspection of data, starting and stopping COGS and or modifying values
interactively.

Using the Propeller 2 Monitor Doug Dingus 2012 23

Starting the monitor from within your own program i s simple . All you need to do is specify
the monitor start address in the HUB, which is $70C by default when you start it from the ROM,
your serial I/O pins for TX / RX, and optionally a COG for it to run on. You can include the PASM
instructions and data below in the template listing into your own program. Simply modify the
starting COG value and tx/rx pin definitions.

Here is a commented program template listing for reference:

DAT

org
start_mon setcog #n '+ %1000 'uncomment '+ %1000' for next available cog

'function; otherwise,

coginit monitor_pgm, monitor_ptr 'start monitor on cog n

monitor_pgm long $70cC 'ROM entry point for monitor,
'this could be RAM for a modified monitor.

monitor_ptr long 90<<9 + 91 'serial pins = RX<<9 + TX

The SETCOG instruction controls how the COGINIT instruction does things. If you specify a valid
COG number, known as a COG ID between 0 and 7 (%000 to %111 binary), COGINIT will start
that COG with the monitor. COGINIT can even restart the COG it is running in with a new
program!

When SETCOG is given a value that results in bit three being set (%1xxx), the behavior of
COGINIT changes to start the monitor on the next available COG, not a specific COG.

This functionality is important on the NANO FPGA emulation because it only has one COG to
operate with, which requires COG 0 be specified as the monitor COG. On the DE2, 6 COGS are
available, meaning you can choose to let the Propeller 2 assign the next free COG, or choose
one from the 6 available.

The other two lines, labeled “monitor_pgm” and “monitor_ptr” hold the monitor HUB start address
and pin definitions needed for the COGINIT command to do its job.

You are free to run multiple instances of the monitor as long as there are COGS free to run them
and unique pins available for each monitor to communicate on.

Please see the program listing “Running Multiple Mo nitors” in Appendix B for more
information.

Modify Running PASM Program

This example demonstrates the modification of HUB run-time values while a program is running,
and the replacement of a COG program with a different one, also while a program is running.

This example is kept simple, limited to blinking LED’s and one of the pushbuttons on the DE2
emulation board.

For now, until the state of tools has advanced, Pnut.exe assembles things at $0, but the program
load happens at the beginning of RAM. This means HUB address references need to have $E80
added to them, or they will be referencing values in the ROM. This information is presented as a
means to understand the very basic things that happen with a P2 is loaded with a program.

Please refer to the program listing in Appendix B, “Replace_Example.spin” throughout
this example .

Using the Propeller 2 Monitor Doug Dingus 2012 24

Here is the object code listing from Pnut.exe: (load .spin file, then ctrl-L)

TYPE: 4B VALUE: 00000000 NAME: START_MON
TYPE: 4B VALUE: 00140014 NAME: LOOPOO

TYPE: 4B VALUE: 002C002C NAME: MONITOR_PGM
TYPE: 4B VALUE: 00300030 NAME: MONITOR_PTR
TYPE: 4B VALUE: 00340034 NAME: WRITE_ADDRESS
TYPE: 4B VALUE: 00380038 NAME: ENTRY_ADDR
TYPE: 4C VALUE: 003C003C NAME: A

TYPE: 4B VALUE: 0000003C NAME: ENTRY

TYPE: 4B VALUE: 00080044 NAME: LOOP

TYPE: 4B VALUE: 00240060 NAME: PIN

TYPE: 4B VALUE: 00280064 NAME: DELAY

TYPE: 4B VALUE: 002C0068 NAME: DELAY_ADDRESS
TYPE: 4B VALUE: 0030006C NAME: TOGGLE_MASK
TYPE: 4C VALUE: 00340070 NAME: TIME

OBJ bytes: 112

_CLKMODE: 00
_CLKFREQ: 00B71B00

0000- EO 06 FC OC OC 16 3C O0C EO 10 FC OC OF 1C 3¢ OC <ivnnnan <.
0010- 01 FA FF A4 OD 1E FC OC 18 1E FC 28 08 1E FC 2C (T
0020- OF F2 BF A0 OD 1E 3C 04 05 00 7C 1c OC 07 00 00 ST I
0030- 5B B4 00 00 00 20 00 00 BC OE 00 00 DB 12 7C OC [.... [.
0040- 09 18 BC 2C OD 1A FC OC OA 1A BC 80 OF 1A FC 80 e
0050- OA 1A BC FC OC F2 BF 6C OB 14 BC 08 02 00 7C 1C To..... |.
0060- 21 00 00 00 80 c3 C9 01 E4 OE 00 00 01 00 00 00 Lo,

And a monitor memory dump of the program after it has been loaded and executed:

00E80- EO 06 FC OC 0OC 16 3C 0C EO 10 FC OC OF 1C 3C 0C ! !
00E90- 01 FA FF A4 OD 1E FC OC 18 1E FC 28 08 1E FC 2C ! !
00EAO- OF F2 BF A0 OD 1E 3C 04 05 00 7C 1c OcC 07 00 00 ! - !
00EBO- 5B B4 00 00 00 20 00 00 BC OE 00 00 DB 12 7C OC B P [.!
00ECO- 09 18 BC 2C OD 1A FC 0OC OA 1A BC 80 OF 1A FC 80 "L !
00EDO- OA 1A BC FC OC F2 BF 6C 0B 14 BC 08 02 00 7C 1C ! !
00EEO- 21 00 00 00 80 €3 €9 01 E4 OE 00 00 01 00 00 0O B !

00E80- OCFCO6EO0 0C3C160C OCFCIO0EQO 0C3C1COF ! !
00E90- A4FFFAO1 OCFClEOD 28FC1E18 2CFC1E08 ! !
00EAO- AOBFF20F 043C1EOD 1C7C0005 0000070C ! - !
00EBO- 0000B45B 00002000 00000EBC 0C7C12DB L [.'
00ECO- 2CBC1809 OCFC1AOD 80BClAOA 80FC1AQOF " !
00EDO- FCBC1AOA 6CBFF20C 08BC140B 1C7C0002 ! L
00EEO- 00000021 01c9c380 00000EE4 00000001 B !

This program starts up three COGS. Here is the COG map:

>m
ooo0ooOmMO11

An instance of the monitor is running on COG 3, and the two PASM programs running on COGS
0 and 1. COG 0 contains the counter to led blinker, and COG 1 contains the single pin blinker.

A counter value is being written to HUB address $2000, and a blink delay value is being fetched
from HUB address $EE4, highlighted in blue above. Other addresses contain constants that get
copied into the COG, and are not directly modifiable without restarting the COG with a new value.

Some of the byte address offsets in hex are highlighted above. Notice at the start of the program,
the number of bytes from $0 and the COG ORG offset bytes are the same. At label “entry”, a
new ORG directive takes effect, with the lower order word absolute and the higher order word
“cog relative” due to the influence of the ORG directive.

You can use either the offset values or a simple numerical search and or instruction long counts
to locate where data / addresses are in the object code, or simply label more of them as needed.

“write_address” = $0 + $34 + $E80 = $Eb4 contains address value $2000

Using the Propeller 2 Monitor Doug Dingus 2012 25

“pin” = $0 + $60 + $EB0 = $EEO = contains pin value $21 (33)

“delay” = $0 + $64 + $E80 = $EE4 = contains delay value $01C9C380 = 30_000_000
The higher word in the object code listing contains the offset from the last ORG directive.
“Entry” = $0 + $3C + $E80 = $EBC = Base address of second PASM program on COG 1.
“Pin” = $EBC + $24 = $EEO = delay value...

Now we know where all the addresses are and can now use the monitor to do things.

First, the easy one, let’s watch the counter value written to the HUB:

>2000@
00002E00 00002F00 00003000 00003100 00003200 00003300 00003400 00003500 00003600 00003700
00003800 00003900 00003A00 00003800 00003C00

Next, modify the blinker time delay value at address $EEA4, first a really slow blink followed by a
faster one:

>ee4

00EE4- 01C9C380 R
>ee4: OFFF0000

>ee4: 00ff0000

>

Let’'s say we want to change the blinking pin. That's a COG value; meaning COG 1 needs to be
stopped and started again with the new value, pin $20 (30) this time.

>ee0: 20

>eel

00EEO- 00000020 ot
>1-

>1+ebc

>

Finally, modify the COG 0 program to stop writing values to the HUB. One easy way to do that
would be to simply insert a NOP instruction ($0) where the WRWORD instruction currently is and
restart the COG. A quick look at the program listing:

:Toop
getcnt A 'fetch Tower 32 bits of global counter
shr A, #24 'shift away the fast incrementing digits
shl A, #8) o
mov pinb, A 'write upper counter digits to LED's
wrword A, write_address 'Put a value in the hub to watch with monitor
jmp #:Toop 'keep doing it!
monitor_pgm long $70cC 'ROM entry point for monitor,

shows us the WRWORD instruction simply is two longs lower in HUB memory than the data
stored at label “monitor_pgm”

The target address to zero out is: $0 + $2C — (two instructions = $8) + $E80 = $EA4

Now we zero the instruction out, stop the COG and restart it and verify nothing is being written to
hub location $2000:

>ea4:0

Using the Propeller 2 Monitor Doug Dingus 2012 26

>0-
>0+e80
y

=== Propeller II Monitor ===

>m
000OOMI1II1II1

>N2000@

00003800

>

The monitor dies off as the COGINIT instructions are still at the beginning of the program, and get
executed again when the COG is restarted. The solution is to either select another entry point to
restart the COG, or replace those instructions with a NOP. Because the single pin blinker is
initiated with “next available cog” (%1000) parameter value to COGINIT, there are now two of
them running on COGS 1 and 2, as well, both attempting to blink the same pin.

Address $2000 contains the last value written and isn’'t changing. Success!

Managing things from here is left as an exercise for the reader.

Closing

Ideally, you the reader now have a good understanding of how to use the monitor built into the
Propeller 2 chip along with some basic, low level understanding of what happens when a program
gets compiled and loaded into the Propeller 2.

Not all examples are intended as practical, every day production use cases. They do however
present some options that may be handy in some scenarios. One such scenario would be
building a program up in pieces, potentially loading data and other elements into the Propeller 2
memory map for testing and or capture as object code sans more advanced development tools.

It is also possible to do lots of rapid testing without power cycling the Propeller 2 as well.
Programs as well as data can be dropped into place along side running ones using the HUB
memory to communicate parameters and data between both the programs and the user via the
monitor and terminal.

At the time of this writing, the Propeller 2 and development tools are both in early stages. When
that changes, this document may well be expanded and modified to better serve you the reader.

From here it's on to bigger and better things to do with your Propeller 2!

Using the Propeller 2 Monitor Doug Dingus 2012 27

Appendix A Propeller 2 ROM Program Listings

ROM_Booter

The booter is located first in HUB memory, starting at location 0. The first 8 bytes contain the
Chip Version string information, “Prop2.0 ” followed by the shutdown routine used in case of
unsuccessful boot. Location $10 (16) is where the booter program starts. The booter runs on
COG 0, launching SHA256 when needed on COG 1.

Vdeddhdehhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhddid

L *
:* Propeller II ROM Booter *
* *
' version 0.1 *
LK *
' 11/01/2012 *
L") *
Ve e e e e e e e R e R R A T AN AN RN A AR NN AN R hhhhddd
CON

rx_pin = 91

tx_pin = 90

spi_cs = 89

spi_ck = 88

spi_di = 87

spi_do = 86

base = $E80
DAT

: version (@$000)
byte "Prop2.0 "

Shutdown (@$008)

org
clkset offset+h001 'set clock to rc slow
cogstop offset+h200 'stop cog0

gffset

: Booter (@$010)

org

reps #256,@:fuse 'ready to read 256 fuses

setport #rx_pin 'set rx_pin port for booting

cogid fuse_read nr read fuses (172 fuses + 84 zeros)
cogid fuse_read nr,wc 1ast iteration initializes cnt to

00000000_00000001)

add fuse_read, #1
test fuse_read, #$1F wz

: fusex rcr fuses, #1
:fuse if_z add : fusex, h200
cogid spi_read nr 'disable fuses and enab'le cnt
'(spi_read[10.. =0)

Attempt to boot from serial

jnp monitor_ptr,#boot_flash 'if rx_pin is low, skip serial and
'boot from flash

Using the Propeller 2 Monitor Doug Dingus 2012 28

call

mov
call
add
h001 shr
mov
call
test
mp
test
rcl
djnz

:1fsrin

if_c_eq_z

mov

:1fsrout cmp

if_z mov

test
call

clr
cal
setpnz
cal
set
cal
test
rcl
djnz

jmp

: wait for rx lTow/high - if timeout, attempt

wait_rx getcnt
add
rwaitpxx
. notb
wait_rx_ret

if_nc ret

#rx_bit

threshold,delta
#rx_bit
threshold,delta
threshold, #1

count,#250
#rx_bit

1fsr,#$01 wz
#boot_flash
1fsr,#$B2 wc
1fsr,#1
count,#:1fsrin

count,#250+8
count,#8 wz
1fsr,#$52
1fsr,#$01 wz
#wait_rx

#tx_pin

#wait_rx

#tx_pin

#wait_rx

#tx_pin

#wait_rx
1fsr,#$B2 wc
1fsr,#1
count,#:1fsrout

#load

time
time, timeout

waitpne rx_mask, rx_mask

iwaitpxx,#23

: Attempt to boot from flash

boot_flash mov

:cmd setp
clrp

reps
clrp

. cmpr
if_nc ro

setpc
. setp
:bit clrp

djnz

-_— = = = -

oad
mov
:long mov
:bit if_z call
if_nz getp

Using the Propeller 2 Monitor

count,#4

#spi_cs
#spi_ck

#32,0:bit
#spi_cs

count,#1 wC
spi_read,#1 wC,wz

#spi_di
#spi_ck
#spi_ck

count,#:cmd

Load from serial (z=1) or flash (z=0)

setptra Toader_pgm

count, h200
bits,#32

#rx_bit
#spi_do wc

Doug Dingus 2012

'measure low rx calibration pulses
'(host $F9 -> %1..010011111..)

'and calculate threshold

'(any timeout results in flash boot)

'(9 1sb's are $001)

'ready to receive/verify 250 1fsr bits
'receive bit ($FE/$FF) into c

'get 1fsr bit into nz

'1f mismatch, boot from flash

'advance 1fsr

'loop for next bit in

ready to transmit 250 1fsr bits

'+ 8 version bits

'if last 8 bits, set 1fsr so that version
'will be output

'$52 results in version $20 being sent

'(%00000100)

%et 1fsr/version bit into nz, z=1 on
ast iteration

wa1t for rx low (convey incoming $F9 on
'rx_pin to $FE/$FF on tx_pin)

'make tx Tow

'wait for rx high

'make tx 1fsr/version bit

'wait for rx low

'make tx high

'wait for rx high

'advance 1fsr

'loop for next bit out
'serial handshake done, attempt to load
'from serial (z=1)
to boot from flash

'ready timeout

wc 'wait for rx Tow/high with timeout
'toggle waitpeq/waitpne

'return if not timeout (boot_flash follows)

'ready for 3 resets and 1 read command

sp1 cs high
'spi_ck Tow

'ready for 32 command bits
'spi_cs Tow

'first 3 commands = $FF_FF_FF_FF (reset)
'last command = $03_00_00_{ 00 (read from 0),

'cycle spi_ck

'loop for next spi command

'load loader into base+$000..$7DF, HMAC into
'base+$7E0. . $7FF

'ready to input $200 Tongs
'ready to input 32 data bits

1nput serial bit (serial_mode)
'input spi_do (flash mode)

29

if_nz

if_nz

setp #spi_ck 'high spi_ck (flash mode)

clrp #spi_ck 'Tow spi_ck (flash_mode)
rcl data,#1 'shift bit into long
djnz bits,#:bit 'loop, adequate time for next flash bit
wrlong data,ptra++ 'store long in hub ram
' (ptra=base+$800 after)
djnz count,#:long 'loop for next long

Compute loader HMAC signature for loader authentication

base+$000. . $7DF
base+$7E0. .$7FF
base+$800. .$81F
base+$820. .$83F
base+$840..$843

:cmd
twailt

= loader . ($1F8 Tongs)
= loader HMAC signature (8 longs)
= fuses, 1lst half are HMAC key (8 longs)
= proper HMAC signature (8 longs)
= sha256 command interface (1 Tong)
reps #8,#1 'store 128-bit key + 44 extra
. 'fuses + 84 zero bits
setinda #fuses 'into base+$800..$81F
wrlong inda++,ptra++ '(ptra = base+$820, afterwards)
setcog #1 'Taunch cogl with_sha256

coginit sha256_pgm,sha256_ptr '(lst command will be
'set before sha256 executes)

setinda #begin_hmac 'do sha256 commands to compute
'proper Tloader hmac

mov count,#3 'ready for 3 commands: begin_hmac,
'hash_bytes, read_hash

wrlong inda++,sha256_ptr 'set command

rdlong data,sha256_ptr wz 'wait for command done

tjnz data,#:wait

djnz count,#:cmd 'loop for next command (z=1 after)

cogstop h001 'done with sha256, stop cogl

If loader authenticates, run it

:cmp if_z

if_z

reps #g,@:cmp 'verify loader hmac signa;ure (z=1 on entry)

setcog # 'ready to relaunch cog0 with

'Toader/shutdown/monitor

rdlong data,ptra[-$10] 'get loader hmac signature long
rdlong bits,ptra++ 'get proper hmac signature long
cmp data,#1 wz 'bits wz compare, z=1 if authenticated

coginit Toader_pgm,loader_ptr 'if loader authenticated,
'relaunch cog0 with Toader

Authentication failed, hide fuses and clear memory

If key <> 0,

if_z

if_nz

rx_bit

reps #$20000/16,#1 'ready to clear all memory
cogid monitor_pgm nr 'hide fuses (set bit 10)
wrquad ptra++ 'clear 16 bytes at a time (quad=0)

shut down - else, start monitor

or fuses+0, fuses+1 wz 'check if 128-bit key = 0
or fuses+2,fuses+3 wz
mov monitor_pgm,#$008 'if key <> 0, set shutdown,
'(overwrites fuse data in cog regs)
coginit monitor_pgm,monitor_ptr 'relaunch cog0 with shutdown
'or monitor

! Receive bit (c) - compare incoming pulse to threshold

call #wait_rx 'wait for rx low

getcnt delta 'get time

call #wait_rx 'wait for rx high

subcnt delta 'get time delta

cmp delta, threshold wcC 'compare time delta to threshold

Using the Propeller 2 Monitor Doug Dingus 2012

30

rx_bit_ret
L]

: Constants

timeout
spi_read
rx_mask
fuse_read
h200

1fsr

begin_hmac
Hash_bytes
read_hash

sha256_pgm
sha256_ptr

loader_pgm
loader_ptr

monitor_pgm
monitor_ptr

: variables

fuses
count
bits
data
time
delta
threshold

Using the Propeller 2 Monitor

ret

res
res
res

res
res
res

60_000_000/1000*150

$03_000000
£< rx_pin

'150ms @20MHz (rcfast)

' (becomes $300)

0 "1<<30 + (($004<<2)-1)<<17 + base+$800
'begin_hmac, loads key at base+$800 (4 Tongs)

0 '2<<30 + (($1F8<<2)-1)<<17 + base+$000
'hash_bytes, hashes message at base+$000 ($1F8 longs)

0 '"3<<30

+ base+$820

'read_hash, writes hash at base+$820 (8 Tongs)

$1cc
base+$840

base+$000
base+$800

$558+$1B4

tx_pin<<9 + rx_pin

HERHRRRo

'sha256 program address
'sha256 parameter (points to command)

'loader program address
'loader parameter (points to fuses)

'monitor program address .
'monitor parameter (conveys pins)

Doug Dingus 2012

31

ROM_SHA256

This is the encryption routine used to validate incoming code against the programmable keys. It
runs on COG 1 during the boot process.

Viedededededekededededehehdeddedhdehdehdhhdhdhddhhdddhhdddhhhdhdddhdhhkkhddk

L") *
:* Propeller II ROM SHA-256/HMAC *
* *
' version 0.1 *
"% *
' 11/01/2012 *
"% *
Ve e e e e e e e e R e R R R e T AN AN RN A AR NN A AR hh T hdhd

' Usage commandlong := 0 'pre-
c'I ear command Tong

cognew($1CC, @commandlong) 'start
§HA-256/HMAC in new cog
' start here for HMAC: commandlong := 1<<30 + (keysize-1)<<17 + @key 'start
HMAC with key of keysize bytes (1..64)

repeat while commandlong '(wait
for command done)
' start here for SHA-256: commandlong := 2<<30 + (msgsize-1)<<17 + @msg 'hash msg
of msgsize bytes (1..8192) . .
! repeat while commandlong '(wait

for command done)

! {issue more 2<<30 commands if msg > 8192 bytes}

! commandlong := 3<<30 + @hashbuffer 'read
resulting hash into hashbuffer (32 bytes) .
repeat while commandlong '(wait

for command done)

{hasbuffer now contains result, ready for new 1<<30 or
g<<30 command}

DAT
org

etf #%0_1111_0000 'configure movf for sbyte0 ->
{dbyte3,dbyte2, dbytel dbyteO,dbyte3,...}

, call #init_hash 'init hash, clear hmac mode, reset byte count
: Ccommand Loop
command rdlong x,ptra 'wait for command
(%cc_nnnnnnnnnnnnn_ppppppppppPPPPRPP)

tjz X, #command

setptrb x 'get pointer (%ppppppPPPPPPPPPPPP)

mov count,Xx 'get count (%nnnnnnnnnnnnn)

shl count,#2

shr count,#2+17

add count,#1 '+1 for 1..8192 range

shr X,#32-2 'get command (%cc)

cachex 'invalidate cache for fresh rdbytec's
1..64) djz X, #begin_hmac 'l = begin hmac, pointer @key (count+l bytes,
1..8192) djz X, #hash_bytes '2 = hash bytes, pointer @message (count+l bytes,

h djz X, #read_hash '3 = read hash, pointer @hashbuffer (32 bytes)

done wrlong zero,ptra 'clear command to signal done

Using the Propeller 2 Monitor Doug Dingus 2012 32

: Begin HMAC
begin_hmac
ripad

if_c

if_nz

: Hash Bytes
hash_bytes

: Read Hash

read_hash

:not

out

: End Hash - hash $80, any $00's needed

end_hash

FiT1

if_nz

Using the Propeller 2 Monitor

jmp

call
mov
cmgr
rdbytec
xor
call
Jmp
reps
setinds

mov
xor

mov

jmp

rdbytec
cal
djnz

jmp

tjz

call

reps
setinds
mov

call

reps
setinds
mov

movd
mov

call

setinda
mov
reps
mov

rol
wrbyte
djnz

jmp

mov
shl

mov
call
mov
and
cmp
mov
jmp

#command

#end_hash

x,#$00
count,bytes wc
X,ptrb++
x,#$36
#hash_byte
#:1ipad
#16,#2
#opad_key, #w
indb, inda++
indb++,o0pad
hmac, #1

#done

X,ptrb++
#hash_byte

'get next command

'end any hash in progress

(full block)
$00's to i1l block

'xor bytes with ipad ($36)
'(last iteration triggers hash_block, z=1)

'get and hash ipad ke
'after key bytes, has

'save opad key

'xor bytes with opad ($5C)

'set hmac mode

'hash bytes

count,#hash_bytes

#done

hmac,#:not

#end_hash

#16,#1
#w, #opad_key
indb++, inda++

#hash_block

#8,#1
#w,#hashx
indb++,inda++

hash_byte, #w+8
bytes,#64+32

#end_hash

#hashx
count,#8
#4,#2
X,inda++

X, #8
X,ptrb++
count,#:out

#done

length,bytes
1ength,#3

x,#$80
#hash_byte
x,bytes

'if not hmac, output hash

'hmac, end current hash

'get opad key into w[0..15] (full block)

'hash opad key
'get hashx[0..7] into w[0..7]

'account for opad kez and hashx bytes
'(1-1/2 blocks, 1/2 block needs end_hash)
'end current hash

'store hashx[0..7] at pointer, big-endian

to get to offset $38, then 8-byte length
'get message length in bits
'hash end-of-message byte ($80)

'(maK trigger hash_block)
'hash any $00's needed to get to offset $38

Doug Dingus 2012

33

:Ten
if_c
if_c

if_nz

init_hash

init_hash_ret
gnd_hash_ret

test
rol

mov
call
jmp
reps
setinds
mov

reps
setinds
mov

mov
mov

ret

bytes,#$04 wc 'hash 8-byte length, big-endian

1quth,ﬁ8 ' (hash four $00's, then four length bytes)
X, lengt
ﬁh?sh_byte '(last iteration triggers hash_block)
:len
#8,#1 'save hash[0..7] into hashx[0..7]

#hashx,#hash
indb++,inda++

#8,#1 'copy hash_init[0..7] into hash[0..7]
#hash,#hash_init
indb++,inda++

hmac, #0 'clear hmac mode
bytes, #0 'reset byte count

: Hash Byte - add byte to w[0..15] and hash block if full (z=1)

hash_byte

if_z

if_z
if_z
bash_byte_ret

movf
add

test
add

test
movd

call

ret

w, X 'store byte into w[0..15], big-endian
bytes,#1 'increment byte count

bytes,#$03 wz ‘'every 4th byte, increment w pointer
hash_byte,d0

bytes,#$3F wz 'every 64th byte, reset w pointer
hash_byte,#w

#hash_block 'every 64th byte, hash block

: Hash Block - first extend w[0..15] into w[16..63] to generate schedule

hash_block

>> 3)

>> 10)

:sch

reps
setinds

setinda

mov
mov
rol
xor
ror
shr
xor

add
setinda

mov
mov
rol
xor
ror
shr
xor

add

setinda
add

#48,@:sch 'i = 16..63
#w+16,#w+16-15+7"indb = @w[i], inda = @w[i-15+7]

--7 's0 = (w[i-15] -> 7) A (w[i-15] -> 18) A (w[i-15]

indb,inda--
x,indb

indb,#3
indb,x

indb,inda 'w[i] = s0 + w[i-16]

++14 'sl = (w[i-2] -> 17) A (w[i-2] -> 19) A (w[i-2]
X,inda

y,X

y,#19-17

y,X

y,#19

x,#10
X,y

indb,x 'wlil

--5 'wli]
indb++,1inda

sO + w[i-16] + sl
sO + w[i-16] + sl + w[i-7]

' Load variables from hash

reps
setinds
mov

#8,#1 'copy hash[0..7] into a..h
#a,#hash
indb++,inda++

' Do 64 hash iterations on variables

reps
setinds

#64,@:9tr 'i =0..63
#k+0, #w+0 'indb = @k[i], inda = @w[i]

Using the Propeller 2 Monitor Doug Dingus 2012 34

'ch=(e & f) A (le & g

X

o

]
X X X X

TN T HOHFVHY SCTONNTNA TS HOFHODOHEOD QOD-hQ

'sl=(e ->6) A (e > 11) A (e -> 25)

N B
TR
= o
=

N
(%,

db++ 'tl
inda++ 't1

X
]
]
XXX X KKK
3

wnunn
0
=

mov =(@->2)A(@->13) A (a > 22)

13-2
22-13

N
N

ror

add 't2 = maj + s0O

mov
mov
mov
mov
mov
mov
mov

-
o
'}

oTnNnamhhas IS KooKk

L T T T
TN -

add e,X =e + tl

m
|

mov a,x 'a=tl+ t2
itr add a,y
' Add variables back into hash
reps #8,#1 'add a..h into hash[0..7]
setinds #hash,#a
add indb++,inda++

bash_b1ock_ret ret

: Defined data

zero long 0
do Tong 1<<9

opad Tong $36363636 A $5C5C5C5C

hash_init 1ong $6A09E667, $BB67AE85, $3C6EF372, $A54FF53A, $510E527F, $9B05688C,
$1F83D9AB, $5BEOCDL "fractionals of square roots of primes 2..19

k 1ong $428A2F98, $71374491, $B5COFBCF, $E9BSDBAS, $3956C25B, $59F111F1,
$923F82A4, $AB1CSED "fractionals of cube roots of primes 2..311

Tong $D807AA98, $12835B01, $243185BE, $550c7Dc3 $72BE5D74, $80DEBIFE,
$9BDCO6A7, $C19BF174

ong $E49B69C1, $EFBE4786, $OFC19DC6, $240CA1CC, $2DE92C6F, $4A7484AA,
$5CB0A9DC, $76F988DA

Tong $983E5152, $A831c66D, $B00327C8, $BF597FC7, $C6EOOBF3, $D5A79147,
$06CA6351, $14292967

Tong $27B70A85, $2E1B2138, $4D2C6DFC, $53380D13, $650A7354, $766A0ABB,
$81C2C92E, $92722C85

1on8 $A2BFESALl, $A81A664B, $C24B8B70, $C76C51A3, $D192E819, $D6990624,
$F40E3585, $106AA07

1ong $19A4C116, $1E376C08, $2748774C, $34BOBCB5, $391CO0CB3, $4ED8AA4A,
$5B9CCA4F, $682E6FF

Using the Propeller 2 Monitor Doug Dingus 2012 35

1ong
§BEF9A3F7, $C67178F

: uUndefined data

hmac res 1
bytes res 1
count res 1
Tength res 1
opad_key res 16
hash res 8
hashx res 8
w res 64
a res 1
b res 1
C res 1
d res 1
e res 1
f res 1
ﬁ res 1

res 1
X res 1
y res 1

Using the Propeller 2 Monitor

Doug Dingus 2012

$748F82EE, $78A5636F, $84C87814, $8CC70208, $90BEFFFA, $A4506CEB,

36

ROM_Monitor

Here is the Propeller 2 monitor program listing. It runs when no other boot method is detected

and it communicates serially, using an auto-baud detection routine triggered by an ASCII space

character received. Additionally, the monitor is designed to be callable by your program with
serial communications happening either on the default pins, or pins you specify.

Propeller ROM ends at $0E7F, marked with the string “== End of ROM ==", clearly visible when

using the monitor to view low HUB memory addresses:

>0e60.0f00
00E60- OD 28 04 00 2D 80 04 00 89 00 00 00 8B OA C6 96

00E70- 3D 3D 20 45 6E 64 20 6F 66 20 52 4F 4D 20 3D 3D '== End of ROM ==
00E80- 47 FE C1 OD B2 6A 7C OC Cl 46 7C 08 c1 48 7cC 08 G....j|..F|..H|
00E90- C1 4A 7C 08 C1 4C 7C 08 C1 4E 7C 08 C1 50 7C 08 I..m. P
00EBO- 00 00 00 00 E2 20 FC OD 47 FE C1 OD OD 5A FC OC '..... Gh...2Z

00ECO- 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00EDO- B1 82 FD OC 00 00 00 00 00 00 00 00 00 00 00 00
00EEO- OD 5C FC 0C 2E 5E BC AQ 2D 5E BC 84 36 60 3C 08
00EFO- 37 62 3C 08 38 64 3C 08 39 66 3C 08 3A 5E 3C 08

'LJ|..L
00EAO- C1 52 7C 08 c1 54 7C 08 B2 6A 7C 0C 35 56 BC A0 :.Rl..T .

[
Y, T
’ <

The first user writable location is $0E80, which is the beginning of RAM.

Hardware multi-tasking is used to run concurrent auto-baud detection, serial input, and main
monitor code:

Viedededededededededededehededdedehdehdehdehhdhdhdhhdddhhdddhhhdhdddhdhhkkhddd

% *
:* Propeller II ROM Monitor *

* *
' version 0.1 *
% *
e 11/01/2012 *
LK *
Voedededededodedededededededededededhdedhddhddhddddhddhddhdedhdhdhfedhddhhddhdds

: Usage: cognew($70C, tx_pin << 9 + rx_pin) 'start monitor in new cog
CON
branchl_ =0
branch2_ = branchl_ + 31
branch3_ = branch2_ + 35
hello_ = branch3_ + 15
error_ = hello_ + 33
hitspace_ = error_ + 11
spquote_ = hitspace_ + 10
quotecr_ = spquote_ + 4
sub0_ = quotecr_ + 3 'must be => $80
subl_ = sub0_ + 4
sub2_ = subl_ + 12
sub3_ = sub2_ + 12
help_ = sub3_ + 4
DAT
Vdddhdhdd
'* pata *
Vdddhdhdd
branchl byte cmd_new, g "

byte cmd_byte,
byte cmd_word,
byte cmd_long,
byte cmd_viewp, .
byte cmd_search, "

Using the Propeller 2 Monitor Doug Dingus 2012

37

branch2

branch3

hello
error

hitspace
spquote
quotecr
sub0
subl
sub2
sub3

help

longs

Using the Propeller 2 Monitor

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

byte
byte
byte
byte
byte
byte
byte
byte

byte
byte

byte
byte

byte
byte
byte

byte
byte
byte
byte

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

long

w,n

cmd_enter,
cmd_map,

cmd_clrp,
cmd_setp,
cmd_notp,
cmd_offp,
cmd_getp,
cmd_quit,
gmd _help,

NOAN-TIr=-

'31 bytes

cmd_view2,

cmd_view2,

cmd_range,

cmd_search2,
cmd_enter2,
cmd_watch,

cmd_clkset, T
cmd_coginit,
cmd_cogstop,
cmd_clrp, L
cmd_setp, "H"
cmd_notp, 'T
cmd_offp, "z"
cmd_getp,
cmd_watchp, "#"
cmd_cfgp,
cmd_setdacs, "\"
0 '35 bytes

cmd_view3,
cmd_view3,
cmd_search3,
cmd_enters3,
cmd_move,
cmd_move,
cmd_checksum, A"
0 '15 bytes

%3,13,"=== Propeller II Monitor ===",13,13

'33 bytes

"? - Hel pu
13,7,0

"Hit SPACE",0
n lll,o
"ro13,0 '3 bytes
"-"13,$80 '4 bytes
"{adr{.adr}}",$80 '12 bytes
"{dat{ dat}}",$80 '12 bytes
"adr",$80 '4 bytes

13, "~HUB", subO_

'11 bytes
'10 bytes
'4 bytes

subl_ "“view",13

subl_,"/",sub2_, "

sub3_,".",sub3_
sub @" "

"~COGS", sub0_
"cog+" sub3_,"{+“ sub3_,"}",
cog-

IIM "w-

"~PINS",sub0_
"{p1n}[H/L/T/Z/R]"

“Search",13
ub2 " Enter",13

sub3_,“." sub3_,“[</>]“ sub3_, "

""Checksum",13

“watch",13

L1 [Y/W/N] ll Ll

Move",13

Byte/word/long",13

“Start",13
Stop" 13
mMap",

" H1gh/1ow/togg1e/off/read" 13

" ‘Wa

p1n|cfg
dat\" "-
"~MISC", subO_
lldat*ll , n*

c0nf1gure ,13
Set DACs",13

Set clock",13

wrn " Repeat“ , 13

IIQII: "‘Qu_it"’13

Doug Dingus 2012

'(0 Tong follows)

38

Videdededededkededed

'* Entry *
Vdededededhddd
org
entry Tong 0 'start of data string = 0/nop
reps #$1F6-reserves,#1 'clear reserves
setinda #reserves
mov inda++,#0
getptra rx_pin 'get rx/tx pins
getptra tx_pin
shr tx_pin,#9
setp tx_pin
getptrb base 'get base address of byte data
sub base,#longs<<2
jmptask #baud_task,#%0010 'enable baud detector task
settask #%%0101
tjz period,#$ 'wait for <space> to set period
jmptask #rx_task,#%0100 'enable serial receiver task
settask #%%0121
mov wsize,#1 'init word size to byte
call #set_size
pusha #0 'init input line to <enter>
setptra #hello_ 'print hello message
dmax 'end of data string
Vdededededdedddddhd
'* Main Task *
Thddekdehdhdhddhd
message call #tx_string 'print hello/error message
cmd_new call #rx_line 'get input line
. call #parse 'parse first term .
if_z tjz X, #cmd_view] 'if no hex and eol, view data
jmp #cmd_go 'else, process command
cmd_next_cr1f call #tx_cr1f 'print cr/1f
cmd_next addspa #1 'skip chr
cmd_Toop call #parse 'parse next term
cmd_go if_nz jmp #cmd_hex 'if hex, branch_
movd pinx,#z 'pin update redirected to z
setptra #branchl_ 'not hex, vector by chr
cal #vector 'if returns, no match
cmd_error setptra #error_ 'print error message
jmp #message
cmd_hex mov vl,value 'hex, save vl
movd pinx,#pin 'pin update okay
setptra #branch2_ 'vector by chr
cal #vector 'if returns, no match
jmp #cmd_view2 'view data
cmd_range call #parse_next 'hex., get hex
if_z jmp #cmd_viewp2 'if no hex, view data
mov v2,value 'hex.hex, save v2
setptra #branch3_ 'vector by chr
cal #vector 'if returns, no match
jmp #cmd_view3 'view data

' Byte/word/long data

Using the Propeller 2 Monitor Doug Dingus 2012

39

cmd_byte
cmd_word if_z
cmd_long if_z

! View data

cmd_viewl
cmd_viewp
cmd_viewp2

cmd_view2
cmd_view3

! Search

cmd_search
cmd_search2
cmd_search3

:start
:word
if_z
if_be
:match
if_nc
word
L}
L}
: Enter data
cmd_enter3
cmd_enter2
cmd_enter
:go
:Toop

Using the Propeller 2 Monitor

mov
mov
mov

call

jmp

mov
call
jmp
mov
call
jmp
mov
call
jmp
mov
call
jmp

mov
mov
call

call

setptra
setinda
mov

call
cmp
jmp
add
cmp
jmp
mov
and
jmp
incmod
jmp

mov
shl
add

jmp

call
mov

mov
and

call
tjnz
mov

add
setptrb

mov
call

wsize,#1
wsize,#2
wsize,#4

#set_size

#cmd_next

v2,#$F
#tx_rangel
#cmd_new

v2,#$FF
#tx_rangel
#cmd_next

v2,#$FF
#tx_range2
#cmd_loop

v2,vl
#tx_range
#cmd_loop

vl,view
v2,amask
#check_range

#parse_data

vl
#0
x,#0

#rdxxxx
value,inda++
#:match

vl,wsize
vl,v2
#:start

view,vl
view,amask
#cmd_loop

x,dsize
#:word

v2,dsize
v2,shift
v2,vl
#cmd_view3

#check_range
y,#1

enter,vl
enter,amask

#parse_data
y,#:9o
z,dsize
z,#1

enter

value,inda++
#Wrxxxx

Doug Dingus 2012

'set byte mode, z=0
'set word mode, z=0
'set Tong mode

'next command

'<enter> (eol), show line of data

'. (more), show page of data

'addr. (more), show page of data

'addr, show unit of data
'addr.addr, show range of data

'/, search from view to end

'addr/, search from address to end
'addr.addr/, search range

'parse data string

'start search, point to search address
'point to search data

'reset word match counter

'get memory word

'compare against search data word

'if word match, check if string match
'word mismatch, advance search address
'at end of range?

'if not, start next search

'else, update view

'next command

'word match, increment match counter
'if more words to match, compare next

'got string match

'vl = start of found data
'v2 = end of found data
'show found data

'addr.addr:, check range, z=words to fill
'set fill flag

'addr:, set enter address
'trim enter address (in case cmd_enter2)

':, parse data

'if not fill, set z to data size

'get pointer

'get word_from string data
'store value in memory

40

: Move data
cmd_move
words
if_z
if_z
if_z
if_c
if_c
if_c
if_c
if_c
if_c
:Toop
if_c
if_c
: Checksum

cmd_checksum

:Toop

: watch

cmd_watchp

cmd_watch if_z

if_z
if_z
:Toop
wait
if_nz

djnz
getptrb
jmp

mov

call

call

max
and

cmp
mov
mov
mov

cmp
mov
shl
add
add
xor
xor

setptra
setptrb

call
call
djnz

xor
xor

jmp

call
setptra
cal

add
djnz
mov

mov
call

jmp

movs
mov

movs
mov
shl
call
mov

call
call

call
mp
call

z,#:1oop
enter

#cmd_loop

Yy,X
#check_range

#parse_hex

value,amask
value,amask

y,#"<" wz
X,v1l

vl,value

value,x

vl,value wC
X,Z

x,shift

vl, x

value,x

rdxxxx,#%001_111110
wrxxxx,#%001_111110

vl
value

#rdxxxx
#wrxxxx
z,#:1o0p

rdxxxx,#%001_111110
wrxxxx,#%001_111110

#cmd_loop

#check_range
vl

#rdxxxx
y,value
z,#:1oop
value,y
hsize,#8
#tx_hex

#cmd_next_cr1f

rdxxxj,#rdxxxx_ret wz
hsize,#1

rdxxxj , #rdxxxm
hsize,wsize
hsize,#1
#rdxxxp
z,value

#tx_hex
#tx_space

#rx_check
#cmd_next_crif

#rdxxxp

Using the Propeller 2 Monitor Doug Dingus 2012

'loop until enter done
'update pointer

'next command

'save ll>"/ll<ll
'check 1st address range, get number of

'get 2nd address

'vl=1lst, value=2nd, z=words, y=">"/"<"
'if "<", swap vl and value

'vl=from, value=to, z=words

'if from < to, downward move

'modify 'rdxxxx value,--ptra
'modify 'wrxxxx value,--ptrb'

'set pointers

'move data

'restore 'rdxxxx value,ptra++'
'restore 'wrxxxx value,ptrb++'

'next command

'check range

'sum bytes

'print sum

'next command

'set pin mode, z=0

'set mem mode .
'set hex size by word size
'get initial value
'preserve value

'print value
'print space

'if key hit, exit

'get current value

41

if_z

: Clkset

cmd_clkset

wait

if_nz

: Coginit

cmd_coginit

if_z

Cogstop
Quit

cmd_quit

cmd_cogstop

Map

cmd_map

cmd_map_loop

cmd_map_c
if_nc

if_c
if_z

if_nc

: Pin read
cmd_clrp
cmd_setp if_z
cmd_notp if_z
cmd_offp if_z
cmd_getp if_z
pinx

pinop

if_z

Using the Propeller 2 Monitor

cmp
jmp

jmp

setptra
cal

clkset
call
cmp
jmp
jmp

setcog
call

mov
mov

cm
caQ1
coginit

jmp

cogid
cogstop

jmp

mov

call
mov
cogid
cmp
mov
mov
mov
call
sub

jmp
jmp

movs
movs
movs
movs
movs

mov
getp
jmp

value,z
#iwait

#:loop

#hitspace_
#tx_string

vl

#cmd_next_cri1f

vl
#parse_hex

y,value
value,#0

x , #ll+ll
#parse_hex

y,value

#cmd_loop

vl
vl

#cmd_next

y,#7

#tx_space
X,y

y,#1
#cmd_map_Tloop

#cmd_next_cr1f

Pin writes clrp/setp/notp/offp

pinop, #$DA
pinop,#$DB
pinop,#$D9
pinop,#$D8
pinop,#$D6

pin,vl
pin

#cmd_map_c

wz

wz

wz

wC
wz

wC

wC

Doug Dingus 2012

'if same, check again

'new value, Toop

'print hit-space message

'set clk

'wait for space

'next command

'set cog
'get program address

'save program address
'clear pointer address

'if '+', get pointer address

'do 'coginit program,pointer’

'next command

'quit
'stop cog

'next command

'ready for 7..0
'print space

'get cog status
'get 0/1/M chr

'print chr
'loop until done

'next command

'clrp, z=0
'setp, z=0
'notp, z=0
'offp, z=0
'getp, z=1

'if hex, get pin (d = pin/z)
'becomes clrp/setp/notp/offp/getp

'if getp, show pin value

jmp #cmd_next 'next command

' Pin configuration
L]

cmd_cfgp call #parse_hex 'get configuration
setport vl 'set pin port
decod5 vl 'get pin mask
cfgpins vl,value 'configure pin

, jmp #cmd_loop 'next command

: Setdacs

cmd_setdacs setdacs vl 'set all four dacs with 8-bit values

, jmp #cmd_next 'next command

: Help

cmd_help setptra #help_ _ 'print help message
cal #tx_string
jmp #cmd_next_crlf 'next command

Vhdededhedehkhhhhhhdhhhhhdhhhhid

'* Main Task Subroutines *
Thdededdhhhhhdhhhdhhdhhdkdhdh®
L]

: Vector branch

vector addptra base 'add data base pointer
vector_loop rdbyte z,ptra++ 'get jump address
vector_ret tjz z,#0 'if 0, no match found, return
rdbyte vy,ptra++ 'get target
xor y X wz 'compare to X
if_nz jmp #vector_loop 'if no match, loop
jmp z 'match found, jump, y=0, z=1

: Check address range (vl1..v2)

check_range max vl,amask 'trim vl
and vl, amask
max v2,amask 'trim v2
and v2,amask
cmp v2,vl wcC 'make sure v2 => vl
if_c jmp #cmd_error
mov z,v2 'get number of words
sub z,vl
shr z,shift
add z,#1

gheck_range_ret ret
L]

: Set rdxxxx/wrxxxx and others by word size
set_size test wsize,#%010 wC 'set rdxxxx/wrxxxx by word size
setbc rdxxxx,#26
setbc wrxxxx,#26
test wsize, #%100 wc
setbc rdxxxx,#27
setbc wrxxxx,#27

mov shift,wsize 'set shift by word size
shr shift,#1

mov amask,wsize 'set amask by word size

Using the Propeller 2 Monitor Doug Dingus 2012

set_size_ret

rdxxxp

if_nc
. ifc

rdxxxj

rdxxxm

rdxxxx

rdxxxp_ret

rdxxxx_ret

WPXXXX

Wrxxxx_ret

L]

: Input line

rx_line
if_nz

:show
if_nz
if_nz

:Toop

:first |
if_z
if_nz
if_z
if_nc
if_c
if_c
if_nc

:bs .
if_nz
if_nz
if_nz
if_nz
if_nz
if_nz

icr

:done

tx_crlf

tx_crlf_ret

fx_1ine_ret

Using the Propeller 2 Monitor

sub
xor

and
and

ret
getp

mov
mov

jmp
setptra
rdbyte

ret

wrbyte

ret

setspa

mov
call

call
cmp
jmp
opar
an1
jmp
jmp

call

cmp
jmp
cmp
cmp
jmp
cmp
cmpr
Jmp
pusha
chkspa

subspa
call

jmp
chkspa

setspa

mov
call

ret

amask,#1

amask,h0001FFFF

view,amask 'trim view
enter,amask 'trim enter

vl wc 'read pin as "0" or "1"
value,#0

value,#1

#rdxxxx_ret 'd = rdxxxx_ret/rdxxxm
vl 'read mem

value,ptra++ 'rdbyte/rdword/rdlong
value,ptrb++ 'wrbyte/wrword/wrlong

#0

x y #ll>ll
#tx

#rx
x,#lllll
#:first

X
#tx

#:show
#:done

#rx

X,#13
#:cr

X, #8
x,#127
#:bs
x , #ll "
x y #ll~ll
#:loop

X
#1

#tx
#:1oop

X
#tx

#tx_space

X
#tx
#1
#:1oop

#0
#0

x,crlf
#tx

wz

wz

wz

wz
wz

wC

wC

wC

wz

Doug Dingus 2012

'point to start of line
'show prompt

'get first chr

'check for repeat_

'if not repeat, first chr

'repeat, show line

'get next chr

'cr?

'backspace?
'visible chr?

'visible chr, append to Tine
'overflow?

'if overflow, back up

'if not overflow, print chr

'backspace, Tline empty?
'if not empty,

'..print backspace
'..print space

'..print backspace

'..back up

'cr, end Tine with 0
'point to start of 1line

'print cr/1f

: Parse hex/text data

parse_data mov w, #0 'reset data count
setinda #0 'point to string data
rhex call #parse_next 'hex Toop, check hex
if_nz call #enter_data 'if hex, enter value
. cmp X, #" " wz 'check for space (more hex)
if_z jmp #:hex 'if more hex, loop
. c.mp x'#lllll wz l’.]ot hex" lllll?
if_nz jmp #:done 'if not "'", done
itext addspa #2 "text loop
popa X 'get and point to next chr
cmp X, #"'"" wz 'check for "'"
if_z jmp #:hex 'if "'", back to hex
tjz x,#:done 'if eol, done
mov value,x 'text chr
call #enter_data ‘enter chr
jmp #:text 'loop
:done sub w,#1 wc 'get data count
if_nc mov dsize,w 'if 0, reuse old data
movd :fix,dsize 'form circular buffer
fix fixinda #0,#0 '(no instruction-modification problem

with 1:4 threading)

parse_data_ret ret

enter_data incmod w,#dmax wc "check if_data Timit exceeded
if_c jmp #cmd_error 'if data 1limit exceeded, error
mov inda++,value 'store value in data

gnter_data_ret ret

: Parse hex
parse_hex call #parse_next 'try to parse hex
if_z jmp #cmd_error 'if no hex, error

Qarse_hex_ret ret

| Parse Tline (@spa), z=0 if hex (value)

parse_next addspa #1 'advance to next chr
parse mov value,#0 wz 'z=1
call #skip_spaces wz 'skip any spaces (preserve z)
:Toop popar X 'get chr
call #check_hex 'check hex
if_c shl value,#4 'if hex, append nibble and Toop
if_c or value,x
if_c jmp #:1oop wz 'z=0
subspa #1 'repoint to non-hex chr
call #skip_spaces wz 'skip any post-hex spaces (preserve z)
. call #check_hex 'check hex
if_c popa X 'if hex, back up to space chr
cmpr x,#"a"-1 weC 'make non-hex chr uppercase
if_c cm X, #"z"+1 wC
if_c su x,#"a"-"A"
parse_next_ret
parse_ret ret
: Skip spaces (@spa)
skip_spaces popar X 'skip space chr(s)
. cmp X, #" " wz
if_z jmp #skip_spaces

Using the Propeller 2 Monitor Doug Dingus 2012

subspa

§kip_spaces_ret ret

#1

wz

: Check hex (x), c=1 if hex (x)

check_hex
if_c
if_c

if_nc
if_c
if_c
if_nc
if_c
if_c

gheck_hex_ret

cmpr
cmp
add

cmpr
cmp
add

cmpr
cm
su

ret

: Print range (vl..v2)

tx_rangel
tx_range2

tx_range

:Tine

rhex

:ascii

if_z
another 1line
tx_rangel_ret
tx_range2_ret
Fx_range_ret

mov
and
add

call
mov

mov
mov
call

call

mov
rev
mov
max

mov
shl

sub

setptra
cal

mov

shl
call
call
djnz

setptra
cal

setptra
rdbyte

getptra

setptra
cal

call
tjnz

ret

' Print string (@ptra)

Using the Propeller 2 Monitor

x,#"0"-1 wc

#'A"-1 wc
wc

#"'F
#"a
#"a"-1 wc
#'f
#"a

vl,view
v2,amask
v2,vl

#check_range
view,vl

value,view
hsize,#5
#tx_hex

#tx_dspace

X,wsize
X,#32-5
vl,z
vl, x

v2,vl
v2,shift

z,vl

view
#rdxxxx
hsize,wsize
hsize,#1
#tx_hex
#tx_space
vl, #:hex

#spquote_
#tx_string

view

X,ptra++

X, #" " we
x’#ll~ll weC
v2,#:ascii

view

#quotecr_
#tx_string

#rx_check
z,#:1ine

Doug Dingus 2012

'back up to non-space chr

'restore z

'"o".."9" -> $0..%9

MATLUUF" -> $ALLSF

at. L > SALLSF

'view..view + v2
'vli..vl + v2

'check range

'set address

'print 5-digit address

'print "-

'get number of words on line

'get number of ascii bytes on Tine

'update number of words left

'print hex words

'print

'print ascii bytes

'visible chr?

'substitute "." for non-visible chrs

'update address

'print "'" + cr

'check key hit

'if no key hit and more words left, print

46

tx_string addptra base 'add data base pointer

tx_string_loop rdbyte x,ptra++ 'get chr
tx_string_ret tjz x,#0 'if 0, done
. test X, #$80 wz 'substring?
if_nz notb tx_string_loop,#8 'togg]e ptra/ptrb .
if_nz setptrb x 'ptrb points to substring
if_nz addptrb base . .
if_nz jmp #tx_string_loop 'start substring or resume string
. cmg X, #"' " wz 'long tab?
if_z subr y,#32-16
if_nz cmp X, #"~" wz 'short tab?
if_z add y,#16
:tab if_z call #tx_space
if_z djnz y,#:tab
if_z call #tx_dspace
if_z jmp #tx_string_loop
cmq X, #13 wz 'cr?
if_z call #tx_cr1f
if_z mov y,#0
if_nz call #tx 'other?
if_nz add y,#1
, jmp #tx_string_loop
: Print hex (value)
tx_hex mov y,hsize 'pre-rotate to get 1lst nibble in top
shl y,#2
ror value,y
mov y,hsize 'print nibbles
:Toop rol value,#4
mov x,value
call #tx_nib
djnz y,#:1oop
Fx_hex_ret ret
: Print "- "
tx_dspace mov x,dspace
, jmp #tx
: Print space
tx_space mov x,#" "
, jmp #tx
: Print nibble (x)
tx_nib and X, #$F 'isolate nibble
cmp X, #$A wC 'alpha or numeric?
if_c add x,#"0" 'numeric
, if_nc add X, #"A"-$A 'alpha
: Transmit chr (x)
tx shl X,#1 'insert start bit
setb X, #9 'set stop bit
getcnt w 'get initial time
:Toop add w,period 'add bit period to time
passcnt w 'loop until bit period elapsed
shr X, #1 wc 'get next bit into c
setpc tx_pin 'write ¢ to tx pin
tjnz x,#:loop 'Toop until bits done

tx_dspace_ret
tx_space_ret

Using the Propeller 2 Monitor Doug Dingus 2012

tx_nib_ret
tx_ret

ret

: Receive chr (x)

rx .
if_z

l"‘X_I"et

call
jmp
ret

#rx_check
#rx

: Check receiver, z=0 if chr (x)

rx_check

if_nz

rx_check_ret

or

getspb
cmp

getspa
setspa
popar

getspa
setspa

ret

rx_tail,#$80

rx_temp Lowz
rx_temp,rx_tail wz

rx_tem
rx_tai
X

rx_tail
rx_temp

Vdededhdehhhhhhhhdhhhhhhhdhhd

'* serial Receiver Task *
Tdededdhehhhdhddehhdhhdhhhhdhi®

rx_task
if_z

period delay
:bit

received

chkspb
setspb

mov

neg
sar
jp
subcnt

rcr

add
passcnt
getp
djnz

shr
pushb

jmp

Viddkdedhdhkdhhhdhdhhhhdddk

'* Baud Detector Task *
Thddhdhhhhdhhdhhhhdhhihi®k

baud_task
:Toop
0, 1)

movd

notb
setctra

mov
shr
ne
ad
add

mov
mul
cmpr
cmp

mov
mul

wz
#3$80

rx_bits,#9

rx_time,period
rx_time, #1

rx_pin,#$

rx_time

rx_data, #1
rx_time, period
rx_time

rx_pin weC
rx_bits,#:bit

rx_data,#32-8
rx_data

#rx_task

ctr,rx_pin

ctr,#5 wC
ctr

Timh,buff0
Timh,#4
Timl, limh
Timh, buff0
Tim1,buff0

comp, buffl

comp, #6

comp, 1imh weC
comp, Timl weC

comp, buff2
comp, #3

Using the Propeller 2 Monitor Doug Dingus 2012

'wait for rx chr

'if start or rollover, reset tail

'if head uninitialized, z=1

'if head-tail mismatch, byte ready, z=0

preserve spa
get tail

'get byte at tail
'update tail
'restore spa

'if start or rollover, reset head

'ready for 8 data bits + 1 stop bit
'get -0.5 period

'wait for start bit

'get time + 0.5 period for initial 1.5

'rotate c into byte

'add 1 period

'wait for center of next bit

'read rx pin into c

'loop until 8 data bits + 1 stop bit

a11gn byte
'store byte at head, inc head

'wait for next byte

'set ctra to time rx pin states

f 1,0 sample set,

c=0
'($20 -> 10000001001 -> 1, 6x 0, 1x 1, 2x

'if 1,0 sample set,
'..make window from 1st 0 (6x if $20)

1f 1,0 sample set
..normalize 2nd 1’ (1x if $20) to 6x
..check if within window

1f 1,0 sample set
..normalize 2nd 0’ (2x if $20) to 6x

48

if_nc cmpr comp, Timh wc '..check if within window

if_nc cmp comp, 1im1 wc
if_nc add buff0,buff2 'if $20,
if_nc shr buff0,#3 '..compute period from 6x 0 and 2x 0
if_nc mov period,buff0 '..update period
mov buff0,buffl 'scroll sample buffer
mov buffl,buff2
iwait getcosa buff2 'wait for next sample
tjnz buff2,#:1oop
jmp #:iwait

VThkddhdhdhihhhrk
'* Constants *

Thddekdedhdddhddhd

hOOO1FFFF Tong $0001FFFF 'memory Timit

crlf Tong 1<<18 + $0A<<10 + $0D ‘'cr/1f

dspace Tong 1<<18 + " "<<10 + "-" 'dash/space

ctr Tong %100_01001 'ctr configuration for timing low on rx
pin

Thddekdedhdhdhdddd

'* variables *
Vdddhdhhhdhhhrk

reserves
rx_pin res 1 'main task
tx_pin res 1

base res 1

w res 1

X res 1

y res 1

z res 1

vl res 1

v2 res 1

value res 1

view res 1

enter res 1

pin res 1

dsize res 1

hsize res 1

wsize res 1

shift res 1

amask res 1

rx_tail res 1 'serial receiver task
rx_temp res 1

rx_time res 1

rx_data res 1

rx_bits res 1

buffQ res 1 'baud detector task
buffl res 1

buff2 res 1

Timh res 1

Timl res 1

comp res 1

period res 1

Using the Propeller 2 Monitor Doug Dingus 2012

Appendix B PASM Program Listings and Object
Code

DE2-Counter-To-LED-Blinker

This program writes some of the slower changing global counter digits to the I/O pins connected
to the onboard LED’s. This program also writes a value to the hub and starts an instance of the
monitor for the purpose of demonstrating how to watch addresses.

DAT
org

start_mon setcog #3 '+ %1000 --uncomment '+ %1000' for next available cog

'function; otherwise,

coginit monitor_pgm, monitor_ptr 'start monitor on cog n
neg dirb, #1 'make the port B I/0s outputs

:loop getcnt A 'fetch Tower 32 bits of global counter
shr A, #24 'shift away the fast incrementing digits
shl A, #8)
mov pinb, A 'write sTow ones to LED's on DE2 board
wrword A, write_address 'Put a value in the hub to watch
jmp #:1oop 'keep doing it!

monitor_pgm long $70cC 'ROM entry point for monitor

monitor_ptr long 90<<9 + 91 'serial pins = RX<<9 + TX

write_address Tlong $2000

A res 1 'storage

Load and run this program with Pnut.exe to see the LED’s flash and interact with the monitor to
watch address $2001 increment as the counter does.

>2001@
21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33
>

Running Multiple Monitors

Here is a short program that does exactly that on the DE2 emulation, using the default p90, p91
and optional p15, p13 to communicate with two instances of the monitor running on COGS 3 and
0.

DAT
org
start_mon setcog #3 . 'set target COG 3
coginit monitor_pgm, monitor_ptr 'start monitor on target COG
setcog #0 . 'set target COG 0
coginit monitor_pgm, monitor_ptrl 'start monitor on target COG
monitor_pgm long $70cC "ROM entry point for monitor
monitor_ptr long 15<<9 + 13 "Pins for one monitor
monitor_ptrl Tong 90<<9 + 91 'Pins for the other one

This program is useful to quickly test both serial connections, if you are using the dual Prop Plug
connection scenario mentioned earlier in the text.

Using the Propeller 2 Monitor Doug Dingus 2012 50

It's worth noting that either monitor isn’t aware of the other one when more than one is running at
a time. The output of the cog map (m) command for both monitors show the other one as an
active COG, not a monitor cog, normally designated with “M”:

Output from monitor instance running on COG 3:
=== Propeller II Monitor ===

>m
000O0MOO1
>

Output from monitor instance running on COG 0
=== Propeller II Monitor ===

>m
0000100M
>

Start Monitor From HUB RAM Memory

You can download a modified version of the ROM Monitor setup to both run from HUB memory at
an address you specify, and start with only the monitor cog start command. The default is $1000,
editable in the program values.

A sample object file you can paste right into a running monitor and source code is provided in the
zip package found here:

http://forums.parallax.com/attachment.php?attachmentid=98300&d=1356951096

This code is provided with the assumption you might want to patch the monitor to provide
different functionality, or use it as part of some other serial communications. Here is the usage
information and key values needed to build and run it at a given address.

Modified to be started from monitor, or coginit with parameters ignored
eg: [cog]+11B4

' For different HUB RAM address load, set rx_pin, tx_pin, base below. Base = [load
§ddress + $1B4] = entry for COGINIT

rx_pin Jong 15<<9 + 13 '15 'main task
tx_pin Tong 15<<9 + 13 '13 'Pins --> ptrA
base Tong $11b4 'Entry Point --> ptrB

Note, the code is compiled at $0, with the values setup for loading at $1000, and the monitor
entry point is that base address $1000 + $1B4, assuming no modifications are done to the text
data starting at $1000.

Replace_Example.spin

This is a simple program that blinks the LED’s in different ways and on different COGS with the
monitor running for “while running” modifications.

Terasic DE2-115 Prop2 Counter To LED

org

start_mon setcog #3 '+ %1000 "uncomment '+ %1000' for
'next available cog

Using the Propeller 2 Monitor Doug Dingus 2012 51

: Toop

monitor_pgm
monitor_ptr

write_address
address

entry_addr

A

' Terasic DE2-

Pin

Delay
Delay_address
toggle_mask

Time

L. . . 'function; otherwise,
coginit monitor_pgm, monitor_ptr 'start monitor on cog n

setcog #%1000

coginit entry_addr, A 'start simple bTlinker on a COG

neg dirb, #1 'make the port B I/0s outputs

getcnt A 'fetch Tower 32 bits of global counter
shr A, #24 'shift away the fast incrementing digits
shl A, #8

mov pinb, A 'write upper counter digits to LED's

wrword A, write_address 'Put a value in the hub to watch with monitor

jmp #:1oop 'keep doing it!

long $70cC 'ROM entry point for monitor,

Tlong 90<<9 + 91 'serial pins = RX<<9 + TX

Tong $2000 'Write truncated counter value to some HUB
Tong @entry+$e80 'Define correct address for COGINIT

res 1 'storage

115 Prop2 Simple One Pin LED Blinker

org "new COG address origin
set pin 'set specified pin to output
sh toggle_mask, pin 'setup to toggle pin state
getcnt Time 'fetch lower 32 bits of global counter
add Time, delay 'prepare to wait on future counter value
add Time, #$f 'a minimum delay
WAITCNT Time, Delay 'wait for it
xor pinb, tog?1e_mask 'toggle the pin
rdlong Delay, delay_address 'update delay value from HUB
jmp #loop 'keep doing it!
long 33 "define pin to blink
long $1c9c380 'sTow blink = 30_000_000 = 1/2 sec @ 60Mhz
long @pelay + $e80 'calculate correct HUB address for WAITCNT
Tong 1 "pin state mask
res 1 'storage

Using the Propeller 2 Monitor Doug Dingus 2012

52

