This is my first attempt at writing a stepper motor driver for the Propellor 2.

The driver itself is written in propellor assembly. There are no tricky code sections and the code is well
commented so it should be easy to follow. Minimal effort has been applied to optimize the code
primarily because this is my first attempt at prop 2 assembly. The code makes exstensive use of the

cordic math solver.

The driver produces a constant acceleration where the delay between each step is calculated in real

time from the kinematic equations.

Velocity (at time t) = Initial Velocity + acceleration * time (t)

AX = (V+V0)/(2 * a)

V =sqrt(Vo2 + (2 * a * AX))

The time delay between steps = Clock frequency / velocity

AX (change in position) in steps

velocity in steps/sec, Vo = initial velocity

With a clock frequency of 200,000,000 and a velocity of 20,000 steps/ sec the delay becomes 10, 000

clock ticks. More than enough time for the math.

I am using this with a 5 phase stepper motor.

.72 degrees / step
360 degrees /.72 = 500 steps / revolution

20,000 steps/sec divided by 500 steps/ revolution = 40 revolutions / sec

40 * 60 = 2400 rpm

There is an included excel spreadsheet that calculates the delay and instantaneous velocity at every step.

EL M Jx
A B C D

1 |Acceleration A Step S Velocity atstep |delay 1
2 200000 0 0
3 |Initial Vel Vo 1 632.455532
4 0 2 894.427191
5 Slew Vel v 3 1095.445115
6 8000 4 1264.911064
7 5 1414.213562
& Delay atSlewV 6 1549.193338
el 25000 7 1673.320053
10 8 1788.854382
11 Frequency F 9 1897.366596
12 200,000,000 10 2000
13 11 2097.617696
14 Steps till slew vV 12 2190.89023
15 160.00 13 2280.35085
16 14 2366.431913
17 15 2445.439743
18 16 2529.822128
19 17 2607.630962
20 18 2683.281573
5| POsS=(VEVEN(27a) 19 2756.80975
2 delay = Frequency / velocity 2 2828427125
23 21 2898.275349
24 | velocity = sqrt(Vo® + (2 *a * step) 22 2966.479395
25 23 3033.150178
26 24 3098.386677
27 25 3162.27766
28 26 3224.903099
29 27 3286.335345
30 28 3346.640106
3 29 3405.877273
32 30 3464.101615
33 31 3521.363372
34 32 3577.708764
35 33 3633.180425
36 34 3687.817783
37 35 3741.657387

38 36 3794.733192

E

316227.766
223606.7977
182574.1858

158113.883
141421.3562
125099.4443
119522.8609
111803.3989
105409.2553

100000
95346.25892
91287.09292
87705.80193
84515.42547
81649.65809

79056.5415
76696.43838
74535.59925
72547.62501
70710.67812
69006.55593
67419.98625
65938.04734
64549.72244

63245.5532
62017.36729
60858.06195
59761.43047
58722.02195
57733.02692
56796.18342
55901.69344
55048.18826
5423261445
5345224838
52704.62767

16000

14000

12000

10000

2000

0

“2a

k]

e
59

b

oo
R&a

Velocity

8

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

g

ERRCR
EEEE RS

mmmmmm

Deceleration

A B c D E F G H J K
Acceleration A Step S Velocity at step delay
-200000 0 8000
Initial Vel Vo 1 7974.960815 25078.49313
8000 2 7949.842766 25157.73027 9000
slew vel v 3 7924.645102 25237.72326
1 4 7899.367063 25318.48418 2000
5 7874.007874 25400.0254
Delay at Slew V 6 7848.566748 25482.35957
200000000 7 7823.042886 25565.49963 7000
8 7797.435476 25649.4588
Frequency F 9 7771743691 25734.25063
200,000,000 10 7745.966692 25819.88897 5000
11 7720.103626 25906.38801
steps till slew V 12 7694.153625 25993.76225 <000
160.00 13 7668.115805 26082.02655
14 7641.98927 26171.19613
15 7615.773106 26261.28657 4000
16 7589.466384 26352.31383
17 7563.06816 26444.29427
pos= (VEVol (2% a) 18 7536.577473 26537.24462 3000
19 7509.993342 26631.18206
delay = Frequency / velocity 20 7483.314774 26726.12419 2000
21 7456.540753 26822.08904
velocity = sgrt(vo® + (2 *a * step) 22 7429.670248 26919.0951
23 7402.702209 27017.16135 1000
24 7375.635566 27116.30723
25 7348.469228 27216.5527 ‘
26 7321.202087 27317.91824 O et 1 ot 1 iy et 1 e 1 et O 1 e et s
27 7293.833012 27420.42486 I R R
28 7266.36085 27524.09413
29 7238.784428 27628.9482
7211.102551 27735.00981

w
=1

The included flowchart was drawn using a program called draw.io — diagrams.net - It's free to use and
easy to use and for me anyway it makes it a lot easier to visualize the program flow.

There is a demo program that lets you input steps (plus and minus) and speed. You can run the demo
without a motor connected.

In the demo program the following two lines calculate the acceleration and deceleration. You can
modify them to suit you purposes.

a:=(sp *sp)/(4 * sqrt(sp)) 'calculate values for acceleration and deceleration
d:=(3*a)/2 '"*1.5 most systems can stop faster than they start (friction, etc.)

To high a value for a or d will cause you to lose steps. To small a value will lead to long delays starting
and stopping and the possibility you will never reach the desired speed.

In normal use the speed of the motor accelerates to the desired speed, maintains that speed for some
time and then decelerates to a stop.

Run the demo program.

Press F12 to start the parallax serial terminal. Check Echo On.

Press Enter to start.
You will be prompted for steps and speed and the the motor will run.
If you press zero 0 while the motor is running it will decelerate to a stop.

The driver sets steps =0 to indicate it is ready for a new command.

In the demo program the start/stop pin is held high by the following line.
pinhigh(spin) 'start pin must be high for motor to run - could be connected to a switch instead
you could comment out that line and connect the pin to a switch to start or stop the motion.

Comment out the following lines as well

if char =="Q" 'set the start/stop pin to O (stop)
pinlow(spin)
waitms(10)
pinhigh(spin) 'set the start/stop pin to 1 (start) for next time

Best practice would be to connect the switch to the pin through a resistor to prevent pulling the pin to
ground while the program is driving it high.

| have also moved the 3 pins to a different group of outputs after learning that a shorted pin in outputs
24-31 could take out the power supply for the oscillator section thus bricking the p2

5‘ Parallax Serial Terrminal - (COM3) — O >

Comn Port: B aud Fate: @ T [DTR [RTS ¥ EchoD
w EchoOn
|coM3 x| [115200 ~¥| & m% @ DSR @ CTS
Prefs... | Clear | Pausze | Disable |

Enjoy...

