
a

b

c

d e

f

g

h

sxgo=$00
slot 0 slot 2

branch go,(init, Fn1,…)

init:

Fn1:

sxgo=back

branch go,(Gn0, Gn1, Gn2, Gn3,…)

Gn3:

sxgo=$23

RUN $2 BRANCH $3
RUN sx

RUN sxsxgo=$23
back=$01

$3

$01

$0

$0 $1

$2

gosx

The technique uses two bytes, one as a forward pointer and one as a return pointer. It is like a single
level return stack. Each of those bytes consists of two parts. The upper nibble is the destination slot
for use with a RUN command, and the lower nibble is the index of a label within the destination slot.for
use with a BRANCH command. I always make the forward pointer the first byte in memory, so that it
is easy to maintain it at the same position in all slots, no matter what may happen with the other vari-
ables. The only way to be sure it is the first byte in memory is to define it as byte0 of the first word in
memory.

wsx VAR word
sxgo VAR wsx.byte0 ‘ this is the slot swapping variable, part alias of wsx
sx VAR sxgo.nib1 ‘ for use with RUN, part aliases of both wsx and sxgo
go VAR sxgo.nib0 ‘ for use with BRANCH

back VAR wsx.byte1 ‘ this is the return pointer, I usually PUT it in location 126 in SPRAM.

The example shows a jump from slot 0 to a routine in slot 2 and then back to where it left off in slot 0.
a) Program starts in slot 0, all variables are initially zero, including the slot-swap byte, sxgo.

The first program instruction is a BRANCH on the least significant nibble of $00,
b) which resolves to a branch to the label here called “init”.
c) The init code executes through to a point where it needs to run a routine that happens

to reside in slot 2. It points forward to the desired routine, sxgo=$23, and also
sets the return pointer, back=$01, so that it can return to label Fn1 in slot 0.

d) It then executes the RUN $2 or RUN sx command, which brings it to the top of slot 2.
e) The $3 in the low nibble of sxgo is resolved by BRANCH go to label #3 in the list, “Gn3".
f) Code executes at Gn3 and eventually hits the instruction that retrieves the

return pointer, sxgo=back. Now sxgo=$01.
g) Execution of RUN sx returns to the top of to slot 0.
h) The $1 in the low nibble of sxgo resolves BRANCH go to the label Fn1.

i) Execution continues and may involve several more cross slot calls with different destinations
and different return points. In the process of program development it is easy enough to
edit and add by changing the indices and matching destination labels. The back destination
is not restricted to a specific return point. It can be used to chain several different routines
with just a little advanced planning. The important thing is to have a mechanism is in place.

EME technique for cross-slot call

(c) 2001, 2011 Tracy Allen, eme systems(All rights reserved) http://www.emesystems.com

This descibes a systematic way to manage cross-slot calls, with up to 16 target or return labels per
slot. It is possible to do this sort of thing ad-hoc, nonetheless, life is much easier when a consistent
framework is already in place. I started using this when the BS2sx came, out and subsequently the
‘2e, the ‘2p and my current favorite the ‘2pe. The example shows the course of events for a cross-
slot call from slot 0 to slot 2.

