10. Interacting with the world

_cclkMask long |<CLK
_cmosiMask long |<MOSI

Line 13 Set the loop index and set Z to zero.

Lines 14-16 Set _cdt to the current counter; add 1/8 ms (125us); and wait until then.

waitcnt takes two arguments: the counter will wait until it is equal to the first
argument. It will then add the second argument to the first so that you can call
waitcnt again.

Line 19 Lower CS. xor outa, _ccsMask will toggle the CS.

Line 23-24 Get the bits, Most Significant Bit first and place it on the MOSI line. The

rol _clogVal, #1 wc will rotate left and put the highest bit in C; muxc outa,
_cmosiMask will set MOSI to C.

Lines 26-29 Raise the clock line, wait 1/8th of a ms, lower the clock, wait again, and

loop.

Line 33 Lower the CS.

10.5.3. Logging deadlock

Warning!

If you call WRITE_SPI, you must have another cog which raises the REQ line other-
wise you will block forever.

At any time, you can call WRITE_SPI in the PASM code. It will block until the Spin
code raises the REQ line. At that point the PASM code will transmit the log value and
continue.

10.6. Locks

On single-track lines, the railroads needed a foolproof way to prevent two trains
from traveling on the same section of track at the same time. They settled on a
simple but elegant solution: the semaphore. A brass cylinder or token is cast and
engraved with the name of the stations at each end of the section of single-track. A
train could enter that section if and only if the engineer had physical possession of
the token. When he arrived at the station at the far end, he would give the token to
the station master, who could pass it on to a train traveling in the other direction.

You still see a version of this when road crews are working on potholes and signals
at each end control the traffic.

114




10.6. Locks

Figure 10.4.: Waiting for the signal, Santa Fe RR Train, Melrose, NM. Photo by Jack
Delano, 1943. From the Library of Congress Farm Security Administration archives.
http://www.loc.gov/pictures/item/fsal1992000785/PP/

115


http://www.loc.gov/pictures/item/fsa1992000785/PP/

10. Interacting with the world

10.6.1. Introduction to locks

The propeller has semaphores for exactly the same reason: to control access to critical
shared resources. In order to prevent a collision (for example one cog is modifying
an array at the same time that another is reading from it), the propeller has eight
semaphores.

locknew/lockret Create or destroy a semaphore.
lockset Set the state of the semaphore to 1 and return the previous state.
lockclr Set the state of the semaphore to 0 and return its previous state.

Here is a sketch of the process, with time proceeding to the right (“time” is a bit
of misnomer here—because locking is a HUB operation, even though both cogs may
request the lock at the same time, the HUB will service those requests in order). At
time 1, cog 0 acquires the lock. Because lockset is a HUB operation, only one cog a
time can request the lock; though it looks like both cogs are competing for the lock, in
fact, only of them can obtain it. In this case, cog 0 received the lock, and when cog
1 requested it (one clock cycle later), it was informed that somebody else had the lock
(because lockset returns 1). Remember, the propeller operates in round robin fashion
for HUB operations, providing exclusive access to the HUB for one cog, then the next,
and so on.

At time 2, cog 1 again requests the semaphore, and the propeller again returns the
previous state of the lock, which is 1, which indicates that somebody else has it. This
continues until time 5, when cog 0 releases the semaphore, and it is set to 0. At time 6,
cog 1 again requests the lock, and this time the previous value is 0, so cog 1 knows that
it has the semaphore?. It holds it until time 9.

cogl et clr
0] 0] 0]
cogl set set set set set set clr

0 1 2 3 4 5 6 7 8 9

The semaphore is created and then a lockset/lockclr pair of instructions brackets
the critical section of code. So for example, in our code, cog 0 could acquire samples
between times 1 and 5, but we must prevent cog 1 from attempting to compress them
during that time. Between times 6 and 9 the compression can safely proceed.

The way we have written the code there is in fact no chance of a collision between
sample acquisition and compression. The main cog blocks while the compression cog
is working, so it is impossible for it to modify sampsBuf. However, that isn’t very
good design: it is wasteful for main to sit there twiddling her thumbs while steim is
off doing his job. She could be (and usually is) performing other tasks. It is under
that type of system design that the semaphore is most useful. After all, if one has

31 lie. In reality, cog 0 would have released the cog at time 5, and during the next clock cycle, cog 1
would have requested and received the lock, but for illustration purposes, I fibbed.

116



