
Exploring Parallel Processing with
Catalina C on the Parallax Propeller

by Ross Higson

Introduction
The Parallax  Propeller  chips  are  extraordinary  beasts  (see  www.parallax.com/propeller for  full
details). The original Propeller chip (now known as the Propeller 1 or P1) had 8 32-bit processors
with 512 32-bit longs of RAM local to each processor, and 32kb of shared RAM that could be used
by all processors, with access to that RAM provided on a “round robin” basis, so each processor
could access the shared RAM 1/8th of the time. 

The new Propeller 2 (also known as the P2) also has 8 32-bit processors, but each one has 1024
32-bit  longs of  RAM local  to  each processor,  and there is 512kb of  shared RAM that  can be
accessed by all processors using a unique shared RAM design which means that each processor
can potentially access the shared RAM at any time – but a different 1/8th slice of it at any one time,
with each of the 8 processors in turn accessing a different 1/8th slice.

If this sounds complex, don’t worry. While it has some implications for the performance of the chip,
particularly when executing high-level languages (which generally execute from the shared RAM),
we can ignore this for the moment, and just think of the Propeller simply as a computer with 8
independent general-purpose processors.

Catalina  is  a  free  C89/C99  ANSI  C  compiler  and  run-time  environment  that  was  originally
developed for the Propeller 1 by Ross Higson. It is based on lcc (the “little C compiler”), a portable
retargetable C compiler developed by Christopher Fraser and David Hanson. Catalina is available
on Windows and Linux.

Support for the new Propeller 2 chip is a recent addition to Catalina, and the Propeller 2 will be the
main focus of this paper. However, it is worth pointing out that all the programs mentioned will also
compile and run perfectly well on a Propeller 1 chip. They just need to be smaller,  due to the
smaller amount of RAM available on the Propeller 1.

The focus of this paper is exploiting the multi-processor capabilities of the Propeller. We will look at
what is required to implement a parallel version of a very simple sequential algorithm in a high-
level language – in this case, the C language – using the Catalina C compiler.

Terminology
Before we proceed, we need a little bit of terminology. We don’t need to go into all the details of the
Propeller architecture (see the documentation available on the Parallax web site for that), but you
will see many terms littered throughout nearly all Propeller code and documentation (including this
one) that may be unfamiliar, so it is worth getting to know a few of them:

Cog Each of the 8 processors is called a “cog” - this is because the way they operate and
interact with the central hub is reminiscent of many small cogs rotating around a
larger central drive gear which gives access to the shared resources to each of the
cogs in turn.

Hub The circuitry and resources shared between all processors (cogs) is known as the
“hub”.

Cog RAM The RAM that is dedicated to each processor is referred to as “cog RAM”.

Hub RAM The RAM that is shared between all processors is referred to as “hub RAM”.

Copyright © 2020 by Ross Higson Page 1

http://www.parallax.com/propeller


Register Another  name for  the 512 (P1) or  1024 (P2) 32-bit  longs of  cog RAM – this  is
because as well as containing code for local execution, any of the longs (with a
couple of exceptions) can be used as a general-purpose register by the Propeller’s
native instruction set.

Kernel A program that resides in cog RAM and executes other program code – code which
is generally located in hub RAM.

Lock A  mutual-exclusion lock that can be used to coordinate access to shared resources.
The hub provides 8 such locks, which can be acquired and used by any cog.

Spin The original high-level language designed by Parallax for the Propeller. It is a byte-
coded language interpreted by a kernel that executes in one or more cogs. Spin has
built-in support for multi-processing, but being essentially a proprietary language it
has had a mixed reception.

LMM Large Memory Mode (or Model). The original Propeller executed native instructions
only from cog RAM, and to execute code from Hub RAM a byte-oriented interpreted
language called Spin was developed by Parallax. An early developer, Bill Henning,
realized that a very tight loop of only a few native instructions in cog RAM could also
fetch and execute native instructions from hub RAM, and he used this technique to
extend the RAM available for native mode instructions from the limited cog RAM to
the entire hub RAM. LMM code executes more slowly than cog code, but the LMM
technique allows much larger programs to be created that can effectively use the
native instruction set that was previously limited to executing only from cog RAM.
This facilitated high-level language support on the Propeller 1, and the original set of
high-level  language  compilers  (including  Catalina)  was  born.  While  LMM  is
sometimes also used on the Propeller 2, the Propeller 2 can also natively execute
instructions from hub RAM – see also “NMM”.

CMM Compact Memory Mode (or Model). This technique uses a similar execution mode
to LMM, but makes use of a compressed instruction set that typically compresses
programs to nearly half the size of the same LMM programs. Each instruction has to
be uncompressed before execution, so CMM mode is even slower than LMM mode.
But the limited memory on the Propeller 1 chip made it attractive, and it still finds
use even on the larger Propeller 2.

NMM Native Memory Mode (or Model). This is unique to the Propeller 2. It is also referred
to as “Hub Execution” mode. It makes the Propeller a bit more similar to traditional
processor  architectures,  where program code is  generally  in  hub RAM, and the
registers (i.e. the cog RAM) is generally used to hold data, not code.

Copyright © 2020 by Ross Higson Page 2



The Sieve of Eratosthenes
The best way to to explore parallel programming from a practical perspective is with a concrete
example  of  a  complete  algorithm that  is  simple,  familiar,  and  easy  to  turn  from a  sequential
algorithm to a parallel algorithm so that we can easily measure the benefits. 

Surprisingly,  good  examples  of  such  algorithms  are  not  so  easy  to  find.  But  the  “Sieve  of
Eratosthenes” is one such. Some people may remember the sieve from their school days – it is a
means of enumerating prime numbers by simply writing down a sequential list of all numbers and
then crossing any any numbers that are multiples of any others in the sieve, other than 1 or itself
(recall that a prime number is a number that is not a multiple of any numbers other than 1 and
itself). When you have crossed out all the numbers you can, the ones that are left in the sieve are
all the prime numbers.

Without further ado, let’s see the Sieve of Eratosthenes, implemented in C:
/******************************************************************************
 *                                                                            *
 *                         The Sieve of Eratosthenes                          *
 *                                                                            *
 ******************************************************************************/

#include <stdio.h>
#include <stdlib.h>

/*
 * define the size of the sieve (if not already defined):
 */
#ifndef SIEVE_SIZE
#define SIEVE_SIZE   100
#endif

/*
 * main : allocate and initialize the sieve, then eliminate all multiples
 *        of primes, then print the resulting primes.
 */ 
void main(void){
   unsigned long i, j;
   unsigned long k = 1;
   unsigned char *primes = NULL;

   // allocate a byte array of suitable size
   primes = malloc(SIEVE_SIZE);

   if (primes == NULL) {
      // cannot allocate array
      exit(1); 
   }

   // initialize sieve array to zero
   for (i = 0; i < SIEVE_SIZE; i++) {
      primes[i] = 0;
   }

   // eliminate multiples of primes
   for (i = 2; i < SIEVE_SIZE/2; i++) {
      if (primes[i] == 0) {
         for (j = 2; i*j < SIEVE_SIZE; j++) {
            primes[i*j] = 1;
         }
      }
   }

   // print the resulting primes, starting from 2
   for (i = 2; i < SIEVE_SIZE; i++) {
      if (primes[i] == 0) {
         printf("prime(%d)= %d, ", k++, i);
      }
   }

   while(1);
}

Copyright © 2020 by Ross Higson Page 3



You will find all the programs discussed in this document, and scripts to compile those programs, in
the folder demos\sieve in the directory where you installed Catalina (you must be using Catalina
4.3 or later). You will find the program listed above in a file called sieve_original.c.

You can very easily execute this program on the Propeller (1 or 2). Here are the actual commands
to use to do so using the Catalina C compiler (catalina) and its program loader (payload) on a
Propeller 21:

catalina -p2 sieve_original.c -lci -C TTY
payload sieve_original -i -b230400

If you are using a Propeller 1, omit the -p2 parameter:

catalina sieve_original.c -lci -C TTY
payload sieve_original -i

When you load and execute the program using payload, you will see output similar to this:

Entering interactive mode on port /dev/ttyUSB1 - press CTRL+D to exit

prime(1)= 2, prime(2)= 3, prime(3)= 5, prime(4)= 7, prime(5)= 11, prime(6)= 13,
prime(7)= 17, prime(8)= 19, prime(9)= 23, prime(10)= 29, prime(11)= 31, prime(12
)= 37, prime(13)= 41, prime(14)= 43, prime(15)= 47, prime(16)= 53, prime(17)= 59
, prime(18)= 61, prime(19)= 67, prime(20)= 71, prime(21)= 73, prime(22)= 79, pri
me(23)= 83, prime(24)= 89, prime(25)= 97,

So, the 25th prime number is 97.  Very interesting ...  but let’s face it,  a sieve size of only 100
numbers is a bit lame. We can do that with a pencil and paper, and very likely did so in school! 

So let’s first crank it up a bit … we can specify a larger sieve size on the command line as follows:

catalina -p2 sieve_original.c -lci -C TTY -D SIEVE_SIZE=400000
payload sieve_original -i -b230400

A sieve size of 400,000 is only possible on the Propeller 2. On the Propeller 1, you would instead
only be able to go to a sieve size of about 12,000 – i.e:

catalina sieve_original.c -lci -C TTY -D SIEVE_SIZE=12000
payload sieve_original -i

If you do this, you will find that the 1438 th prime is 11987 (on the Propeller 1) or that the 33860 th

prime is 399989 (on the Propeller 2). 

Now, that’s more like it! We can’t very easily do that with a pencil and paper!

From here on, as we work through different versions of the sieve program, we will not give the
individual commands. Instead, you should just compile all  the programs using the  build_all
batch script, specifying the Propeller platform you have as the first parameter, and any memory
model  or  Human/Machine  Interface  (HMI)  options  as  subsequent  parameters.  This  script  will
automatically apply sieve sizes appropriate for the Propeller 1 or 2. 

For example:

build_all P2_EVAL TTY NATIVE

or:

build_all FLIP TTY

We will  assume that all  the programs mentioned have been compiled using these scripts, and
executed using payload (don’t forget the -i).

Note that on both the Propeller 1 and the Propeller 2, you should specify TTY as your HMI option
(it is the HMI option that uses least RAM, allowing us the biggest sieves), and on the Propeller 2
you should specify NATIVE mode (the fastest). On the Propeller 1 you do not need to specify any
mode - LMM will be used.

1 On the Propeller 2, serial programs use 230400 baud by default, so you must specify either set the environment
variable PAYLOAD_BAUD to 230400, or specify this baud rate using -b on each payload command.

Copyright © 2020 by Ross Higson Page 4



Parallelizing the Sieve Algorithm
The Sieve of Eratosthenes is a very simple sequential (or “single-threaded”) algorithm. So can we
turn it into a program that can exploit the parallel processing capabilities of the Propeller?

Of course, the answer is “Yes we can!” 

The first thing is to consider the following part of the program:

   ...

   // eliminate multiples of primes
   for (i = 2; i < SIEVE_SIZE/2; i++) {
      if (primes[i] == 0) {
         for (j = 2; i*j < SIEVE_SIZE; j++) {
            primes[i*j] = 1;
         }
      }
   }

   ...

This is pretty much the the entire sieve algorithm in a couple of lines of code. The inner loop here
does a very simple job – it iterates through the primes array eliminating multiples of each number
identified in the outer loop. But for a sieve containing hundreds of thousands of numbers, both the
inner and the outer loops must be executed hundreds of thousands of times. That’s going to take
some time. 

But what if we could execute multiple instances of that inner loop in parallel – i.e. on multiples of
the  numbers  in  the  outer  loop  at  the  same  time?  That  would  speed  up  the  algorithm  quite
dramatically.

It is worth noting here that each iteration of the inner loop is  independent – and so they can be
executed in any order. Yes, it is true that if we happen to (say) start to eliminate multiples of 4
before eliminating all the multiples of 2, then we will end up duplicating some work – but this does
not invalidate the process, and if we can truly do these operations in parallel, then this potential
duplication of work will not even cost us any time!

These facts make the sieve algorithm a good candidate for the application of parallel processing,
and the Propeller is a good candidate for the job!

How? Well, the first (and easiest) step is to move the inner loop into a function of its own. We do
that in the file sieve_single_threaded.c, which contains the following sections of code – our
new function – which simply implements the inner loop of the original algorithm:

   ...

/*
 * eliminate_multiples: eliminate all multiples of a prime from the sieve
 /
void eliminate_multiples(unsigned long int i) {
   unsigned long j;
   // eliminate multiples
   for (j = 2; j < SIEVE_SIZE; j++) {
      primes[i*j] = 1;
   }
}

   ...

Copyright © 2020 by Ross Higson Page 5



And the new outer loop that invokes this function is as follows:

   ...

   // eliminate multiples of primes
   for (i = 2; i < SIEVE_SIZE/2; i++) {
      if (primes[i] == 0) {
         eliminate_multiples(i);
      }
   }

   ...

This may look like we are adding overhead to our algorithm, and so we are – we are adding a
function call. But the overhead of adding one function call per iteration of the outer loop is small
compared to the execution time of the inner loop within that function – and doing this makes the
next steps conceptually easier.

This version of  the sieve program also adds a few other housekeeping items, such as timing
calculations, which will allow us to determine how long the algorithm takes to execute. We time the
outer loop using the system clock counter (which makes the results independent of the actual clock
frequency) and print  it  once the outer loop is complete. These changes do not alter the basic
operation of the sieve algorithm - that comes in the next step.

But first, lets execute this version, because this is the first version that we can time. If we do so on
a Propeller 2, we will see output similar to the following:

Entering interactive mode on port /dev/ttyUSB1 - press CTRL+D to exit

starting...
... done - 227292729 clocks

press a key to see results

This tells us it took the program 227,292,729 clocks to complete the sieve algorithm on a sieve size
of 400,000 numbers. 2

This is the number we will have to beat – and beat substantially – if we are going to claim that a
parallel version of this algorithm is worth the additional resources and effort.

2 The actual number may differ depending on the version of Catalina being used.

Copyright © 2020 by Ross Higson Page 6



Multithreading
Before  we  start  worrying  about  using  multiple  physical  processors,  we  will  turn  our
eliminate_multiples() function into something that we can execute using multiple  logical
processors.

Why? Well, consider our sieve program – in an ideal world, eliminating primes from an array of
400,000  numbers  would  require  up  to  200,000  separate  sub-tasks  (i.e.  executions  of  the
eliminate_multiples() function).  For  the  fastest  result,  these  should  all  be  executed
simultaneously – but we don’t have 200,000 physical processors. Nor are we ever likely to! But we
want to make best use of whatever processors we do have.

It is also the case that the sub-tasks we have to execute in order to implement our algorithm may
not map well to physical processors – they may be too simple (as they are in the case of our sieve
program) and not worth the effort  of  assigning individually to a physical processor,  or else too
complex, possibly requiring multiple physical processors to implement each sub-task.

So what we do instead is first execute our sub-tasks on logical processors, and then assign those
logical processors to whatever physical processors we have available.

This also has the benefit that we are not constrained should the physical processors not all be
available when we need them – we divide the algorithm logically, not physically, knowing that we
will always be able to execute our logical processors using whatever physical processors happen
to be available at the time, using multi-threading if necessary. In purely practical terms, it would be
silly to design an algorithm that  depended on having 200,000 physical processors available, and
then discovering at run time that you had only five!

With C, as with other fundamentally sequential languages, we can most easily do this by using
threads  – i.e. independent threads of execution that can potentially be executed in parallel. The
overhead of starting or stopping a thread – especially one executing on another physical processor
– is still quite high, so we definitely don’t want to have to do this for each individual sub-task – this
would potentially negate any benefit  unless we truly  did have a very large number of physical
processors. 

Instead, what we we will do is create a worker thread – a logical process that stays active as long
as we need it, and which – once started – we can use to perform sub-tasks as we need without
further overhead. Minimizing the overhead of assigning a task to a worker thread, or determining
when that work is complete, will make a significant difference to the final outcome.

So before we move on to true parallel processing using multiple physical processors, we will turn
our program into a multi-threaded version that still executes on a single physical processor. This
will generally not give us any improvement in execution time.  When a multi-threaded program is
run on a single physical processor, the threads are not really executed in parallel – at best, they
are executed by interleaving the execution of small chunks of each of them until all of them are
eventually complete. The overheads of this interleaving is why multi-threading may end up slowing
down an algorithm instead of speeding it up. But we will do it anyway, because while this step is a
little complex, it  makes the subsequent step – i.e. mapping these worker threads onto physical
processors – very much simpler

So let’s have a look at the version of the sieve called sieve_multi_threaded.c – this version
turns the  eliminate_multiples() function into a worker thread, and uses Catalina’s thread
functions to execute multiple instances of them using the capabilities built  into Catalina’s multi-
threading kernel.

Copyright © 2020 by Ross Higson Page 7



Here  are  the  significant  new  portions  of  that  program  –  a  new  eliminate_multiples()
function, and a global array (my_prime) which the main program can use to communicate with
each of the individual worker threads:

   ...

/*
 * define a place to put the prime number a worker thread should process 
 * (0 means thread is either not started, or is waiting for a new prime)
 */
static unsigned long int my_prime[NUM_WORKERS] = { 0 };
   ...

/*
 * eliminate_multiples: eliminate all multiples of a prime from the sieve
 *
 * This is our worker thread function - note that the "me" parameter passed is
 * a thread number, which the worker uses to look up their allocated prime
 * in the array "my_prime" - this is just an easy way of passing a parameter
 * other than a plain int, and also indicating completion of our task.
 */
int eliminate_multiples(int me, char *unused[]) {
   unsigned long i;
   unsigned long j;

   while (1) {
      // get my allocated prime
      while ((i = my_prime[me]) == 0) {
         idle();
      }
      // eliminate multiples
      for (j = 2; i*j < SIEVE_SIZE; j++) {
         primes[i*j] = 1;
      }
      // indicate we are done
      my_prime[me] = 0;
   }
   return 0;
}

   ...

You should  recognise the  section  highlighted in  red as  the  inner loop  from the original  sieve
algorithm. 

The code before the section in red is the worker thread waiting to be assigned a task to process,
and the code after it is the worker thread indicating that it has completed its assigned task. 

A significant  change to note in this version is that the  eliminate_multiples() function no
longer directly accepts the number it is to work on. Instead, it accepts a thread number (me) on
start-up that tells it  where to look in a global array (my_prime)  to find its assigned task.  The
number to be processed by the worker is put into the appropriate entry of the array by the main
program, and the worker replaces that value with zero when it is finished processing the number.

This provides an easy and efficient way for the main program to assign a task to each worker
thread, and for that thread to report the completion of that task back to the main program.

Copyright © 2020 by Ross Higson Page 8



Here is the code to start a worker thread, implemented in a new create_worker() function. The
function  must  allocate stack  space for  the worker  thread to use,  and then uses the functions
_thread_start() and _thread_ticks() from the Catalina thread library (the details of these
functions  not  that  important  here,  but  if  you  are  interested  you  can  consult  the  Catalina
documentation for more details on these and any of the other Catalina thread library functions):

   ...

/*
 * create_worker: create a worker thread.
 */
void *create_worker(_thread worker, int stack_size, int ticks, int argc, char *argv[])
{
   long *s = NULL;
   _thread *w = NULL;

    s = malloc(STACK_SIZE*4);
    if (s != NULL) {
       w = _thread_start(worker, s + STACK_SIZE, argc, argv);
       if (ticks > 0) {
          _thread_ticks(w, ticks);
       }
    }
    return w;
}

   ...

And here is the code that calls the create_worker() function to create some worker threads:

   ...

   // create workers
   for (i = 0; i < NUM_WORKERS; i++) {
      if (create_worker(&eliminate_multiples, STACK_SIZE, 100, i, NULL) == NULL) {
          t_printf("Cannot create worker\n");
          exit(1);
      }
   }

   ...

In this program, the worker threads are never specifically terminated (they will be terminated when
the program terminates) but in the real world you would probably stop the worker threads once
they are no longer needed. You can do this using the thread library function  _thread_stop().
Typically, the threads would terminate themselves on some signal – such as if they were passed -1
as the number to process, or if a global variable was set to a particular value.

It is worth noting that the  NUM_WORKERS value is quite arbitrary – we can start as many worker
threads as we like, because these are  logical processors, not  physical ones. It is true that how
many we start  will  partly depend partly on how many  physical processors we have to execute
them, but it mostly depends on the function the logical processor implements – in some cases we
will start many more logical processors than we have physical processors, and in other cases we
may start only one (it can be hard to predict how many logical processors will best accomplish a
given algorithm in the least time, and trial and error may be the easiest way to determine this).

Copyright © 2020 by Ross Higson Page 9



The new version of the sieve algorithm that assigns tasks to the worker threads is shown below.
You will recognise the section highlighted in red as the outer loop of the sieve algorithm, and rest of
the code is  the program waiting for  a free worker  thread,  and then assigning it  a  task to do
whenever it finds one: 

   ...
/*
 * next_worker - move to the next worker
 */
#define next_worker(j) (j = (j + 1)%NUM_WORKERS)

   ...

   // eliminate multiples of primes
   j = 0;

   for (i = 2; i < SIEVE_SIZE/2; i++) {
      if (primes[i] == 0) {
         // find a free worker thread, waiting as necessary
         while (my_prime[j] != 0) {
            next_worker(j);
            if (j == 0) {
               idle();
            }
         }
         // found a free worker thread, so give them some work!
         my_prime[j] = i;
         next_worker(j);
      }
   }

   ...

One final piece of new code is required - once it has assigned all the work to worker threads, the
sieve algorithm must wait until all the worker threads have completed their assigned tasks before it
can declare the algorithm complete.

This is what that section of code looks like:

   ...

   // wait till all worker threads complete
   j = 0;

   while (1) {
      if (my_prime[j] != 0) {
         idle();
      else {
         next_worker(j);
         if (j == 0) {
            break;
         }
      }
   }

   ...

If we execute this this version on a Propeller 2, we will find that it takes 285,508,385 clock ticks to
complete the sieve algorithm. So we have indeed gone backwards! But this was expected, so let’s
just proceed to the next step and see how we do when we introduce multiple physical processors.

Copyright © 2020 by Ross Higson Page 10



Multiprocessing
The final step on our path to parallelizing our sieve algorithm is to map our logical processors onto
the available physical processors. 

But if you are expecting this step to be more difficult than the previous one, then think again. As
was hinted in the previous section, the hard part was making it possible for our sub-tasks to be
executed by a worker thread. The next step is quite trivial by comparison. 

To do this, instead of just creating worker threads in the context of our main program (and which
would just execute on the same physical processor as the main program) we will first create a
factory, assigning it as many cogs to work with as we want, and then create the workers  in the
context of the factory. 

The factory is responsible for assigning the workers it is given to whatever cogs it has available.
And, importantly, we generally don’t need to get involved in the details of how this is done.

Here is the code that does it:

   ...

   // create a factory with any available cogs
   f = create_factory(ANY_COG, STACK_SIZE, kernel_lock);
   if (f == NULL) {
       t_printf("Cannot create factory\n");
       exit(1);
   }

   // create workers who will work in the factory
   for (i = 0; i < NUM_WORKERS; i++) {
      if (create_worker(f, &eliminate_multiples, STACK_SIZE, 100, i, NULL) == NULL) {
         t_printf("Cannot create worker\n");
         exit(1);
      }
   }
   ...

The rest of the final version of our sieve program is mostly the same as the previous version,
except that we don’t even have to provide the create_worker() function any longer – this can
also done by the factory, because it requires exactly the same code for any worker. But note that
the factory version of create_worker() takes the factory as its first parameter.

You can find this final version of our sieve program in the file sieve_multi_processor.c. 

But before we explain a bit more about what it going on here, let’s execute this version, to see if we
have actually achieved any improvement in the execution time. It would certainly be a bit pointless
if we had not!

When we do that, we find that on a Propeller 2, our final version of the sieve takes 61,941,305
clocks to execute. Remember that our original version took 227,292,729 clocks.

So our parallel version of the Sieve of Eratosthenes, using (in this case) 5 physical processors to
implement the sieve algorithm instead of 1, is almost 4 times faster than the original version.

In theory, one might expect that this multi-processor version should be 5 times faster. And, in fact it
comes close – but it close to 5 times faster than the multi-threaded version, not the single-threaded
version. So we lost some ground when we turned our single-threaded version into a multi-threaded
version, but we then gained many times more than that back again when we turned the multi-
threaded version into a multi-processor version.

I call that a win! 

Copyright © 2020 by Ross Higson Page 11



On a Propeller 1, we don’t do quite so well in the end, but we still end up with a performance
improvement of over 3 times that of the single threaded version.

So how was this achieved? Well, one of the main purposes of the thread factory is to  isolate us
from such details, because they are not important to the job at hand. We can just use the thread
factory, without understanding the internals. However, the internal details are all available in the file
thread_factory.c,  and  they  take  only  about  a  page  of  fairly  simple  C code.  The  current
(prototype) implementation of the thread factory uses some of the same functions we used in our
own create_worker() process. But we no longer need to do this ourselves if we use the factory,
so in fact our multi-processor version is also simpler than our multi-threaded version.

It is worth studying sieve_multi_processor.c to see how the pieces fit together, and also to
see how a similar process might be applied to other sequential algorithms.

Here is the part  we  do need to know - the  definition of the thread factory itself,  and its main
functions. This is from the file thread_factory.h:

   ...

/*
 * declare a type for our factory:
 */
typedef struct factory_struct FACTORY;

/*
 * create_factory : create a factory with the specified number of cogs, the
 *                  specified stack size for each cog, and use the specified
 *                  kernel lock.
 */ 
FACTORY *create_factory(int num_cogs, int stack_size, int kernel_lock);

/*
 * create_worker : create a worker thread to work in the specified factory,
 *                 using the specified worker function, and with the specified
 *                 stack size and ticks between context switches. The worker 
 *                 will be passed the specified argc and argv parameters.
 */
void *create_worker(FACTORY *factory, _thread worker, int stack_size, int ticks,
int argc, char *argv[]);

   ...

The key functions are the ones that first create the factory, and then create workers in that factory.

It is worth pointing out that you can create a factory that uses all the available cogs (by specifying
the value ANY_COG) or with a specified number of cogs. We can create a factory which uses just
one cog if we want to, and we can also create multiple factories if we want to. This might be useful
if  (for  instance)  we  had  several  different  algorithms  to  implement,  and  we  did  not  want  the
performance of any one of them to affect the performance of the others.

Another thing to note is that we are not limited to only assigning one type of worker to each factory.
We can create different worker threads for doing different tasks in the same factory. Unlike a real
factory, our factory does not care what its workers actually do.

The process we used in this paper to speed up the Sieve of Eratosthenes algorithm can be used
on other sequential algorithms. The difficult part is identifying the sub-tasks of an algorithm that can
be improved by executing them in parallel. Many sequential algorithms simply do not  have any
suitable sub-tasks. The two main things we need to look for are:

1. That the sub-tasks of the algorithm are  independent (otherwise we need to worry about
their interactions); and

2. That there are enough sub-tasks, or they are complex enough, to make executing them in
parallel worthwhile – remember that during the process of parallelizing our algorithm we
introduced  necessary  overheads  –  and  we  don’t  want  to  end  up  with  the  benefits
outweighing the costs.

Copyright © 2020 by Ross Higson Page 12



Conclusion
We have shown how even a very simple algorithm such as the Sieve of Eratosthenes can have its
execution speed dramatically improved by exploiting parallelism.

And we have also shown that the Parallax Propeller (1 or 2) is a great chip for demonstrating
parallel processing, and that Catalina provides a simple means of exploiting the parallel processing
capabilities offered by the Propeller chips, using the C language.

The Propeller chips are attractive because they offer a very low cost in terms of “bang for buck”,
and are appropriate for both hobbyists and professional uses.

Catalina has had multi-threading support built-in almost since its inception, but the “thread factory”
(demonstrated here) is a recent innovation, and will be improved and added to in future releases of
Catalina. It is partly the result of Chip Gracey (designer of the Propeller chips) asking whether it
was possible for threads to execute anywhere (he meant on any cog) and not care where. He was,
as usual, quite correct. Sometimes you can’t see the wood for the trees!

High-level  language  support  on  the  Propeller  1  has  always  been  a  tight  fit,  and  language
developers have had to go to extraordinary lengths to make them work. The result is that while all
the programs discussed here will  happily  execute on the Propeller  1 (albeit  with smaller  sieve
sizes), the benefits of multi-processing in a high-level language on that chip are somewhat muted
because of the higher overheads incurred in supporting high-level languages on that chip at all. But
we have demonstrated that even on the Propeller 1 they can still be worthwhile.

But  on  the  Propeller  2,  exploiting  the  parallelism  it  offers  can  really  make  a  difference!  The
Propeller 2 not only has features that facilitate the implementation of high-level languages (such as
hub execution mode, and fast hub reads and writes), it also has 16 times as much Hub RAM to
use, and versions with even more RAM and/or with cogs are already on the drawing board. 

This makes the Propeller a perfect platform for exploring and exploiting parallel programming - and
Catalina will continue to refine its multi-processing support to take advantage of that.

Appendix
There  is  another  version  of  the  sieve  program  in  the  demos\sieve directory,  in  the  file
sieve_bitmapped.c. This version uses an array of bits instead of an array of bytes to hold the
sieve array, and therefore can be compiled to process a much larger sieve – sieve sizes of well
over  3,000,000  numbers  are  possible  on  the  Propeller  2.  However,  because  it  uses  bit
manipulation rather than byte manipulations,  it  cannot  be “parallelized”  as easily  – the worker
thread operations would not be independent because one worker thread could overwrite the results
of another worker thread should the numbers they were working on at the same time be in the
same 32 bit long.

Copyright © 2020 by Ross Higson Page 13


	Introduction
	Terminology
	The Sieve of Eratosthenes
	Parallelizing the Sieve Algorithm
	Multithreading
	Multiprocessing
	Conclusion
	Appendix

