


0

1

1.1

1.1.1

1.1.2

1.2

1.2.1

1.2.2

1.2.2.1

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.4

1.4.1

1.4.2

1.4.3

1.5

1.6

2

2.1

Table	of	Contents
Introduction

User	Guide

Getting	Started

Installing	PropellerIDE

Installing	FTDI	Drivers

The	Main	Window

Tool	Bar

Editor	View

Code	Completion

Documentation	View

Project	View

Keyboard	Shortcuts

Project	Archive	Tool

Debugging	Tools

Terminal

Memory	Map

Heat	Map

Oscilloscope

Logic	Analyzer

Language	Support

Spin

PropBASIC

C

Preferences

Frequently	Asked	Questions

Developer	Guide

Building	PropellerIDE

PropellerIDE	Documentation

2



Introduction
PropellerIDE	is	a	fun,	easy,	beautiful	editor	for	the	Propeller	microcontroller.

Code	the	way	you	like	with	a	colorful,	customizable	editor.
Dig	deeper	into	your	applications	with	the	built-in	memory	map.
Speak	your	Propeller's	language	with	the	integrated	serial	terminal.
Find	what	you	need	fast	with	searchable	project	view	and	auto-complete.
Start	coding	right	away	with	the	included	Spin	Standard	Library.
Runs	great	on	Windows,	Mac,	Linux,	and	Raspberry	Pi!

PropellerIDE	Documentation

3Introduction



User	Guide

PropellerIDE	Documentation

4User	Guide



Getting	Started

PropellerIDE	Documentation

5Getting	Started



Installing	PropellerIDE
PropellerIDE	is	currently	officially	supported	on	Windows,	Mac,	Debian,	and	Raspbian	OS.

First,	download	PropellerIDE	for	your	platform.	Then	follow	the	corresponding	instructions	to
get	started.

Windows
PropellerIDE	is	packaged	as	a	Windows	installer	that	will	guide	the	user	throughout	the
installation	process.

Mac	OS	X
PropellerIDE	is	packaged	as	a	regular	DMG	image,	so	mount	the	Volume	and	drag	the	icon
into	the	Applications	folder.

Linux

Ubuntu

PropellerIDE	requires	a	minimum	of	Qt	5.2	which	is	only	available	on	Ubuntu	as	of	14.04.

After	downloading	the	Debian	package	for	your	platform,	install	it	with		dpkg	.

sudo	dpkg	-i	propelleride-(version)-amd64.deb

It	will	complain	about	dependencies	at	which	point	you	can	run		apt-get		to	fix	them.

sudo	apt-get	install	-f

Make	sure	you	install	the	FTDI	drivers!

sudo	apt-get	install	libftdi1

Add	yourself	to	the		dialout		group	so	you	can	use	the	serial	port.

PropellerIDE	Documentation

6Installing	PropellerIDE

http://developer.parallax.com/propelleride/


sudo	usermod	-a	-G	dialout	USER_NAME

Ubuntu	14.04	or	earlier

PropellerIDE	is	known	to	build	in	Ubuntu	versions	as	old	as	12.04,	but	doing	so	will	take
some	work.

Add	the	Utopic	Unicorn	sources	to	your		/etc/apt/sources.list	.

deb	http://cz.archive.ubuntu.com/ubuntu	utopic	main

Run	an	update	to	ensure	your	apt	repositories	are	up-to-date.

sudo	apt-get	update

Raspberry	Pi	-	Raspbian	Wheezy

Qt5	is	not	available	in	the	standard	repository,	but	you	can	obtain	it	from	Debian	backports.

Add	the	following	entries	to		/etc/apt/sources.list	.

deb	http://twolife.be/raspbian/	wheezy	main	backports

deb-src	http://twolife.be/raspbian/	wheezy	main	backports

Add	the	repository	key.

sudo	apt-key	adv	--keyserver	keyserver.ubuntu.com	--recv-key	2578B775

Update	and	install	Qt5	and	its	dependencies.

sudo	apt-get	update

sudo	apt-get	install	qt5-default	qt5-qmake	libegl1-mesa	libgles2-mesa

PropellerIDE	Documentation

7Installing	PropellerIDE



Installing	FTDI	Drivers
In	this	tutorial	we	will	walk	you	through	installing	the	FTDI	USB-to-Serial	driver.	This	is
required	to	use	the	Propeller	on	all	wired	platforms.

Windows
Head	over	to	the	FTDI	website,	and	scroll	down	to	the	chart	under	"VCP	Drivers"	and	select
the	download	according	to	your	operating	system.

Select	the	most	recent	version	and	start	the	download	(either	will	download	the	same	zipped
file).

After	download	finishes,	open	the	zipped	file.This	file	will	contain	both	executables	for	32-
and	64-bit	processors.	Select	the	one	your	computer	runs	(dpinst-amd64	for	64-bit	and
dpinst-x86	for	32-bit).

PropellerIDE	Documentation

8Installing	FTDI	Drivers

http://www.ftdichip.com/Drivers/VCP.htm


Click	"Extract	All"	when	a	window	pops	up	to	extract	the	files.

Click	"Extract"	into	a	destination.	Another	window	will	pop	up	containing	files.

PropellerIDE	Documentation

9Installing	FTDI	Drivers



In	this	popped	up	window,	double	click	on	the	same	executable	from	before.	Remember	to
click	""Yes"	to	allow	the	program	to	make	changes	to	your	computer.

PropellerIDE	Documentation

10Installing	FTDI	Drivers



Follow	the	instructions	until	installation	is	completed.

Linux
On	Debian,	open	a	terminal	and	use	the	"apt"	package	manager	to	install	to	your	system.

PropellerIDE	Documentation

11Installing	FTDI	Drivers



sudo	apt-get	install	libftdi1

On	Fedora,	use	the	"yum"	package	manager.

sudo	yum	install	libftdi

PropellerIDE	Documentation

12Installing	FTDI	Drivers



The	Main	Window

PropellerIDE	Documentation

13The	Main	Window



Tool	Bar

File

	New

Creates	a	new	file.

	Open

Opens	an	existing	file.

	Save

Saves	the	current	file	to	disk.

	Save	As

Saves	a	copy	of	the	current	file	under	a	new	name.	The	original	file	is	not	saved.

Project

	Archive	Project

Builds	an	archive	of	the	current	project.

	Build	Project

Compiles	the	current	project	without	downloading	it.

	Run	Project

Compiles	and	downloads	it	to	the	currently	selected	board.

PropellerIDE	Documentation

14Tool	Bar



	Write	Project

Compiles	the	project,	downloads	it	to	the	board,	and	writes	it	to	the	board’s	first	EEPROM.

	Device	Selector

Selects	the	target	download	device	from	any	available	devices	connected	to	the	system.

Debugging

	Memory	Map

Opens	the	Memory	Map	widget.

	Terminal

Opens	the	Terminal	widget.

PropellerIDE	Documentation

15Tool	Bar



Editor	View

PropellerIDE	Documentation

16Editor	View



Code	Completion
With	PropellerIDE,	you	can	complete	code	from	the	current	file	or	another	file	in	the	path	in
the	main	file’s	directory	or	a	directory	in	the	library	path.

The	following	completions	are	supported.

Public	functions

Constants

Completing	From	The	Current	File
As	of	v0.36.7,	PropellerIDE	supports	completing	within	the	current	file.

Typing		#		brings	up	a	list	of	constants.

Typing		.		brings	up	a	list	of	functions.

Press	Esc	to	quit	without	completing.	Press	Enter	or	Return	to	accept	the	completion.

Completing	a	constant	from	the	current	file.

Completing	From	Another	File
You	can	also	complete	code	from	another	file.

Typing	the	alias	of	an	object[1],	then		#		opens	a	list	of	constants.

Typing	the	alias	of	an	object,	then		.		opens	a	list	of	functions.

As	with	before,	Esc	quits,	Enter	or	Return	accepts.

PropellerIDE	Documentation

17Editor	View



Completing	a	function	from	another	file.

1	e.g.	where	we	declare	an	object		kbd	:	"Keyboard"	,	the	alias	is		kbd	.

PropellerIDE	Documentation

18Editor	View



Project	View

PropellerIDE	Documentation

19Project	View



Keyboard	Shortcuts

Basic	Shortcuts

Editing	Shortcuts

Ctrl+Z Undo

Ctrl+Shift+Z Redo

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+A Select	all

View	Controls

Ctrl++ Increase	font	size

Ctrl+- Reduce	font	size

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+A Select	all

Project	Controls

PropellerIDE	Documentation

20Keyboard	Shortcuts



F8 Open	memory	map

F9 Compile	current	program

F10 Run	current	file

F11 Write	current	file

F12 Open	terminal	on	current	device

Tab	Controls

Ctrl+T Create	a	new	file

Ctrl+Shift+T Create	a	new	file	from	a	template

Ctrl+W Close	the	current	tab

Ctrl+PgUp Go	to	previous	tab

Ctrl+PgDn Go	to	next	tab

PropellerIDE	Documentation

21Keyboard	Shortcuts



Debugging	Tools
You	just	wrote	an	awesome	program,	you	sit	down	to	test	it	out,	you	cross	your	fingers,
dripping	with	anticipation,	and…​	it	doesn’t	work.

Agh!	What	a	frustrating	moment!

Luckily,	PropellerIDE	can	help.	It	has	lots	of	built-in	tools	to	help	you	pinpoint	where	you
went	wrong.

PropellerIDE	Documentation

22Debugging	Tools



Terminal
PropellerIDE	has	a	built-in	serial	terminal	you	can	use	to	debug	your	Propeller	programs.

There	are	no	restrictions	on	the	number	of	terminals	that	can	be	open	at	a	time,	even	on	the
same	device,	and	software	can	be	downloaded	to	attached	devices	without	disconnecting
terminals	first.

Tool	Bar

	Active	Light	&	Button

When	the	light	is	green	and	Active	is	pressed,	the	device	is	connected	and	ready	to	send
and	receive	data.

PropellerIDE	Documentation

23Terminal



When	the	terminal	is	disconnected,	it	goes	black	and	will	stop	receiving	data	and	responding
to	key	presses.

	Reset

Sends	a	hardware	reset	to	the	board.

	Clear

Clears	all	text	from	the	console	and	sets	the	cursor	back	to	the	top	left.

	Device

The	name	of	the	device	this	terminal	is	currently	attached	to.	This	list	of	devices	varies
depending	on	your	platform,	but	generally	speaking,	they	look	as	follows:

Serial	devices:

PropellerIDE	Documentation

24Terminal



Windows COM1,	COM2,	…​

Linux ttyUSB0,	ttyUSB1,	…​

Mac cu.usbserial-… ​

Wifi	devices:

not	yet	available

	Baud	Rate

The	rate	of	transmission	to	the	board.	Type	in	the	baud	rate	you	want,	or	click	the	arrow	to
select	from	the	following	baud	rates:

9600,	19200,	38400,	57600,	115200,	230400,	460800,	921600

The	default	baud	rate	is		115200	.

	Echo

When	echo	is	enabled,	everything	you	type	will	be	copied	to	the	console,	in	addition	to	being
sent	to	the	device.	Some	software	expects	echo	to	be	enabled,	while	others	send	the	data
back	to	the	console	themselves,	which	will	result	in	duplicated	text.

Try	toggling	this	feature	if	your	application	isn’t	behaving	how	you	want	it	to.

	Rx	/	Tx	Lights

These	lights	indicate	when	data	is	received	or	sent.	Red	is	received,	blue	is	sent.

Input
There	are	two	ways	to	input	text

Through	the	console	itself

Through	the	input	line	at	the	bottom	of	the	window

Console

PropellerIDE	Documentation

25Terminal



Using	the	console	is	recommended	when	the	target	device	supports	a	more	advanced
command-line	interface,	as	it	will	allow	you	to	take	advantage	of	things	like	readline
capabilities,	cursor	positioning,	etc.

Pressing	the		Enter		or		Return		key	sends	a	single	newline	(ASCII		10	)	to	the	device.

Input	Line

For	simpler	interfaces,	the	input	line	is	a	better	choice.

Pressing	the		Enter		or		Return		sends	the	text	without	newline.	Pressing	the	Send	button
sends	the	text	plus	a	single	newline.

Parallax	Serial	Terminal	Compatibility
The	following	ASCII	characters	implement	basic	terminal	compatible	with	the	original
Propeller	Tool’s	serial	terminal.

PropellerIDE	Documentation

26Terminal



16 Clear	Screen

11 Clear	to	End	of	line

1 Home	cursor

2 Position	Cursor	in	x,y

14 Position	cursor	in	X

15 Position	cursor	in	Y

13 New	Line

10 Line	Feed

3 Move	cursor	Left

4 Move	cursor	Right

5 Move	cursor	Up

6 Move	cursor	Down

9 Tab

8 Backspace

PropellerIDE	includes	a	corresponding		com.serial.terminal		object	that	implements	these
control	characters.

PropellerIDE	Documentation

27Terminal



Language	Support

PropellerIDE	Documentation

28Language	Support



Spin

PropellerIDE	Documentation

29Spin



Preferences

Appearance
PropellerIDE	can	be	themed	to	suit	your	preference	in	the	Appearance	tab.	Click	to	select
from	a	drop-down	of	themes	or	monospace	fonts,	or	double-click	on	one	of	the	color
swatches	to	open	a	color	picker.

Changes	to	the	appearance	will	propogate	instantly	throughout	the	IDE.

Classic	Theme

PropellerIDE	provides	the	Classic	theme	for	compatibility	with	the	original	Propeller	Tool.	It
supports	the	legacy	Parallax	font	with	the	proprietary	Propeller	character	mapping.

Warning

The	Parallax	font	is	deprecated
The	proprietary	character	mapping	is	not	portable	and	is	only	provided	for
legacy	support.	Consider	the	use	of	a	standalone	diagramming	tool	or	plain
ASCII	for	creating	in-source	diagrams.

PropellerIDE	Documentation

30Preferences



Languages
PropellerIDE	supports	multiple	library	paths	to	be	searched	from	top	to	bottom.

Note This	is	still	an	in-progress	feature.

PropellerIDE	Documentation

31Preferences



Editor

Auto	completion
Toggles	code	completion

PropellerIDE	Documentation

32Preferences



Frequently	Asked	Questions
1.	 What	is	PropellerIDE?

A	modern	editor	for	the	Parallax	Propeller.

PropellerIDE	Documentation

33Frequently	Asked	Questions



Developer	Guide

PropellerIDE	Documentation

34Developer	Guide



Building	PropellerIDE
The	following	dependencies	are	needed	to	build	PropellerIDE:

Qt5.3	or	later

PropellerIDE	has	been	built	on	the	following	platforms:

Windows	(Vista,	7,	8)

Mac	OS	X	(10.6	onward)

Ubuntu	(12.04	onward)

Raspbian	OS

pcDuino

PropellerIDE	has	been	built	with	the	following	compiler	toolchains:

GCC

MinGW-x64

Clang

MSVC

Getting	the	source
Check	out	the	project	and	its	dependencies.

git	clone	--recursive	https://github.com/parallaxinc/PropellerIDE.git

Building	the	executable

Using		qmake	

PropellerIDE	can	be	built	from	the	command-line	using		qmake		to	generate	makefiles.

PropellerIDE	Documentation

35Building	PropellerIDE



cd	PropellerIDE

qmake

If	you	have	made	changes	to	the		.pro		files,	remember	to	use		-r		to	update	all	makefiles,
not	just	the	current	one.

qmake	-r

Use	Make	to	build	the	project.	On	most	Linuxes,	GNU	Make	is	ubiquitous.	PropellerIDE
supports	parallel	builds,	so	make	sure	to	specify	the	number	of	jobs	with		-j	.

make	-j16

The	makefiles	support	standard	makefile	targets:		make	clean		removes	object	files,		make
distclean		removes	object	files	and	makefiles.

Windows

You	will	need	to	download	Qt5	from	the	Qt	website.	You	will	also	need	Inno	Setup	to	build
the	Windows	installer.

https://www.qt.io/download/

http://www.jrsoftware.org/isinfo.php

Qt	is	distributed	with	either	a	MinGW	or	MSVC	toolchain	on	Windows.	Be	sure	to	add	the
paths	to	the	toolchain	and	Inno	Setup	to	the	system	environment.

C:\Qt\Tools\mingw482_32\bin;C:\Qt\5.3\mingw482_32\bin;C:\Program	Files	(x86)\Inno	Setup	5

The	MinGW	toolchain	is	painfully	slow,	but	you	can	build	with		mingw32-make	,	which
supposedly	supports	parallel	builds	but	is	slow	as	a	dog	anyway	so	it	makes	little	difference.

mingw32-make

If	you’ve	decided	to	install	Visual	Studio,	you’ll	have	an	instance	of		nmake	.	You	can	enable
parallel	builds	by	setting	the	CL	environment	variable,	which	will	speed	things	up
considerably.

PropellerIDE	Documentation

36Building	PropellerIDE

https://www.qt.io/download/
http://www.jrsoftware.org/isinfo.php


set	CL=/MP

Then	start	the	build.

nmake

Using	QtCreator

PropellerIDE	may	also	be	built	with	QtCreator,	but	it	should	be	noted	that	QtCreator	and
	qmake		builds	seem	to	be	incompatible	with	each	other,	so		make	distclean		should	be	called
before	switching	between	them.

Using	CMake

Instructions	on	CMake	builds	are	not	yet	available.

Packaging	For	release
PropellerIDE	is	distributed	in	standalone	packages	using		packthing	,	an	open	source
packaging	tool	available	on	GitHub	or	downloadable	via	the	Python	Package	Index.

Via	GitHub:

git	clone	https://github.com/lamestation/packthing

cd	packthing

pip	install	-r	requirements.txt

python	setup.py	install

Via	PyPI:

pip	install	packthing

PropellerIDE	Documentation

37Building	PropellerIDE

https://github.com/lamestation/packthing

	Introduction
	User Guide
	Getting Started
	Installing PropellerIDE
	Installing FTDI Drivers

	The Main Window
	Tool Bar
	Editor View
	Project View
	Keyboard Shortcuts

	Debugging Tools
	Terminal

	Language Support
	Spin

	Preferences
	Frequently Asked Questions

	Developer Guide
	Building PropellerIDE


