Page 16 of Parallax Propeller 2 Documentation v33 - Rev B Silicon

COGS
STARTING AND STOPPING COGS
Any cog can start or stop any other cog, or restart or stop itself. Each of the sixteen cogs has a unique four-bit ID which can be used to start or stop it. It's also possible to start free (stopped or never started) cogs, without needing to know their ID's. This way, entire applications can be written which simply start free cogs, as needed, and as those cogs retire by stopping themselves or getting stopped by others, they return to the pool of free cogs and become available, again, for restarting.

The COGINIT instruction is used to start cogs:
COGINIT D/#,S/# {WC}

D/# =
%0_x_xxxx
The target cog loads its own registers $000..$1F7 from the hub,

starting at address S/#, then begins execution at address $000.

%1_x_xxxx
The target cog begins execution at address S/#.

%x_0_CCCC
The target cog's ID is %CCCC.

%x_1_xxx0
If a cog is free (stopped), then start it.

To know if this succeeded, D must be a register and WC must be

used. If successful, C will be cleared and D will be over-

written with the target cog's ID. Otherwise, C will be set and D will be overwritten with $F.

%x_1_xxx1
If an even/odd cog pair is free (stopped), then start them.

To know if this succeeded, D must be a register and WC must be

used. If successful, C will be cleared and D will be over-

written with the even/lower target cog's ID. Otherwise, C will be set

and D will be overwritten with $F.

S/# = address

This value is either the hub address from which the target cog will

load from, or it is the cog/hub address from which the target cog

will begin executing at, depending on D[5]. This 32-bit value will be

written into the target cog's PTRB register.

If COGINIT is preceded by SETQ, the SETQ value will be written into the target cog's PTRA register. This is intended as a convenient means of pointing the target cog's program to some runtime data structure or passing it a 32-bit parameter. If no SETQ is used, the target cog's PTRA register will be cleared to zero.

COGINIT #1,#$100

'load and start cog 1 from $100

COGINIT #%1_0_0101,PTRA
'start cog 5 at PTRA

SETQ ptra_val

'ptra_val will go into target cog's PTRA register

COGINIT #%0_1_0000,addr
'load and start a free cog at addr
COGINIT #%1_1_0001,addr
'start a pair of free cogs at addr (lookup RAM sharing)

COGINIT id,addr WC

'(id=$30) start a free cog at addr, C=0 and id=cog if okay

COGID myID

'reload and restart me at PTRB

COGINIT myID,PTRB

The COGSTOP instruction is used to stop cogs. The 4 LSB's of the D/# operand supply the target cog ID.

COGSTOP #0

'stop cog 0

COGID myID

'stop me

COGSTOP myID
A cog can discover its own ID by doing a COGID instruction, which will return its ID into D[3:0], with upper bits cleared. This is useful, in case the cog wants to restart or stop itself, as shown above.

If COGID is used with WC, it will not overwrite D, but will return the status of cog D/# into C, where C=0 indicates the cog is free (stopped or never started) and C=1 indicates the cog is busy (started).

COGID ThatCog WC

'C=1 if ThatCog is busy

Page 27
SETQ CONSIDERATIONS

The SETQ and SETQ2 instructions write to the Q register and are intended to precede a companion instruction. The value written to the Q register by SETQ/SETQ2 will persist until any of these events occur:

· XORO32 executes - Q is set to the XORO32 result.

· RDLUT executes - Q is set to the data read from the lookup RAM.

· GETXACC executes - Q is set to the Goertzel sine accumulator value.

· CRCNIB executes - Q gets shifted left by four bits.

· COGINIT/QDIV/QFRAC/QROTATE executes without a preceding SETQ instruction - Q is set to zero.

CRCNIB is the only instruction which both inputs Q and outputs Q, requiring it to not be disrupted between the initial SETQ and subsequent CRCNIB(s). For that reason, CRCNIB sequences should be protected from interrupts by STALLI/ALLOWI instructions or by being placed within a REP block, which is automatically shielded from interrupts.

It is possible to retrieve the current Q value by the following sequence:

MOV
qval,#0

'reset qval

MUXQ
qval,##$FFFFFFFF
'for each '1' bit in Q, set the same bit in qval
SETQ/SETQ2 shields the next instruction from interruption to prevent an interrupt service routine from inadvertently altering Q before the intended instruction can utilize its value.

Page 30
Next are the WAITxxx instructions, which will wait for their event-occurred flag to be set (in case it's not, already) and then clear their event-occurred flag (unless it's being set again by the event sensor), before resuming.

By doing a SETQ right before one of these instructions, you can supply a future CT target value which will be used to end the wait prematurely, in case the event-occurred flag never went high before the CT target was reached. When using SETQ with 'WAITxxx WC', C will be set if the timeout occurred before the event; otherwise, C will be cleared.

WAITINT
Wait for an interrupt to occur, stalls the cog to save power

WAITCT1
Wait for the CT-passed-CT1 event flag

WAITCT2
Wait for the CT-passed-CT2 event flag

WAITCT3
Wait for the CT-passed-CT3 event flag

WAITSE1
Wait for the selectable-event-1 event flag

WAITSE2
Wait for the selectable-event-2 event flag

WAITSE3
Wait for the selectable-event-3 event flag

WAITSE4
Wait for the selectable-event-4 event flag

WAITPAT
Wait for the pin-pattern-detected event flag

WAITFBW
Wait for the hub-FIFO-interface-block-wrap event flag

WAITXMT
Wait for the streamer-empty event flag

WAITTXFI
Wait for the streamer-finished event flag

WAITXRO
Wait for the streamer-NCO-rollover event flag

WAITXRL
Wait for the streamer-lookup-RAM-$1FF-read event flag

WAITATN
Wait for the attention-requested event flag

There's no 'WAITQMT' because the event could not happen while waiting.
