Differences between P1 and P2 Pasm

This is a second tutorial regarding propeller pasm programming. | have had since December the
P2 Engineering Sample. There are many differences between both the P1 and P2.

The P2 is 64 bit and 16 cores and 64 pins.

1) Propeller 2 P2X8C4M64P - ES
2) /0 Pin Voltage Selection Headers
17) DP/DM Pads 18) LED Buffer 3) IO Pin Breakout Edge Headers
@ X . < . = >
16) P2 USB Port ‘ TN ¢ < & ZE2RE £ > FERI o % '4) PC USB Port

.......

|6

n -~

UL 5) VIO Power
T Supply
15) Auxiliary
Power
Header Pads
48 2 : 2 6) 20 MHz
14) VDD ok ” :
Power Supply & Q’W Oscillator
13) Mounting o ‘ i e s
Holes i : & .

' 2 o e W 7) Mode
o1 TTAN w T ey o S 4

D
.- A
PS

o> S Selection
s P2X8CAME4P P % S Switch Bank

8) microSD
Card Socket
12) Propeller 2

Reset Button & %
.(‘;P» ..d...;:

N

9) 16 MB Flash Memory
11) Ground Test Posts 10) LED bank

My first tutorial as well as with this one was for myself, but I shared it to help anybody who was
confused and frustrated with getting into assembly language programming. | am adding to it
some of the basic differences using the same approach.

I will use the same approach. Leaving the first tutorial in place, the P2 pasm code will be shown
after page 22.

Still no Blinky lights in the beginning!!!! They will come later for both P1 and P2 heading
towards running stepper motors.

Differences between P1 and P2 Pasm

The first thing one will need is a copy of the propeller manual that is in the propeller tool and can
be found here: https://www.parallax.com/product/122-32000.

Here is a link to Jeff Martin’s webinar | uploaded to YouTube:
https://www.youtube.com/watch?v=0ZHuWYWa301A

The first exercise will encompass passing variables from a spin method to a pasm method and
back.

This the first piece of code that | came up with. There may be better ways to do this so bear with
me.

| setup two global variables one for the spin method and the other for the pasm method. A five
second waitcnt is used so as to have time to open the serial terminal when launching the code.

In order to launch the pasm code into a new cog this command is needed:

cognew(@asm,@datavar). The cognew means open the next cog, the @asm is the beginning of
the assembly routine and the @datavar is the address of the first global variable.

3|{{ Tutorial 1 how to pass a number variable from spin to pasm and back, this works for numbers
Lifrom @ to 256, bigger numbers in a later tutoriall}}

T|CON
8 _clkmode = xtall + pllifx

9 "_xinfreq = 6_250_00@ "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
18 _xinfreg = 5_Q00_PA@ "QUICKSTART 8@ MHZI NWORMAL CRYSTAL

pst: ‘parallax serial terminal”

long datavar
long answervar

Figure 1

The next steps are to start the serial terminal wait five seconds to allow one to open the serial
terminal and then launch the cog. The code will then take the value in data var and print on the

https://www.parallax.com/product/122-32000

Differences between P1 and P2 Pasm

terminal. Now to the PASM method:

23 pub main

26 datavar:= 25 "assign a value to datavar

26

27 pst. start (115000) "start the serial terminal object
29 waitent (clkfreq*d +cnt) "hold five sec to open the

30

3 cognew (Basm, @datavar) ~ open a new cog for pasm, where it starts “asm” and
32 " the address of the first variable
3 waitcnt (clkfreg+ent) " hold for a second

35 " print routine

36

37 pst. str (string ("ansuer]: 7))

38 pst.newline

39 pst. dec (ansuervar)

40 pst.newline

Figure 2

The datavar is assigned a value, in this case 256 which is the maximum pasm will handle without
extra work. | will tackle that at a later time. We want to keep it simple at this time. This is also
because many of the other tutorials | have seen get really complicated very quickly and do not
take it in baby steps. | want to make sure that everybody can grasp the concept before getting
into complicated code and get lost.

L2|dat

45 asm org 5} "This is the starting point for PASM

L7 {{ The first item is to move the address of the parameter register "PAR” into

L8 a temporary variable and assigne it to the variable in which we will read the in

L9 this case the value of datavar in the spin method. }}

50 mov temp_war, par

51 {{ Now we are going to assign the pasm variable, data_var, the address of datavar in
52 the spin method. }}

53 mov data_var, temp_var

i {{ Now we have to move over to the next long to get the address of answervar in the
56 spin cbject and assign it to answer_var in the pasm code.}}

add temp_var, #&

{{ Now assign this address to answer var. }}

o mov answer_var,temp_var
(3]

61 {{ Next read the value of datavar (spin chject) into the pasm data_var. }}

62 rdlong data_var, par

B3

Bk

65 {{ Finaly write it to the answer_var which is spin’s ansuwervar for printing. }}
66 wrlong data_var, ansuwer_var

| [}
68/{{ Reserved variables reserved for PASM's use. }}
B9

=

70 data_wvar res 1
7 answer_var res 1

temp_var res 1

M3 b

Figure 3

13

The pasm code starts in a “dat” section of spin. The “asm” “org” “0” indicates the beginning of
the pasm code. In the cognew there is also an @datavar expression. This tells the pasm code the
address of the first variable and that address will be stored in the “par” value. “par” from what I
have found means parameter.

Differences between P1 and P2 Pasm

There is a very nice webinar done by Jeff Martin in 2009 that explains a lot of information
regarding pasm code. | uploaded it to YouTube:
https://www.youtube.com/watch?v=0ZHuUWYWa301A.

Starting at:
mov temp_var, par

This is the mov instruction description:

MOV

Instruction: Set a register to a value.
MOV Destination, [|#[] Value
Result: Value is stored in Destination.

Destination (d-field) is the register in which to store Value.

Value (s-field) is a register or a 9-bit literal whose value is stored into Destination.
Explanation
MOV copies, or stores, the number in Value into Destination.

If the Wz effect is specified, the Z flag is set (1) if Value equals zero. If the WC effect is specified, the C
flag is set to Value’s MSB. The result is written to Destination unless the NR effect is specified.

So, our first instruction directive will take the address of the spin code datavar variable in the
registers and pass it to a temporary variable that we can manipulate. The code is commented so
as to follow the progression and | am using full words instead of abbreviations so as one could
more easily follow the progression.

asm org 5} "This is the starting point for PASM

{{ The first item is to move the address of the parameter register "PAR™ into

a temporary variable and assigne it to the variable in which we will read the in
this case the value of datavar in the spin method. }}

mov temp_var, par

{{ Now we are going to assign the pasm variable, data var, the address of datavar in
the spin method. }}

mov data_wvar, temp_ var

= o

[0 IS IS TS T S S S S

3 M

Figure 4

Now we have the address of the data_var which corresponds to datavar in the spin method.

Differences between P1 and P2 Pasm

{{ Now we have to move over to the rnext long to get the address of answervar in the
spin object and assign it to answer var in the pasm code.}}

add temp_var, #&

{{ Now assign this address to answer_var. }}

mov answer_var, temp_var

Figure 5

As you can see, we move over and get the address of the spin code answervar variable and assign
it’s address to the pasm code answer var variable. This is done by adding 4 to the temporary
variable. Adding 4 moves to the next adjacent long where the answer var is located in the hub.

We are next going to use the rdlong and wrlong directives. The rdlong directive will read from a
location and copy the value into a destination field as is shown in the propeller manual listing.

RDLONG Value, [1#[| Address
Result: Long is stored in Value.

Value (d-field) is the register to store the long value into.
Address (s-field) is a register or a 9-bit literal whose value is the main memory address to read from.

The rdlong goes from right to left. We are reading the value that is in the par register which has the
location of datavar and it’s contents.

51 {{ Next read the valus of datavar (spin object) into the pasm data _var. }}
62 rdlong data var, par

Figure 6

Lastly, we are going to write the value to the answer_var location that corresponds with
answervar in the spin method and then print the results in a new variable. Note: wrlong works

from left to right.

{{ Finaly write it to the ansuwer_var which is spin’s answervar for printing. }}
wrlong data var, answer wvar

Figure 7

You should get a value on the serial terminal. | used 256 as this is the largest value for a single
long, which is four bytes in size.

Figure 8

Changing the value of datavar to 25 in the spin method to verify.

BEFORE)

Differences between P1 and P2 Pasm

Figure 9

RES

Directive: Reserve next long(s) for symbol.

(Symbol) RES (Count)
e Symbol is an optional name for the reserved long in Cog RAM.

e Count is the optional number of longs to reserve for Symbol. If not specified. RES
reserves one long.

RES: We need to reserve space for the pasm variables this is self-explanatory.

Now we can manipulate two variables and print them in succession. This is the new code:

? {{ Tutorial 2 how to pass two number variables from spin to pasm and back, this works for numbers
L|from @ to 256, bigger numbers in a later tutoriall}}
5(coN
7 _clkmode = xtall + pllifix
"_xinfreq = 6_250_0@@ "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
_xinfreq = 5_000_00@ "OQUICKSTART 8@ MHZI NORMAL CRYSTAL
:_ obj
:? pst: ‘parallax serial terminal”
:_ var
16 long datavar {{each of these are one long apart. Have to move over one long
17 s0 as to access them}}
18 long ansuervar
19 long datavar?
20 long answervar?
Figure 10

22 pub main

23 datavar:= 21 "assign a value to datavar

2L datavar? := 29

26 pst.start (115000) "start the serial terminal object

waitent (clkfreq*5 +cnt) "hold five sec to open the serial terminal

cognew (@asm,@datavar) open a new cog for pasm. where it starts “asm” and
3 " the address of the first variable
32 waltent (clkfreg+ent) " hold for a second

3L " print routine

pst.str (string (Tanswer: ™))
pst.newline

pst.dec (ansuwervar)
pst.newline

LR pst.str (string (Tanswer:™))
&1 pst.newline

L2 pst.dec (answervar?)

L3 pst.newline

Figure 11

Differences between P1 and P2 Pasm

L9 asm org 1} "This is the starting point for PASM

1 {{ The first item is to move the address of the parameter register "PAR” into
52 a temporary variable and assigne it to the variable in which we will read the in
53 this case the value of datavar in the spin method. }}
54 mov temp_var, par
55 {{ Now we are going to assign the pasm variable, data_var, the address of datavar in
56 the spin method. }}
mov data_var, temp_var
58 rdlong data_var, temp_var
g {{ Now we have to move over to the next long to get the address of ansuervar in the
6@ epin object and assign it to answer_var in the pasm code.}}
1 add temp_var, #&
62 {{ Now assign this address to answer_var. }}
3 mov answer_var,temp_var
B& {{urite the value to the answervar in spin}}
wrlong data_var, answer_var
{{go back and get the par address to access the next variable}}
mov temp_var, par

B9 {{jump over two longs to get the address of datavar? in the spin method}}
70 add temp_var, #8

7 {{assign the address}}

72 mov data_var2, temp_var

73 {iread the value}}

7L rdlong data_var2, temp_var

75 {{skip over one long to get answervar in spin}}
76 add temp_var, #&

{{assign the address}}

8 mov answer_varZ,temp_var

9 {{now write the value to answervar? in spin}}
&0 wrlong data_var?, answer_var?

82

83|{{ Reserved variables reserved for PASM's use. }}

data_var resg 1
data_var? res 1
answer_var res 1
88 answer_var? res 1
89 temp_var reg 1

Figure 13

We have added a couple of items. First a new datavar named datavar2 and a new answervar
named answervar2 as well, figure 10 and 14 lines 19 and 20, as their counterparts in the pasm
method. In the print area answervar2 has been added also.

15|var

16 long datavar {{each of these are one long apart. Have to move over one long
17 so as to access them}}

18 long answervar

19 long datavar2

20 long answervar?

-

Figure 14

Note the order of the global variables. This will make it easy to find them in the pasm method.

The pasm routine begins just like before and we get the location of datavar from par into the
temporary variable and assign the location to data_var and read the value from par to data_var.

Now we have to move over a couple of longs to get the new variables and values, figure 13 and
15:

Differences between P1 and P2 Pasm

mov temp_var, par

{{jump over two longs to get the address of datavar? in the spin method}}
add temp_var, #8

1 {{assign the address}}

2 mov data var2, temp var

{{read the value}}

& rdlong data_wvar2, temp_var

Figure 15

Now we can write the value to the second answer_var. Remember wrlong is from left to right as
opposed to rdlong and other directives which are right to left.

{{move over one long to get answervar in spin}}
add temp_var, #&

{{assign the address}}
mov ansuer_var?,temp_var
il {{now write the value to answervar? in spin}}
51 wrlong data_varZ, answer_var2

Figure 16

This is what you should see on the serial terminal:

dNswer.

Figure 17

Changing the two datavar’s values:

Figure 18

It works.
Now that we can get in and out of spin and pasm, | will present some examples of simple math.

| am trying to avoid the jump to really complicated programs with the assumption that the reader
has a total comprehension of coding in assembly language of any type. | have found many
tutorials do that.

These tutorials were good but confusing when they jump ahead and get very complex. Since |
am a teacher, | teach flying and aircraft mechanics, | have to assess the background of each
student. Academic learning can be difficult and painful, so if the instructor keeps it simple and
explains the concept with easy examples that build up slowly, the student has a better chance of
understanding and correlating the subject matter. That results in a much better outcome.

First, we will visit addition.

Differences between P1 and P2 Pasm

ADD

Instruction: Add two unsigned values.

ADD Value1, (#) Value2
Result: Sum of unsigned Valwel and unsigned Value? is stored in Valuel.

e Valuel (d-field) is the register containing the value to add to Value2 and is the
destination in which to write the result.
e Value? (s-field) is a register or a 9-bit literal whose value is added into Faluel.

We are going to repeat the above code and make some changes:

Note the global variable name changes, figure 19 lines 10,11and 12.

'_I[{basic addition in pasm using the add directive. Page259 propeller manual}l}
2
3|CON

L| clkmode = xtall + pllifx

5" _xinfreg = 6_250_000 "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
5 _xinfreg = 5_000_0@@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

Ofvar

9 "VARIABLE IN THE PAR ADDRESS TO BE PASSED
10 long x

11 long y

12 long product

13|obj

15|pst! "parallax serial terminal”

17|pub main
18 x i= 30

"
pst.start (115000)

= o

5

21 waitent (clkfreg=5 <cnt) "hold five sec to open the

22 "gerial terminal and enable it

23|cognew (Basm, 8x) "start cog at the first variable address

24 waiternt (clkfreq+? +cnt) “give pasm time to do the work
25

26 pst.str (string ("product: ™))

27 pst.dec (product~)

28 pst.newline

Figure 19

See figure 19 lines 26 and 27.

Differences between P1 and P2 Pasm

LG|tempvar lon
LT7|xvar long @
LE|yvar long @
LO|productvar
50/ flag long @

See figure

Figure 20

mov tempvar, par get the address of x from par

mov xvar, tempvar assign the address to the xvar in pasm

rdlong xvar, tempvar ‘read the value that is in x

add tempvar, #4 “move over one long to get y's address

mov yvar, tempvar assign that address to uvar

rdlong yvar, tempvar read the value that is in y

add tempvar, #4 "move over one long to get the address of product
mov productvar, tempvar assign the address to productvar

add xvar,yvar ‘add x and y together answer will be in x

wrlong xvar, productvar write x into the product variable and print

a @

long @

20 lines 40 to 43. With these changes both variables will be added together.

produc

Figure 21

Subtractio

Changing

L0 M

— N

n:

line 65 in figure 24 does the trick.

{{ Tutorial on how to pass a rumber variable and perform subtraction
with the sub directive

from spin to pasm and back, this works for numbers

from @ to 256, bigger numbers in a later tutoriall}}

10/CON

11 _clkmode = xtall + plliBx

12 "_xinfreq = 6_250_00@ MY BOARD AT 100MHZ DIFFERENT CRYSTAL
13 _xinfreq = 5_000_200 "QUICKSTART 8@ MHZ NORMAL CRYSTAL
14/0bj

A = o oo

2
2
2

Mk

Figure 22

pst: parallax serial terminal”

var "global variables
long datavar
long answervar
long subvar

10

Differences between P1 and P2 Pasm

datavar:= 25 "assign a valus to datavar
subvar := 10
pst.start (115008) "start the serial terminal object

waitent (clkfreg*5 +cnt) hold five sec to open the

cognew (Basm,Bdatavar) open a new cog for pasm. where it starts “asm” and
" the address of the first variable
waitent (clkfreg+ent) " hold for a secaond

" print routine

pst.str (string (“results:™))
pst.newline

30 pst.dec (answervar)

L@ pst.newline

Figure 23

L2|dat

L5 asm org 5] 'This is the starting point for PASM

LB

&7 {{ The first item is to move the address of the parameter register "PAR™ into

L8 a temporary variable and assigne it to the variable in which we will read the in

this case the value of datavar in the spin method. }}

mgy temp_wvar, par

{{ Now we are going to assign the pasm variable, data_var, the address of datavar in
the spin method. }}

mov data_var, temp_var

{{ Now we have to move over to the next long to get the address of answervar in the
spin object and assign it to answer_var in the pasm code.}}

add temp_var, #&

{{ Now assign this address to answer_wvar. }}

mov answer_var,temp_var

add temp_var,#& ‘move over to the next long and get the subtraction variable address
mov sub_var, temp_var "assign the address to the variable

rdlong sub_var,temp_var ‘read the value in that address

{{ Next read the value of datavar (spin object) into the pasm data var. }}

rdlong data_var, par go back and get the value from the data variable that is in the par register
sub data_var,sub_var " ‘perform the subtraction data-subvar= xxx

{{ Finaly write it to the answer_var which is spin’'s answervar for printing. }}
wrlong data_var, ansuwer_var

Figure 24

70/{{ Reserved variables ressrved for PRASM s use. }}

sub_var res 1
data_var res 1
answer_var res 1
14 temp _var res 1

Figure 25

What we have done is simply, at lines 60 and 61, added a new variable as well at line 71, these
will be the subtraction variables. Next perform the subtraction and then write to our answer
variable.

You should get this:

11

Differences between P1 and P2 Pasm

25-10=15

Figure 26

Change subtraction variable to 12.

13

Figure 27

Multiplication this is from the propeller manual page 380:

1/ {{Multiplication based on the propeller manual page 380}}

3/CON

L|_clkmode = xtall + plliBx

5| _xinfreq = 6250 0@@ 'MY BOARD AT 100MHZ DIFFERENT CRYSTAL
5|_xinfreg = 5_Q00_Q0@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

Alvar

"VARIABLE IN THE PAR ADDRESS TO BE PASSED
11 long x
12 long u
13 long product
14|obj
16|pst:parallax serial terminal”
18 pub main
18 x =3
20 y =27
?1|pst.start (115000)
22 waitent (clkfreg*s +cnt) hold five sec to open the
23 "serial terminal and enable it
?Lt|cognew (Basm, 8x) "start cog at the first variable addressl
25 waltent (clkfreq#? +cnt) “glve pasm time to do the work

27 pst.str (string (product: 7))
28 pst.dec (product~)
28 pst.newline

Figure 28

12

Differences between P1 and P2 Pasm

32 dat
377 Multiply x[15..8] by ul[15..@1 (y[31..16] must be @)
34" on exit, product in y[31..0]

JG|asm org

38 mov temp_var, par move par to a temporary variable
39 mov x_var, temp_var find the x variable

40 rdlong x_var, temp_var read in the value from top object

£1 add temp_var, #& "jump to next long which is the address of the

L2 " next variable

&3 mov y_var, temp_var repeat assignment and read in value

L4 rdlong y_var, temp_var

£5 add temp_var, #& "jump again to assign the product variable address
LB mov product wvar, temp var

Figure 29

]

multiply shl x_var,#16 "get multiplicand into x[31..16]
mov t,816 "ready for 18 multiplier bits
shr y var,#1 wc "get initial multiplier bit into c
*loop if ¢ add y var,x var wc "if ¢ set, add multiplicand to product
rcr y_var,#1 wc “put next multiplier in ¢, shift prod.
dinz t,#:loop "loop until done
wrlong y var, product var ‘write the product from y[31..0] to the
"product variable for the top object

e Rish=r]

o [

P

"multiply_ret ret ‘return with product in y[31..0] "this would be a subroutine
" when used in a program

1 €1 €M R £ ER E£F O £R ER f P P
¢ *

9| temp_var res 1
i0|x_var res 1
51ly_var res 1

52 \product_var res 1
53|t res 1

T T

Figure 30

product:8 3*27=81

Figure 31 Change 2710 9.
product: 27 e

Figure 32 Basically, we are doing multiplication by addition:
27+27+27=81

3+3+3+3+3+3+3+3+3=27

The first operation is to shift left, the multiplicand into x[31..16], line 48.

13

Differences between P1 and P2 Pasm

SHL

Instruction: Shift value left by specified number of bits.

SHL Value, (#) Bits
Result: Falue is shifted left by Bits.

e Value (d-field) is the register to shift left.
e Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift
left.

Next because this is 16 bit multiplication, so we are going to load a variable with the number 16,
line 49: mov t,#16 'ready for 16 multiplier bits.

We are going to shift the carry into y by 1 each time we add the variables. So, on line 50 the first
iteration will be loaded. This is done by shifting y right by one to get the carry flag set with the
first number that will eventually be the result of the multiplication.

SHR: There is a shift right and shift left these are self-explanatory in the propeller manual as
shown. The code will shift left or right by the number specified.

Line 50: shry_var#1 wc 'get initial multiplier bit into ¢

SHR

Instruction: Shift value right by specified number of bits.

SHR Value, (#) Bits
Result: Ialue is shitted right by Bits.

e Value (d-field) is the register to shitt right.
e Bits (s-field) is a register or a 5-bit literal whose value is the number of bits to shift
right.

Now we are going to ask if the carry flag is set when we add x and y. this will loop until the
carry flag is not set an we will loop back and perform the operation again. Each addition will be
counted until finished. When completed the carry will be the result of the multiplication. The
carry will be discussed in the “if” conditional in the next paragraphs.

Now the loop:

If the carry flag is set, we will loop back and perform an add instruction and check the carry flag
after each iteration. This conditional jJump will be performed by the DINZ directive what will
evaluate the carry. If the carry in this case is set it will jump back to the beginning of the loop
where the RCR instruction will rotate the carry flag, RCR, over into y at the end the value in 'y
will be the answer. Basically, it adds up the carry bits. . If the carry is not set it will NOP, NO
OPERATION, and drop out of the loop and go to the next instruction which in this case is to
write the results to the variable, product_var and will be printed.

14

Differences between P1 and P2 Pasm

Which in the end of the loop, would be the answer if one did multiplication via the addition
process.

RCR:
RCR

Instruction: Rotate C right into value by specified number of bits.

RCR Value, (#) Bits
Result: Value has Bits copies of C rotated right into it.

e Value (d-tield) is the register in which to rotate C rightwards.
e Bits (s-field) is a register or a 5-bit literal whose value is the number of bits of Value
to rotate C rightwards into.

CONDITIONAL STATEMENTS:

IF _x (Conditions)
Every Propeller Assembly instruction has an optional “condition” field that is used to

dynamically determine whether or not it executes when it is reached at run time. The basic
syntax for Propeller Assembly instructions is:

(Label) {Condition) Instruction Operands {Effects)

The optional Condition field can contain one of 32 conditions (see Table 3-3) and defaults to
IF_ALWAYS when no condition is specified. The 4-bit Value shown for each condition is the
value used for the -CON- field in the instruction’s opcode.

This feature, along with proper use of instructions’ optional Effects field, makes Propeller
Assembly very powerful. Flags can be affected at will and later instructions can be
conditionally executed based on the results. Here’s an example:

test _pins, #$20 we
and _pins, #$38
shl tl, _pins
shr _pins, #3
movd vefg, _pins
if_nc mov dira, tl
if_nc mov dirb, #0
if_c mov dira, #0

if_c mov dirb, t1

15

Differences between P1 and P2 Pasm

The first instruction, test _pins, #$20 wc, performs its operation and adjusts the state of
the C flag because the WC effect was specified. The next four instructions perform operations
that could affect the C flag, but they do not affect it because no WC effect was specified. This
means that the state of the C flag is preserved since it was last modified by the first
instruction. The last four instructions are conditionally executed based on the state of the C
flag that was set five instructions prior. Among the last four instructions, the first two mov
mstructions have if_nc conditions, causing them to execute only “if not C” (1f C = 0). The
last two mov instructions have if_c conditions, causing them to execute only “if C” if C = 1).
In this case, the two pairs of mov instructions are executed in a mutually exclusive fashion.

When an instruction’s condition evaluates to FALSE, the instruction dynamically becomes a
NOP, elapsing 4 clock cycles but affecting no flags or registers. This makes the timing of
multi-decision code very deterministic.

DINZ:
DJNZ

Instruction: Decrement value and jump to address if not zero.

DJNZ Value, {(#) Address
Result: Value-1 is written to Value.

e Value (d-field) is the register to decrement and test.
e Address (s-field) is the register or a 9-bit literal whose value 1s the address to jump to
when the decremented Valise is not zero.

This directive allows for repetition while decrementing a particular value of choice and when the

result is not zero jump to a particular point in the code until the result is zero. At that point the

code will drop down to the next instruction in line.

We run the loop until the carry flag is empty. This is repeated addition. Jeff and Dave at Parallax

told me that there are many ways to do this. I am working on this myself. Basically, it is
repetitive addition and that can be done in a loop until the number of iterations required are
completed.

Division:

16

Differences between P1 and P2 Pasm

— N L P

s e e e
T =N =]

=
* = 0 0 = D en

[T S S
0 LI = L Db

CON
_clkmode = xtall + plliBx
_xinfreq = 5_000_000 "QUICKSTART 8@ MHZ NORMAL CRYSTAL
var
long dividend "VARIABLE IN THE PAR ADDRESS TO BE PASSED
long divisor

long quotient
long remainder
obj
pst : “parallax serial terminal”
pub main
dividend := 211
divisor = 6
pst.start (115200)
waitent [clkfreg*s + cnt) "hold five sec to open the
"serial terminal and enable it
cogrew [Basm, 8dividend) "start cog at the first variable address
waitent (clkfreg + ent) "give top object time to catch up to pasm

—

pst.str (string{ quotient:”)
pst.dec (quotient)|
pst.neuwline

7 pst.str (string(“remainder: ™))
8 pst.dec [remainder)
9 pst.newline
]
Figure 33
31
32 dat
33
3L
35 asm org
36
37 mov tempvar, par "get the par address into the temporary variable
38 rdlong x, tempvar ‘read the value into the dividend
39 add tempvar, #& "move over to the next long to get the divisor variable
L@ rdlong y, tempvar ‘read the value of the divisor into the variable
&1 add tempvar, #& "move over to the next long to get the quotient address
&2
L3
LL" Divide x[31..0] by u[15..0] (y[16] must be @)
L5]" on exit, quotient is in x[15..0] and remainder is in x[31..16]
LE|”
L7divide shl y,#15 "get divisor into y[3@..15]
LB mov t,#16 ‘ready for 16 quotient bits
L9):1oop cmpsub X,y we 'y =< x? Subtract it, quotient bit in ¢
50 rcl x, 81 ‘rotate ¢ into quotient, shift dividend
51 djnz t,%:loop "loop until done
52
537 quotient in x[15..8], :return if used as a subroutine
547 remainder in x[31..16]
Figure 34

17

Differences between P1 and P2 Pasm

¥ mov quotientvar,x

57 and quotientvar,andvar? "isplate lower 16 bits

5 wrlong quotientvar, tempvar ‘write into Spinvar ‘quotient’

mov remaindervar, x

1 shr remaindervar, #16 "isolate higher 16 bits

G2 add tempvar, 4 "incr pointer to remainder address
ik wrlong remaindervar,tempvar write into Spinvar ‘remainder’
55 andvar? long sffff

56| tempvar res 1

67 (% res 1

68|y res 1

79|quotientvar res 1

70|remaindervar res 1

71|t res 1
Figure 35

quotient:3

5
remainder:1

Figure 36

The division will be a continued subtraction algorithm that will subtract the divisor from the
dividend until the divisor is either zero or there is a remainder less than the divisor. The answer
will now be in the quotient the low bits, with the remainder in the high bits.

On line 47 we are going to shift left the divisor by 15 bits to get it into the high end of y. Then
move the number 16 into t because t will be our iterations for the DNJZ directive which will
perform the loop function 16 iterations. Now the compare and subtract, cmpsub, will subtract y
from x and see if it is zero, the carry flag will answer the condition. At each iteration we will
rotate carry left, RCL, by one. At the end of all operations x will have the quotient and y will
have the remainder.

Instruction: Compare two unsigned values and subtract the second if 1t 1s lesser or equal.

CMPSUB Valuet, (#) Value2

Result: Optionally, Valiel = Valuel — Value2, and Z and C flags = comparison results.

e Value? (d-field) is the register contaming the value to compare with that of Value? and
1s the destination in which to write the result if a subtraction 1s performed.

e Value? (s-field) 1s a register or a 9-bit literal whose value i1s compared with and
possibly subtracted from Faluel.

18

Differences between P1 and P2 Pasm

RCL

Instruction: Rotate C left into value by specified number of bits.

RCL Value, (%) Bits
Result: Value has Bits copies of C rotated left into 1t.

e Value (d-field) is the register in which to rotate C leftwards.
e Bits (s-field) 1s a register or a 5-bit literal whose value 1s the number of bits of Falue
to rotate C leftwards into.

The AND operation takes $FFFF and masks off high bits so as to get the quotient, we later shift
the naked remainder by 16 to get the remainder.

AND - Assembly Language Reference

AND

Instruction: Bitwise AND two values.

AND Valuel, (#) Value2
Result: Valuel AND Value?2 is stored in Valuel.

o Valuet (d-field) is the register containing the value to bitwise AND with Falwre2 and is
the destination in which to write the result.

o Value2 (s-field) is a register or a 9-bit literal whose value is bitwise ANDed with
Valuel.

Counting up and down:

1|{{counting up example, have to slow pasm. Introducing conditionals
2land jmp command}}l

CON

_clkmode = xtall + plliBx

8" _xinfreq = £ 250 000 "MY BOARD AT 100MHZ
9| xinfreq = 5 D@0 @00 "QUICKSTART 8@ MHZ
19

11|var

—~ L

1?2

13 long count
15|obj
17|pst: ‘parallax serial terminal”

9pub main

=

pst.start (115000)

waitent (clkfreq*d +cnt) hold two sed to open the
g "serial terminal and enable it
Llcognew (@asm,@co-.mt)

L

Pa Ma I M P P =)

Figure 37

19

Differences between P1 and P2 Pasm

26 repeat

21 pst.dec (count~) "post clear p 157

28 pst.newline

29 waitent (clkfreq +cnt)

30

3lldat

32

33lasm org

35 mov addr, par

36| loop add value,#1 'counting variable

37 wait rdlong prev, addr wz "what is in par??

38 if nz jmp #wait "if the value in

39 "par is zero continue to next command

LD "if the value in par Taddr” has not been cleared

L1 "meaning the value that was put in “value” from

&2 " addr which has the address of par “parameter’”

L wrlong value, addr

&5 "now write the value to the addr which has been assianed
LB "the same address as par and where the address of count in
&7 "memory where the spin program can read it then jump back
L8 "to the top of the loop and contirue after the variable
L9 " called count has been cleard to zero

5@ jmp #loop

Figure 38

52

53laddr long @

S&|lvalue long @

55|prev long @

en

Figure 39

Since spin is much slower than pasm, we have to interrupt pasm so spin can keep up. With that
in mind we are going to look at line 27 and 37 to 51.

Line 27:
pst.dec(count~)'post clear p 157.

Y =X~+2

The Post-Clear operator in this example clears the variable to 0 (all bits low) after providing its current
value for the next operation. In this example if X started out as 5, X~ would provide the current value for
the expression (5 + 2) to be evaluated later, then would store 0 in X. The expression 5 + 2 is then evaluated
and the result, 7, is stored into Y. After this statement, X equals 0 and Y equals 7.

Since Sign-Extend 7 and Post-Clear are always assignment operators, the rules of Intermediate
Assignments apply to them (see page 147).

37| wait rdlong prev, addr wz
38 if nz jmp Buwalt |

Figure 40

20

Differences between P1 and P2 Pasm

So, if the line 27 instruction has not cleared, pasm will jump back to the loop until it is cleared
then pasm will perform the operation again.

Change line: 36 add to sub and you will have a continuous loop of subtraction.

36| loop add value,#1 'counting variable
Figure 41
Arrays:

We are now able to add, subtract, multiply and divide. Basic math skills that we will now take to
a next level but in a slow process. Next let’s create an array and do some math while learning to
populate the array and print selected arrays cells.

Simple array.

2/ {{basic array populate the array do some simple math }}

5ICON

6 _clkmode = xtall + pllifx

7' _xinfreq = 6_250_@@@ "MY BOARD AT 100MHZ DIFFERENT CRYSTAL
8 _xinfreg = 5 @@@_@@@ "QUICKSTART 8@ MHZ NORMAL CRYSTAL

q

10\var

I
2 P

long data
long arraul1@] "global variable array 10 cells long arraul@]..arrau[9]

n £

/lobj

pst: parallax serial terminal”

D e e e b b e

)
[

Zlpub main
data = 16

)

o

5 pst.start (115000)

waitent (clkfreq*s +cnt) hold five sec to open the

"serial termirnal and enable it
cognew (Basm,@data) start cog at the first variable address

O P P T M B3

Figure 43

32 pst.str(string ("array: ™))
pst.dec(array[1]) “print the second cell first

pst.newline

pst.str{string(Tarray:™))
pst.dec(array[@]) "print the first cell second

L@ pst.newline

Figure 42

21

Differences between P1 and P2 Pasm

asm org @

E% mov tempvar,par "get the par address into a temporary variable

ii mov datvar,tempvar "assign the address to the datvar in pasm

rdlong datvar,tempvar read in the valus of the data variable from spin
add tempvar, #& "move over and get the beginning of the array

mov arrayvar,tempvar assign the beginning of the arrau

;5 wrlong datvar,arragvar write the valus from spin to arraul@]

gi add arrayvar,#4 ‘move over to the nmext array cell

add datvar, #1@ “add 10 to the walue in in the data wvariaable from spin
"in this case 16 + 10 = 26

wrlong datvar,arrayvar ‘write the product to the second array cell array[1]

Figure 44

75 tempvar long @
76 datvar long @

78 arragvar long 10 “global variable array 10 cells long arrayl@]..array[9]
Figure 45

We are going to start as before, and this time have two global variables. One is the data to be
passed with a value from spin to pasm. The other is an array that is 10 cells long. That means that
each cell will be a long in size.

As you can see in the spin method and the pasm method both are declared. Standard entry to get
the addresses and values entered.

The line 56, read in the value to the datavar variable.
Line 62 write it to the first array cell, array[0].

Now to access the second array cell, array[1], we have to move over to the next long, line 64 by
adding 4 bytes. Now for a little math to make it interesting we are going to add the littoral
number 10 to the variable that is stored in the datavar which is 16. So 16+10=26.

The spin method is going to print them in reverse order which shows that we can manipulate the
array.

Figure 46

22

Differences between P1 and P2 Pasm

P2 PASM SECTION

The P2 does not have an official GUI at this time. Coding is done in “Pnut” or Spin2Gui and a
few others. The Pnut is on P2Pasm only. Serial interface has to be coded. Spin2Gui supports
.spin2 files, Fastspin, C and Basic. It has a serial terminal as opposed to Pnut.

https://github.com/totalspectrum/spin2qui/releases

https://www.parallax.com/product/64000-es

The demo code here is in .spin2 and using the Spin2gui

1 |CON

2 oscmode = 5010007f8

3 freq = 160_000_000

4 baud = 230 400

5

6 [CBJ

T ger: "spin/SmartSerial”
=3

3 [VAR

10 long cog
11 long data

12 long answer

13

14|PUB main

15 clkset (oscmode, freq)

1a ser.start (63, 62, 0, BAUD)

17 pausems (500) ' wait for baud change on host

13 ser.str("PASHM demo: ")

20

21 data := 12

22 cog := cognew(@startasm, @data)

23

24 ser.str("cog: ")

25 ser.dec |(cog)

26

27 '' walt until the COG has finished
28 "' it indicates this by clearing "data"
29 repeat while data <> 0

30

31 '' now print results

32 ger.str (" answer = ")

33 ser.dec (answer)

34 ser.nl

35

1

23

https://github.com/totalspectrum/spin2gui/releases
https://www.parallax.com/product/64000-es

Differences between P1 and P2 Pasm

37| DAT

38|startasm

39 '' assembly program to add 1 to a number

40 '' we start with ptra pointing at the number

41 '' the answer must immediately follow the input data
42 '' in the VAR section

43 rdlong walue, ptra

44 add value, #5

45 add ptra, %4 ' point to answer

46 wrlong walue, ptra

47 sub ptra, %4 ' point back to original data
48 wrlong #0, ptra ' tell original COG we are done
49

50 '' now shut down

51 cogid wvalue

52 cogstop value

53

S54|value long 4]

55

Lines 2,3,4 and 15 are to setup the clock speed and baud rate for the serial terminal. Subsequent
lines are similar to regular Spin language. Lines 43 through 48 is where the magic happens.

Instead of using cog ram to share variables we are going to do it with HUB RAM. There is no
PAR variable with the P2. There is ptra/ptrb.

We can use the ptra as the start address like in P1 but we are going to work directly with it. So no
need to have an intermediary variable to mov things around.

At line 43 we read the value from the ptra directly into the variable that is shared with the .spin2
object and P2 PASM.

So on line 43 we read in the value from spin, then we add 5 to that value , move over to the next
long where the answer variable resides and write it to it so it will be printed.

Simple.

24

o s VT Y O R]

= S o m
T Ty

15

Differences between P1 and P2 Pasm

CCH

ogcmode = 2010007f8
freq = 160 _000 000
baud 230_400

CBJ

zer: "spin/SmartSerial™

long cog
long data
long data?
long answer

16|PUB main

17

B R3 ORI ORI ORY R RS ORY ORI ORI 2
I ST o BT S U % I B e BT o B

LT VR T L L R Ty 1
[I O U O I S e TV & & T

36

clk=et (oscmode, fredq)
zer.=start (63, &2, 0, BLUD)

pausems= (500) ' wait for baud change on host

ger.zstr ("™ PASM demo addition: ™)
zer.nl

ADD THESE TWO VALUES

data := 200

dataz :=36500

cog := cognew(@startasm, Bdata)

ger.str (™ cog: ")
zer.dec (cog)
zer.nl

'' wait until the COG has finished
' it indicates this by clearing "data™
repeat while data <> 0

'' now print results
ger.str (" answer = 7)
ger.dec (answer)

Now here we are going to take two variables and add them, Both will come from the top object:

25

Differences between P1 and P2 Pasm

33 ''" it indicates this by clearing "data™
34 repeat while data <> 0O
35
36 '' mow print results
37 zer.str (" answer = ")

8 zer.dec (answer)

35 ser.nl

40

41

42| DAT

43 |=tartasm

44 ''" assembly program to add numbers

45 '' we start with ptra pointing at the number

46 '' the answer must immediately follow the input data
47 '' in the VAR section

8 rdlong wvalue, ptra 'get first walue

49

50 add ptra, ¥4 ' move over to pickup next walue
51 'in the next long

52 rdlong wvalueZ, ptra 'get second wvalue

53

54 add value?, wvalue

55 mowv value3, values2 'move to answer var in next long
LY add ptra, #4

57 wrlong value3,ptra 'write it to the pointer

=3
(=]

S|t #*x*x**HERE IS5 THE QUESTION****%&&&&

&0 =ub ptra, #8 ' point back to original data????
61 wrlong #0, ptra ' tell original COG we are done
62

63 ''" mow shut down

64 cogid value

65 cogstop value

66

67 |value long O 'data

68 |value2 long O 'datal

68 |value3 long O 'answer

70

Observe line 8 get the first value. Move over 4 long sfor the second. Pick up the second. Add
them move over another long to get to the answer to be printed write it and shut down.

Differences between P1 and P2 Pasm

Subtraction”

=1 o n b Ld RS

[-
E T TS T)

ki B3 K3 K3 K3 RI B3 RI BRI R) =2 =2
I LT o BT S LI I B BT v B

[FLR]
(S - T Ve = I

CCH
oscmode = £010007£8
freq = 160_000_000
baud 230 400

CBJ

ser: "spin/SmartSerial™

VAR
long cog
long data
long dataZ
long answer

PUB main
clk=set ([oscmode, fredq)
ser.start (63, &2, 0, BALAUD)

pausems (500) ' wait for baud change on host
ser.str (" PASM demo subtraction: ")
ger.nl

'"SUBTRACT DATA FRCM DATAZ if data wal is larger it will
'generate a negative number

data := 35'

datad := 100

cog := cognew(@startasm, @Edata)
ser.str (" cog: ")

ser.dec (cog)

ger.nl

27

Differences between P1 and P2 Pasm

32

33 '' wait until the COG has finished

34 ' it indicates this by clearing "data"™

35 repeat while data <> 0

36

37 '' nmow print results

g8 zer.str(" answer = ")

39 zer.dec (answer)

40 ser.nl

41 ser.nl

42z ' ger.str("answerz = ")

43 ' ger.dec(answer?)

44 ' ser.nl

45

46

47| DAT

48 |startasm

49 '' assembly program to subtract a number
S0 '' we start with ptra pointing at the number
51 '' the answer must immediately follow the input data
52 '' in the VAR section
53 rdlong value, ptra 'get first wvalue
54
55 add ptra, #4 ' move over to pickup next wvalue
Se rdlong wvalueZ2, ptra 'get second wvalue
57

g8 sub valueZ, wvalue
59 mow valued, value?

60 add ptra, #4

6l wrlong value3,ptra

62 sub ptra, #8 ' point back to originmal data
63 wrlong #0, ptra ' tell original COG we are done
64

65 '' now shut down

66 cogid value

67 cogstop value

Multiplication:

Differences between P1 and P2 Pasm

1 |CCH

p oscmode = £010007E£8

3 freq = 160 000 000

4 baud = 230 400

L

& |CBJ

7 ser: "spin/SmartSerial™

=]

3 VAR

10 long cog

11 long data

1z long data?

13 long answer

14

15

1&6|(PUE main

17 clk=set (oscmode, freqﬂ

1a ser.start (63, &2, 0, BAUD)

14 pausems (500) ' wait for baud change on host
20

21 ser.str ("PASM demo multiplicatiom: ™)
22 zer.nl

23 HMOLTIPLY THESE TWC VARIABLES
24 data := 11

25 dataz :=7

26 cog := cognew(@startasm, @data)
27

2 ser.str (" cog: ")

“

[T}

ser.dec (cog)
30 zer.nl

31 '' wait until the COG has finished

32 ''" it indicate=s thi=s by clearing "data™
33 repeat while data <> 0O

34

35 '' mow print results

36 ser.str (" answer = ")

37 ser.dec (answer)

Differences between P1 and P2 Pasm

38 zer.nl
39
40
41
42| DAT
43[ztartasm
44 ''" assembly program to multiply numbers
45 '' we start with ptra pointing at the number
46 '' the answer must immediately follow the input data
47 '' in the VAR section
B rdlong wvalue, ptra 'get first walue
49
50 add ptra, #4 ' move over to pickup next walue
51 rdlong wvalueZ, ptra 'get second walue
52
53 mual wvalue?, walue
54 mow valueld, values2 'mov results to answer
55 add ptra, #4
S5e6 wrlong value3,ptra
57 =ub ptra, #8 ' point back to original data
B wrlong #0, ptra ' tell original COG we are done
59
&0 ''" mow shut down
61 cogid value
62 cogstop wvalue
63
64 |value long 0 'data
65 |value?2 long 0 'datal
66| valued long 0 'answer

&7

Division will be shown on next iteration.

30

Differences between P1 and P2 Pasm

31

