

HANDHELD SCIENFITIC, INC.

HTML5 Enabled Wireless

Embedded Module

User Guide

V1.1

2

3

Copyright © 2012

Handheld Scientific, Inc.

support@handheldsci.com

All Rights Reserved

4

Table of Contents
Chapter 1 Quick Start .. 7

Chapter 2 Hardware Description ... 9

2.1 Embedded Module ... 9

2.2 Development Board .. 12

Chapter 3 Flash File System .. 17

Chapter 4 WiFi Modes and Configuration .. 19

Chapter 5 Data Acquisition and Control Commands .. 25

List of Commands ... 28

Chapter 6 Client Development .. 31

6

Chapter 1 Quick Start

This Guide provides minimum amount of information needed to test the module and

development board.

1. When the development board was shipped, the battery jumpers were in OFF position

to prevent the board from accidentally turning on. Move the two jumpers to connect

the battery, as shown in the following pictures.

 Battery jumpers in OFF position Move jumpers to ON position

2. Press the red RESET button. The green LED on the module should start flashing. If

not, the battery may be completely discharged. In such case connect the wall charger

to the module via USB cable before pressing the RESET button.

Note 1: In spite of the label, the ON/OFF button can only turn the module OFF. To

turn it on, the RESET button has to be used.

Note 2: The mini USB connector on the module is for both communication and

battery charging. In normal circumstances, the barrel power jack connector on the

development board does not need to be used.

3. Wait for the green LED to become flashing slowly (once every 2 seconds). This

indicates the WiFi network has been established. By default, the module enters

Limited AP (Access Point) mode. It creates its own WLAN (Wireless Local Area

Network) like an access point. Press the MODE button quickly, the module will

announce its configuration (Mode, IP address, etc.) via the speaker.

The default WLAN name is DCA_xxxx where xxxx is the last 4 digits of the module’s

MAC address. The IP address is 169.250.1.1. For detailed information on WiFi, refer

to Chapter 4 of this document.

8

4. On a client device (iPhone/iPad, Android, PC or MAC), connect to the WiFi network

created by the module. The module has a DHCP server so make sure the client has

DHCP enabled such that its IP address is assigned by the module. For the first time, it

may take a while for the IP address assignment to take place and connection to

establish. Subsequent connections will be faster.

5. Once connected, in a supported browser, type in http://169.250.1.1. The user interface

should show up.

As of 08/2012, current versions of Chrome, Firefox and Safari are supported. For

Opera, WebSocket is disabled by default. It needs to be turned on before the program

can work. IE 9 does not support WebSocket while its next version, IE10 (in Beta),

does.

Apple devices should all work using the current Safari browser. For Android devices,

the default browser does not work. You will need to download Firefox, Opera or

Chrome (in Beta)

6. In the web user interface, click Connect and you should see connected in the

console. Now try to turn on/off the LEDs, change the brightness of the green LED on

the board. Click the Enable button next to Analog Inputs and you will see 4

channels of analog data rolling in. Now change the potentiometers, touch the

temperature sensor or shed light on the light sensor to see the displayed values

change. For detailed information on client application development, refer to Chapter

6 of this document.

7. Using the USB cable (mini-B plug to standard-A plug), connect the module to an

USB port on a PC or MAC. The module will show up as an USB flash drive. A

current version of the User Manual is in the /doc directory. You should copy it over to

a PC for viewing. For detailed information regarding flash file system, refer to

Chapter 5 of this document.

It is strongly suggested not to turn on the module while connected to a PC via USB.

Instead, you should disconnect the cable, turn on the module, wait for a few seconds

to let the initialization process complete and then connect USB. Keep in mind this is

an embedded module running on a small microcontroller with very limited resources.

Multiple tasks running at the same time may interfere with each other, especially for

those like USB operations that require strict timing.

Note: For Firmware v1.0, only one client can be connected at a time. Future firmware

will support multiple client connections simultaneously.

Chapter 2 Hardware Description

This chapter describes the hardware of the module and development board.

2.1 Embedded Module

The layout of the module is shown in the following picture.

1. Audio Amplifier Gain Adjustment: there is an audio amplifier on the module and

its volume is adjustable. The output of the amplifier is through Pin 2 (Vout1) and

Pin 3 (Vout2). The input of the amplifier is DAC1. By default, this DAC1 channel

is used by the module to output audio announcements. The announcement feature

can be turned off by a command so DAC1 is free for use for other purpose.

2. Connector Pin 1: make sure to align this pin to pin 1 of the socket on development

board when insert the module to the board.

3. WiFi Transceiver connection: connection between the on-board microcontroller

and the WiFi transceiver. In normal use, the connection is closed by jumpers.

10

However, user can remove the jumpers and connect cables to communicate with

the WiFi transceiver directly. For example, this can upgrade the firmware of the

transceiver.

4. Power OFF Button: pressing this button will turn off the module. It is worth

noting that even when the module is powered off, part of the circuit including the

MCU is still energized. The MCU is in deep sleep mode. The current

consumption is around 25uA when the module is powered off.

For version 1 of the board, the marking for the button (ON/OFF) is a little misled.

This button only turns the module off. It does not turn it on. Use the reset button

to turn it on.

5. RESET Button: pressing this button will turn on the module if it is off, or restart

the module if it is already running.

6. WiFi Antenna Connector: standard U.FL connector for connecting a WiFi

antenna. The WiFi transceiver requires an external antenna to maximize

performance.

7. Connector Pin 21: when plug the module into the development board, make sure

this pin aligns with the same pin of the socket.

8. WiFi Transceiver: low-power high performance WiFi transceiver that is

compatible with b/g/n WiFi standard.

9. System Status LED (Green): there are 3 flashing speeds indicating different

system status:

 Very fast (10 times per second): module in boot loader mode. Usually the

module stays in this mode only briefly. If the boot loader can’t find a valid

application firmware, it will stay in this mode indefinitely. It will also stay

in this mode for longer time if a new firmware is found and written to the

module.

 Fast (4 times per second): module is booting up. Setting up WiFi, etc.

 Slow (once every 2 seconds): module is ready. It has obtained a valid IP

address and ready to be connected.

10. Power Status LED (Red): if USB power is present, this LED will stay on. If USB

power is not present, when battery voltage falls below 3.7V, this LED will start

flashing slowly (once every 2 seconds) and it will flash faster and faster as battery

voltage dropping.

11

11. Mini USB Connector: for power supply and communication. When plugged in a

PC, the module will show up as a USB flash drive. See Chapter 3 Flash file

System for more details.

Module pin assignment

Pin Label Description Channel

1 GND Ground

2 Vout1 Audio Amplifier Output 1

3 Vout2 Audio Amplifier Output 2

4 DAC1 Digital-Analog Converter Channel 1 a

5 DAC2 Digital-Analog Converter Channel 2 b

6 P6 DIO1 (Digital I/O Channel 1) c

7 P7 DIO2 (Digital I/O Channel 2) d

8 P8 ADC1 (Analog-Digital Converter Channel 1) e

9 P9 ADC2 (Analog-Digital Converter Channel 2) f

10 P10 DIO3 (WiFi mode announcement/switching button) g

11 P11 DIO4 (user button) h

12 P12 ADC3 (Analog-Digital Converter Channel 3) i

13 P13 ADC4 (Analog-Digital Converter Channel 4) j

14 P14 ADC5 (Analog-Digital Converter Channel 5) k

15 P15 ADC6 (Analog-Digital Converter Channel 6) l

16 P16 ADC7 (Analog-Digital Converter Channel 7) m

17 P17 ADC8 (Analog-Digital Converter Channel 8) n

18 P18 Power Off. A low voltage pulse turns module off o

19 RESET Reset. A low voltage pulse resets the module

20 GND Ground

Pin Label Description Channel

21 GND Ground

22 Vbak Battery connector for backup registers

23 P23 DIO5 (Digital I/O Channel 5) p

24 P24 DIO6 (Digital I/O Channel 6) q

25 P25 DIO7 (Digital I/O Channel 7) r

26 P26 DIO8 (Digital I/O Channel 8) s

27 P27 DIO9 (Digital I/O Channel 9) t

28 P28 DIO10 (Digital I/O Channel 10) u

29 P29 DIO11 (Digital I/O Channel 11) v

30 P30 DIO12 (Digital I/O Channel 12) w

31 P31 DIO13 (Digital I/O Channel 13) x

32 P32 DIO14 (Digital I/O Channel 14) y

33 RSVD Reserved. Should not be used.

12

34 RSVD Reserved. Should not be used.

35 VMCU 3.3V MCU voltage. Present even when module is

turned off.

36 VCC 3.3V Voltage. Not present when module is turned

off.

37 BAT External Li-ion battery connector. If Vin is present,

it will charge the battery

38 BAT Connected to Pin 37

39 Vin 5.0V input voltage. 300mA. (See Note 1)

40 Vin Connected to Pin 39

Note 1: Vin (Pins 39/40) is connected to the VCC/5V pin of the USB connector. Never

supply this pin with 5V voltage AND plug in the USB cable at the same time.

The DAC and ADC channels are all 12-bits and use 3.3V as reference voltage. The

outputs of the module have already been converted to the actual values with 3 digits after

decimal point (e.g., 1.234)

2.2 Development Board

The development board is used to test and demo the module. The following picture

illustrates its layout.

Table 2-1 Module Pinout

13

Figure 2-2 Development Board Layout

1. Antenna Connector: connect a duck antenna for maximal WiFi performance.

2. Battery: 1200mAH 3.7V 4.4Wh Li-ion battery.

3. Potentiometer (ADC1): 10K pot for input to analog-digital converter channel 1.

4. Speaker: speaker for audio output.

5. Power Selection: the development board has its own power supply for extra

circuit. The board can use the module’s power or its own power. This is selected

by jumpers J5A and J5B. Both J5A and J5B jumpers should be moved at the same

time. When J5A/B are in the MOD side, the development board is powered by the

module. When J5A/B are in the EXT side, the development board is powered by

the power supplied from Power Socket (6).

6. Power Socket: external power supply (5-9V DC, 500mA, Inner Positive) for the

board. Normally the board is powered by the module so this connector is not used.

7. 3.3V Power Connector: power supply for extra circuit. This voltage is present

when an external power supply is plugged in the power socket (6).

14

8. Potentiometer (ADC2): 10K pot for input to analog-digital converter channel 2.

9. LED2 (DAC2): LED for analog output from digital-analog converter channel 2.

10. Temperature Sensor (ADC3): input for analog-digital converter channel 3

11. Light Sensor (ADC4): input for analog-digital converter channel 4

12. Mode Button: if held for less than one second, the module will announce its

current configuration (WiFi mode, IP address, etc.) If held for more than one

second, the module will attempt to switch to the next configured WiFi mode. See

Chapter 4 for details regarding WiFi modes.

13. User Button: user defined button connected to DIO2

14. Reset Button: a low pulse resets the module. This is connected in parallel with the

Reset button on the module.

15. Power OFF Button: a low pulse turns off the module. This is connected in parallel

with the OFF button on the module.

For version 1 of the board, the label of the button (ON/OFF) is a little misled.

This button does not turn on the module. It only turns it off. Use the reset button

to turn it on.

16. LED Array: 10 LEDs connected to 10 Digital IO channels. Note a LED will turn

on when the output is low (zero) instead of high (one). This is because current

sourcing capability of a MCU pin is better than current driving capability so low

voltage is used to turn on the LED.

17. Connector Jumpers: the jumpers are used to connect inputs/outputs of the module

to the development board. For instance, a jumper connects P08 pin on the module

to the potentiometer output ADC1 on the development board. When the jumpers

are removed, cables can be used to reshuffle the connections, or to connect to

external sensors/circuits.

18. Module Sockets: 2x20 sockets for the module.

19. Connector Jumpers: same as (17).

20. Battery Jumpers: two jumpers connecting the on-board battery to the module.

When the board is shipped, the jumpers are disconnected to prevent the battery

from discharging. User should move the jumpers to connect the battery before

using the product.

15

Audio announcements: when the module starts up, it will announce the firmware version.

When the mode button is pressed, it will announce network settings. Note that audio

announcements are resource-intensive operations. It may interfere with or be interfered

by other operations. For instance, when the module is connected to a PC via USB, the

voice announcement may slow down or even appear to be shattered. Audio

announcements may also pause data input/output operations. Therefore, this feature

should be used judiciously.

As shown in the next picture, the development kit includes a module, a development

board, USB wall power adapter with cable, duck antenna and battery.

Chapter 3 Flash File System

The Mini USB port on the module is served for both power supply and communication.

When plugged into a PC or MAC, the module shows as up as an USB flash drive. The

size of the drive is 8MB. The file system is standard FAT so file names are case

insensitive. It only supports 8.3 filenames (8-character name plus 3-character name

extension).

It is strongly recommended to eject the drive before unplugging the USB cable. This will

maintain data integrity by making sure all data are written to the drive before the cable is

disconnected.

The first time the module is used, you should make a backup of all files to a PC or an

external drive.

In normal use of the module, the USB flash drive should be disconnected from the PC.

This is especially important if the module is used for intensive data acquisition tasks.

Using the USB drive with intensive DAQ tasks may disrupt the timing of both USB and

DAQ operations.

The following picture shows the directory structure:

DOC: contains documentation of the module. The files here can be deleted to free up

space after being backed up to a PC.

FIRMWARE: if a new firmware is available, download and put it in this directory. Each

time the module starts up, it looks into this directory for firmware. If it finds one with

version higher than the one in program flash memory, it will replace the current firmware

with the new one. After the firmware is upgraded, user should delete the file in this

directory to free up space and speed up initialization process.

18

SYSTEM: contain essential files for the proper operation of the module. For instance, the

WiFi configuration file lives here. Users should add or delete files in this directory with

great caution.

WEB (optional): Users can put web files (HTML, JavaScript or images) in this directory.

Alternatively, those files can also be put in the root directory just for simplicity. The web

server in the module uses the root directory as document root. Therefore, if a file is in the

web directory, the resource path in the URL needs to include the directory path as well.

The speed to copy files to the flash drive is ~30KB/s. The speed to load files from the

web server via WiFi is ~50KB/s. As an example, for a 2MB file, it takes about 70

seconds to write, and about 40 seconds to load on a web browser. The web server does

not support If-Modified-Since header so it will send out the files as requested every time.

It is recommended to put large web files in a separate external web server and link the

files if necessary.

The total size of required system files is no more than 1MB. This leaves at least 7MB

space for user contents.

Chapter 4 WiFi Modes and
Configuration

WiFi in the module can be configured for one of three modes: Ad-Hoc, Infra-structure

and Limited Access Point (AP).

Ad-hoc and Infra-structure modes are standards in WiFi technology. Ad-Hoc mode is

point-to-point communication between two devices without an access point. Intra-

structure mode is used to connect to an access point which routes data traffic among

devices.

Since Ad-Hoc mode has no security, some devices do not support Ad-Hoc Mode, such as

Android phones and tablets. Therefore, a third mode, Limited AP mode, was developed

to address that issue. In Limited AP mode, the module creates a WiFi network like an AP

so that devices can talk to each other without an access point. However, it does not have

all the capabilities of an AP (thus the name limited AP).

All three modes can be configured using a configuration file in the module’s file system.

The file is config.txt in the SYSTEM directory (/SYSTEM/config.txt). User can also

switch among modes with the mode switch button or by controlling the mode switching

pin. When the mode button is pressed and held for less than one second, network

configuration is spoken. If pressed for more than one second, the module attempts to

switch to the next mode in the configuration file.

In infra-structure and AP modes, standard WLAN securities are supported: WEP, WPA

and WPA2.

When starting up, if the configuration file does not exist, the module will enter the default

limited AP mode with the following parameter:

 SSID: DAC_xxxx where xxxx is the last 4 digit of the MAC address.

 IP address: 169.250.1.1

 Net Mask: 255.255.0.0

 Gateway: 169.250.1.1

 Security: none (open)

When the module was shipped, a configuration file was placed in the /SYSTEM director

in the flash file system. It content is listed below. For demonstration purpose, this file

contains redundant information. For instance, the network security is set to open (no

encryption) so the wpa_passphrase setting is not needed but it is present anyway.

20

21

In the configuration file, directives are listed line by line. A line starting with a “#” or “//”

is comment and ignored. Below are the directives that can be placed in the configuration

file. Not all directives are applicable to all modes.

WiFi Configuration directives:

[Limited AP], [Infra Structure], [Ad Hoc]

Section headers. Each header indicates the start of a section. Directives after a

section are for the specified mode.

wlan_ssid

The SSID of the WLAN. If the string ends with an underscore, the last 4 digits of

the MAC address are appended to the SSID. This is useful to create a unique

SSID. In Ad Hoc or Limited AP mode, the module creates its own WLAN with

the specified SSID. In infra-structure mode, this is the SSID of the WLAN to join.

ip_address

In Ad-Hoc or Limited AP mode, this is the IP address of the module. In Infra-

structure mode, if DHCP client is enabled, this setting is ignored and the IP

address is assigned by the DHCP server.

net_mask

Network Mask. In Infra-structure mode, if DHCP client is enabled, this will be

ignored and the net mask will be assigned by the DHCP server.

gateway

Default gateway. In Infra-structure mode, if DHCP client is enabled, this will be

ignored and the gateway will be assigned by the DHCP server.

http_port

The port at which the web server and WebSocket server are listening to.

dhcp_server

Takes true/false value. Whether to turn on DHCP server in the module. This is

only applicable in the Limited AP mode.

22

dhcp_client

 Takes true/false value. Whether to turn on DHCP client in the module. This is

only applicable for infra-structure mode. If this is true, the IP address, net mask

and gateway are all taken from the DHCP server. Those directives, if present, are

ignored.

security

 WLAN security. Not applicable in Ad-Hoc mode. In the other two modes, it can

be one of the following values:

 auto: automatic selection. Should be used in infra-structure mode where security

setting is determined by the Access Point.

 open: no security. Network is open.

wep: WEP security. If this is specified, wep_key1 (and wep_key2 if so desired)

need to be specified.

wpa-psk: WPA Pre-shared key security. If this is specified, wpa_passphrase also

needs to be specified.

wpa2-psk: WPA2 Pre-shared key security. If this is specified, wpa_passphrase

also needs to be specified.

wpa_passphrase

If security is set to wpa/wap2, this value specifies the WLAN passphrase. It

should be a string containing 8-63 ASCII characters. It is used as a seed to create

the WPA pre-shared key.

wep_mode

Applicable only when security is set to wep. This specifies the wep mode. It takes

one of the following three values: none, open or shared.

wep_key1

WEP security key 1. It is either 10 or 26 hexadecimal digits corresponding to a

40-bit or 104-bit key.

wep_key2

23

WEP security key 2. It is either 10 or 26 hexadecimal digits corresponding to a

40-bit or 104-bit key.

default

Takes true/false value. Specifies whether this mode is the default when the

module starts up. There should be only one mode with default set to true. If no

default is set to true, the Limited AP mode is the default. If more than one default

is set to true, the last one prevails.

Digital IO Channel Configuration directives:

[Channel <channel_designator>]

Section header indicating the directives followed are for the channel specified.

For example, [channel p] indicates the following setting are for regular digital

channel p.

Currently only digital IO channels can be figured using the configuration file.

mode

Set the mode of the channel. Can be one of the following: in (floating input), ipu

(input pull-up), ipd (input pull down), out_pp (output pull-push), out_od (output

open drain).

auto

Takes true or false value. Setting the automatic sampling property of this

channel on or off.

interrupt

Takes true or false value. Setting the interrupt property of this channel on or

off.

init_value

Only for a channel that is configured as digital output. Takes 0 or 1 value. The

firmware will set output of the digital IO channel to this value when it starts up.

24

Chapter 5 Data Acquisition and
Control Commands

After connected to the module, a client (web browser) can send commands to the module

to perform control and data acquisition tasks. The main design goal for the commands

and responses is efficiency.

A command contains one or more space separated words and is terminated by line feed

(0x0A), or carrier return (0x0D) or both. Some commands generate response and some

don’t. For those commands that do not generate response, there is no indication whether

they were successfully taken. The client needs to query the relevant value to make sure

the command succeeded. For example, command “set period 1000” will be silently

accepted. Client should issue another query “get period” which returns “F1000” to

make sure the value was set correctly.

Responses from the device are separated by space. Each response is in the form of

<channel><value>. For instance, e1.23, h0, h1, E01111101101101. The purpose of

including a channel designation in each response is to make the responses autonomous so

they are independent of the sequence of the commands that were sent.

There are two types of channels: regular and special. A regular channel corresponds to a

physical input/output such as a DAC, ADC or DIO. A special channel does not

correspond to a real channel. Instead, it is used to indicate a pre-defined value or values

such as a version, or aggregation of multiple DIO values.

Channels are designated by a single letter for parsing efficiently in the client. Regular

channels are designated by lower case letter. For instance, there are 2 DAC channels

designated as a and b, 8 ADC channels designated as e, f, and so on. The following table

shows all regular channel designations.

Pin Label Description Channel Interrupt

Capable

4 DAC1 Digital-Analog Converter Channel 1 a -

5 DAC2 Digital-Analog Converter Channel 2 b -

6 P6 DIO1 c -

7 P7 DIO2 d -

8 P8 ADC1 (Analog-Digital Converter Channel 1) e -

9 P9 ADC2 (Analog-Digital Converter Channel 2) f -

10 P10 DIO3 (key) g -

11 P11 DIO4 (user button) h Yes

12 P12 ADC3 (Analog-Digital Converter Channel 3) i -

26

13 P13 ADC4 (Analog-Digital Converter Channel 4) j -

14 P14 ADC5 (Analog-Digital Converter Channel 5) k -

15 P15 ADC6 (Analog-Digital Converter Channel 6) l -

16 P16 ADC7 (Analog-Digital Converter Channel 7) m -

17 P17 ADC8 (Analog-Digital Converter Channel 8) n -

18 P18 Power OFF Switch o -

23 P23 DIO5 p Yes

24 P24 DIO6 q -

25 P25 DIO7 r Yes

26 P26 DIO8 s Yes

27 P27 DIO9 t Yes

28 P28 DIO10 u Yes

29 P29 DIO11 v Yes

30 P30 DIO12 w Yes

31 P31 DIO13 x Yes

32 P32 DIO14 y Yes

Special channels are designated by uppercase letters, as defined in the following table.

Description Channel Sample Response Values

Battery Voltage A A3.85

USB Power Status B B0

Firmware Version C C1.0

Hardware Version D D1

DIO Channel Aggregation E E11011011011011

Transmission Period Value F F1000

Sampling Group Value G G1

Audio ON/OFF status H H1

Channel Setting I Ih01

The E channel is for controlling all DIO channels in one command. There should be 14

0/1’s following the command, corresponding to 14 DIO channels: cdghpqrstuvwxy. This

command will only affect the channels set to output. As an example, the g channel (P10,

DIO3) is by default set to input for the MODE switching operation so it is not affected by

the command, unless this channel is re-defined as output by the user.

There are three ways to get data from the module: repeatedly query (client pull),

automatic sampling (device push) and interrupt. In the first method, a client simply sends

the read command (the r command) repeatedly. In this case the client has complete

control over when and what channel to pull the data. The main drawback of client pulling

is efficiency. For each request and response, a data packet is created and transmitted

which may contain high overhead for packet header and so on. Therefore, client pull is

limited to 10 times per second.

27

The second method is automatic sampling, or device push. Each channel has an on/off

property which can be toggled by a command. When automatic sampling starts, the data

from all channels that are “on” will be sent out continuously, without the need for

intervention from the client.

There are two parameters associated with automatic sampling: period and group. The

period value is the interval between consecutive transmissions of data from the device.

The group value is the number of samples (for each channel) in one transmission. For

instance, if period=500 and group =10, then samples are transmitted once every 500ms

and in each transmission, there are 10 samples taken at equally spaced interval during

that 500ms. This is effectively the same as period=100 and group=2. However, the

former is more efficient since it transmits 10 samples all at once, while the latter

transmits only 2 samples at a time. Efficiency is important when the data transmission

rate is high, and it is the main purpose of having the period and group parameters

separately.

The unit of the period parameter is ms (milli second). It can range from 100 to 60000

(100ms to one minute). In other words, the transmission rate can be from 100

transmissions/second to once per minute. The group parameter can range from 1 to 100.

If period=100 and group=100, the effective sampling rate is 1KHz which is the highest

the module can achieve.

There is one more scenario. For a DIO channel, when an input level changes such as from

0 to 1 or from 1 to 0, the client would like to be informed of the changes immediately.

Neither client pull or device push is appropriate or efficient in this situation. In this case

we would like the device to send out an unsolicited message upon the occurrence of the

event. This is called interrupt event. For each DIO channel, interrupt can be enabled or

disabled. If enabled, which is the default setting, when the input level changes, the device

will send out a data message, as if the channel was queried by the client. For instance,

when the user button is pressed or released, a message of h0 or h1 is sent to the client.

With the sample web interface, this causes the LED display on the web page to change

color, illustrating the real-time interrupt capability of the module.

Due to some hardware limitations, not all DIO channels are capable of interrupt. Please

refer to the above table for the information.

All those 3 data acquisition methods can be used at the same time. For example, user can

set up a device push for an ADC channel with fast changing value, and pull a slow

changing value (such as battery voltage) at much longer interval while interrupts inform

the application any digital level shift.

The total aggregated throughput of the module is around 50kbps (bits per second), limited

by the processing capability of the MCU. Each analog data needs 7 bytes (one byte of

channel designation, 5 bytes of data including a decimal point, one white space separator).

Each DIO channel needs 3 bytes. So if the sampling rate is at its maximum of 1K, only

28

one analog channel can be enabled, or 3 DIO channels can be enabled. Users can use

those data to estimate the maximal sampling rate for desired channels.

List of Commands

r [channel]

The read command. If there is no parameter, the command returns data of all

channels whose automatic sampling setting is on. If an optional channel parameter

is present, the command returns data of that particular channel.

w <channel><data> [<channel><data>]

 The write command. Write the data to the specific channel. Note there is no space

between <channel> and <data>. For example, “w b2.34”. You can have up to 10

<channel><data> parameters. For example, “w p0 q1” will set digital channel p

to 0 and q to 1.

channel <channel>

 It returns the channel settings. The format is:

 I<channel>,<io_setting>,<auto_on>,<interrupt>

 Where I is the special channel designation. <channel> is the regular channel

name. <io_setting> is one of ain, in, ipd, ipu, out_od and out_pp.

<auto_on> is either 0 or one depending on the auto on setting. Same as

<interrupt>.

channel <channel> on|off

 Turn the channel on/off for automatic sampling. For example, “channel f on”

channel <channel> [in|ipd|ipu|out_od|out_pp]

 Set a DIO channel to the specific mode. Note this is not applicable to analog

(ADC or DAC) channels.

 in: floating input (no pull-up or pull down).

 ipd: digital input with pull-down

 ipu: digital input with pull-up

 out_od: output, open drain

29

 out_pp: output, pull-push

 Examples: “channel h ipd” sets the channel DIO1 to floating input.

“channel s out_od” sets the channel DIO8 to open drain output.

channel <channel> irq_on|irq_off

 Turn interrupt on/off. Only applicable to DIO channels. If interrupt is on, when

there is a change in the digital level of the input, the module will send out an

unsolicited output to the client. The default is on for all DIO channels.

 Note: due to hardware limitation, not all DIO channels are interrupt capable.

set period <value>

 Set transmission period (interval) for automatic sampling. Unit is in ms (1000
th

 of

a second). Value should be between 100 to 6000 (once every 100ms to once every

minute).

set group <value>

 Set the number of samples in each transmission for automatic sampling. Default

value is 1. The range is 1-100 inclusive.

set audio on|off

 Turn the audio output on and off. If audio is turned off, DAC1 channel can be

used for other purpose. The default is on.

get period

 Get transmission period for automatic sampling. Returns “Fn” where F is the

special channel designation and n is the value. For instance, “F100” or “F500”.

get group

 Get the group setting value. Returns “Gn” where G is the special channel

designation and n is the value. For instance, “G1” or “G10”.

get audio

 Returns the audio output on/off status. Returns “H0” or “H1” where H is the

special channel designation.

start

30

 Start automatic sampling (device push) based on transmission period and

sampling group values.

stop

 Stop automatic sampling.

Chapter 6 Client Development

Clients are written in HTML/JavaScript running in browsers that support HTML5. The

only required HTML5 feature is WebSocket, although Canvas is used for the demo web

page. Other HTML5 features such as Local Storage and Web Workers are helpful in

developing feature-rich applications but not required to use this product.

The module and demo code have been tested to work in the following browsers: Chrome

from 19.0, FireFox from 12.0, Safari from 5.1, Safari on iOS from 4.2, IE 10.0 and Opera

12.0. Note that as of this writing, the current IE version is 9.0 which does not support

WebSocket. The next version, IE10, available on Windows 8, does support WebSocket.

WebSocket support is enabled by default in all supported browsers except Opera. In

Opera, a user needs to turn the feature on manually: in its address input, type in

opera:config. On the page displayed, expand User Prefs and select the checkbox

Enable WebSockets. Then scroll down all the way and click Save. Now the code should

work in that browser.

The HTML5 WebSocket API is relatively simple. The full spec can be found here:

http://dev.w3.org/html5/websockets/. The following are essential steps for a minimal

working program:

ws = new WebSocket(url)

Open a new WebSocket to url which must be in the form of

ws://host:port/resource

ws.onopen(evt)

WebSocket open event handler. It is called when a connection is open

successfully.

ws.onmessage(evt)

Data arrival event. Parse and process data here. Since the function will

be called repeatedly, try best to re-use memory and leave as little

garbage as possible.

ws.onclose(evt)

http://dev.w3.org/html5/websockets/

32

Socket closed. Clean up resources.

ws.onerror(evt)

Error handling.

We provide sample programs to illustrate how to use the API and develop applications.

The following screen shot shows the demo program coming with the module. This is the

/index.htm file in the module’s flash file system.

33

34

Click Connect to open a WebSocket connection to the URL specified in the Server text

box. The host (IP address) is where the file is loaded from (the module’s IP address).

User can change the address to connect to a different WebSocket server. This is useful for

developing/testing new applications since you don’t need to copy the files to the module

every time a change is made.

If a connection is successfully established, the console will show “Connected”. Otherwise

error message will be shown.

Once a connection is opened, commands can be typed in the Command text box. For

instance, typing in “r h” then hitting Send (or pressing Return) will read the DIO channel

connected to the user button. The command “r” will return the data for all channels

whose automatic sampling setting is on. Clicking on the LEDs will turn on/off the

corresponding LEDs on the board. Moving the Analog Output slider will change the

brightness of LED2 on the board.

If you click “Repeat Send”, the software will send the command specified in the

Command input box with the interval specified in the Interval box. This is client pull

explained in the previous chapter. To experience with device push, execute the command

start and see data rolling in on the console. The stop command will stop automatic data

push.

For analog input, clicking the Enable button will turn on all those 4 analog channels (you

can see the commands sent in the console). After that, you can use client pull or device

push to get data from the module.

We hope you found the information in this manual useful. If you have any comments or

questions regarding this document, or any of our products, please feel free to contact us at

support@handheldsci.com. We love to hear from you!

mailto:support@handheldsci.com

