
TACHYON Forth version 5v7 GLOSSARY------ for the PARALLAX PROPELLER P1
The purpose of this glossary is to provide a sorted list of words, their stack effects, and a short description. It is recommended to go to the relevant source code to
glean more information if necessary.

Stack notation shows input parameters with the rightmost being the top of the stack, input parameters on the left, output on the right, separated by --
Where a word has a compile time and a run time behaviour, the two stack effects are shown as <compile effect> ; <runtime effect>

e.g. (a b -- c) A word removes the top two stack items as input parameters, b is top of stack (tos). The word places c on the stack as the result
e.g. (n -- ; -- adr) During compilation this word removes n from the stack. During execution the word leaves an address on the stack

The Code Type column is coded as follows - C - Assembly language word, H - High level word, X - High level word defined in 'Extend.fth', EF - High level word
defined in 'Easyfile.fth'. (there are other types unknown to the author)

The Word Type column shows whether a word is of type public (PUB), private (PRI), preemptive (PRE) or a module header (MOD).

Some words also have alias names, these are made available so that those with traditional Forth or Spin experience can be familiar with them although some are
favoured for clarity and readability especially in various fonts.

The data stack is 4 levels deep in the cog and then implemented as a non-addressable LIFO stack in cog memory. Tachyon words are optimized for these four fixed
cog registers and to encourage efficient stack use no messy PICK and ROLL words are implemented. There are many words that also avoid pushing and popping
the stack as this slows execution speed too. Try to factor words so that they use four or less parameters.

Data is referred to as bytes (8 bits), words (16 bits), longs (32 bits) and doubles (64 bits). The Tachyon stacks are 32 bit wide, so types other than longs are padded
or split when placed on the stack

PUBLIC WORDS
This section lists all the public words in Tachyon. These are words that are always available in the dictionary to write programs with. If the programmer is not
interested in the Private Words (Module low-level internal words), listed at the back of this document, then he can easily delete that section, or just print the Public
Word section.

NAME STACK CODE WORD DESCRIPTION
 TYPE TYPE

DATA STACK

-ROT (a b c -- c a b) H PUB Reverse rotate (equiv. to ROT ROT)
!SP (? --) H PUB Init stack pointer, clear the stack
?DUP (a -- a a) C PUB dup if a <>0, else (a -- a)
2DROP (a b --) C PUB Drop top 2 items off the stack (pop)
2DUP (a b -- a b a b) H PUB Duplicate the top two stack items (equiv. to OVER OVER) (push)
2OVER (n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2) H PUB Copy 3rd and 4th items to tos
2OVER (a b c d -- a b c d a b) H PUB Duplicate the next two stack items (as if it is a double number) (push)
2SWAP (n1 n2 n3 n4 -- n3 n4 n1 n2) H PUB Swap items 1,2 with items 3,4
3DROP (a b c --) C PUB Drop 3 top stack items
3DUP (n1 n2 n3 -- n1 n2 n3 n1 n2 n3) X PUB Copy first 3 items to tos
3RD (a b c d -- a b c d b) C PUB Copy third stack item (push)
4TH (a b c d -- a b c d a) C PUB Copy fourth stack item (push)
BOUNDS (n1 n2 -- n1+n2 n1) C PUB n1 becomes n1+n2, n2 unchanged
DEPTH (-- depth) H PUB Return with current depth of data stack (but does not include depth itself) (push)
DROP (a --) C PUB Drop top item off the stack (pop)
DROP; (a --) H PUB DROP ; - used by MOD
DUP (a -- a a) C PUB Duplicate top item on stack (push)
LP! (a --) H PUB Set loop stack memory - each cog that uses FOR NEXT needs room for 8 longs or more
NIP (a b -- b) C PUB Drop 2nd stack item (pop)
OVER (a b -- a b a) C PUB Copy 2nd stack location to first (push)
OVER+ (n1 n2 -- n1 n2+n1) C PUB n2 becomes n1+n2, n1 unchanged
ROT (a b c -- b c a) C PUB Move 3rd item to 1st, 1st to 2nd, 2nd to 3rd
SWAP (a b -- b a) C PUB Swap top 2 stack items

RETURN STACK
!RP C2 PUB Init return stack pointer
>R (a --) C PUB Push a from data stack onto return stack
FORK (--) X PUB Duplicate top of return stack
R@ (-- a) X PUB Copy top of return stack to tos
R> (-- a) C PUB Pop a from return stack onto data stack

LOGICAL
Some logical operations include a built-in parameter to avoid slow push/pop operations such as 8<< rather than 8 << (0.4us vs 2.4us)

 << (n cnt -- n2) C PUB Shift n left cnt places
 >> (n1 cnt -- n2) C PUB Shift n right cnt places
>| (mask -- bit) X PUB Convert mask to bit position of first lsb that is set e.g. 512 >| . --- 9 ok
>b (n1 -- byte) C PUB Mask n to the l.s. bit
>B (n -- byte) C PUB Mask off a byte ($FF AND)
>N (n -- nib) C PUB Mask off a nibble ($0F AND)
|< (bit -- mask) X PUB Alias for MASK
|<= (bit -- ; -- mask) H PRE
2* (a -- b) C PUB Shift left one bit (multiply by two unsigned)
2/ (a -- b) C PUB Shift right one bit (divide by two unsigned)
4* (a -- b) C PUB Shift left two bits (multiply by 4 unsigned)
8<< (a -- b) C PUB Fast 8-bit shift left - avoids slow push and pop of literal
8>> (a -- b) C PUB Fast 8-bit shift right - avoids slow push and pop of literal (i.e. $12345678 -> $00123456)

Version 1.4 Page 1

AND (a b -- c) C PUB c = a AND b
ANDN (a b -- c) C PUB c = a AND NOT b ($DEADBEEF $FF ANDN .LONG DEAD.BE00 ok)
BIT! (addr flg --) H PUB store 1 in long at addr if flg<>0, else store 0
BIT? (mask addr -- mask flg) C PUB flg = long at addr anded with mask
FALSE (-- 0) C PUB Constant
INVERT (a -- b) H PUB Bitwise inversion - all bits are flipped (i.e. $FFFFFFF5 -> $0A)
L>S (n -- lsb9 h) C PUB Specialized operation for filesystem addresses
MASK (bit -- mask) C PUB Convert 5-bit number to a mask over 32-bits - mask=0 if bit>31
NOOP (--) H PUB No operation
NOP (--) C PUB No operation - (0.4 us) - can be used as a placeholder and overwritten later e.g. pri trap nop nop ;
OFF (-- 0) C PUB Alias for FALSE
ON (-- -1) C PUB Alias for TRUE
OR (a b -- c) C PUB c = a OR b ($123400 $56 OR .LONG 0012.3456 ok)
REV (n1 bits -- n2) C PUB Reverse LSBs of n1 and zero-extend
ROL (a cnt -- c) C PUB Rotate a left with b31 rotating into b0 for cnt ($12345678 8 ROL .LONG 3456.7812 ok)
ROR (a cnt -- c) C PUB Rotate right bit b0 rotating into b31 for cnt ($DEADBEEF 8 ROR .LONG EFDE.ADBE ok)
SAR (a n -- b) C PUB b = a Shift Arithmetic Right n places
SHL (a cnt -- c) C PUB Shift left all bits by cnt
SHR (a cnt -- c) C PUB Shift right all bits by cnt
TOG (mask caddr --) H PUB toggle bits defined by mask in hub byte at caddr
TRUE (-- -1) C PUB Constant (although any non-zero number is treated as true as well
XOR (a b -- c) C PUB c = a XOR b ($123456 $FF XOR .LONG 0012.34A9 ok)

COMPARISON
< (a b -- flg) H PUB If a is less than b then return with true flag
<= (a b -- flg) X PUB if a < or = to b then flg = true
<> (n1 n2 -- flg) C2 PUB Return with flag indicating if n1 <> n2 (equiv. to = NOT)
= (a b -- flg) C PUB Compare a with b
=> (a b -- flg) X PUB if a > or = to b then flg = true
> (a b -- flg) C PUB If a > b then flg = true
0< (val -- flg) C PUB If val is less than zero (negative) then return with true flag
0<> (n -- flg) C2 PUB Return with flag indicating if n <> 0 (equiva. to 0= NOT)
0= (val -- flg) C PUB Compare n to zero and return with boolean flag
NOT (val -- flg) C PUB Alias for 0=
U< (a b -- flg) C PUB If a is unsigned less than b then return with true flag
U> (a b -- flg) X PUB If a is unsigned greater than b then return with true flag
WITHIN (val min max -- flg) H PUB Return with flag if val is within min and max (inclusive, not ANSI)

MEMORY
-- (adr --) H PUB Decrement the long in hub memory
! (long adr --) C PUB Store the long in hub memory (2.2us) (pops)
@ (adr -- long) C PUB Fetch a long from hub memory (0.4us)
@1 (-- adr) X PUB 1 long
@2 (-- adr) X PUB 1 long
@3 (-- adr) X PUB 1 long
+! (long adr --) C PUB Add long to long in hub memory
++ (adr --) H PUB Increment the long in hub memory
<CMOVE (src dst cnt --) H PUB Reverse MOVE bytes starting from end of src to end of dst by cnt bytes
~ (adr --) H PUB Set the long in hub memory to zeros
~~ (adr --) H PUB Set the long in hub memory to all ones
1! (n --) X PUB store n in @1
1@ (-- n) X PUB return value n stored at @1
1++ (--) X PUB increment value stored at @1
2! (n --) X PUB store n in 2@
2@ (-- n) X PUB return value n stored at @2
2++ (--) X PUB increment value stored at @2
3! (n --) X PUB store n in 3@
3@ (-- n) X PUB return value n stored at @3
3++ (--) X PUB increment value stored in @3
ALIGN (adr align -- adr1) X PUB Align address upwards to match alignment boundary (i.e. $474A $40 ALIGN .WORD 4780 ok)
BIG! (long addr --) X PUB store long big-endian style
BIG@ (addr -- long) X PUB read long big-endian style
C-- (adr --) H PUB Decrement the byte in hub memory
C! (byte adr --) C PUB store byte to hub memory
C@ (adr -- byte) C PUB Fetch a byte from hub memory
C@++ (adr -- adr+1 char) C PUB Fetch a byte from hub memory and maintain and increment the address
C+! (byte adr --) C PUB add byte to hub memory
C++ (adr --) H PUB Increment the byte in hub memory
C~ (adr --) H PUB Clear the byte in hub memory to zeros
C~~ (adr --) H PUB Set the byte in hub memory to all ones
CELL+ (addr -- addr+4) H PUB Advance address by one cell - A cell is defined as 4 bytes in Tachyon
CLR (mask addr --) H PUB Clear the bits in the byte at addr
CMOVE (src dst cnt --) C2 PUB CMOVE bytes from src to dst by cnt bytes (13.11ms for 32k)
D! (n1 n2 addr --) H PUB Store double n1 n2 at addr
D@ (addr -- n1 n2) H PUB Fetch double n1, n2 from addr
ERASE (adr cnt --) H PUB ERASE memory (to 0) from adr for cnt bytes
FILL (adr cnt ch --) H PUB FILL memory from adr for cnt bytes with ch
SET (mask addr --) H PUB Set the bits in the byte at addr
SET? (mask addr -- flg) H PUB Test the bits in the byte at addr and return with state
U! (n adr --) X PUB Write unaligned long
U@ (adr -- n) X PUB Read unaligned long
ulong (-- adr) X PRI long used by U!, U@
W-- (adr --) H PUB Decrement the word in hub memory
W! (word adr --) C PUB Store word to word at adr
W@ (adr -- word) C PUB Fetch a word from hub memory
W+! (word adr --) C PUB Add word to word at adr
W++ (adr --) H PUB Increment the word in hub memory
W~ (adr --) H PUB Clear the word in hub memory to zeros
W~~ (adr --) H PUB Set the word in hub memory to all ones

Version 1.4 Page 2

MATHS
- (a b -- c) C PUB c = a - b [6912 5678 - . 1234 ok]
?NEGATE (a flg -- b) H PUB Negate a if flg is true
* (s1 s2 -- s3) C2 PUB Signed multiply [-1234 5678 * . -7006652 ok]
*/ (um1 um2 udiv -- rslt32) H PUB Multiply um1 and um2 to produce a 64-bit intermediate result divided by udiv for 32-bit result
/ (div1 div2 -- rslt) X PUB Signed divide
+ (a b -- c) C PUB c = a + b [1234 5678 + . 6912 ok]
1- (a -- a-1) C PUB Decrement a unsigned
1+ (a -- a+1) C PUB Increment a unsigned
2- (a -- a-2) C2 PUB Decrement a by 2 unsigned (double bytecode instruction)
2+ (a -- a+2) C2 PUB Increment a by 2 unsigned (actually a double bytecode instruction 1+ 1+)
ABS (a -- b) C PUB Absolute value of a - if a is negative then negate it to a positive number
ADDABS (n1 n2 -- n3) C PUB n3 = n1 + abs(n3) e.g. -2 -3 ADDABS . --- 1 ok
AVG (val var -- avg) X PUB Accumulate the average using 25% of the difference between the current average and val
CMPSUB (n1 n2 -- n3) C PUB Compare unsigined, substitute n1 if lesser or equal e.g. 2 3 CMPSUB . --- 2 ok
LIMIT (n min max --) X PUB Return n limited to within range of min and max inclusive
MAX (n1 n2 -- n3) C PUB Return unsigned maximum of two items
MAXS (n1 n2 -- n3) C PUB Return signed maximum of two items
MIN (n1 n2 -- n3) C PUB Return unsigned minimum of two items
MINS (n1 n2 -- n3) C PUB Return signed minimum of two items
MOD (a mod -- rem) X PUB Extract the remainder after division
NEGATE (a -- 0-a) C PUB Negate a - that is subtract a from zero
RND (-- rnd) X PUB Generate a 32-bit pseudo-random number enhanced with the system counter
seed (-- adr) X PRI 1 long used by RND
SUBABS (n1 n2 -- n3) C PUB n3 = n1 - abs(n2) e.g. 3 -2 SUBABS . --- 1 ok
U/ (u1 u2 -- u3) H PUB Unsigned divide
U/MOD (u1 u2 -- rem quot) H PUB Unsigned modulo divide includes remainder [1024 10 U/MOD . SPACE . 102 4 ok]
UM* (u1 u2 -- u1*u2L u1*u2H) C PUB unsigned 32bit * 32bit multiply --> 64bit double result
UM*/ (um1 um2 udiv -- rsltL rsltH) X PUB Multiply um1 by um2 with 64-bit intermediate divided by udiv for a 64-bit result
UM/DMOD (dvnL dvdH dvsr -- rem qL qH) C PUB Full 64-bit by 32-bit divide - used by U/ and U/MOD
UM/MOD (dvndL dvndH dvsr -- rem quot) C2 PUB Same as UM/MOD64 but constructed with (bytecodes UM/MOD64 DROP)

FLOATING POINT MATHS

The following words require the F32 ROM be loaded - N.B. there are more functions in the ROM than there are forth words currently to drive them. The words below
were written as proof of concept and would probably need expanding for any f.p. application. See the F32 ROM source for more details.

>F (n1 -- result) X PUB
F- (n1 n2 -- result) X PUB Subtraction
F* (n1 n2 -- result) X PUB Multiplication
F/ (n1 n2 -- result) X PUB Division
F+ (n1 n2 -- result) X PUB Addition
F> (n1 -- result) X PUB
FSIN (n1 -- result) X PUB Sine
FSQRT (n1 -- result) X PUB Square root

CONVERSION
>W (n -- word) X PUB Mask n to a 16-bit word (eq. $FFFF AND)
1M (-- 1000000) X PUB constant, 1000000
B>L (a b c d -- dcba) X PUB Merge four bytes into one long ($12 $34 $56 $78 B>L .LONG 7856.3412 ok)
B>W (bytel byteh -- word) X PUB Merge bytes into a word
KB (n - n<<10) X PUB kilobytes
L>W (long -- wordl wordh) X PUB Split a long into words
M (n -- n*1000000) X PUB million
MB (n - n<<20) X PUB megabytes
W>B (word -- bytel byteh) X PUB Split a word into bytes
W>L (wordl wordh -- long) X PUB Merge words into a long

LOOPING
DO and LOOP use a separate loop stack to hold the parameters and a branch stack to hold the looping address for very fast looping. So loop indices are available
outside of the loop as when functions are called from inside the loop. The words associated with DO and FOR are actual instructions which do not need to calculate
branch addresses immediately at compile time. These instructions push their current IP onto the branch stack and use this for fast and efficient looping. Take care
with unstructured exiting from loops, use LEAVE or UNLOOP.

Each FOR will push four parameters onto the loop stack being:

FOR The number of times FOR NEXT will loop (not affected by BY)
FROM The value that the index starts FROM (0 if not set)
BY The value to increment the FROM index I by (1 if not set)
BRANCH The address after FOR which is used by NEXT

The loop stack is maintained in hub RAM at $180 for COG 0. Any other Tachyon cogs should allocate 12 to 16 bytes typically
for 3 to 4 levels recommended (rarely reaches 4)

ADO (from for --) C PUB Start a DO loop with slightly different parameters to DO
BY (by --) C PUB e.g. 100 FROM 2 BY 10 FOR I . NEXT --- 100 102 104 106 108 110 112 114 116 118 ok
BY! (newby --) C PUB set the BY value in a running FOR loop to newby
DO (to from --) C PUB Start a DO loop e.g. 5 0 DO I . LOOP --- 0 1 2 3 4 ok
FOR (cnt --) C PUB Push cnt onto loop stack and save next IP onto branch stack for NEXT

e.g. 5 FOR I . NEXT --- 0 1 2 3 4 ok
FOR! (n --) C PUB FOR value on loop stack set to tos
FOR@ (-- n) C PUB Present FOR value copied to tos
FROM (start --) C PUB e.g. 100 FROM 8 FOR I . NEXT -- --- 100 101 102 103 104 105 106 107 ok
I (-- index) C PUB Push DO index onto data stack
IC! (byte -- byte) C PUB Store byte in hub ram pointed at by I
IC@ (n -- byte) C PUB Fetch byte from hub ram pointed at by I
J (-- index3) H PUB Push third level DO index

Version 1.4 Page 3

K (-- index2) H PUB Push second level DO index
LEAVE (--) H PUB Set the index to limit-1 so that it will LEAVE the loop when it encounters LOOP
LOOP (--) C PUB Loop back if the loop count has not finished, else leave the loop
LP! (loopstk --) H PUB
LP@ (offset -- (addr)) H PUB
NEXT (--) C PUB Decrement loop IX and exit loop if IX = 0 or else branch using saved FOR branch address

CONDITIONAL BRANCH & LOOPING
AGAIN HI PRE Jump back AGAIN to first instruction after matching BEGIN (BEGIN......AGAIN)
BEGIN HI PRE BEGIN a conditional loop - marks the spot for a BEGIN UNTIL or BEGIN WHILE REPEAT. During

compilation this leaves the address of the next instruction merged with $BE.0000
ELSE HI PRE IF flg was not true then execute between ELSE THEN. During compilation this checks and resolves a

preceding IF and sets up for a THEN
ENDIF HI PRE Alias for THEN
IF (flg --) HI PRE IF flg is true (non-zero) then execute between IF THEN or IF ELSE. During compilation this leaves the

address of the next instruction IF merged with $1F.0000
REPEAT HI PRE REPEAT the conditional loop by jumping back to after matching BEGIN
THEN HI PRE THEN continue on executing normally (terminates an IF). Check and resolve any IFs or ELSEs and

set the forward branch offset
UNTIL (flg --) HI PRE UNTIL flg is true continue back to matching BEGIN (BEGIN.......UNTIL)
WHILE (flg --) HI PRE WHILE flg is true continue executing code up to REPEAT (BEGIN......WHILE.....REPEAT)

Examples:
IF <more words> THEN BEGIN <more words>WHILE <more words> REPEAT

IF <more words> THEN BEGIN <more words> UNTIL

BEGIN <more words> AGAIN - useful within other COGS started within a Tachyon program

CALLS AND BRANCHING
?EXIT (flg --) H PUB Exit if flg is true.
?JUMP C PUB VECTOR JUMP if set
0EXIT (flg --) C PUB Exit if flg is zero. This saves a IF … THEN ;
CALL (adr --) C PUB Call the adr - used to execute cfa vectors
EXIT C PUB Exit from a called routine and pop the return stack into the IP
JUMP (adr --) C PUB Same as CALL but doesn't save the return address

CASE STATEMENTS
CASE statements are constructed in a manner similar to C using SWITCH, CASE, and BREAK.

SWITCH (val --) X PUB Store the switch value in a task variables so that is can be referenced by a CASE statement.
SWITCH@ (-- val) X PUB Retrieve the switch value - useful if we want to perform more complex comparisons
SWITCHES (val <val-word pairs> --) X PUB Scan the following val and word pairs for a match or until a non-value is encountered
] X PRE Alias for BREAK
=[HI PRE Alias for CASE
BREAK HI PRE Stop executing this CASE code and return immediately from routine
CASE (val --) HI PRE Execute the following code up to BREAK if val = SWITCH val i.e. ($0D CASE PRINT" CARRIAGE

RETURN" BREAK)
CASES (from to --) H PRE Use as: from to CASES BREAK

CASE and SWITCHES examples:-

pub RunLEDs
LState C@ SWITCH

0 CASE
 10 HIGH 10 LOW 10 FLOAT 1 LState C! BREAK
1 CASE
 11 HIGH 11 LOW 11 FLOAT 2 LState C! BREAK
2 CASE
 12 HIGH 12 LOW 12 FLOAT 0 LState C! BREAK
3 10 CASES
 <more words> BREAK

;

SWITCH@ and SWITCH= can be used wherever the switch value needs
checking for more complex behaviour within a CASE (say)

SWITCHES is followed by a list of <value> <word> pairs in the input stream. If
the input = one of the <value>, then the corresponding word executes
e.g. SWITCHES $0D LCDCR $0A LCDLF $09 LCDTAB NOP This function
automatically terminates when it encounters a word in the list that is not a 15-bit
literal, so use any other function including NOP or ;

VECTORED EXECUTION

+VECTOR X PRE Insert a call over first instruction
REDEFINE (<target> <new> --) X PRE Alias for REVECTOR
REVECTOR (<target> <new> --) X PRE Replaces first instruction of target with jump to new

TACHYON START-UP
!INITS (--) X PUB Initialise the user INIT list to do nothing on Tachyon start
+INIT (nfa --) X PUB Add the word whose nfa is tos to the user INIT list to execute on Tachyon starting
AUTORUN (nfa --) X PUB An alias of +INIT
boot (-- adr) X PUB 1 long - maybe unused now
INIT X PUB Executes up to 16 user INIT words at Tachyon start
uauto (-- adr) C PUB user autostart address if non-zero - called from within terminal

Version 1.4 Page 4

I/O PORTS
!COUNT X PUB
A X PUB Select the desired target CTR A before use
APIN (pin --) X PUB Set the APIN of the current CTR
B X PUB Select the desired target CTR B before use
BEEP (--) X PUB Output 2250Hz for 150 ms on the currently selected pin
BEEPS (cnt --) X PUB Output cnt BEEPs with a 50 ms break between on the currently selected pin
BIP (--) X PUB Output 3kHz for 80 ms on the currently selected pin
BLINK (pin --) X PUB Toggle pin on and off at 2Hz - also useful for setting up a pin quickly - then use HZ etc
BPIN (pin --) X PUB Set the BPIN of the current CTR
CLICK (--) X PUB Output a click on the currently selected pin
CLKIN (iomask dat -- iomask dat2) C PUB Shift bit in from pin, clock high, clock low
CLKOUT (iomask dat -- iomask dat2) C PUB Shift msb bit out to pin, clock high, clock low
CLOCK C PUB .
COUNT@ X PUB
CTRMODE (n --) X PUB Writes to the CTRMODE field of the current CTR channel without disturbing the other bits of the

counter
DAC! (byte oin --) X PUB Write an 8-bit value to the pin as a duty cycle - filter output for a voltage
DETECT (pol edge fb --) X PUB
DIFF X PUB Change counter mode to differential
DUTY X PUB
EDGE (n -- n+2) X PUB
F (mask -- mask) C PUB float (make high impedance) bits on the output - leave stack intact - fast operation
FB (n -- n+1) X PUB
FLOAT (pin --) X PUB Float the pin (make it an input)
FREQ@ (pin -- freq) X PUB Measure frequency of pulses at pin, measured over 1/10s
FRQ (n --) X PUB Set the duty cycle frequency FRQ, either A or B
H (iomask -- iomask) C PUB Set mask bits on the output high - leave stack intact - fast operation
HIGH (pin --) X PUB Set pin high as an output
HIGH@ (pin -- clks) X PUB Measure high pulse width in clock cycles at pin
HZ (n --) X PUB Output a 1:1 m/s tone, n Hz, on the currently selected pin
IN (pinmask -- flg) C PUB Test pins using mask
INPUTS (mask --) C PUB Float the pins to inputs.
ISERIAL (pin --) X PUB Redirect character output to select serial channel using SEROUT
ISEROUT (data pin --) X PUB
KHZ (n --) X PUB Output a 1:1 m/s tone, n kHz, on the currently selected pin
L (mask -- mask) C PUB Set mask bits on the output low - leave stack intact - fast operation
LOW (pin --) X PUB Clear pin low as an output
LOW@ (pin -- clks) X PUB Measure low pulse width in clock cycles at pin
MHZ (n --) X PUB Output a 1:1 m/s tone, n MHz, on the currently selected pin
MUTE (--) X PUB Cancel all activity on the currently selected pin
NCO (--) X PUB Set counter mode to NCO
NEG (-- 4) X PUB
OUT (data pinmask --) X PUB Set pins in pinmask to outputs and write data to them
OUTCLR (mask --) C PUB Clear the pins to low outputs (also sets DIR bits)
OUTPUTS (mask --) C PUB Set the pins to outputs (normally redundant)
OUTSET (mask --) C PUB Set the pins as high outputs (also sets DIR bits)
P (mask -- mask) C PUB pulse high mask bits on the output - leave stack intact - fast operation
P! (long --) X PUB Write directly to OUTA
P@ (-- long) X PUB Read directly from OUTA
PIN! (state pin --) X PUB Set pin to state (i.e. ON 6 PIN!)
PIN@ (pin -- flg) C PUB Test state of pin
PINS@ (pin pins -- n) X PUB Read from pin for pins and right justify result
PLL X PUB
PLLDIV (n --) X PUB
POS (-- 0) X PUB
RING (--) X PUB WARBLE twice on the currently selected pin
RINGS (rings --) X PUB Ring 'rings' times on the currently selected pin
SERBAUD (baud --) X PUB Calc bit ticks and set as well as start bit compensation
SERIAL (pin --) X PUB redirect character output to select serial channel using SEROUT
SERIN (pin -- data) X PUB Receive 8 bit serial data from pin at rate set with SERBAUD, blocks until character received
SEROUT (data pin --) X PUB
SHRINP (iomask dat -- iomask dat/2) C PUB Shift in right into msb of dat using iomask to specify the pin.
SHROUT (mask dat -- iomask dat/2) C PUB Shift out right the lsb of dat over the pins in iomask and return with the shifted data
SIREN (--) X PUB Use WARBLE to make weewaa for 400 mS on currently selected pin
SPKR (pin --) X PUB Set the pin for audio output
T (mask -- mask) C PUB toggle bits on the output - leave stack intact - fast operation
TONE (tone dur --) X PUB Output tone Hz for dur milliseconds on the currently selected pin
VOLTS (mV pin --) X PUB Use duty cycle mode plus RC on a pin to generate a voltage from 0 to 3.3V (mV set 0-3300)
WAITHI (--) C PUB Wait until the currently selected pin goes high
WAITLO (--) C PUB Wait until the currently selected pin goes low
WARBLE (hz1 hz2 ms --) X PUB Flip between hz1 and hz2 frequency tone for ms milliseconds on the currently selected pin

Version 1.4 Page 5

SPI INSTRUCTIONS
These are fast optimized bytecode instructions for reading and writing an SPI bus whose parameters are held in COGREGS - use SPIPINS to set. Most parameters
can be reused as in multibyte shifts plus this makes the transfer faster as pushing and popping the data stack slows things down.

@CE X PUB Returns @SCK + 3
@CNT X PUB Returns @SCK + 4
@MISO X PUB Retuns @SCK + 2
@MOSI X PUB Returns @SCK + 1
@SCK X PUB Returns 1 default
@SCL X PUB Constant, default 15
@SPISCK X PUB Constant, default 10
SPICE (--) C PUB Release the SPI CE line (automatically enabled on any SPI operation)
SPIPINS (&ce.miso.mosi.clk --) X PUB Set pins to be used by SPI - parameter is encoded as byte fields - use & prefix to force decimal

bytes
SPIRD (long -- long1) C PUB Read SPI data and left rotate into long with long1 as result ($12345678 -> $345678NN)
SPIWR (long -- long1) C PUB Send 8 MSBs of long over SPI and return with left rotated long1 ($12345678 -> $34567812)
SPIWR16 (long -- long1) C PUB Send msb 16-bits (b31..b16) over SPI and return with long rotated left by 16 bits
SPIWR32 (long - long) C PUB Send 32-bits over SPI, leaves tos unchanged
SPIWRB (byte -- byte) C PUB Send byte over SPI lines as defined in COGREGs and return with same byte

I/O MASKS
@CE (-- 3) X PUB
@CNT (-- 4) X PUB COGREG address for variable CNT used by some RUNMODs
@MISO (-- 2) X PUB
@MOSI (-- 1) X PUB
@SCK (-- 0) X PUB COGREG address for SCK mask
@SCL (-- -6) X PUB COGREG address for SCL (used for fast CLOCK instruction)
MODPINS (pins --) X PUB Set the pin masks for RUNMODs using (&27.26.25.23 MODPINS to set ce.miso.mosi.clk)
SETPINS (pins adr --) X PUB Set pins masks using adr for cog starting address of clk pin

COG INSTRUCTIONS
.TASKS (--) X PUB Display the status of cog 0,2-7 w.r.t what they are running
boot (-- adr) X PUB 1 long
COG! (long adr --) C2 PUB Store long to cog memory
COG@ (adr -- long) C2 PUB Fetch long from cog memory
COGID (-- id) C2 PUB
COGINIT (code pars cog -- ret) H PUB Same as COGINIT in PASM - also saves information in cog TASK block (8 bytes/cog)
COGSTOP (n --) H PUB Stop cog n
LOADCOG (name cog par --) X PUB e.g. " VGA32x15 " 3 vgapars LOADCOG - Load VGA32x15 ROM into cog3 with vgapars parameter

block
LOADCOGS (name cog par step cogs --) X PUB e.g. " HSUART " 3 par1 12 5 LOADCOGS- Load HSUART ROM into cog3, 12 byte pars entries for

another 5 cogs
LOADMOD (src dst cnt --) C2 PUB Load cog memory from hub memory - used internally by CODE MODULES
pCOGINIT H PUB Part of COGINIT
REBOOT H PUB Reboot the current cog
RESET C PUB Reset this cog only
RUN (pfa cog --) X PUB e.g. ' MYTASK TASK? RUN - run MYTASK on the next available cog
RUN: (pfa cog --) X PUB Run following code as a task in cog n

e.g. : pri SENSORS 3 RUN: BEGIN 12 13 DISTANCE mm W! 15 DHT 'c W! rh W! 60 ms AGAIN ;
RUNMOD C PUB Run the currently loaded code module
TASK? (-- task) X PUB Find the next available cog that's free to run a task - ready and in IDLE
TASKREGS (addr --) X PUB Set starting address of a task's registers

CODE MODULES
These are small PASM modules that loaded into once the Tachyon cog and executed repeatedly with the separate RUNMOD word.

[SDRD] H SD card block read

RUNMOD (dst char -- firstPos charcnt) H PUB
Read block from SD into memory while scanning for special char
dst is a 32 bit SD-card address 0..4GB, char is the character to scan for while, reading in the block.
 NOTE: ensure MOSI is set as an output high from caller by 1 COGREG@ OUTSET
 This is just the low-level block read once the SD card has been setup, so it just reads a sector into the dst
 There is also a scan character that it will look for and return its first position and how many were found

[SDWR] H SD card block write

RUNMOD (src cnt --) H PUB
Write a block to the SD card - normally 512 bytes

[PWM32] H PWM32 runtime (takes over cog)

RUNMOD (table waitcnt --) H PUB
32 channel 8-bit PWM that runs up to 7.6kHz
Can be used as an arbitrary waveform generator too as it reads a long from table (32 channels) every waitcnt sample and writes to all
the outputs that are enabled in the PWM cog. The normal wave table is 256 longs deep. The table must be aligned to a 256 long
boundary

[PWM32!] H PWM32 table setup

RUNMOD (duty8 mask table --) H PUB
Write 8-bit duty cycle to channels specified in mask at specified table

[WS2812] H WS2812 RGB LEDs (array cnt --)

Version 1.4 Page 6

RUNMOD (array cnt --) C PUB
pin mask is in COGREG4, line RET is done at HL, not here
Will transmit a whole array of bytes each back to back in WS2812 timing format
A zero is transmitted as 350ns high by 800ns low (+/-150ns)
A one is transmitted as 700ns high by 600ns low

[SDRDF] [SDRD] [SDWR] [SDIO] [SSD!] [PLOT] [CAP] [WAV] [MCP32] [RCTIME][LTC2754][SSD!]

[SSD] H PUB TFT display
[ESPIO] H PUB Enhanced Serial Peripheral I/O
[SPIO] H PUB Serial Peripheral I/O
[MCP32] H PUB SPI for MCP3208 style chips etc
[PLOT] H PUB Fast plotting
[CAP] H PUB Fast I/O Capture for SPLAT logic analyser (buf lcnt dly --)

ROMS

ROMS are binary images of assembly language code that are saved to upper EEPROM (or elsewhere) that can be loaded into cogs at
runtime by name. Just send the relevant .hex file to Tachyon, like you would with any other .fth file. The new ROM will show up on boot
or if 'lsrom' is executed

lsroms PUB List the ROMS present in the upper 32k of EEPROM

TIMING and FREQUENCY
 ~F (--) X PUB Display the P1 .clock frequency
.FREQ (--) X PUB Display the phrase 'FREQ = <cpu clock frequency>'
.LAP X PUB Print results of LAP <tests> LAP
CLK H PUB
CLKFREQ (-- n) X PUB constant, CPU frequency
CLKMHZ (-- n) X PUB constant, CPU frequency / 1000000
CLKSET H PUB
LAP (--) C2 PUB Latch the CNT value and before saving calculate the difference from previous LAP and save
LAP@ (-- n) H PUB Used to zero LAP timing ?
ms (n --) X PUB Pause execution for n milliseconds
runtime (-- addr) X PUB 1 long variable
s (n --) X PUB Pause execution for n seconds
time (-- addr X PUB 4 bytes variable
TIMERJOB (cfa --) X PUB
timers (--- addr) X PUB 1 cword variable
us (n --) X PUB Pause execution for n microseconds
us (n --) X PUB Delay for n microseconds (+10us overhead but values are compensated so 20 us = 20us)
WAITCNT C2 PUB Wait until CNT reaches the DELTA value - callo repeatedly after first setting DELTA
WAITX (delta --) C PUB Wait for x cycles and set WAITCNT delta

DEFINITIONS
 pub HI PRE Alias of :
; HI PRE Compile an EXIT instruction before finishing off a definition
: (<name> --) HI PRE Create a Forth definition and compile all words into it until a ; is encountered
[C] (<word> --) H PRE Forces the compilation of a preemptive word
ALIAS (<oldword> <newword> --) H PRE Create an alias for an existing word
module (--) H PRE e.g. module EXTEND ." My Forth Module " ; The string is displayed under MODULES at Tachyon

start
pre (<name> --) HI PRE Create a preemptive Forth header for a word which must execute at compile time, not be compiled
pri (<name> --) HI PRE Create a private Forth header exactly the same as : except set the private attribute in the header. If

RECLAIM is executed later on it will find all headers with the private attribute and strip them out.

COMMENTS
 --- XI PRE Prefered Tachyon comment as it separates sufficiently and does not look like any other operator
 --> HI PRE Result comment
 '' HI PRE Similar to Spin comment operator
(HI PRE Comment up to the matching) and echo - (what follows is a stack comment) (n1 n2 -- n3)
{ HI PRE Ignore all text up to the matching }. Used for multiline comments. Nesting to 255 levels
} HI PRE Outside of a block comment this symbol will simply be ignored
\ HI PRE Comment the rest of the line and do not echo - \ this is a comment

CONDITIONAL COMPILE
IFDEF (<name > --) HI PRE IF <name> DEFINED then process all source between here and the matching }
IFNDEF (<name> --) HI PRE IF <name> NOT DEFINED then process all source between here and the matching }

COMPILE LITERALS
Bytes, words, and longs may be compiled directly into code memory usually for building fixed tables.
These cannot be used inside a definition as any preceding literal would have already been compiled as a literal.

, (long --) HI PRE Compile a long as used in building tables i.e. $1234.5678 , $DEAD.BEEF ,
| (byte --) HI PRE Alias for C, - less clutter when building tables i.e. 34 | 45 | 98 | 20 | etc
|| (word --) HI PRE Compile the preceding word into code memory i.e. $1234 || $0FCA || $0082 ||
C, (byte --) HI PUB Compile the preceding byte into code memory
L, (long --) HI PUB Compile the preceding long into code memory
NFA, (<word> --) H PRE Compile the name field address into code memory
W, (word --) HI PUB Compile the preceding word into code memory

Version 1.4 Page 7

RADIX WORDS

Numbers entered and printed can be represented in any base (radix) by setting the cog variable "base" to that value.
The three most common bases are predefined.
NOTE: It is recommended that numbers other than decimal are always forced with a prefix or alternatively a suffix such as $0FAD or 0FADh etc.

HEX H PUB Switch number base to HEX mode - all input and output will default to HEX unless overridden
DECIMAL H PUB
BINARY H PUB

RADIX OPERATORS

While not defined in the dictionary radix operators force a number to be recognized in a certain base. The operators may be prefixed or suffixed while the prefixed
operators have the advantage that the compiler will compile these immediately as a number rather than search the dictionary first as it would with any other
number. Tachyon convention is that all hex number are prefixed with $ with the number base set to decimal by default. All numbers 0 to 9 do not need a prefix as
that is redundant and besides some of these single digits are predefined as fast constants making them a single bytecode.

$ HEX prefix - number may contain symbols but must end in a valid digit i.e. $Q00FA
Decimal prefix - " " i.e. #P26
% Binary prefix
H i.e. 00FAh - number must begin with a decimal digit or zero.
D i.e. 1234d
B i.e. 01101110b
^<ch> Return with the control character literal for the next character i.e. ^Z returns $1A
'<ch>' Return with the ASCII literal for the enclosed character i.e. 'Z' returns $5A

DEBUG
?? (--) X PUB Called as part of REBOOT. Displays Modules loaded; Clock frequency; User initialisation words;

ROMS; I2C devices sensed; Pi0-P31 loads sensed; Memory free; Data stack; Date and Time
.MODULES (--) X PUB Displays list of Tachyon forth modules installed
.S H PUB Print the contents of the data stack
.STATS (--) H PUB Display code, name, data and free space sizes
.VARS (--) X PUB Display all variables and constants, with present values, in the dictionary
BOOT (--) X PUB Starts the Tachyon system
DEBUG H PUB Will dump stacks, registers, and current compilation area. Can also be accessed by a single

keystroke ^D (control D)
lsi2c (--) X PUB Displays list of i2c devices sensed - used by ?? word
lsini (--) X PUB Displays list of user initialisation words - used by ?? word
lsio (--) X PUB Displays list of loads sensed on P0 - P31 - used by ?? word
lsroms (--) X PUB Displays list of ROMS loaded - used by ?? word
REBOOT (--) H PUB Restarts the Tachyon system
TRAP (<wordtotrap> <debugword> --) X PUB Has the effect of inserting debugword at the start of wordtotrap e.g. to print stuff each time

wordtotrap is called; wordtotrap will only revert to normal after Tachyon is rebooted
HELP (<word> --) X PRE Displays decompilation of the word if present in dictionary. Use CR to terminate

DEBUG CONTROL KEYS

To speed up interactive testing there are certain control keys that can perform operations.

^? Executes .STATS , displaying code, name, data, free and data stack space
^B Block dump all of hub memory (wait for it)
^C Reboot Tachyon
^D Dump stacks, registers, and current compilation area
^Q Display two lines of memory data starting at address on tos. Consumes tos
^S Reset data stack
^V Display all variables and constants, with values, in memory
^W Execute WORDS, display all the words in the dictionary
^X Repeat previous line (re-executes the previous interactive code)
^Z^Z Cold start - wipe all extensions bar the kernel although everything is still intact in EEPROM
<BREAK> Will reboot the processor regardless of what code it is running (system in fact detects 100 "framing errors" in a row)
<ESC> Discard the current interactive line
BKSP Backspace up to the beginning of a word or else the line (preceding words are already compiled)
LF Ignore (as part of a CRLF)
TAB Tab as normal but handled like a single space

DUMP MEMORY OPERATIONS

Various words are available for general-purpose dumping of memory in hex format. Normally the memory that the DUMP words examine is hub memory but a
modifier may be used before a DUMP is executed to use other types of memory. After any dump the default if set back to hub RAM.
Some modifiers are:
EE = EEPROM
COG = COG MEMORY (LONG)
SD = SD card raw
FS = File System (from the start of an open file)
WIZ = WIZnet chip

DUMP (adr bytes --) H PUB Dump as bytes from current dump device including an ASCII code column (revert back to RAM after)
DUMPW (adr bytes --) H PUB Dump as words (same as DUMP)
DUMPL (adr bytes --) H PUB Dump as longs (same as DUMP, formatted as 0000.0000)
DUMPA (adr bytes --) H PUB Dump ASCII printable characters - default width of 64 characters/line (uses . for non-printable)
DUMPAW (adr bytes --) H PUB Dump ASCII wide
DUMPC H PUB Dump COG longs
QD (adr --) H PUB Quick Dump two lines of standard DUMP data
RAM H PUB Change DUMP device to standard HUB RAM (DUMP always defaults here after every DUMP)

Version 1.4 Page 8

EE H PUB Change DUMP device to EEPROM (>64k addresses next device etc)
DUMP: H PUB For defining new DUMP type words e.g. pub SD DUMP: <more words> ;
DUMPX (from cnt spaces:bytes:width+format

'method --)
H PUB

STREAMING I/O
Character based devices such as serial, VGA, LCD etc are treated as streaming I/O where the device code automatically detects and handles special characters.
EMIT words will send a single character via the currently selected output device. Conversely KEY is the input from the device.

.VER H PUB Print verbose Tachyon version number i.e. .VER Propeller .:.:--TACHYON--:.:. Forth V27150908.1000
(EMIT) (ch --) C2 PUB The default emit code if uemit is zero
(EMITX) C2 PUB Part of (EMIT)
(KEY) (-- ch) H PUB Read the console input, this is the default execution vector when ukey = 0 (see task registers)
[CON X PUB Switch to console but save current output device - use to print console messages without changes
<CR> X PUB Emit a single CR (no LF)
CON (--) X PUB Reset character I/O (EMIT & KEY) back to default console
CON] X PUB Restore previous output device before the [CON word was executed
CR (--) H PUB Emit a CR+LF sequence
CTYPE (str cnt --) X PUB Print the string for cnt characters, normally in Forth this is simple TYPE but that is used in FTP
doKEY PUB
DOT (--) H PUB emit one full stop character
ECHO H PUB ECHO OFF - streaming input not echoed, ECHO ON - input is echoed
EMIT (ch --) H PUB emit the character via the vector at uemit
EMIT: (--) X PUB Used to create char output redirection words e.g pub NULLOUT EMIT: DROP ;
EMITS (char cnt --) X PUB Print the char repeatedly for cnt
ESC? (-- flg) X PUB Return true if the last console key pressed was an escape? (even if it's still buffered)
GRAB H PUB Force execution of all preceding words on a streaming input line
KEY (-- ch) H PUB Read a character from the device, a null indicates that no character was available
KEY: (--) X PUB Used to create char input redirection words - like EMIT:
KEY! (char --) X PUB Force a character to be read as the next KEY
KEY$ H PUB
NULLOUT (--) X PUB Throw away all char output - do not display anywhere
QUIET (on/off --) X PUB Non-interactive mode - just accept "commands" - ON QUIET
SHORTCUT (vec key --) X PUB Assign a control key shortcut
SPACE (--) H PUB Emit a space
SPACES (n --) X PUB Emit n spaces
TAB (--) X PUB Emit a single TAB
TABS (n --) H PUB Emit n TAB characters
WKEY (-- ch) H PUB Always WAIT for a KEY so that even a null is a character
XTAB (pos --) H PUB

CONSTANTS and VARIABLES
:=! (newcon 'oldcon --) X PUB change a pseudo constant value e.g. : myconst 3 ; 5 ' myconst :=!. Does not work with := type

constants
@org (-- ptr) H PUB Pointer for org
DS+ (bytes --) X PUB Allocate bytes at org
org (adr --) X PUB Set the data origin for DS style data memory allocation
org@ (n --) X PUB Save n as word at @org
vars PUB
VER (-- adr) H PUB Address of longs that holds current kernel version build i.e. VER @ .DEC 27150908 = V2.7 150908
:= (val <name> --) XI PRE Create a constant (preferred format reduces clutter around values and names)
byte (<csv> --) XI PRE Create byte variables from the CSV list (or just a single variable) (BYTE xy,myvar,net)
bytes (n <name> --) H PRE Create a block n bytes
CARRAY (cnt <name> -- ; index -- addr) X PRE create an array of bytes in code memory that can be indexed (saved in EEPROM on BACKUP)
cbytes (val cnt <name> --) X PRE allocate and fill bytes in code memory
clong (<name> --) X PRE create a long in code memory (saved in EEPROM on BACKUP)
cword (<name> --) X PRE create a word in code memory (saved in EEPROM on BACKUP)
DS (bytes <name> --) XI PRE Create a constant with the current value of the ORG then advance it by bytes for next DS
long (<csv> --) XI PRE Create long variables (long aligned)
longs (cnt <name> --) XI PRE Create a long array (long aligned)
res XI PRE Alias for DS
TABLE (<name> --) XI PRE Create a table with zero entries (use , | || words to add entries)
word (<csv> --) XI PRE Create word variables (word aligned)
words (n <name> --) H PRE Create a block of n words (word aligned)
words (cnt <name> --) X Indirectly called by WORDS which performs another action if there is no name

STRINGS
Strings are represented in Tachyon as an address to a null (or 8th bit) terminated string.
Strings may be defined in Tachyon as STRING mystringname Hello World! <cr>

 $= (str1 str2 -- flg) X PUB Compare two strings for equality
$! (str1 str2 --) PUB
." (<str>” --) HI PRE Print the literal string. Example: PRINT" HELLO WORLD" -- actually the compile-time part of it
" (<str>" -- str) HI PRE Process the following characters up to " as a string and leave the address on the stack. Outside of a

definition the string buffer will be reused and not available after the line is processed.
(.") (--) HI PUB this is the helper which does the runtime printing
+CHAR (ch str2 --) X PUB Add a character to a string
APPEND$ (str1 str2 --) X PUB Append str1 to the end of str2
LEFT$ (str len -- str) X PUB Destructive LEFT$ - uses same string
LEN$ (str -- len) H PUB Return with the length of the null terminated string
LOCATE$ (ch str -- str) X PUB variableLocate the first ch in the string and return else null
MID$ (str offset len -- str) X PUB Extract the substring of str starting at offset len chars long
NULL$ (-- str) X PUB Just an empty string
PRINT" (<str>" --) HI PRE Alias for ."
PRINT$ (str --) H PUB Print out the null terminated string at str onto the currently selected output device (via uemit)
RIGHT$ (str len -- str) X PUB give a copy of the rightmost len chars of str
STRING (<wordname> <string> --) PRE Define anew string called wordname, initialised to string
STRING (str max --) XI Immediate word to build a string with a maximum size (use 0 to fit current length)

Version 1.4 Page 9

PRINT NUMBERS
. (n --) H PUB Print number unformatted in the current base
.AS (num format --) X PUB Display num with format defined in format string
.B (n --) X PUB Display n as two hex digits
.BIN16 (n --) X PUB Display n as a 16 bit binary number
.BIN32 (n --) X PUB Display n as a 32 bit binary number with an underscore in the middle and a % prefix
.BYTE (n --) X PUB Print the byte in n as two hex characters
.DEC2 (n --) X PUB Display n as a decimal number in the range 00 - 99
.DEC2. (n --) X PUB Display n as a decimal number in the range 00 - 99 with a decimal point suffix
.DEC4 (n --) X PUB Display n as a four digit decimal number
.DECL (n --) X PUB Display n with commas at the thousands, millions etc.
.DP (dblnum decimals ---) X PUB Print the double number with decimal places (scaled)
.HEX (n --) X PUB Print the nibble in n as a single hex character
.INDEX X PUB Print the current DO index on a new line as (0000:)
.L (n --) X PUB Display n as 8 digits of hex with . in the centre
.LONG (n --) X PUB Print the number in hexadecimal as a long (i.e. 0 @ .LONG 05B8.D800 ok)
.NFA (nfa --) H PUB Display the corresponding word name
.W (n --) X PUB Display n as 4 digits in hex
.W: (n --) X PUB Display n as 4 digits of hex with : suffix
.WORD (n --) X PUB Print the word in n as four hex characters
.WORD$ (n) H PUB Print the word in n as four hex characters with $ prefix
@. (adr --) X PUB Fetch long and print value in current base
@. (addr --) X PUB Display long value stored at addr
@PAD (-- adr) X PUB Pointer to current position in number pad
(a -- b) X PUB Extract another digit from the a leaving b and prepend the digit to the number string buffer
#> (a -- str) X PUB Stop converting the number and discard what's left and return with a ptr to the string
#S (a n --) X PUB Extract n digits using # word
<# X PUB Start converting a number to a string by resetting the number buffer
<D> (--) X PUB Signal that the current number to be printed should be processed as a double number
>CHAR (val -- ch) X PUB Convert a binary value to a character that represents that digit (0-9,A-Z,a-z)
ASCBIN (char -- val flg) H PUB If char is 0-9,A-F, converts to 4 bit binary and flg=true, else flg=false
D. (n1 n2 --) X PUB Display n1 / n2 as a double number (64 bit)
HOLD (ch --) X PUB Prepend the character to the number string buffer
NUM>STR (num -- str) X PUB Convert a number to a string and buffer it in NUM$ where it can be manipulated etc
PRINT (n --) H PUB Alias for .
PRINT& (n --) X PUB Display n in IP address format - &aa.bb.cc.dd
STR>NUM (str -- val digits | false) X PUB Convert a string to a number if possible
U. (u1 --) X PUB Print unsigned number
.AS" (n --) X PRE Define a number display word with a defined format e.g. pub .DEC4 .AS" ###`#" ;

Number Print Formatting --- .AS" and friends are very versatile ...

.. 123456 .AS" $~###,###,##~#.##" $1,234.56 ok

.. 1234 .AS" 8|~" 00001234 ok

.. 1234 .AS" 8|`" 1234 ok
~ pad leading zeros with spaces
` skip over leading zeros

TASK VARIABLES
Each cog may have its own set of variables that are offset from the address in COGREG 7. This is so that any cog running Tachyon may have different I/O devices
selected etc.Only a small number of these variables are named in the dictionary but they can be referenced from these with an offset by referring to the source.

REG (index -- adr) C PUB Find the address of the register for this cog
reg (<name> --) X PRE Create user register variable (normally up to 256 byte addresses)
rx (-- adr) H PUB Pointer to the rx buffer with the 2 words before the buffer as rxrd and rxwr index
flags (-- adr) H PUB Bit flags used by the kernel

❏ echo = 1 ' managed by pub ECHO \ ON ECHO \ OFF ECHO for console echo
❏ linenums = 2 ' prepend line number to each new line
❏ ipmode = 4 ' interpret this number in IP format where a "." separates bytes
❏ leadspaces = 4
❏ prset = 8 ' private headers set as default
❏ striplf = $10 ' strip linefeeds from output if set (not used - LEMIT replaces this !!!)
❏ sign = $20
❏ comp = $40 ' force compilation of the current word - resets each time
❏ defining = $80 ' set flag so we know we are inside a definition now

base (-- adr) H Byte variable specifying the current base + backup byte used during overrides
digits (-- adr) H Byte variable with count of digits from last number parsed
delim (-- adr) H Word delimiter (normally space) plus backup byte with delimiter detected (SP,TAB,CR etc)
word (-- adr) H Pointer to word buffer where a parsed word is stored
switch (-- adr) H SWITCH value is stored as a long here (single level only)
autorun (-- adr) H Pointer to cfa of user autostart routine normally used by EXTEND which implements a new user vect
keypoll (-- adr) H User app may set this to the cfa of a routine that gets polled while KEY is idling.
tasks (-- adr) H Holds task list of 8 bytes for each 8 cogs (IP[2],RUN[1] implemented in EXTEND
unum (-- adr) H User number processor vector. 0 defaults to kernel method.
uemit (-- adr) H Vector points to cfa of current EMIT routine (0=console=(EMIT))
ukey (-- adr) H Vector points to cfa of current KEY routine (0=console=(KEY))
names (-- adr) H Points to the start of the latest name field in the dictionary (builds down)
here (-- adr) H Points to the end of the code space but normally referenced by HERE (here W@)
codes (-- adr) H Temporary code space pointer while a line is compiled but not yet committed (interactive)
baudcnt (-- adr) H EXTEND has SERIN and SEROUT routines which store their baudrate CNT value here for each cog
prompt (-- adr) H User vector may point to code to change the prompt (normally blank)
ufind (-- adr) H
create (-- adr) H
Lines (-- adr) H holds line count during block load
errors (-- adr) H holds count of errors detected during block load of source via TACHYON word

Version 1.4 Page 10

lastkey (-- adr) H The last key that was pressed from the serial console is stored here, useful for lookaheads.

Special Purpose Registers
SPR (-- adr) PUB constant = $01F0, Special Purpose Register table
PAR (-- adr) PUB constant = $01F0, Boot Parameter
CNT (-- adr) PUB constant = $01F1, System Counter
INA (-- adr) PUB constant = $01F2, Input States for P31-P0
INB (-- adr) PUB constant = $01F3, Input States for P63-P32 (not used)
OUTA (-- adr) PUB constant = $01F4, Output States for P31-P0
OUTB (-- adr) PUB constant = $01F5 Output States for P63-P32 (not used)
DIRA (-- adr) PUB constant = $01F6 Direction States for P31-P0
DIRB (-- adr) PUB constant = $01F7, Direction States for P63-P32 (not used)
CTRA (-- adr) PUB constant = $01F8, Counter A Control
CTRB (-- adr) PUB constant = $01F9, Counter B Control
FRQA (-- adr) PUB constant = $01FA, Counter A Frequency
FRQB (-- adr) PUB constant = $01FB, Counter B Frequency
PHSA (-- adr) PUB constant = $01FC, Counter A Phase
PHSB (-- adr) PUB constant = $01FD, Counter B Phase
VCFG (-- adr) PUB constant = $01FE, Video Configuration
VSCL (-- adr) PUB constant = $01FF, Video Scale

Registers by index
' Minimum registers required for a new task - other registers after the ' ---- are not needed other than by the console
0 temp res 12 ' general purpose
12 cntr res 4 ' hold CNT or temp
' @16
16 uemit res 2 ' emit vector – 0 = default
18 ukey res 2 ' key vector
20 keypoll res 2 ' poll user routines - low priority background task
22 base res 2 ' current number base + backup location during overrides
24 baudcnt res 4 ' SERIN SEROUT baud cnt value where baud = clkfreq/baudcnt – each cog can have it's own
28 uswitch res 4 ' target parameter used in CASE structures
32 flags res 2 ' echo,linenums,ipmode,leadspaces,prset,striplf,sign,comp,defining
34 keycol res 1 ' maintains column position of key input
35 wordcnt res 1 ' length of current word (which is still null terminated)
36 wordbuf res wordsz ' words from the input stream are assembled here
75 numpad res numpadsz ' Number print format routines assemble digit characters here – builds from end -
18,446,744,073,709,551,615

' numpad may continue to build backwards into wordbuf for special cases such as long binary numbers
101 padwr res 1 ' write index (builds characters down from lsb to msb in MODULO style)

'
' ------ console only registers – not required for other tasks - so no need to allocate memory beyond here
'

102 unum res 2 ' User number processing routine - executed if number failed and UNUM <> 0
104 anumber res 4 ' Assembled number from input
108 bnumber res 4
112 digits res 1 ' number of digits in current number that has just been processed
113 dpl res 1 ' Position of the decimal point if encountered (else zero)

' WORD aligned registers

114 ufind res 2 ' runs extended dictionary search if set after failing precompiled dictionary search
116 createvec res 2 ' If set will execute user create routines rather than the kernel's

118 rxptr res 2 ' Pointer to the terminal receive buffer - read & write index precedes
120 rxsz res 2 ' normally set to 256 bytes but increased during block load
122 corenames res 2 ' points to core kernel names for optimizing search sequence
124 oldnames res 2 ' backup of names used at start of TACHYON load
126 names res 2 ' start of dictionary (builds down)
128 prevname res 2 ' temp location used by CREATE
130 fromhere res 2 ' Used by TACHYON word to backup current “here” to determine code size at end of load
132 here res 2 ' pointer to compilation area (overwrites VM image)
134 codes res 2 ' current code compilation pointer (updates "here" or is reset by it)
136 cold res 2 ' pattern to detect if this is a cold or warm start ($A55A)
138 autovec res 2 ' user autostart address if non-zero - called from within terminal
140 errors res 2
142 linenum res 2

' Unaligned registers

144 delim res 2 ' the delimiter used in text input and a save location

146 prompt res 2 ' pointer to code to execute when Forth prompts for a new line
148 accept res 2 ' pointer to code to execute when Forth accepts a line to interpret (0=ok)

150 prevch res 2 ' used to detect LF only sequences vs CRLF to perform auto CR
152 lastkey res 1 ' written to directly from serialrx
153 keychar res 1 ' override for key character

154 spincnt res 1 ' Used by spinner to rotate busy symbol

155 prefix res 1 ' NUMBER input prefix
156 suffix res 1 ' NUMBER input suffix
157 res 3

160 tasks res tasksz*8 ' (must be long aligned)

Version 1.4 Page 11

224 endreg res 0

DICTIONARY
The Tachyon names dictionary is a completely separate area from the code dictionary and is where all the names, name and code attributes, and code "pointer" is
stored. Unlike traditional Forths the names are not stored inline with the code and this allows for more flexibility with memory and dictionary. For instance names
may be removed without touching or impacting code and also aliases may be added that are simply clones of the original header so they do not add any overhead.
Also names may be declared as private allowing them to be removed later on and the memory reclaimed. Because code no longer has inline headers and is always
bytecode it also means that code can "fall through" into the next code forward definition thus simplifying code.

Here is an example of a code header which has the fields: count(1), name(V), ATR(1), pointer(2)
: HELLO PRINT" HELLO WORLD" CR ; ok
@NAMES 10 DUMP
0000_559D: 05 48 45 4C 4C 4F 82 BD 53

Dictionary ATR fields always have the msb set thus terminating the name if it is referenced as a string since both nulls and >$7F characters are valid string
terminators in Tachyon. The pointer is more commonly not a pointer as such but the bytecodes to be compiled, either one or two bytes. The name count is used both
for quick linking into the next word (nextadr = adr+cnt+4) and also to speed up searching as string compare is skipped if counts do not match. Name dictionaries
build down from a high address toward the code dictionary which builds up (since it needs to execute in this manner) from a low address towards the name
dictionary. So free space is the difference between the latest entry in the names dictionary @NAMES and the current HERE which points to the next free code
location.

.CFA (cfa --) PUB Displays word name and code field address
(FORGET) (nfa --) PUB Forget the word with this nfa
['] H PUB
[W,] (wordcode --) PUB
@NAMES (-- adr) X PUB Return with point to start of latest dictionary header (builds down)
+NFA PUB
ALIGN PUB
ALIGNORG PUB
ALLOCATED H PUB
ALLOT (n --) H PUB Allot n bytes of code memory - advances "here"
CFA (-- adr) PUB
CONSOLE H PUB
CPA PUB
CREATE (<name> --) H PUB create new dev with dummy cfa (save ptr to it
CREATE: PUB
CREATE$ (wordcode --) X PUB Create a name in the dictionary from wordcnt+wordbuf
DEFAULTS (--) PUB Reset dictionary pointers and stop COGS 3-7
DEFER (<word> -- str) H PUB Wait for a terminated word to be entered and return with the ptr to the wordbuf
DISCARD H PUB Discard the current input line
DOES> (--) PUB set new cfa to point back to DOES: code (skipped by DOES: itself)
END (--) PUB Used to signal the end of a TACHYON source code section
GETWORD (<word> -- str) H PUB Wait for a terminated word to be entered and return with the ptr to the wordbuf (Deprecated use

DEFER)
HERE (-- adr) H PUB
IDLE H PUB Start-up used by idle cogs which checks for a run address while pausing to save power
names PUB
NFA PUB
NFA PUB
NFA$ (str -- nfaptr) H PUB
PRIVATE (--) PUB All : , var and const definitions that follow may be removed from the dictionary so that they can no

longer be used in new definitions. 'pub' and 'pri' words override this
PUBLIC (--) PUB All : , variable and constant definitions that follow can be used in all following definitions
QW (--) X PUB List the latest 128 words in quick compact format
SEARCH (cstr -- nfaptr) H PUB Search the dictionaries for cstr which points to the word string constructed as count+string+null
TACHYON (--) PUB used to verify that source code is intended for Tachyon and also to reset load stats - terminate with

END
TASK (cog -- addr) H PUB Return with address of task control register in "tasks"
uhere (-- adr) PUB 1 word, pointer to to compilation area
undef (-- adr) C PUB 1 word, user word cfa can be stored here which will be called when a word in the input stream is not

found in the dictionary. Reset 0 to do normal Tachyon behaviour e.g. ' FRUN undef W! causes the SD
card to be searched for a file name and if found will load it to the input stream
(Implements MSDOS 'batch file' behaviour) 0 undef W! disables the function

uthere (-- adr) C PUB 1 word, current code compilation pointer (updates "here" or is reset by it)
V5 PUB
W (<char> --) X PUB List all words with detail - like WWORDS <cr>
WORDS XI PUB NOTE: special case performs one of two functions
WORDS (--) X PUB List words in dictionary
WORDS (n <name> --) PUB Allocate n words of variable memory accessed by name
' (<word> -- cfa) H PRE Return with the code address of the following word. If cfa<$100 = bytecode address in cog memory.
[B] (bytecode --) PRE append this bytecode to next free code location + append EXIT (without counting)
[W] (wordcode --) PRE append this wordcode to next free code location + append EXIT (without counting)
FORGET (<word> --) PRE Forget and remove code for 'word' and all words defined after it in the dictionary
NFA' (<word> -- nfa) H PRE Return with the name field address of the following word
RECLAIM (<word> --) X PRE Scan the dictionary for any private words and removed their headers and reclaim dictionary memory by

compacting. Will RECLAIM from 'word' if that is present, else RECLAIMS all dictionary
STRIP (<word> --) PRE Strip a single header from the dictionary - 'word' then cannot be used in future definitions
WWORDS (<char> --) X PRE List words in dictionary in wide 4 column format with detail and optional filtering *
EXTEND (--) MOD Module start marker for high level extension words to the core Tachyon in file EXTEND.fth

* WWORDS has some useful features for inspecting the dictionary:-

The listing can be filtered or not: e.g. WWORD G lists only words starting with G. WWORD <cr> lists all words
Each entry is <Name Field Address> <Code Field Address> <Key Field> <Word Name>

1. Immediate words are shown in BOLD
2. Public words are coloured green
3. Private words are coloured red
4. Public variables and constants are coloured cyan
5.Private variables and constants are coloured yellow
6. Module Header words like EASYFILE and EXTEND which are defined with the 'module' word are coloured bold red

Version 1.4 Page 12

If RECLAIM is run to remove all private word entries from the dictionary, WWORDS <cr> will then list only the public words - all the plain red and yellow words
disappear, as you'd expect.

The Key field
Bit 7 is an immediate or preemptive attribute
Bit 6 is a private word
Bit 7&6 together represents this entry as a module header.
Bits 5 - 3 reserved
Valid values for bits 2 - 0 are:

0 public definition
1 reserved
2 private (can be removed by RECLAIM)
3 reserved
4 preemptive immediate word executes - normally to read in more words from the stream
5 reserved
6 module header
7 reserved

BUFFERS
BUFFERS (-- adr) H PUB 2k bytes available for up to 4 open files or general use

REAL TIME CLOCK
Many I2C RTC chips are very similar in layout and at present there are two types, MCP79410 series and the DS3231 which is temperature compensated and
includes temperature readings.. But these are mostly compatible with many other types. As the registers are in the same place it's just that sometimes some chips
use the unused bits for various things.

!RTC (--) X PUB Read the RTC chip and set Tachyon date and time from it (if the chip is present)
.ASMONTH (month --) X PUB Print month index 1-12 as 3 characters (Jan..Dec)
.DATE X PUB Print the current date as YY/MM/DD
.DAY X PUB Print day as 3 characters (Mon..Sun)
.DT (--) X PUB Display day of week, date and time
.TIME X PUB Print the current time as HH:MM:SS
BCD>DEC (bcd -- dec) X PUB BCD to decimal conversion
date (-- adr) X PUB 4 byte buffer
DATE! (date --) X PUB Store date as international format decimal yymmdd
DATE@ (-- date) X PUB Fetch data as yymmdd
DAY (day --) X PUB set DAY as in MON DAY etc
DAY@ (-- day) X PUB Fetch day of week
DEC>BCD (dec -- bcd) X PUB Convert decimal 0..99 to BCD
DT! (hh.mm.ss|yy.mm.dd d/t --) X PUB Write time/date in decimal format where d/t = 4 for date
FRI (-- 5) X PUB Day constant
HMS (#xxyyzz -- zz yy xx) X PUB Split 6 digit decimal number into 3 two digit groups
MON (-- 1) X PUB Day constant
MS>TIME (n --) X PUB Convert N milliseconds to hhmmss
RTC X PUB Select RTC as a DUMP device - byte method only
RTC! (byte adr --) X PUB Write a byte into the RTC register
RTC@ (adr -- byte) X PUB Read a byte from the RTC register
runtime (-- adr) X PUB 1 long
SAT (-- 6) X PUB Day constant
SDT! (hh.mm.ss|yy.mm.dd d/t --) X PUB Write soft time/date in decimal format where d/t = 4 for date
SETRTC ($opt.addr --) X PUB Select and set the RTC device
STAMP@ (-- dhmsc) X PUB Returns a 32-bit millisecond time + day of month in top 5-bits
SUN (-- 7) X PUB Day constant - use like this - SUN DAY!
THU (-- 4) X PUB Day constant
time (-- adr) X PUB 4 byte buffered
TIME! (time --) X PUB Store time as decimal hhmmss
TIME@ (-- time) X PUB Fetch time as decimal hhmmss
TUE (-- 2) X PUB Day constant
TZ (str --) X PUB Save time zone to EEPROM?
tz$ X PUB 1 long, default to 0
WED (-- 3) X PUB Day constant

TIMERS
Tachyon maintains a background timer cog which counts every millisecond and scans a linked list of user counters that may be setup to simply countup or
countdown to zero and optionally execute an ALARM condition. Also system runtime is maintained so this can be quite useful plus soft RTC functions are available
too.

.TIMERS (--) X PUB Display the list of active timers
ALARM (cfa timer --) X PUB Set the alarm condition to be executed when this timer has timed out
ALARM: (val tmr : code --) X PUB use to setup timer code easily: e.g 50 mytimer ALARM: <inline alarm code follows> ;
COUNTUP (timer --) X PUB Set this timer as a simple up counter every ms
TIMEOUT (ms addr --) X PUB Set the timeout period in ms for this timer - link and init if not already set
TIMEOUT? (timer -- flg) X PUB Check if this timer (using TIMER name) has timed out. (also links this timer into the list)
TIMERJOB (cfa --) X PUB Wait until _job=0, then set _job to cfa
timers (-- adr) X PUB 1 cword, link to timers - set to 1 as last
WATCHDOG (ms --) X PUB (Re)Trigger watchdog and timeout in milliseconds to reboot
TIMER X PRE create a TIMER variable, ms(4), alarm/mode(2), link(2), tid(1), nu(1), nu(2)
TIMER (<name> --) X PRE Create a new timer structure (10 bytes)

Version 1.4 Page 13

SYSTEM COUNTER
=CNT (addr --) PUB store the system counter value at addr
CNT? (cycles var -- flg) PUB
CNT@ (-- cntr) PUB Fetch the current contents of the system counter

POLLING
Somewhat related to timers but completely different is the background polling which goes on when a cog is waiting for KEY input. In the main console task this
allows a user routine to add POLLS that check for low priority tasks that are more able to be handled by the main console cog such as detecting for SD card inserted
etc. The user may add up to 8 polls and this needs to be done in the user init routine as all polls are cleared on boot.

?POLL (--) PUB read up to 8 words and call them if set
+POLL (cfa --) X PUB Add the code routine as a background POLL

I2C BUS
_I2C@ PUB
?I2C PUB Wait but timeout while busy
*SCL PUB Pseudo constant, defaults to 28
*SDA PUB Pseudo constant, defaults to 29
<I2C PUB Generate an I2C START condition
<I2C> PUB Restart without checking busy
ackI2C@ (-- byte) X PUB Same as I2C@ except the ack state is set active already (= 0 I2C@)
EEPROM X PUB Setup P29 and P28 as the I2C bus pins
I2C! (byte --) X PUB Write a byte to the I2C bus
I2C!? (byte -- flg) X PUB Write a byte to the I2C bus and return with the ack state
I2C@ (ack -- byte) X PUB Fetch a byte from the I2C bus and write the ack state (as is so that 0 = ack)
I2C> PUB Generate an I2C STOP condition
I2C100 (--) PUB Set the I2C bus to 100kHz rate
I2C400 (--) PUB Set the I2C bus to 400kHz rate
I2CFAST (--) PUB Set the I2C bus to 1MHz rate
i2cflg PUB 1 byte
I2CPINS (sda scl --) X PUB Setup the pins that will be used for the I2C bus
IO! (data device --) PUB PCF8574 style I2C write
IO@ (device -- data) PUB PCF8574 style I2C read
nakI2C@ PUB

PING-PONG NETWORKING
ID! (str --) PUB save unit prompt ID (use NULL$ ID! to clear)
INTERCOM! (&GP.ID.TR.TE baud --) PUB configure this Propeller as a Ping-Pong slave GP-group, ID-moduleID, TR -transmit/receive pin, TE-

enable pin
.INTERCOM (--) X PUB Display the list of connected 'PING-PONG network' devices, if this system is installed

EEPROM

?BACKUP X PUB Only backup if there were no errors in the TACHYON block load
@EE (adr -- ack) X PUB Select the appropriate device and issue an address, check ack
@EEWAIT (adr --) PUB Revision 140602 - Added timeout loop counter to prevent hanging
AUTORUN
<name>

XI PUB Set system to autorun name if found else clear autorun if invalid. Executed via EXTEND.boot
If the name does not exist in the dictionary at boot-time it will no longer be valid (as in FORGET
<name)

BACKUP X PUB Backup all of 32k of hub RAM to $0000 of first EEPROM
COLD X PUB Reset to a kernel only system in RAM without extensions although EEPROM is not affected
CONBAUD (baud --) X PUB Set the startup baudrate of the console into EEPROM, needs restart to activate. Recommend 300 to

2,000,000
E! (long -- adr) X PUB Write a long to EEPROM (non-aligned)
E@ (adr -- long) X PUB Read a long from EEPROM (non-aligned)
EC! (byte adr --) X PUB Write a byte to the EEPROM at adr (spans multiple 64k devices)
EC@ (adr -- byte) X PUB Read a byte from EEPROM at adr (spans multiple 64k devices)
ECOPY (eesrc eedst cnt --) X PUB Copy cnt bytes from eesrc to eedst
EE (--) X PUB Select EEPROM for memory DUMP using various DUMP methods (i.e. 0 $100 EE DUMP)
eedev (-- adr) PUB 1 byte
eeflg (-- adr) PUB 1 byte
EEPROM (--) PUB Assign pins P28 and P29 for EEPROM interface
EERD (--) X PUB Switch EEPROM to read mode, check ack
EFILL (src cnt ch --) X PUB Fill EEPROM from src address for cnt times with byte ch
ELOAD (eeprom ram cnt --) X PUB Load a block of EEPROM to RAM. Will load 32K from EEPROM in 4.325sec
ep (-- 128) PUB Constant
ESAVE (ram eeprom cnt --) X PUB Save a block of RAM to EEPROM using page write. Will backup 32K to EEPROM in 4.963 seconds)
ESAVEB (ram eeprom cnt --) X PUB Save a block of RAM to EEPROM using byte by byte method, slower and safer for non-page

alignments
EW! (word -- adr) X PUB Write a word to EEPROM (non-aligned)
EW@ (adr -- word) X PUB Read a word from EEPROM (non-aligned)
SAVEROM (--) PUB Always called at the start of a ROM file to load the hex bytes of code and data that follow into cog

memory

Version 1.4 Page 14

ANSI TERMINAL SUPPORT
?ANSI (--) X PUB Detects whether terminal supports ANSI commands and stores that at _ansi
.HEAD$ (str --) X PUB Displays string at address str in bold with *** either side
BELL (--) X PUB emit one bell character
black (-- 0) X PUB
blue (-- 4) X PUB
BOLD X PUB Enable ANSI bold type (if supported)
CLS X PUB Hybrid $0C EMIT plus ANSI HOME + ERASE SCREEN
CLS (--) X PUB Clear the screen (ANSI)
CURSOR (on/off --) X PUB Set visible cursor on or off
cyan (-- 6) X PUB
ERLINE (--) X PUB Erase the current line
ERSCN (--) X PUB Erase the screen from the current location
ESC (ch --) X PUB
green (-- 2) X PUB
HOME (--) X PUB Cursor is set to the top left corner of the window
magenta (-- 5) X PUB
MARGINS (top bottom --) X PUB Sets the number of rows at top and bottom of the terminal window to be set as margins
NEON (--) X PUB Set pen color to a sequence per character
PAPER (color --) X PUB Set paper color (background 0..7) e.g. black PAPER
PEN (color --) X PUB Set pen color (foreground 0..7) e.g. white PEN
PLAIN X PUB Reset all type to plain
red (-- 1) X PUB
REVERSE X PUB Enable ANSI reverse type
SPINNER (--) X PUB Emit the next character in a spinner sequence (| / - \) using backspace to reposition
white (-- 7) X PUB Constant for ANSI pen or paper color (white PEN)
WRAP (on/off --) X PUB Set whether overflow at the end of line wraps round to the next line
XY (x y --) X PUB ANSI XY cursor positioning (1 1 XY = home)
yellow (-- 3) X PUB
_ansi X PRI 1 long, stores terminal ANSI support
.PAR (--) X PRI
AEMIT (ch --) X PRI Only emit ch if ANSI is supported
ANSI? (-- flg) X PRI Checks the value of _ansi and sets flag true if ANSI supported (faster than calling ?ANSI everytime)

EASYFILE FAT32
The FAT32 file layer is built on top of basic buffered sector layer and the virtual memory layer on top of that. Since the virtual memory is limited to 4GB using a 32-bit
address a further step is taken to allow a file to be addressed as virtual memory of up to 4GB. There are sector and directory buffers for up to four files which are
opened in the sense that the virtual memory address to the start of the file is located. File sectors are assumed to be contiguous without fragmentation and this is
normally the case as I have never found a fragmented SD card before. Not having to follow clusters simplifies and speeds the virtual memory layer.

N.B. The SD card interface pins may need setting up with SDCARD, to suit your circuit board SanDisk cards are known to work, but other makes are not guaranteed

_sdpins (-- adr) EF PUB 1 long in code memory, SD pins setting which is saved every time BACKUP is run
-FERASE EF PUB Erase the current file by overwriting with nulls
!SD EF PUB Initialise the SD card (with timeout)
?MOUNT (--) EF PUB If not already, mount sdcard
.FILE (--) EF PUB Display the status of the file stream FILE#
.FILES EF PUB Display the present status of the four four file streams
.FNAME (--) EF PUB Print the file name at the current loop index I
.FX (index --) EF PUB Display the status of the file stream 'index'
.LIST (--) EF PUB Display verbose listing of files
(cat) EF PUB Display the currently open file else ignore
(SLIST) ('method --) EF PUB
@BOOT (-- bootsect) EF PUB
@FAT (fat# -- sector) EF PUB return with the starting address of the selected FAT (normally 0 or 1)
@FILE (addr -- addr+off) EF PUB returns the address offset into sector & sectcrc tables for active file channel as set with index FILE

e.g. val sector @FILE ! otherval sectcrc @FILE ! sector @FILE @
@ROOT (-- rootsect) EF PUB start sector of the root directory
#files (-- byte) EF PUB 4, the number of file channels as standard
>FILE EF PUB Redirect character output via uemit to the open file using "fptr" which is set to the start of the file when

opened. If the file is not opened and a valid write pointer set then output will be discarded
ACMD (data acmd -- res) EF PUB Send an ACMD to the card and return with response
APPEND (eof -- fsptr) EF PUB Find the EOF marker (normally a null) and set the write pointer and result to this ready to append

return with null if failed.
BLKSIZ (-- word) EF PUB 512, the block size
CARD? (-- flg) EF PUB Detect SD card presence - the CS line must not have a pullup on it (redundant and undesirable).

Action is - pulse low, float, check, return high
cd$ (dirstr --) EF PUB change directory to that defined by dirstr
cid (-- adr) EF PUB 16 bytes, Card I.D.
CLUST>SECT (clust# -- sector) EF PUB convert a cluster number to a physical start sector (normally 64 sectors/cluster)
CMD (data cmd -- res) EF PUB Send the command to the SD card and read result
csd (-- adr) EF PUB 16 bytes, Card Specific Data
DIR (--) EF PUB Display a listing of the current directory
DIR? (str -- diradr | false) EF PUB Find the name in the current directory and return with (virtual memory address) XXXX the dir buffer

address
dirbuf EF PUB An array of 32 byte buffers one per file (4 as standard)
dirfsa EF PUB
DIRW (--) EF PUB Display shortform list of files
FCLOSE (--) EF PUB Close the current file
FCOPY$ (src$ dst$ --) EF PUB Copy file src$ to file dst$
FCREATE$ (size namestr -- flg) EF PUB Create a new file by name but if it already exists then delete the old one and reuse the dir entry
FGET (-- ch) EF PUB Read in the next character in the virtual buffer as part of the console input stream
FILE (index --) EF PUB index in range 0-3, set the active file channel
FILE# (-- file#) EF PUB Return the current file channel
FILE> EF PUB Set current file as an input device (instead of from console etc)
FILE$ (-- addrofFilenameString) EF PUB
FLUSH (--) EF PUB Write the sector buffer if it has been modified
FMAKE$ (name$ -- flg) EF PUB Open or create a file

Version 1.4 Page 15

FMAX@ EF PUB
FOPEN$ (namestr -- sector) EF PUB Open the file with the 8.3 name and return with its sector or 0 if failed. The variable fstat can be

checked for more information if there was an error
FPRINT$ (file$ --) EF PUB Display the contents of the file specified by the string if it exists
FPUT (ch --) EF PUB Write a character into the logical end of the file and update the write pointer
FPUTB (byte --) EF PUB Write a character into the logical end of the file and update the write pointer, even if it is a null char
fread (-- readptr) EF PUB
FREM (-- rem) EF PUB returns the number of remaining bytes in a file
FRUN EF PUB exception handler - if word not found then run from file - point unum to this code
FS EF PUB FS DUMP method - dump contents of open file
FS! (long faddr --) EF PUB
FS@ EF PUB
FSADR (faddr -- addr) EF PUB
FSC! (byte faddr --) EF PUB
FSC@ (faddr -- byte) EF PUB
FSECT@ (-- sect) EF PUB
FSIZE EF PUB
FSIZE! EF PUB
FSIZE@ EF PUB
FSTAMP (--) EF PUB Update the modified time and date of the current file
FSW@ EF PUB
fwrite (-- writeptr) EF PUB
I+ (n -- I+n) EF PUB Adds n to the loop index I
lss (sector --) EF PUB Display dump 200 hex bytes from 'sector'
MAKE (size --) EF PUB Force file open, create to size of it not found
MOUNT (--) EF PUB Mount the currently selected storage device and init all 4 file handles. Read the FAT32, set variables

accordingly
ocr (-- adr) EF PUB 4 bytes, Operating conditions register
OpenDir EF PUB Make the current working directory accessible as a file itself
pwd (--) EF PUB Display current directory name
RENAME$ (from$ to$ --) EF PUB Rename the file using two string parameters
RO (--) EF PUB Make current file read only
ROOT EF PUB
RW (--) EF PUB Mark the currently open file read write
SCAN! (ch/flg --) EF PUB set scan char or disable with -1
SD (--) EF PUB Dump memory modifier e.g. 0 $200 SD DUMP
sdbuf EF PUB Initial value for SDBUF which depends upon which file handle is selected
SDBUSY (state --) EF PUB Do what has to be done if the SD card is busy - does nothing as a default
SDERR (state --) EF PUB Do what has to be done if the SD card errors - does nothing as a default
SDIO32 EF PUB Made SDIO RUNMOD handle 32-bit with normal entry and 8-bit with entry+2 including ROL
SDIO8 EF PUB Made SDIO RUNMOD handle 32-bit with normal entry and 8-bit with entry+2 including ROL
SDPINS (ce-miso-mosi-clk --) EF PUB Remember which pins are to be used for BACKUP
SDRD (sector dst -- buffer) EF PUB Read sector from SD into dst
SDWR (src sect -- flg) EF PUB Write from src to xdst in the SD
SECTOR (sect -- buffer) EF PUB read sector into buffer, if not already there
UpdateDir EF PUB Update current directory entry from buffer
VOLNAME! (str --) EF PUB change the FAT VOL name
WRSECT (--) EF PUB Write the current sector back to the storage media
X! (long xaddr --) EF PUB Write a long to virtual memory address xaddr
X@ (xaddr -- long) EF PUB Read a long from memory address xaddr
XADR (xaddr -- addr) EF PUB Translate absolute 4GB SD memory address to a buffered address in hub RAM
XC! (byte xaddr --) EF PUB Write a byte to virtual memory address xaddr
XC@ (xaddr -- byte) EF PUB Read a byte from virtual memory address xaddr
XW@ (xaddr -- word) EF PUB Read a word from virtual memory address xaddr
FOPEN# (dirfsa -- sector) EF PUB Open the file pointed to by the virtual directory entry address fsa = file system address (offset into

directory file)
cat (<file> --) EF PRE Command line "cat" command to list the contents of a file
cd EF PRE deferred word - cd$
FCOPY (<from> <to> --) EF PRE Make a copy of a file with a new name
FL EF PRE Load text input into specified file or TEMP.TXT and then process
FLOAD (<file> --) EF PRE Command line File load - loads source file which is executed and/or compiled
FOPEN (<filename> --) EF PRE Open a file interactively with the name specified in the input stream, report back to the console
ls EF PRE List the directory in wide and simple format (alias for DIRW?)
mk (size <name> --) EF PRE Make file
QV (<filename> --) EF PRE Quick view of file header in ASCII dump format
RENAME (<from> <to> --) EF PRE Command line file rename
SAVETEXT (<filename> --) EF PRE File write text input to file
EASYFILE EF MOD Module name in the dictionary for Easyfile.fth

BUILT-IN APPLICATIONS AND DEMOS
TOOLS (--) X MOD Module marker for words defined in EXTEND.fth

Fibonacci series
fibos (--) X PUB Benchmark - Compute a series of fibonacci numbers and display them with execution times
fibo (n -- f) X PUB Subroutine used by fibos

Servos
DEGREES (degrees pin --) marker X PUB
RUNSERVOS (cog --) X PUB
SERVO! (word pin) X PUB Initialise the servo system
servos X PRI variable, 64 bytes

Pulse Width Modulation
PWM (duty8 mask --) X PUB
PWM! (duty8 mask --) X PUB Initialise the PWM system

Version 1.4 Page 16

PWM.START (mask table Hz --) X PUB Main multichannel PWM start method in next available cog
PWM% (%duty pin --) X PUB set the PWM duty cycle as a percentage
PWM.TASK X PRI Setup pins as outputs and load, setup and run PWM32 module
pwmfreq X PRI 1 word
pwmpins X PRI 1 long
pwmtbl X PRI 1 word

WS2812 RGB LED
ALED X PUB
RGB (rrggbb --) X PUB
RGBS (array leds --) X PUB Output an rgb array for the number of leds (3 bytes/led) on the selected pin
RGNPIN (pin# --) X PUB
ansi X PRI Table of 8 longs
brg X PRI 1 long

INFRARED CONTROL
IRRX (pin -- code) X PUB NEC IR Receive
IRTX (code pin --) X PUB NEC IR Transmit

DHT22 humidity and Temperature
DHT (pin -- rhum temp) X PUB Read values
.DHT (pin --) X PUB Read and display values e.g. 15 .DHT displays 34.6'C 42.5%RH
DHTBYTE (-- byte) X PRI used internally in DHT
DHTBIT (-- cnt) X PRI used internally in DHT
dt X PRI Timer used in DHT
htsav (-- adr) X PRI 1 long
htref (-- adr) X PRI 1 word
htck (-- adr) X PRI 1 word

ULTRASOUND DISTANCE MEASUREMENT

DISTANCE (trig echo -- distance.mm) X PUB PING sensor and return with reading in millimetres
PING (trig echo -- us) X PUB Trigger PING sensor and listen on echo pin and return with microseconds value

DS3231 THERMOMETER

.TEMP (--) X PUB Read and Display the temperature from a DS3231 chip in 'C
'C (-- 'C*100) X PUB Read the temp and return value in 'C x 100
'F (-- 'F*100) X PUB Read the temp and return value in 'F x 100

UNSORTED WORDS
(") PUB
@WORD PUB
id PUB
keytable PUB
num PUB
rxpars PUB
TX! (dat buf --) C PUB write single buffer - but this word isn't used in kernel, EXTEND or EASYFILE, so obsolete?
WAITVID PUB
["] H PRE
...

Version 1.4 Page 17

PRIVATE WORDS
This section lists all the private words in Tachyon. These are low-level support words useful only within a Module. They are not that useful to Tachyon programmers,
although they are left visible in the dictionary. They can be removed from the dictionary, so they are no longer available for new definitions (but still continue to
function) by the use of the RECLAIM word. This makes a further 1900 bytes available to the user.

NAME STACK CODE WORD DESCRIPTION
 TYPE TYPE

FLOATING POINT MATHS - Private words
f32cmd (-- adr) X PRI 1 long (F32 parameter block header)
FCMD (n1 n2 cmd -- result) X PRI
fnumA (-- adr) X PRI 1 long
fnumB (-- adr) X PRI 1 long
result (-- adr) X PRI 1 long

CASE STATEMENTS - Private words
>SWITCH< (min max --) X PRI Part of CASES
SWITCH= (val -- flg) X PRI Return true if val = SWITCH

VECTORED EXECUTION - Private words
~v X PRI Part of +VECTOR

I/O PORTS - Private words
_ctr X PRI 1 byte, storing the selected CTR, A or B
*spkr (-- adr) X PRI 1 long, defaults to 0, used to store pin for audio output
+CTR X PRI
~1 X PRI Part of CTR!
~S X PRI Part of ISERIAL
baudcnt X PRI user variable
CTR (-- addr) X PRI
CTR! X PRI clear the whole counter - except pin numbers
CTR@ (-- val) X PRI Read this cogs CTR
TXSER X PRI
WAIT! (n --) X PRI Selects the pin n to be measured for pulse width etc. - used in LOW@ and friends

ROMS - Private words
FINDROM (name -- addr) PRI

TIMING and FREQUENCY - Private words
+TIMER (addr --) X PRI
CountDown X PRI
HZCON (-- n) X PRI constant, used to convert various register values to the equivalent in Hz. Cpu clock frequency

dependent

STREAMING I/O - Private words
~c (-- addr) X PRI 1 long, used by [CON, CON] etc

PRINT NUMBERS - Private words
.AST X PRI Part of .AS"
.SIZE (n --) H PRI 9999 or 26k or 9.9M or 3.4G
#NUM PRI
~P X PRI Part of PRINT&
AS# X PRI Part of .AS - usable command characters
D0= X PRI
pbase (-- adr) X PRI 1 byte variable
pflg (-- adr) X PRI 1 byte variable

DICTIONARY - Private Words
!DEFER PRI Part of DEFER
(STRIP) (nfa -- nfa+) PRI Strip name by moving newer words over
+UNDEF PRI Part of DEFER
lsword (nfa -- nfa) PRI Display numeric params for a word in the dictionary, used in WWORDS
undef$ (-- adr) PRI 16 words
UNDEFER PRI Part of DEFER

REAL TIME CLOCK - Private words

.ASMONTH PRI

.DATEF (n --) X PRI Print n as date as YY/MM/DD

.DTS (time date day --) X PRI Display the day of week, date and time

.TIMEF (n --) X PRI Display n as time as HH:MM:SS
@rtc (n --) X PRI Address nth byte of rtc buffer
@rtc (-- id) X PRI I2C RTC address 8-bit constant

Version 1.4 Page 18

<RTC X PRI Start and address RTC device
<RTC> X PRI Restart and read RTC device
~S X PRI Part of WRRTC
day (-- adr) X PRI 2 byte buffer
RDRTC X PRI Read first 8 timekeeping bytes of RTC into rtc
rtc (-- adr) X PRI 10 byte buffer
rtc! (byte reg --) X PRI
rtc@ (reg -- byte) X PRI
rtc# (-- 0) X PRI 1 15-bit pseudo constant (value can be changed with :=!)
sec# (-- 0) X PRI 1 15-bit pseudo constant (value can be changed with :=!)
WRRTC X PRI Write rtcbuf to RTC

TIMERS - Private Words
_job X PRI 1 word
+TIMER (addr --) X PRI Part of TIMEOUT
CountDown X PRI
CountIt X PRI
tid (-- adr) X PRI 1 byte, timer ID signature (match to this indicates timers linked)
TIMERS (--) X PRI Provide background timing functions including alarm actions on timeouts
ttint (-- n) X PRI timing constant, CLKFREQ #1000 /
wdt X PRI Watchdog timer

I2C BUS - Private words
~D (long --) PRI Store long to cog memory 16, used to store the current I2C bus speed

EEPROM - Private words
?E@ PRI
?EC@ PRI
?EE (addr --) PRI
?EW@ PRI
.ES PRI Print counted string from EEPROM
.rom PRI
@EEX PRI Part of @EE
EERDW PRI Wait and switch EEPROM to read mode, check ack
EESPEED PRI Set the I2C Bus to 'fast'
ENDRD PRI Read last byte [no ack] and stop
FINDROM (name -- nameaddr | false) PRI Find the named ROM in the upper 32kb of the EEPROM, else return false to show not found
GET8 (-- byte) PRI Get the next byte from the ROM file, stored there as a two digit hex value. Used in SAVEROM to load

a ROM into a cog
NEXTROM (addr1 -- addr2 | false) PRI Find the next ROM, else return false if no more to be found
R$ PRI String variable, initialised to ROMS
RDI2C (cnt --) PRI Fast sequential read bytes from selected I2C device into indexed memory
roms PRI Constant, $C000, start address for ROM storage in EEPROM
romsz PRI Constant, $3F00

ANSI TERMINAL SUPPORT - Private words
asw X PRI
ATR (ch --) X PRI
COL (col fg/bg --) X PRI
CUR (cmd n --) X PRI
ESCB (ch --) X PRI
ncol X PRI 1 byte, stores current color for NEON etc
WRAP (size -- ; val --) X PRE define a wrap constant := val & size-1

EASYFILE FAT32 - Private words
_!SD (-- ocr | false) EF PRI Initialise the SD card (with timeout) - internals
_card (-- adr) EF PRI 1 byte, card detect transition memory
_FCOPY EF PRI
_file EF PRI 4 longs, table entry for the 4 file channels - holds sector address
_file$ PRI
,ASMONTH (index --) EF PRI index in range 1-12, display shortform month
,CARD (--) EF PRI Display 1 line of sdcard properties
,DIR$ EF PRI Format a directory name
!SDIO EF PRI Initialize the SD I/O and basic card
!sect (--) EF PRI
?SDTO EF PRI In SPI Mode, only the OCR, CSD and CID registers are accessible
.ATR (atr --) EF PRI Display the symbol(s) for each active directory name attribute
.CARD PRI
.DIR (addr --) EF PRI
.DIR$ EF PRI
.FAT (--) EF PRI Displays two lines of sdcard properties
.FDATE (fdate --) EF PRI Display date in Unix format
.FDATES (diradr field ch -- diradr) EF PRI Display date
.FTIME (ftime --) EF PRI Display file time
.FTIMES EF PRI Display file time
.UTIME (--) EF PRI print the unix file mod time or year if the file is older than 6 months
(.DIR) EF PRI
(.LIST) (<index> --) EF PRI List a single directory entry in FTP compatible format
(DIR) (code --) EF PRI
(ls) EF PRI directory list method for ls
@ATR EF PRI Directory structure ptr, Attribute
@CDATE EF PRI Directory structure ptr, Creation date
@CLUSTER (index - xadr) EF PRI
@CTIME EF PRI Directory structure ptr, Creation time

Version 1.4 Page 19

@DIRBUF! (word field --) EF PRI Write to directory entry as new date
@FCLST EF PRI Directory structure ptr, First cluster of file (low file)
@FCLSTH EF PRI Directory structure ptr, First cluster (high word)
@FDATE EF PRI Directory structure ptr, Modification date
@FSIZE EF PRI Directory structure ptr, Size of filename
@FTIME EF PRI Directory structure ptr, Modification time
@sdrd (-- adr) EF PRI 1 long
@sdwr (-- adr) EF PRI 1 long
@sector (-- adr) EF PRI Points to 'sectors'
@sectors (-- adr) EF PRI 4 longs, Current sector loaded in SDBUFs for the 4 files possible
*SDCS ! -- byte) EF PRI cspin C@
=dtk (-- byte) EF PRI $FE, data token for single block read/write
>F83 (str1 -- str2) EF PRI Format friendly file name into directory format
~! EF PRI
APPEND.BLK (-- reblk) EF PRI find the active block to use
byte/sect EF PRI 1 word
cd! (sect str --) EF PRI
cid+ EF PRI
ClaimClusters (size startcluster --) EF PRI link clusters and mark end cluster
clshift EF PRI 1 byte, cluster shift (fast multiplier)
CLUSTER@ (index -- cluster) EF PRI
crc (-- adr) EF PRI 1 byte, crc
cspin (-- adr) EF PRI Pointer to cs pin value
cwd$ EF PRI 16 bytes storage
cwdsect EF PRI 1 long
diradrs EF PRI 4 longs, virtual memory address of file's directory entry
dirbufs EF PRI A 32 byte directory buffer for each of the 4 file channels
endcl EF PRI constant $0FFFFFFF
FABORT (code --) EF PRI
fat1 (-- adr) EF PRI 1 long
fat2 (-- adr) EF PRI 1 long
fat32 EF PRI data block for easyfile, see source
fatname (-- adr) EF PRI 8 bytes, always FAT32 - (don't trust)
fatptr (-- adr) EF PRI points to 'parts'
fats (-- adr) EF PRI 1 byte, Copies of FAT
fboot EF PRI 1 long, boot signature - determines whether it needs to remount
FDATE! (#yymmdd field --) EF PRI Arrange as decimal YYMMDD from 1980 (2000.0000 + 1980.0000 -)
FirstCluster (diradr - cluster) EF PRI find first cluster of this directory entry
fkey EF PRI word stores backup for input device when input is switched to file
fname$ EF PRI file$ stores 4 8.3 filenames at 16 byte boundaries
freads EF PRI 4 bytes storing read pointers for 4 files
FreeClusters? (size -- size startcluster) EF PRI Find free clusters for the file size in bytes - 0 = all, return with address of first free cluster
FreeDir? (-- fsadr) EF PRI Find the next free directory entry and also set dirfsa
FSADR! (faddr - addr) EF PRI
fsel (-- adr) EF PRI 1 bytes, currently selected file channel
fstat EF PRI byte stores current status of file system
FTIME! (#hhmmss field --) EF PRI Update file modification/create time in dir buf, time (5/6/5 bits, for hour/minutes/doubleseconds
fwrites (-- adr) EF PRI 4 bytes storing write pointers for 4 files
lscount EF PRI variable stores the number of files in the current directory
lsdirs (buffer --) EF PRI scan the buffer for dir entries -- 32 bytes/entry
MARKER? (marker -- flg) EF PRI Find SD marker and return true before timeout
mksiz (-- adr) EF PRI long variable, used to create a file if file not found
mounted EF PRI 1 byte, true flag if mounted (but also depends upon other checks)
oemname (-- adr) EF PRI 8 chars
parts (-- adr) EF PRI 64 bytes, Room for 4 entries of 16 bytes
RDOCR (-- ocr) EF PRI
RDSECT (dst -- crcflg) EF PRI card has been prep'd for read - proceed and read a block of data
READFAT32 EF PRI Read and buffer the FAT32 boot record
RES@ (-- res) EF PRI
rootcl EF PRI 1 long, Cluster Number of the Start of the Root Directory
rootdir EF PRI 1 long, sector address of root directory
rsvd EF PRI 1 word
scanch (-- adr) EF PRI 1 byte
scancnt (-- adr) EF PRI 1 word
scanpos (-- adr) EF PRI 1 word
scrc EF PRI Pseudo constant - address of sd crc
scrcs (-- adr) EF PRI 4 longs, sector CRCs
SD@ (-- byte) EF PRI Fetch a byte from the SD card (clock in 1's)
SDCLK (cnt --) EF PRI Faster byte wide clocks (8/count)
SDDAT! (adr --) EF PRI Wait for read token and read SD data into buffer
sdsize EF PRI 1 long, Number of sectors * byte/sect (512) = capacity
sdtimer EF PRI Timer for use by SD card interface
sect/clust EF PRI 1 byte
sect/fat EF PRI 1 long, Number of sectors per FAT table
serial EF PRI 4 bytes, #67 serial number of partition
STAT@ (-- stat) EF PRI
udir EF PRI calls (.DIR)
volname EF PRI 11 bytes, #71 volume name
wrflg (-- adr) EF PRI
wrflgs (-- adr) EF PRI 4 bytes, one per file channel, indicates current sector buffer has been written to
XADR! (xaddr -- addr) EF PRI Same as XADR but indicate a write operation for later flushing

UNSORTED PRIVATE WORDS
htck PRI
htref PRI
htsav PRI
tid PRI
ttint PRI

Version 1.4 Page 20

Document version
Version 1.4 - A new column for public, private, preemptive and module added, public and private modules are separated
Version 1.3 - Conditional and FOR examples added, removed some duplicated entries, numerous typos, Added navigation to sections in pdf
Version 1.2 - CASE and SWITCH examples added, WWORDS description - added Peter's detail
Version 1.1 - Numerous typos fixed
Version 1.0 - Adapted from this glossary, by Bob Edwards, in September 2020 using Tachyon V5r7 NEON 570190926.2300 fitted with EXTEND and EASYFILE
modules

Version 1.4 Page 21

https://docs.google.com/document/d/1gkSgKPYidRnhLaqgT7gfNyuhiTuWt-9tNRQC4epr7k4/edit#heading=h.2y2jztxhic28

	TACHYON Forth version 5v7 GLOSSARY------ for the PARALLAX PROPELLER P1
	PUBLIC WORDS
	DATA STACK
	RETURN STACK
	LOGICAL
	COMPARISON
	MEMORY
	MATHS
	FLOATING POINT MATHS
	CONVERSION
	LOOPING
	CONDITIONAL BRANCH & LOOPING
	CALLS AND BRANCHING
	CASE STATEMENTS
	VECTORED EXECUTION
	TACHYON START-UP
	I/O PORTS
	SPI INSTRUCTIONS
	I/O MASKS
	COG INSTRUCTIONS
	CODE MODULES
	ROMS
	TIMING and FREQUENCY
	DEFINITIONS
	COMMENTS
	CONDITIONAL COMPILE
	COMPILE LITERALS
	RADIX WORDS
	RADIX OPERATORS
	DEBUG
	DEBUG CONTROL KEYS
	DUMP MEMORY OPERATIONS
	STREAMING I/O
	CONSTANTS and VARIABLES
	STRINGS
	PRINT NUMBERS
	TASK VARIABLES
	Special Purpose Registers
	Registers by index

	DICTIONARY
	BUFFERS
	REAL TIME CLOCK
	TIMERS
	SYSTEM COUNTER
	POLLING
	I2C BUS
	PING-PONG NETWORKING
	EEPROM
	ANSI TERMINAL SUPPORT
	EASYFILE FAT32
	BUILT-IN APPLICATIONS AND DEMOS
	Fibonacci series
	Servos
	Pulse Width Modulation
	WS2812 RGB LED
	INFRARED CONTROL
	DHT22 humidity and Temperature
	ULTRASOUND DISTANCE MEASUREMENT
	DS3231 THERMOMETER

	UNSORTED WORDS

	PRIVATE WORDS
	FLOATING POINT MATHS - Private words
	CASE STATEMENTS - Private words
	VECTORED EXECUTION - Private words
	I/O PORTS - Private words
	ROMS - Private words
	TIMING and FREQUENCY - Private words
	STREAMING I/O - Private words
	PRINT NUMBERS - Private words
	DICTIONARY - Private Words
	REAL TIME CLOCK - Private words
	TIMERS - Private Words
	I2C BUS - Private words
	EEPROM - Private words
	ANSI TERMINAL SUPPORT - Private words
	EASYFILE FAT32 - Private words
	UNSORTED PRIVATE WORDS

	Document version

