
Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 149

Column #56, December 1999 by Lon Glazner:

Stamp Net Part 2 –
A Multi-drop Stamp-based Network

Last month, we designed an RS-485 based network, and de-scribed a communication
protocol, which allowed multiple BASIC Stamp2-SXs (BS2-SX) to communicate
together. The communication was a Master-Slave format in which the Master would send
a communication string to a specific Slave, causing that Slave to execute a specific
program stored in memory. Once the program was executed, the Slave would respond
with some data. This network was called STAMP Net.

Our previous design and testing was done on a solderless breadboard, which allowed
enough flexibility to prove out the design concept. This month, the STAMP Net design
was moved to a set of prototype PCBs, and the network communication was tested with
cables measuring roughly 200 feet. From the literature I’ve read on RS-485, a 200-foot
cable is small potatoes, as far as cable lengths go. And judging from the lack of trouble
that I had getting the system to work, I’d have to agree.

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 150 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Figure 56.1: Simplified RS-485 network

Defining the Design

This design was defined pretty well in last month’s article. I did decide to add a little
code to control a 1A relay, and a pair of general-purpose I/O pins. Even with the addition
of this functionality, there is plenty of room left in the BS2-SX to implement more
functionality. I would really like to add a PC terminal interface to the design, but that will
have to be done some time in the future, when time permits.

As a little refresher from last month, I’ve included the system block diagram. Figure 56.1
gives a pretty good conceptual overview how a Master-Slave communication protocol on
an RS-485 network is connected. The RS-485 transceivers that were chosen for the
design are the MAX487 from Maxim Integrated Circuits.

The changes in the schematic were pretty simple. A relay driver circuit was added. The
relay is a 5V variety (drive voltage) which can handle 1A with a 30V potential at its
switch connections. A 2N3904 NPN transistor buffers the BS2-SX pin that drives the
relay, and a 1N4001 diode was added across the relay’s inductor to reduce voltage spikes
and other transients.

Two general-purpose I/O pins (GPIO, for short) were included, and should have added
protection if they are interfacing to external devices. Take a look back at the Sept. ’99
Stamp Applications article for more information on protecting I/O pins.

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 151

The GPIO pins can be set as inputs or outputs in software. The voltage level at either
GPIO1 or GPIO2 will be returned to the Master unit if either pin is set as an input pin. As
inputs, these pins could be used to read switches at each STAMP Net node. These same
pins could be configured as outputs by a Master unit and be used to drive additional
relays, or be used to light LEDs.

Table 56.1: Command and response string definition

Byte Number Description
Address 1 Address of unit message is intended for
Program 2 Program to be executed by receiving unit
Data 1 3 General purpose data byte
Data 2 4 General purpose data byte
Data 3 5 General purpose data byte
Data 4 6 General purpose data byte
Data 5 7 General purpose data byte
Checksum 8 Sum of all bytes in message

Figure 56.2: Schematic of each STAMP net node

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 152 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Figure 56.3: Software response timing requirement

Figure 56.4: A master and slave transaction

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 153

Figure 56.5: A zoom on the master unit transmission

Figure 56.6: The slave unit response

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 154 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Reviewing Our Communication Protocol

The communication protocol was based on a generic structure of eight bytes for each
communication string. The Master unit sends the address of the STAMP Net node that it
was trying to communicate with, and the number of the program that it wishes to have
executed. Five generic data bytes and a checksum byte follow the first two bytes. Table
56.1 can be used as a quick reference for the data string format for STAMP Net.

As of now, there are only two programs that are loaded into the STAMP Net nodes for
the Master unit to access through a Slave unit.

The first is the Analog.bsx program, which reads an eight-bit A/D and returns the
average, maximum, and minimum measurements out of 128 samples. For the Master unit
to receive the A/D data, it only needs to send a valid communication string with the
Program byte set to 1. The Slave unit will interface to the A/D, take 128 samples, and
return the results in the Data 1, Data 2, and Data 3 positions, and then return to waiting
for data from the RS-485 bus.

The IOControl.bsx program operates a little bit differently than the Analog.bsx program.
The value in Data 1 — when it is received from a Master unit that requests Program 2 —
is used to determine the direction (input or output) of the GPIO pins, as well as the output
voltages (0V or 5V) of the relay pin and any GPIO pins set as outputs.

These two programs are prime examples of the kinds of control that your Master unit can
have over a Slave unit. The Master may execute a program in a Slave, and that program
can be performed more or less autonomously. Or the Master may send data along with
the program request information that reconfigures the Slave unit as in the IOControl.bsx
program.

A communication protocol can have multiple timing requirements. I left the timing
requirements for STAMP Net very lax. In fact, I extended the response time allotted for
the Slave unit from 500ms to 1.5s since last month’s article. I never intended to make
STAMP Net a high-speed network, and some of the STAMP Net nodes that I’ll be using
will be monitoring environmental conditions, so additional time might be necessary.

So what does this all look like electrically? Oscilloscope captures of the Master and Slave
communication are shown in Figure 56.4. Take a look at the data on the Master TX line
(MST_TX), and how it is received on the Slave RX line (SLV_RX). The receive enable
line is also of interest in this oscilloscope capture (MST_EN and SLV_EN). It is low to
set the MAX487 IC to receive data, and high for the MAX487 to send data to the RS-485

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 155

bus (keep in mind that both the Master and Slave control their own MAX487). If you’re
having trouble with a communication protocol, “scoping” the signals like I’ve done here
can detect the most common problems. The top signal, without a label, is scope channel
A1–A2, which is the differential voltage as seen by the MAX487.

Zooming in on the Master unit transmission gives us some additional insight into what’s
really going on. It is also nice to get a close-up of the Slave unit response, as shown in
Figure 56.6.

The Software

There are a few differences between the Master.bsx and Analog.bsx programs from last
month. I added a couple of lines of code which allowed me to skip the I/O direction
setting lines of the code if the IOControl.bsx program had been executed. This prevents
the Slave unit from resetting the direction of the GPIO pins, or their output voltage levels
when the Slave returns to the main program after IOControl.bsx is executed.
I also removed the part of the Master.bsx routine which polled each Slave on the STAMP
Net. This function will be replaced later by a user interface, and a more in-depth polling
routine. I have added the new versions of the programs here for anyone that may wish to
see them. For these programs, the Slave address and Program request byte should be
entered into the Master part of the Master.bsx program. This makes testing new programs
a little simpler.

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 156 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Figure 56.7: STAMP Net Under Test

In Closing

At this point, I’ve got a pretty good head of steam going on the STAMP Net project. The
PCBs are designed and look like they’ll work for the final application, which is a
workshop alarm. Although, I’ve got to say, there is still a lot of software to write. The
three programs listed here need to be refined, and I’m sure I’ve got a little learning to do.
But, with the BS2-SX, I have plenty of room for code, and the Parallax technical support
is only an E-Mail away.

The RS-485 network went together without much trouble, and termination resistors were
avoided (thanks to short cable requirements). This is not always the case. I think I
stacked the deck in my favor by taking a realistic approach to what I wanted my network
to do. The generic STAMP Net communication protocol prevented me from getting

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 157

bogged down in timing issues, or overly elaborate code requirements. Keeping cables
short (no run over 200 feet long) kept expenses down, and electrical reflections under
control.

Probably the best news is that I’ve got about 80% of the BS2-SX resources still available
for use. That could translate into a pretty cool user interface. We'll just have to wait and
see.

But that’s it for STAMP Net in this forum. I hope everyone found something of interest
or at least something useful for your own Stamp project. Next month, we’ll take a step
back to the past with a BASIC Stamp 1 and a 12-bit A/D interface. See you then.

'Program Listing 56.1: Master.bsx
'**
'Master Program
'The Master program controls communication and data display. For a
'unit designated as a Master unit(addresss = 0) this program is
'used to poll the various slave units. If a unit is a Slave unit
'(address <> 0) then this program is where the unit waits for
'commands.
'
'{$STAMP BS2SX,C:\Parallax\Analog.bsx,C:\Parallax\IOControl.bsx}
'0:Master_Prgm.bsx

'I/O pin designations
AD_Clk CON 0 'ADC0831 clock pin
AD_Dat CON 1 'ADC0831 data pin
AD_CS CON 8 'ADC0831 chip select (asserted low)
Relay CON 9 'Relay control pin (asserted high)
GPIO1 CON 10 'General purpose I/O pin
GPIO2 CON 11 'General purpose I/O pin

'Communication Constants
Data_Out CON 5 'TTL data out pin
TX_RX CON 6 'Receive enable (asserted low)
Data_In CON 7 'TTL data in pin
Baud CON 45 '38.4kbps, 8N1 true data

'Internally used registers
Addr var byte 'Address of unit
Comm_Flag var byte 'flag bits for unit
Mstr var Comm_Flag.bit0 'Set for Master unit clear for Slave
Sl var Comm_Flag.bit1

'Set if Slave # 1 is present on RS-485 bus
S2 var Comm_Flag.bit2 'Set if Slave # 2 is present on RS-485 bus
S3 var Comm_Flag.bit3 'Set if Slave # 3 is present on RS-485 bus
S4 var Comm_Flag.bit4 'Set if Slave # 4 is present on RS-485 bus
S5 var Comm_Flag.bit5 'Set if Slave # 5 is present on RS-485 bus

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 158 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

S6 var Comm_Flag.bit6 'Set if Slave # 6 is present on RS-485 bus
S7 var Comm_Flag.bit7 'Set if Slave # 7 is present on RS-485 bus

'Communication message string variables bytes(8 total)
Addr_Req var byte 'Unit address of message destination
Prgm_Req var byte 'Request execution of this program
Dat1 var byte 'Data byte 1
Dat2 var byte 'Data byte 2
Dat3 var byte 'Data byte 3
Dat4 var byte 'Data byte 4
Dat5 var byte 'Data byte 5
Checksum var byte 'Sum of previous bytes

'Storage Registers
Put_Addr var byte 'Put address location
Get_Addr var byte 'Get address location

'Working registers
Loop1 var byte 'For...Next variable
Work1 var byte 'General purpose register
Work2 var byte 'General purpose register
Work3 var byte 'General purpose register
Work4 var byte 'General purpose register
WorkBig var word 'Word sized general purpose register

'A/D registers
ResultA_D var byte 'Result of A to D measurement
MaxA_D var byte 'Storage for maximum A to D result
MinA_D var byte 'Storage for minimum A to D result
AvgA_D var byte 'Storage for avg. A to D result

'Program constants
AD_Samples CON 128 'Number of samples taken
DirFlag CON 6 'Flag set to skip direction setting
routine

'***
Main_Program:

GET DirFlag,Work2
If Work2 = 10 Then Get_Address

Comm_Flag = %00000000
Outs = %0000000100100000 'Set output pin values
Dirs = %0000001101100011 'Set pin direction values

Get_Address:
Addr = (INL&%0011100)/4 'Get unit address from P4-2
If Addr <> 0 then No_Master
 Mstr = 1
No_Master:

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 159

'Pause 2000

'Addr and Comm Flag register Debug statements
'Debug "Address = ", BIN8 Addr,CR
'Debug "Comm Flag = ", BIN8 Comm_Flag,CR

If Mstr = 1 then Master_Program
 Goto Slave_Program

'***
Master_Program:

Pause 1000
Addr_Req = 1 'Contact unit 1
Prgm_Req = 2 'Request IOControl Program
Dat1 = %11100100 'GPIO1 = out-high GPIO2 = input Relay = on

Checksum = Addr_Req+Prgm_Req+Dat1+Dat2+Dat3+Dat4+Dat5
HIGH Data_Out 'Set output high
HIGH TX_RX 'Enable transmission on RS-485
SEROUT Data_Out,Baud,[Addr_Req,Prgm_Req,Dat1,Dat2,Dat3,Dat4,Dat5,Checksum]
PAUSE 1
LOW TX_RX 'Enable receiver on RS-485
SERIN
Data_In,Baud,1500,No_Data,[Work1,Work2,Dat1,Dat2,Dat3,Dat4,Dat5,Checksum]

 'Test checksum
Work4 = Work1+Work2+Dat1+Dat2+Dat3+Dat4+Dat5
If Work4 <> Checksum Then Bad_Data
 'Set flag for unit that responds
 Comm_Flag = 1
 Work3 = %00000001 'Set up pointer bit
 Work3 = Work3 << Addr_Req 'Rotate "1" into Slave location
 Comm_Flag = Comm_Flag+Work3

'Add pointer bit to to designate active Slave
 'Display incoming data
 Debug "Address of Sender = ",DEC Addr_Req,CR
 Debug "Data byte 1 = ",DEC Dat1,CR
 Debug "Data byte 2 = ",DEC Dat2,CR
 Debug "Data byte 3 = ",DEC Dat3,CR
 Debug "Data byte 4 = ",DEC Dat4,CR
 Debug "Data byte 5 = ",DEC Dat5,CR

 Goto Done_Polling
Bad_Data:
 Debug "Checksum Invalid Addr: ",DEC Addr_Req,cr
 Goto Master_Program
No_Data:
 Debug "No Data Returned Addr: ",DEC Addr_Req,cr
 Goto Master_Program
Done_Polling:

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 160 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

 Debug "Comm_Flag = ", BIN8 Comm_Flag,CR
' Pause 3000
 Goto Master_Program

'***
Slave_Program:
 Debug "Slave Program ",CR
 LOW TX_RX 'Enable receiver on RS-485
 SERIN
 Data_In,Baud,[Addr_Req,Prgm_Req,Dat1,Dat2,Dat3,Dat4,Dat5,Checksum]
 'Test checksum
 If Addr_Req <> Addr Then Bad_Address
 Work4 = Addr_Req+Prgm_Req+Dat1+Dat2+Dat3+Dat4+Dat5
 If Work4 <> Checksum Then Bad_Sum
 PUT 0,Dat1 'Store data for other programs
 PUT 1,Dat2
 PUT 2,Dat3
 PUT 3,Dat4
 PUT 4,Dat5
 RUN Prgm_Req 'Execute requested program
Bad_Sum:
 Debug "Checksum Invalid: ",cr
 Goto Slave_Program
Bad_Address:
 Debug "Wrong Address: ",DEC Addr_Req,cr
 Goto Slave_Program

 Goto Get_Address
END

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 161

' Program Listing 56.2: Analog.bsx

'Analog.bsx
'This is program 1 for the STAMP Net design. If this program
'is requested then 128 analog measurements are taken with the
'ADC0831 analog to digital converter. The maximum, minimum,
'and average result are returned to the Master unit.

'I/O pin designations
AD_Clk CON 0 'ADC0831 clock pin
AD_Dat CON 1 'ADC0831 data pin
AD_CS CON 8 'ADC0831 chip select (asserted low)
Relay CON 9 'Relay control pin (asserted high)
GPIO1 CON 10 'General purpose I/O pin
GPIO2 CON 11 'General purpose I/O pin

'Communication Constants
Data_Out CON 5 'TTL data out pin
TX_RX CON 6 'Receive enable(asserted low)
Data_In CON 7 'TTL data in pin
Baud CON 45 '38.4kbps, 8N1 true data

'Internally used registers
Addr var byte 'Address of unit
Comm_Flag var byte 'flag bits for unit
 Mstr var Comm_Flag.bit0
'Set for Master unit cleared for Slave
 Sl var Comm_Flag.bit1
'Set if Slave # 1 is present on RS-485 bus
 S2 var Comm_Flag.bit2
'Set if Slave # 2 is present on RS-485 bus
 S3 var Comm_Flag.bit3 'Set if Slave # 3 is present on RS-
485 bus
 S4 var Comm_Flag.bit4
'Set if Slave # 4 is present on RS-485 bus
 S5 var Comm_Flag.bit5
'Set if Slave # 5 is present on RS-485 bus
 S6 var Comm_Flag.bit6
'Set if Slave # 6 is present on RS-485 bus
 S7 var Comm_Flag.bit7
'Set if Slave # 7 is present on RS-485 bus

'Communication message string variables bytes(8 total)
Addr_Req var byte 'Unit address of message destination
Prgm_Req var byte 'Request execution of this program
Dat1 var byte 'Data byte 1
Dat2 var byte 'Data byte 2
Dat3 var byte 'Data byte 3
Dat4 var byte 'Data byte 4
Dat5 var byte 'Data byte 5

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 162 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

Checksum var byte 'Sum of previous bytes

'Storage Registers
Put_Addr var byte 'Put address location
Get_Addr var byte 'Get address location

'Working registers
Loop1 var byte 'For...Next variable
Work1 var byte 'General purpose register
Work2 var byte 'General purpose register
Work3 var byte 'General purpose register
Work4 var byte 'General purpose register
WorkBig var word 'Word sized general purpose register

'A/D registers
ResultA_D var byte 'Result of A to D measurement
MaxA_D var byte 'Storage for maximum A to D result
MinA_D var byte 'Storage for minimum A to D result
AvgA_D var byte 'Storage for avg. A to D result

'Program constants
AD_Samples CON 128 'Number of samples taken
DirFlag CON 6 'Flag set to skip direction setting
routine

'***
Main_Program:

GET DirFlag,Work2
If Work2 = 10 Then Get_Address

Comm_Flag = %00000000
Outs = %0000000100100000 'Set output pin values
Dirs = %0000001101100011 'Set pin direction values

Get_Address:
Addr = (INL&%0011100)/4 'Get unit address from P4-2

 WorkBig = 0 'Clear average storage register
 MinA_D = 255 'Set minimum to max output
 MaxA_D = 0 'Set maximum to min output

Measure_Analog:
 For Loop1 = 1 to AD_Samples
 LOW AD_CS
 PULSOUT AD_Clk,10
 SHIFTIN AD_Dat,AD_Clk,msbpost,[ResultA_D]
 HIGH AD_CS
 WorkBig = Workbig + ResultA_D
 If ResultA_D < MaxA_D Then Test_Min
 MaxA_D = ResultA_D

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 163

Test_Min:
 If ResultA_D > MinA_D Then Keep_Sampling
 MinA_D = ResultA_D
Keep_Sampling:
 Next
 AvgA_D = WorkBig/AD_Samples

Debug "Average Storage = ",DEC WorkBig,cr
Debug "Minimum A to D = ",DEC MinA_D,cr
Debug "Maximum A to D = ",DEC MaxA_D,cr

 Checksum = MaxA_D+MinA_D+AvgA_D
 HIGH Data_Out 'Set output high
 HIGH TX_RX 'Enable transmission on RS-485
 SEROUT
 Data_Out,Baud,[$00,$00,MaxA_D,MinA_D,AvgA_D,$00,$00,Checksum]
 PAUSE 1
 LOW TX_RX 'Enable receiver on RS-485

 RUN 0 'Return to main program
END

'Program Listing 56.3: IOControl.bsx

'IOControl
'The IOControl program sets the pin direction and output levels of the
'Relay,'GPIO1, and GPIO2 pins. The pin direction and voltage level are
'determined by the value in Dat1 sent by the Master unit.
'
'The values are defined as,
' Dat1,2 GPIO1 direction 1 = output
' Dat1,3 GPIO2 direction 1 = output
' Dat1,5 Relay voltage level
' Dat1,6 GPIO1 voltage level
' Dat1,7 GPIO2 voltage level

'I/O pin designations
AD_Clk CON 0 'ADC0831 clock pin
AD_Dat CON 1 'ADC0831 data pin
AD_CS CON 8 'ADC0831 chip select (asserted low)
Relay CON 9 'Relay control pin (asserted high)
GPIO1 CON 10 'General purpose I/O pin
GPIO2 CON 11 'General purpose I/O pin

'Communication Constants
Data_Out CON 5 'TTL data out pin
TX_RX CON 6 'Receive enable(asserted low)
Data_In CON 7 'TTL data in pin
Baud CON 45 '38.4kbps, 8N1 true data

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

Page 164 •••• The Nuts and Volts of BASIC Stamps (Volume 2)

'Internally used registers
Addr var byte 'Address of unit
Comm_Flag var byte 'flag bits for unit
Mstr var Comm_Flag.bit0 'Set for Master unit cleared for Slave
Sl var Comm_Flag.bit1 'Set if Slave # 1 is present on RS-485 bus
S2 var Comm_Flag.bit2 'Set if Slave # 2 is present on RS-485 bus
S3 var Comm_Flag.bit3 'Set if Slave # 3 is present on RS-485 bus
S4 var Comm_Flag.bit4 'Set if Slave # 4 is present on RS-485 bus
S5 var Comm_Flag.bit5 'Set if Slave # 5 is present on RS-485 bus
S6 var Comm_Flag.bit6 'Set if Slave # 6 is present on RS-485 bus
S7 var Comm_Flag.bit7 'Set if Slave # 7 is present on RS-485 bus

'Communication message string variables bytes(8 total)
Addr_Req var byte 'Unit address of message destination
Prgm_Req var byte 'Request execution of this program
Dat1 var byte 'Data byte 1
Dat2 var byte 'Data byte 2
Dat3 var byte 'Data byte 3
Dat4 var byte 'Data byte 4
Dat5 var byte 'Data byte 5
Checksum var byte 'Sum of previous bytes

'Storage Registers
Put_Addr var byte 'Put address location
Get_Addr var byte 'Get address location

'Working registers
Loop1 var byte 'For...Next variable
Work1 var byte 'General purpose register
Work2 var byte 'General purpose register
Work3 var byte 'General purpose register
Work4 var byte 'General purpose register
WorkBig var word 'Word sized general purpose register

'A/D registers
ResultA_D var byte 'Result of A to D measurement
MaxA_D var byte 'Storage for maximum A to D result
MinA_D var byte 'Storage for minimum A to D result
AvgA_D var byte 'Storage for avg. A to D result

'Program constants
AD_Samples CON 128 'Number of samples taken
DirFlag CON 6 'Flag set to skip direction setting
routine

'***
Main_Program:

GET DirFlag,Work2
If Work2 = 10 Then Get_Address

Column #56: Stamp Net Part 2 – A Multi-drop Stamp-based Network

The Nuts and Volts of BASIC Stamps (Volume 2) •••• Page 165

Comm_Flag = %00000000
Outs = %0000000100100000 'Set output pin values
Dirs = %0000001101100011 'Set pin direction values

Get_Address:
Addr = (INL&%0011100)/4 'Get unit address from P4-2

'Set I/O Direction
 GET 0,Work1 'Dat1 from Mater stored in RAM0
 Work1.NIB0 = Work1.NIB0&%1100
'Clear 2 low bits of desired dir. reg.
 Work2.NIB0 = DIRC&%0011
'Clear 2 high bits of actual dir. reg.
 DIRC = Work2.NIB0+Work1.NIB0
'Sum of high and low bits is direction
 DEBUG "DIRC = ",BIN4 DIRC,CR 'Display direction nibble

'Set output levels
 GET 0,Work1 'Dat1 from Master stored in RAM0
 Work1.NIB1 = Work1.NIB1&%1110
'High nibble has voltage levels
 OUTC = Work1.NIB1 'Set output levels
 DEBUG "OUTC = ",BIN4 OUTC,CR 'Display output register

 Dat1 = 0 'Clear returned data
 If DIRC = %1111 Then No_Inputs
'If direction = %1111 then skip
 Dat1 = INC&%1100 'Dat1 equals values at GPIO1,2
 DEBUG "INC = ",BIN4 INC,CR 'Display input values

No_Inputs: 'Send data to Master
 Checksum = Dat1
 HIGH Data_Out 'Set output high
 HIGH TX_RX 'Enable transmission on RS-485
 SEROUT Data_Out,Baud,[$00,$00,Dat1,$00,$00,$00,$00,Checksum]
 PAUSE 1
 LOW TX_RX 'Enable receiver on RS-485

 PUT DirFlag,10
 RUN 0 'Return to main program
END

