
ThermoProp
A Temperature/Humidity Logging System Utilizing the Parallax P8X32A Microcontroller

The ThermoProp system consists of three modules, all utilizing a P8X32A (Propeller)
microcontroller for a ‘brain’. This project originally started as an upstairs/downstairs thermostat, but
has morphed into a data logger. I may eventually add a fourth module to interface to my home HVAC
system. Currently the system logs temperature & humidity from outside and the upstairs of my house,
and only temperature from the downstairs of my house. Data is communicated wirelessly via XBee
and logged to µSD every 15 minutes.

The Master unit (Thermo-Master) is located upstairs and contains the µSD card which is used to store
the collected data. The Master has a DS1307 Real Time Clock with battery backup (BR1225) and
uses a Parallax SHT11 module to read the temperature and humidity. An XBee Wireless RF module
is utilized to communicate with remote units. The user interface consists of a single pushbutton (used
to set the date/time) and a 4-line by 20-character LCD with the following format:

03/06/13 21:52:14
 UP: 77.1° H 24.2%
 DN: 80.3°
OUT: 53.2° H 29.3%

The Outside unit (Thermo-Slave) is mounted to an outside wall of my house (with a Velcro strip). A
location was chosen that is shielded from direct sunlight. The module is powered by 3 AA batteries.
Typical battery life is on the order of 70 days. A Sensirion SHT11 temperature/humidity sensor is
used to measure the outdoors temperature and humidity. An XBee Wireless RF module transmits the
local data to the Master unit. Since it is battery powered, this unit spends most of its time in low-
power mode, only ‘waking up’ every 10 minutes (roughly) to take a reading and transmit the data.
Without the power-down, the batteries will only last 7-8 days!

The Downstairs unit (Thermo-Down) is, obviously, located downstairs. The downstairs unit does not
measure relative humidity, only temperature. A DS18B20 One-Wire Digital Thermometer is used for
the temperature sensing. An XBee Wireless RF module is employed for communication with the
Master unit. The user interface consists of a single pushbutton (requests the current date/time and
outside temperature from the Master unit) and a 2-line by 16-character LCD with the following
format:

UP: 77.1°
DN: 80.3°

Pressing the pushbutton will cause the following format to be displayed for 5 seconds:
03/06/13 21:52
OUT: 53.2°

When first powered on, the Master unit will display the current date and time, updated every second,
and the local temperature and humidity, updated every 5 seconds. The outdoors unit is the key to the
data collection effort. In the battery-powered Outside unit, the Propeller and XBee are put into a low-
power mode, with the Propeller doing a slow count. Approximately every 10 minutes, the Propeller
powers-up, wakes up the XBee, gets a reading from the SHT11, and transmits the temp/humidity to
the Master unit. The Propeller then puts the XBee back to bed, and returns to low-power mode.

When the Master receives the Outside data, it stores it and displays the data on the LCD. It then sends
the local (upstairs) temperature to the Downstairs unit. The Downstairs module will store this info

and update the data on its own LCD. It will then transmit the local (downstairs) temperature back to
the Master unit. The Master again stores the data and updates the LCD.

Every fifteen minutes, on the quarter-hour, the current information is written to a text file on the µSD
card, stored comma-separated in a .CSV file. At midnight a new file is created, with the filename in
the format of yy-mm-dd.csv. When the new file is created, a header line is also written. A small
example of a log file:

Date,Time,Upstairs (F),Humidity (%),Downstairs (F),Outside (F),Humidity (%)

03/01/13,00:00, 74.4, 28.3, 76.9, 41.7, 44.5
03/01/13,00:15, 74.2, 28.2, 76.7, 41.4, 45.0
03/01/13,00:30, 74.0, 27.9, 76.3, 40.9, 46.0
03/01/13,00:45, 73.6, 27.6, 76.3, 40.7, 46.3
03/01/13,01:00, 73.3, 28.7, 76.1, 40.3, 46.8
03/01/13,01:15, 74.3, 28.5, 76.6, 40.0, 47.0
03/01/13,01:30, 74.7, 28.3, 76.8, 39.8, 47.5
03/01/13,01:45, 74.7, 27.7, 76.9, 39.6, 48.2

The log files are copied from the µSD card, usually once a week. Data is copied to an Excel
workbook (a new workbook is created each month) with a tab for each day of the month. Each day
tab is identical. The data file is copied into the appropriate worksheet day. The worksheets are
constructed to extract minimum/maximum data, and produce line graphs of temperature and humidity
related to time of day, as below:

ThermoProp System

1. Outside unit sends outside temperature and humidity to Master unit every 10 minutes.

2. After receiving the outside information, the upstairs temperature is sent to the Downstairs
unit.

3. Upon receipt of Upstairs information, Downstairs temperature is transmitted to the Master.

Master unit
HARDWARE
The hardware was constructed on a breadboard for testing, then the schematic was created in Eagle
and a circuit board manufactured. All the ICs on the board are mounted in sockets.

Input power is provided from a ‘wall wart’-type adapter, providing 7.5 VDC through a standard
2.1mm DC plug. Voltage regulation is done by an LM2940 providing +5 VDC, and a MIC39100-3.3
regulator providing the +3.3 VDC.

The microcontroller is a Parallax P8X32A (Propeller) in the –D40 package, with the program stored
in a 24LC512 Serial EEPROM.

A DS1307 RTC is powered from the +5V rail, and is battery-backed with a BR1225 Lithium coin
cell battery.

A Parallax SHT11 temperature/humidity sensor module is mounted on a remote corner of the pcb.
The module is powered by 3.3V. The module is mounted in an 8-pin socket on the pcb.

The XBee Wireless RF module is mounted in the required 2mm sockets. It is an Xbee 2mW Series 2.5
Chip Antenna. When I purchased another unit recently for doing some breadboarding, I purchased
this as Xbee 2mW PCB Antenna - Series 2 (ZigBee Mesh). The XBee was configured using the X-
CTU configuration software and set as ZNET 2.5 COORDINATOR AT.

Connection to the LCD is provided via a three-pin header. The LCD is a 4-line by 20-character
format, with a serial backpack (LCD117 from Modern Device, http://shop.moderndevice.com/). The
LCD is also powered by +5V.

A two-pin header provides a connection for the pushbutton (normally open) switch. The pushbutton
switch input to the Propeller is pulled to ground via a 10K resistor, and goes high (3.3V) upon switch
closure. The pin is current-limited via an inline resistor. A small tactile pushbutton is also soldered to
the pcb which provides a RESET function for the microcontroller, when pushed.

SOFTWARE
The main program first initializes the communications (FullDuplexSerial4port), then inits the LCD
display. The real-time clock (DS1307_RTCEngine) cog is started and the time is read and stored.
Next, cogs are started that read the temperature/humidity (uses Sensirion_full), monitor XBee
communications, monitor the pushbutton, and write to µSD (uses fsrw). The program then enters a
loop that monitors various flags (SettingRTC, NewOutTemp, NewDwnTemp, NewLocTemp) and calls
subroutines based on the state of the flags. It also updates the time display once a second.

cog_LocalTemp
This cog starts the cog for reading the SHT11, then takes a reading from the sensor every 5 seconds.
After getting the temp/humidity data, a flag ‘NewLocTemp’ is set, indicating to the main program
loop that the LCD should be updated.

cog_Remote
This cog monitors the XBee ‘receive’ line for incoming data. The incoming data is identified by the
first character received:

D: the transmission is from the downstairs XBee. The rest of the transmission is parsed and
stored as the downstairs temperature and a flag is set ‘NewDwnTemp’ to indicate that the main
loop needs to update the downstairs temperature displayed.

T: this is a request from the downstairs unit for the current date/time and outside temp. A
function is called to send the requested data.

O: this is a transmission from the outside unit. The temperature and humidity are parsed from the
data string and stored, and a flag set ‘NewOutTemp’ to indicate to the main loop that the
outside temperature has updated. The upstairs temperature is sent to the downstairs unit
before resuming.

cog_Log
When this cog is launched, it retrieves the date/time info and uses that info to produce a filename in
the format ‘yy-mm-dd.csv’. The µSD card is mounted and a file opened. A header indicating “===
REBOOT ===” is written before the standard data header. This indicator is only written at cog
initialization and can be used to see that the system restarted for some reason. The cog then enters a
loop monitoring the current date/time. On the quarter-hour, the drive is mounted and the current data
is written to disk. Each midnight, a new file is opened for that day’s data collection. A data header is
written at the top of each new file.

cog_Button
This cog runs in a loop waiting for a button press. When a button press is detected, the cog sets a flag
‘SettingRTC’ to indicate to the main loop that the time-setting function should be called. The time-set
routine uses short button presses to increment the current variable (year, month, day, etc) and long
button presses to indicate that the current data is correct and to move to the next variable (after setting
year, moves to setting month, etc).

PCB layout of Thermo-MasterProp rev. 1.0

Schematic of Thermo-MasterProp rev. 1.0

Outside unit
HARDWARE
The hardware was constructed on a breadboard for testing, then the schematic was created in Eagle
and a circuit board manufactured. All the ICs on the board are mounted in sockets.

Input power is provided from 3 AA batteries, provided through a 2-pin header. The batteries are
contained in a standard plastic 3-cell holder. The holder is mounted to the inside of the case with a
Velcro strip. Voltage regulation is done by a REG102 low-dropout regulator, providing +3.3 VDC.

The microcontroller is a Parallax P8X32A (Propeller) in the –D40 package, with the program stored
in a 24LC512 Serial EEPROM.

A 4-pin header provides connection to a Sensirion SHT11 sensor mounted on a remote board. The
remote sensor board is drilled to allow use of the Sensirion SF1 Filter Cap. This cap mounts over the
sensor and provides protection while still allowing relative humidity measurements. The board is
mounted so that only the cap extends through the top of the case, and is sealed with a little Sugru.

An XBee Wireless RF module is mounted in 2mm sockets. It is an Xbee 2mW Series 2.5 Chip
Antenna. When I purchased another unit recently for doing some breadboarding, I purchased this as
Xbee 2mW PCB Antenna - Series 2 (ZigBee Mesh). The XBee was configured using the X-CTU
configuration software and set as ZNET 2.5 ROUTER/END DEVICE AT. The XBee ‘SLEEP_RQ’
pin is wired to the Propeller, so that the XBee may be put into low-power mode when not needed.

SOFTWARE
The program first initializes the communications with the XBee (Simple_Serial). A cog for reading
the SHT11 is launched, and a cog for data transmission is started. The main program then ends.

cog_Temps
When this cog is launched it starts the SHT11 object (Sensirion_full), then takes a
temperature/humidity reading and stores this info in Hub memory.

cog_Send
At startup of this cog, the XBee ‘sleep’ pin is taken low to wake up the XBee module. After a short
delay to allow the XBee to get ready, a function is called which transmits the temperature and
humidity values from the Hub memory. After another short wait, the XBee pin is driven high to put
the XBee into a low-power mode. After the XBee is sent to sleep, the ‘cog_Temps’ cog is stopped,
and a function is called that drops the Propeller into a low-power mode (running at 5 MHz with no
PLL). A loop is entered which counts up to 600 seconds (10 minutes). At the end of the count, the
Propeller is returned to 80 MHz with PLL operation, and the ‘cog_Temps’ cog is restarted. The XBee
is then taken out of low-power mode and the temperature/humidity data is sent. The system is
returned to low-power mode (as before) and the 10-minute countdown starts again.

PCB layout of Thermo-Slave Prop rev. 2.1

Schematic of Thermo-Slave Prop rev. 2.1

Downstairs unit
HARDWARE
The hardware was constructed on a breadboard for testing, then the schematic was created in Eagle
and a circuit board manufactured.

Input power is provided from a ‘wall wart’-type adapter, providing 5 VDC through a standard 2.1mm
DC plug. Voltage regulation is done by an MIC391000-3.3WS providing +3.3 VDC.

The microcontroller is a Parallax P8X32A (Propeller) in the QFP package, with the program stored in
a 24LC512 Serial EEPROM. The EEPROM is mounted in a socket.

A three-pin header provides connection to a DS18B20 One-Wire Digital Thermometer. The
temperature sensor is mounted in a hole in the top of the case, sealed underneath with a little Sugru.

An XBee Wireless RF module is mounted in 2mm sockets. It is an Xbee 2mW Series 2.5 Chip
Antenna. When I purchased another unit recently for doing some breadboarding, I purchased this as
Xbee 2mW PCB Antenna - Series 2 (ZigBee Mesh). The XBee was configured using the X-CTU
configuration software and set as ZNET 2.5 ROUTER/END DEVICE AT

Connection to the LCD is provided via a three-pin header. The LCD is a 2-line by 16-character
format., This is a serial-enabled, 3.3V, White on Black LCD, purchased from Sparkfun Electronics
(http://www.sparkfun.com).

A two-pin header provides a connection for the pushbutton (normally open) switch. The pushbutton
switch input to the Propeller is pulled to ground via a 10K resistor, and goes high (3.3V) upon switch
closure. The pin is current-limited via an inline resistor. A small tactile pushbutton is also soldered to
the pcb which provides a RESET function for the microcontroller, when pushed.

SOFTWARE
The main cog initializes two communications ports (FullDuplexSerial4port), one for communications
with the LCD, the other to talk to the XBee. The DS18B20 is then initialized (jm_1-wire) and
checked. Other cogs are then started, to read the temperature on a timed basis, to handle sending and
receiving data, to keep the LCD updated, and to watch for button presses. The main cog then shuts
down, with all of the work being handled by the launched cogs.

cog_Temps
Reads the temperature from the DS18B20 and stores the return in Hub memory, then sets a flag
TempUpd to indicate new temperature data. Waits an interval (currently 5 seconds) and repeats.

cog_Display
This cog runs in a loop watching two flags, TempUpd, indicating the local temperature has updated,
and NewUpTemp, indicating that the remote (upstairs) temperature has updated. The LCD is then
written with the new information.

cog_Remote
This cog monitors the XBee ‘receive’ line for incoming data. The incoming data is identified by the
first character received:

U: the transmission is from the upstairs XBee. The rest of the transmission is parsed and stored
as the upstairs temperature and a flag is set ‘NewUpTemp’ to indicate that data has updated.

T: this is the current date/time and outside temperature, sent from the upstairs unit. The LCD is
cleared and the date/time displayed on the first line, with the outside temperature displayed on
the second line. After a period of time (currently 5 seconds), the LCD screen returns to the
normal upstairs/downstairs temperature display.

This cog also transmits the request for the upstairs temperature data when the appropriate flag
(AskForTime) is set.

cog_Button
This cog runs in a loop waiting for a button press. When a button press is detected, the cog sets a flag
‘AskForTime’ to indicate that the Master unit should be queried for the current date/time and outside
temperature.

PCB layout of Thermo-Downstairs QFP rev. 1.0

Schematic of Thermo-Downstairs QFP rev. 1.0

Photos

Thermo-MasterProp rev. 1.0

Thermo-Slave Prop v2.1

Thermo-Downstairs QFP v.1.0

Future Plans
On the software side of things, the Master unit needs a timer routine that will ‘blank’ the remote
temperature data if no new data is received for some time. Currently, if the batteries die in the
Outside unit, the only indication is that the Outside and Downstairs data do not change (which I
eventually notice).

I will probably explore replacing the 4x20 LCD on the Master unit with some sort of small touch
screen. I have lots of pins left, but may have to squeeze some cog functions.

I’m going to redo the Master unit pcb. The µSD socket I’m using has no ‘spring’ to it to help eject the
card, and I found since the socket is flush (more or less) with the edge of the pcb, that I need a
ridiculously large hole in the case to be able to retrieve the memory card. I’m looking at several
options to fix this problem.

I may one day add a fourth unit that interfaces to my HVAC unit. This was the original intent of this
project, so I’ve already done some research into what is required. That addition would require a
complete re-write of the Master and Downstairs unit software, of course.

