
TCS230 Color Sensor "Tuna Can" Compass
by

Philip C. Pilgrim, Bueno Systems, Inc.

Introduction

Building the Compass Card

This paper describes how to build an electronic compass for a
Parallax Boe-Bot using the TAOS/Parallax TCS230 Color Sensor
Module. With it, the Boe-Bot is able to know which direction it's
pointing at all times, and it can use this information as an aid to
navigation. To build the compass, you will need the following
materials:

1. Parallax Boe-Bot, Part #28132.
2. TAOS/Parallax TCS230 Color Sensor Module, Part # 30054.
3. Parallax TCS230 Boe-Bot Mounting Kit, Part # 28100.
4. Empty 6 oz. steel tuna can.
5. Two permanent magnets.
6. Thumbtack.
7. Packaging tape.
8. White, sticky-backed label stock or double-stick tape.
9. Light (3-in-1) lubricating oil.
10. A handheld compass and declination data for your locale, or
some other way of determining true north.

You will also need the following tools:
1. Center-finder or dividers and a marker or scribe.
2. Hammer and center punch.
3. Drill with 1/16" bit.
4. PC with a color printer and available serial port.
5. Paper punch.
6. (Optional) Hot-melt glue gun and glue.

The rotating disc inside a navigation compass is called a compass
"card". Our compass card is going to be a tuna can. To begin, obtain
an empty 6 oz. steel tuna can, from which the lid and label have
been removed. The examples shown here use a Star-Kist® can.
You're going to drill a small hole in the bottom of the can, in the
center; but first, you have to find the center. The illustrations at the
right show one such method, using a center-finder. Because the
bottom is recessed, it's difficult to scribe exactly along the
straightedge. But by holding the marker at a consistent angle and
making marks from each side of the can, you will form a small
square whose center is easy to eyeball. You can also use a pair of
dividers, as follows: First measure the inside diameter of the can. Set
the dividers to half the amount. In the inside of the can now, with
one point of the dividers positioned as far to the edge as you can,
use the other point to scribe a mark across the center. Repeat this
three more times, rotating the can 90 degrees each time. You will
end up with a small square in the middle whose center you can then
eyeball.

With your marks on top, put a block of wood under the can for
support. Using the hammer and center punch, make a small

®

indentation. This will make drilling a hole more accurate. Finally,
with the wood block still in place, drill a 1/16" hole at the punched
location.

Next, take the thumbtack and insert it from the top through the hole
you just drilled. Secure it in place with a square piece of packaging
tape. Now, invert the can so you can see the point of the thumbtack
protruding into the can.

Print the included file with a color printer on white
label stock or plain paper. You can do this from most photo,
drawing, or paint programs. Print it so it's about 1.75" in diameter
(150 dpi). If you used plain paper, now would be a good time to
adhere the double-stick tape. Without peeling the backing off, use a
paper punch to punch a hole in the center. Now peel of the backing
and adhere the color wheel to the inside of the can so the thumbtack
protrudes through the center of the hole you just punched.

Finally, obtain two small identical permanent magnets. Long,
skinny ones like the ones shown at the right are best, but round
ones will also work. Just be sure the poles are oriented
perpendicular to the largest surface and not parallel to it. Attach the
magnets to opposite sides of the can as shown to the right. Make
sure the poles are identically aligned and not opposing each other.
The easiest way to do this is, with the magnets stuck together,
separate them using both hands and, without rotating them, move
them to opposite sides of the can and attach them. If the poles
oppose each other, the compass just won't work. Also, with the can
inverted as shown, make sure the magnets are near the top. This
helps reduce the influence of ferrous materials present on the Boe-
Bot, principally the DB9 serial connector.

Assemble the TCS230 Color Sensor Module boards to the Boe-Bot
Mounting Kit parts as shown. Plug the assembled unit into the
AppMod socket. Apply a amount of light lubricating oil
to the socket of the socket-head cap screw, being careful to avoid the
lens and the electronics beneath. Invert the Boe-Bot and shake off
the excess. Now, position the tuna can so the point of the thumbtack
mates with the socket-head cap screw. The can should balance and
rotate freely. You can trim the balance by shifting the magnets a
little along the circumference of the can -- just as you would with
tire weights when balancing a wheel on your car. Once balanced,
you can tack the magnets in place, if you want, with hot-melt glue.
When replaced on the Boe-Bot, the can should always return to the
same position when displaced, with one of the magnets pointing to
magnetic north. Notice that it may oscillate a number of times
before settling down. This is because, unlike most navigation
compasses that are liquid-filled for damping, this one is undamped.
Nonetheless, it will still be useful for navigating your Boe-Bot!

Calibration is done using a program which runs on your PC and is
connected to your Boe-Bot via a serial cable. First, however, you

ColorWheel.jpg

Putting the pieces together

Calibrating the Compass

very small

NSNS

"Front Mount"
Strip

Socket
Head
Cap

Screw

1" Standoffs"Front Mount"
Strip

AppMod Adapter

5/8" Standoffs

need to load the Boe-Bot-resident BASIC Stamp code. Open your
Stamp editor and load the included program .
When running, you should see the TCS230's LEDs come on and
data being displayed on you debug window. Now close your debug
window and start the PC host program,
(for you Linux users). You should see a screen
similar to the one below:

TCS230Monitor.bs2

TCS230Compass.exe
TCS230Compass.pl

If you don't get a display like this, make sure of these three things: 1)
that the program is running on the Boe-Bot, 2) that
the debug window is closed, and 3) that the serial cable from your PC is
connected to the Boe-Bot.

You will notice that as you spin the tuna can the displays in the left-hand
column change. These displays reflect the different colors the TCS230
sees as the color wheel spins above it. The red, green, and blue bars
show the color breakdown in the usual RGB color space. Take some time
now to rotate the can slowly to see where each of these components
peaks. You want each one to peak just below 255 and not to saturate. If it
does saturate, the message box at the top will tell you so. You can adjust
the response of each color using the arrow buttons on either side: left for
lower, right for higher. Adjust each color now for the best peak response.

Another thing you will notice is that as you rotate the can, the little
yellow dot in the hue and saturation display will rotate around the
circle. This circle, in fact, is similar to the color wheel in the tuna can, so
that should come as no surprise. Both the color wheel and this circle
have colors arranged around the circumference by , which is just one
component in the color space. represents the

TCS230Monitor.bs2

hue
hue/saturation/value Hue

primary spectral component of the color, i.e. the location in the
spectrum where the color has its peak. Of course, in reality, there is
no continuum between red and blue, their being at opposite ends of
the visible spectrum, but we perceive such a continuum,
nonetheless, and representing in a circle like this is a way to
represent that perception. is a measure of how "pure" the
color is. What we usually call "bright red" or "scarlet" is 100%
saturated. "Pink" is just red with a lower , i.e. it has
components of blue and green which make the red look "whiter".
You will notice in the and display that the center of
the circle is white. This represents a of zero, increasing to
100% as you approach the circumference. The third component,

, is a measure of the color's brightness. "Maroon", for example,
is just red with a lower .

The reasons for choosing the HSV () color space
for the compass are:

1. , lying in a circular continuum dovetails nicely with
direction which also lies in a circular continuum.
2. By isolating and ignoring it, we can filter out the
brightness variations that the TCS230 sees when the can teeter-
totters on its axis rather than rotating.

Ideally, the colors that the TCS230 sees when looking at the color
wheel would be 100% saturated. If that were the case, the yellow
dot would always be on the edge of the circle. But it's not. In fact, it
seldom, if ever, reaches the edge, oscillating in and out within the
circle's interior. This is because a color printer cannot print a "pure"
color. So, when the TCS230 looks at something that's been printed,
it will never see a pure, 100% saturated color.

Another thing you will notice is that as you spin the can, even
though the can is rotating at a uniform rate, the yellow dot seems to
speed up and slow down, almost getting stuck at times in certain
parts of the circle. This, again, has to do with the printer not being
able to produce perfect representations of the colors it's asked to
print. When what are supposed to be different hues look alike to the
TCS230 because the printer printed them so similarly, they are these
regions where the yellow dot will stick. Now this can be a problem
for the compass, because we don't want several points on the color
wheel looking like the same direction! What if it were possible to
make another color wheel which minimized these "regions of
confusion"? Well, it is possible, and that's what you're going to do
next.

Print out the next page in this document and place it on the floor,
well away from computer monitors and other sources of magnetic
interference. You may want to tape it down to hold it in place. Don't
worry about which direction north is; it's not important yet. Set the
Boe-Bot on top of the paper so it points to the top of the page,
aligned with the vertical-most rectangle -- but keep it connected to
your PC. Wait for the can to settle, then click the diamond in the
compass display corresponding to "north". It will change from gray
to a fully-saturated version of the color the TCS230 is seeing. Notice

hue
Saturation

saturation

hue saturation
saturation

value
value

hue/saturation/value

Hue

value

North

also that the ring surrounding the "Bearing" label changes color to
match what the sensor is seeing. Now rotate the Boe-Bot right by 45
degrees to align with the next rectangle on the paper. Click on the
diamond corresponding to "northeast". Continue this all the way
around the circle. When you've clicked the last diamond, a large red
needle will appear to point in the direction the Boe-Bot is headed,
and the bearing indicator will change to an actual number,
representing a direction. Ignore this stuff for now, though. It's not
going to be accurate.

You can redefine any direction color you like by clicking on its
corresponding diamond, or undefine it by right-clicking on it. When
all eight directions are defined, you can save the definitions to a file
for later recovery, if you like, by selecting

. Once you've done that, select
. You will be asked for a file name for the new jpeg file. Then

the program will begin the process of creating a new color disc,
keeping you abreast of its progress in the message. When
completed, the new file will be written.

Open the file you just created and look at it. Do you see the
difference in color distribution? If, for example, you were getting
"stuck" in blue before, you will notice that blue now takes up much
less of the overall circumference. Now print this new color wheel, as
you did before, at about 1.75" (150 dpi) in diameter. Replace the
original color wheel in the can with this new one (or just stick the
new one over the original) and replace the can on the Boe-Bot. This
time when you spin the can, the yellow dot should rotate about the
center of the circle much more smoothly than before.
You are now ready for a final compass calibration.

Place the calibration sheet on the floor again, this time making sure
that "North" points to true north. You may need to use a real
compass for this, remembering to correct for the declination in your
area. ("Declination" is the difference between true north and
magnetic north and is given as degrees east of north or degrees west
of north.) Make sure all the diamonds are undefined by right-
clicking on those that show a color other than gray. Now go through
the entire calibration process again, clicking on each diamond in
turn until you are done. This time, when you're finished, the red
needle and the bearing number should correspond to reality. If they
do, you've successfully calibrated your compass!

A compass isn't much good if you can't use it on an untethered
robot, though. What's needed is a BASIC Stamp program that uses
the calibration information to calculate direction on its own. Well,
you're in luck! By selecting , you
can generate just such a program and save it for later upload to the
Boe-Bot.

Close the calibration program, start the BASIC Stamp editor, and
open the program you just created. It should look something like
the one beginning on the following page. There's a subroutine in
this program called which returns a number ranging from 0

File -> Save Compass
Colors File -> Create New Color
Disc

File -> Create BASIC Stamp Code

GetDir

hue/saturation

Boe-Bot Navigation

Listing 1. Sample BASIC Stamp program output from calibration program.

'{$PBASIC 2.5}
'Define port pins

EN con 1
A0 con 2
S0 con 3
S1 con 4
S2 con 5
S3 con 6
nLED con 7
OUT con 8

'Define variables for color results.

pRED var byte
pGREEN var byte
pBLUE var byte

RED var word
GREEN var word
BLUE var word
HUE var byte
cmax var byte
cmin var byte
DIR var word

'Program starts here.

Start: low A0 'For Unit 0; use high for Unit 1.
high S0 'Maximum output rate.
high S1 ' "
low nLED 'Turn on LED.
gosub GetPeriods 'Get count periods for RGB.

'-------------------YOUR CODE GOES BELOW THIS LINE----------------------

MainLp: gosub GetDir 'Main loop
debug dec3 DIR, cr 'SAMPLE CODE: Read & echo direction.
goto MainLp 'Back for another.

--------------------YOUR CODE GOES ABOVE THIS LINE----------------------

'GetDir: Read the current direction of travel.

GetDir: gosub Color 'Read the compass color.
gosub RGBtoHue 'Convert RGB to hue.
read HUE + 3, DIR 'Use hue to look up direction.
return ' and return.

'Color: Read all three color components.

Color: high EN 'Enable output/turn on LEDs.
low S2 'Address the red output.
low S3
count OUT, pRED, RED 'Read the red component.
high S3 'Address the blue output.
count OUT, pBLUE, BLUE 'Read the blue component.
high S2 'Address the green output.
count OUT, pGREEN, GREEN 'Read the green component.
low EN 'Disable output/turn off LEDs.
return 'Return.

'RGBToHue: Extract Hue from RGB components.

RGBToHue:
RED = RED max 255
GREEN = GREEN max 255
BLUE = BLUE max 255
cmax = RED min GREEN min BLUE 'Find maximum RGB component.
cmin = RED max GREEN max BLUE 'Find minimum RGB component.
if cmin = cmax then 'Hue is undefined if SAT is zero.
HUE = 0
return

endif
if (cmax = RED) then 'Find hue in color circle.
HUE = abs(GREEN - BLUE) * 43 / (cmax - cmin)
if BLUE > GREEN then HUE = 256 - HUE

else if (cmax = GREEN) then
HUE = abs(BLUE - RED) * 43 / (cmax - cmin)
if RED > BLUE then HUE = 256 - HUE
HUE = HUE + 85

else
HUE = abs(RED - GREEN) * 43 / (cmax - cmin)
if GREEN > RED then HUE = 256 - HUE
HUE = HUE + 170

endif
endif
return 'Return.

'GetPeriods: Read count periods for RGB from EEPROM.

GetPeriods:
read 0, pRED
read 1, pGREEN
read 2, pBLUE
return

'Data: Count periods for RGB components.

Periods:
data 10, 8, 7

'Data: Lookup table for converting Hue to Direction.

Directions:
data 28, 26, 24, 23, 21, 19, 17, 16
data 14, 12, 10, 8, 7, 5, 3, 1
data 0, 255, 254, 253, 252, 251, 250, 249
data 248, 247, 246, 245, 245, 244, 243, 242
data 241, 240, 239, 238, 237, 236, 235, 234
data 234, 233, 232, 231, 230, 229, 228, 227
data 226, 225, 224, 224, 223, 222, 222, 221
data 221, 220, 220, 219, 219, 218, 218, 217
data 217, 216, 216, 215, 215, 214, 214, 213
data 212, 212, 211, 211, 210, 210, 209, 209
data 208, 208, 207, 207, 206, 206, 205, 205
data 204, 204, 203, 203, 202, 201, 201, 200
data 200, 199, 199, 198, 198, 197, 197, 196
data 196, 195, 195, 194, 194, 193, 193, 192
data 192, 190, 188, 186, 184, 183, 181, 179
data 177, 176, 174, 172, 170, 168, 167, 165
data 163, 161, 160, 159, 158, 157, 156, 155
data 154, 153, 152, 151, 150, 149, 149, 148
data 147, 146, 145, 144, 143, 142, 141, 140
data 139, 138, 138, 137, 136, 135, 134, 133
data 132, 131, 130, 129, 128, 128, 126, 125
data 123, 122, 121, 119, 118, 116, 115, 114
data 112, 111, 109, 108, 107, 105, 104, 102
data 101, 100, 98, 97, 96, 95, 94, 94
data 93, 92, 92, 91, 90, 90, 89, 88
data 88, 87, 87, 86, 85, 85, 84, 83
data 83, 82, 81, 81, 80, 80, 79, 78
data 78, 77, 76, 76, 75, 74, 74, 73
data 72, 72, 71, 71, 70, 69, 69, 68
data 67, 67, 66, 65, 65, 64, 64, 62
data 60, 58, 56, 54, 52, 50, 48, 46
data 44, 42, 40, 38, 36, 34, 32, 30
end

(north), through 64 (east), 128 (south), 192 (west), to 255,
representing the direction the Boe-Bot is pointed. This program just
reads the direction and echoes it to the debug window. You may
want to upload the program to the Boe-Bot now to verify that the
directions are correct.

Finally, let's use the compass to write a simple Boe-Bot roaming
program. This program will cause the Boe-Bot to travel north for a
count of 200, then west for 200, south for 200, then east for 200, then
stop -- hopefully where it started. Try it and see how closely the
finish point matches the start point. Once you've generated the base
code for your compass, paste the following code between the lines
where user code is allowed. This code is also found in the included
file .CompassDemo.bs2

Listing 2. Sample Boe-Bot roaming code using the compass.

'This is NOT a complete program. Paste the code between lines between the same lines
'in the code generated by the compass calibration program.

'-----------------------YOUR CODE GOES BELOW THIS LINE-----------------------

right con 12 'Servo controller: Left wheel.
left con 13 'Servo controller: Right wheel.

i var byte 'Counter.
n var byte 'Count (distance) to move.
pref var byte 'Preferred direction.
dif var byte 'Difference betw/ preferred & actual directions.
pDIR var byte 'Previous measured direciton.
lpulse var word 'Pulse duration for left wheel.
rpulse var word 'Pulse duration for right wheel.

n = 200 'Set count (distance) to 200.
pref = 0 'Set preferred direction to 0 (north).
gosub Turn 'Turn to match preferred direction.
gosub Travel 'Travel for count n.
pref = 192 'Turn west.
gosub Turn
gosub Travel
pref = 128 'Turn south.
gosub Turn
gosub Travel
pref = 64 'Turn east.
gosub Turn
gosub Travel
end

'Turn: Turn slowly (to keep compass from swinging) to direction pref.

Turn: do 'Do this until we're pointed the right way.
gosub GetDir ' Where are we pointed now?
DIR = DIR + 128 ' This will be pDIR, so make it the worst.
do ' Do this until we get two readings alike.
pDIR = DIR ' Set prev DIR to DIR.
pause 20 ' Pause to give compass time to swing.
gosub GetDir ' Get new DIR.

loop until (DIR = pDIR) ' Do it again if compass moved.
dif = DIR - pref ' How much (and which way) are we off?
if (dif < 128) then ' Too far right?
gosub HardLeft ' Yes: Rotate left.

else
gosub HardRight ' No: Rotate right.

endif
loop until (abs(DIR - pref) < 2)' Go back if we weren't close.
return 'Pointed okay now, so return.

'Travel: Move in direction pref for count n.

Travel: for i = 1 to n 'Do it n times.
gosub GetDir ' Where are we pointed?
gosub Move ' Make the appropriate move.

next ' Back for the rest.
return 'Over and out.

'Move: Take a step in the right (or left) direction.

Move: dif = DIR - pref 'How much (and which way) are we off?
if (dif < 3 or dif > 253) then Straight 'If not much then go straight.
if (dif < 30) then GoLeft 'If less than 42 degrees right, then correct left.
if (dif < 128) then HardLeft 'If 43-180 degrees right, then hard left.
if (dif < 226) then HardRight 'If 43-180 degrees left, then hard right.

' else...
GoRight: 'Correct right: left forward, right stopped.

lpulse = 1000
rpulse = 750

goto DoPulse

HardRight: 'Hard right: left forward, right backward.
lpulse = 1000

rpulse = 1000
goto DoPulse

HardLeft: 'Hard left: left backward, right forward.
lpulse = 500
rpulse = 500
goto DoPulse

GoLeft: 'Correct left: left stopped, right forward.
lpulse = 750
rpulse = 500
goto DoPulse

Straight: 'Straight: both forward.
lpulse = 1000
rpulse = 500

DoPulse: 'Perform the programmed servo pulses...
pulsout left, lpulse
pulsout right, rpulse
return ' ...and return

'-----------------------YOUR CODE GOES ABOVE THIS LINE-----------------------

