Propeller

(Hss)
Propeller
Table Of Contents

(HSS) . o o 4
ALGeNeIIC e 5
Assembler Subroutines e 6
Assembly Programming 9
Atari Joystick 14
Books References Tutorials e 15
Bootloaders 16
BY TE . . e 17
Cog RAM . . . e 19
Colors 21
Common Assembler Bugs e 24
Converting Text Output Display Type 25
Copyright and Licensing e 26
Cracking Open the Propeller - Original Page 28
Cracking Open the Propeller Chip 31
Data Storage 33
Debuggers and Emulators e 34
Dev Board Differences e 38
Development Tools e 41
DK Graphics Driver 42
DM X . e 43
Download Protocol e 44
Editing the Wiki. e 50
Example e 52
Fast-Track for PropJavelin 53
FemtoBASIC e 57
FRT . e 58
Fixed Point Math 69
Full Duplex Serial 71
Game Programming for the Propeller Powered Hydra 73
GamesS e e 74
Graphics e 76
graphics drivers 78
Hardware e 80
home 82
Homespun Spin Compiler e 83
Hub Memory Map e 89
Hub RAM . . 92
HYBRID Development Kit 93
HYDRA Game Console. e e e 94

page 1 /405

Propeller

(Hss)

L2C Slave 95
integer_navigation 96
Interface 99
Interrupts e 101
IO Bus Systems. e e 103
JavaPropDesign 107
Joinuson IRC!. 108
Large Memory Model e 110
LED . . 113
Links to other sites related to the Propeller 116
Linux Development. e 117
LMM AiChip Industries 119
LMM Pacito. 121
LMM Phil Pilgrim (PhiPi) 125
LONG. . . 126
LONG vs RES 128
Mac and Linux native development., 130
Mac OS-X EXperiences e e 133
Managing ConCUITENCY.t it e e e e e e e e e e e e e e 134
MATH. . . 136
Method Calls 175
MonoLCDO640. 179
Object Reference. e 199
OMU. . . 201
Oscillator. 212
Packaging Propeller Software, 218
Palette Mode 222
P A S . 224
Pebhdesign. e 225
PinDefs.spin. 230
PPropO040. e 233
pPropellerSim 234
PPropQL. . . . 243
PPropQLO20. 250
Programming in C 258
Programmingin C-Catalina. 260
Programming in Forth. 262
Programming in Java 264
Programming in Pascal 270
Prop Tool. 275
Propeller 2 Instructions. e 286
Propeller Demo Board. e 287
Propeller Font e 289
Propeller IL 291
Propeller Lingo. 294

page 2 /405

Propeller

(Hss)

Propeller Manual e 297
Propeller Snmippets. 298
Propeller Tool - Enhancement Requests. 299
Propeller_CPLD. 304
PropMag 316
PropMag-2008-03 317
PropMag-2008-04 328
PropMag-2008-05 335
PropMag-2008-06. e 343
PropTCP_SocketslLayer. e e 345
S 348
RCTIME Object. e e e e e 354
Referencing Globals 357
Released Projects 358
REID. . . . 359
Single Cog Graphics Driver Pattern 360
Software 361
SPhinX. 363
Spin Byte Code. 365
SpinStudio. e 382
SIS, 385
Supercomputing. e e 390
Symbol Address operator. e e 391
Thumb VM AIChip. 392
Two-Resistor Serial Interface. e 394
USB HoSt. 395
USB Slave 396
Video Generator. 398
whatgoodisabad pointer. 401
Where In The World?. 403
WORD. . . . 404

page 3 /405

Propeller
(Hss)

(Hss) Hydra Sound System

The hydra sound system is a realtime audio synthesis playback engine which was created by Andrew
Arsenault for use with the propeller.

It allows rapid integration of audio into a propeller based design or program with an easy to use
high-level interface.

Simple high-level commands can be issued to (Hss) to control more complex tasks like music playback,
sound synthesis and sample playback.

At the moment this object supports a number of propeller based boards (Propeller Demo Board, HYBRID
Development Kit and HYDRA Game Console).

(Hss) Supports:

e Four channel tracker music playback engine.
e Dual sound FX syhthesis channels.
e Single 1bit ADPCM channel for compressed sample playback.

(Hss) Supports the following custom file formats:

e (.hmus) 4 channel tracker music format.

e (.hwav) 1bit ADPCM sample file.

¢ (.snd) uncompressed 8bit sample data.

¢ (.4snd) uncompressed 4bit sample data.

e (FXsynth Data) small embedded sound FX data.

More information can be found at the (Hss) website: http://www.andrewarsenault.com/hss/

page 4 /405

http://propeller.wikispaces.com//Propeller+Demo+Board
http://propeller.wikispaces.com//HYBRID+Development+Kit
http://propeller.wikispaces.com//HYBRID+Development+Kit
http://propeller.wikispaces.com//HYDRA+Game+Console
http://www.andrewarsenault.com/hss/

Propeller
(Hss)

This is a text video driver which was the combined efforts of several forum members.
Potatohead, Hippy, Baggers, Oldbitcollector, and a few others. (Add credit if do)

AiGeneric supports 40x24, 16 color text with multiple fonts, or .64c fonts.
It was created with the idea of being a drop-in replacement for Parallax's text driver.

Package has been divided into two, one supporting the original font system, the other supports loading of
.64c¢ fonts.

.start(videopin)
Select video pin to start the driver. (Commonly 12 on Proto/Demo boards)

str(string(''Hello world))
Output a line of text

.center(''Hello World'"")
Centers the words, "Hello World" on the screen

-redefine(65,255,255,255,255,255,255,255,255)
Redefines character 65(A) as a solid block

.color($1A)
Define text color (see demo for common colors)

.out(13)
Output a single character by number (example 13=carriage return)

.hex(255,2)
Display hex number using two digits. (example 255=$FF)

.bin(255)
Display binary number (example 255=11111111)

.dec($FF)
Display decimal number. (example $FF=255)

.cls
Clear the screen

page 5 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=246472

Propeller
(Hss)

Assembler Subroutines

Because Cog RAM may be modified at run-time, it is not necessary to have a hardware stack to handle
subroutine calls within a Cog. A return address for a subroutine call can be placed within a Propeller JMP
instruction which will then return execution to after the call. While this simplifies the design of the Cog
architecture, it implicitly prevents recursive subroutine calls unless explicit action is taken to prevent
return addresses from being overwritten. To use recursive calls will require the user program to
implement a software stack for that purpose.

There are two Propeller instructions which are used to implement subroutine calls; JMPRET and JMP,
usually used in their immediate forms (where the bottom 9 bits of the instruction represent the address in
Cog RAM of where to jump to).

A JMP #addr ess instruction will cause Cog execution to continue at the 'address' specified.

A JMPRET r et Addr ess, #addr ess instruction will cause Cog execution to continue at the 'address'
specified but will also place the address of the instruction after JMPRET into the lower 9-bits of the
instruction placed at 'retAddress'. This will normally be a JMP #addr ess instruction.

A subroutine call therefore consists of a JMPRET which causes execution to continue with the subroutine
code which terminates with a JMP instruction which will have been modified by the JMPRET to return to
the address after the JMPRET instruction.

To simplify things for the Cog programmer, the Propeller assembler includes two virtual instructions;
CALL and RET. The RET instruction allows the JMP #addr ess instruction used at the end of the
subroutine to be specified without providing an initial address, and the CALL instruction allows the
programmer to specify just the entry point of the subroutine. In this way the implementation of a
subroutine call will appear in the source code much as it would for any other processor instruction set,
and the implementation aspects are largely hidden from the programmer.

In order that the CALL instruction can determine where the RET of the subroutine is it is necessary to give

the location of the RET a label which is the same as the label of the subroutine with '_ret' appended. For
example -

Loop CALL #My Sub

JWP #Loop
My Sub " Subroutine code here
MySub_r et RET

This is equivalent to -

page 6 /405

http://propeller.wikispaces.com//Cog+RAM

Propeller

(Hss)
Loop JMPRET My/Sub_ret, #MySub
JMP #Loop
My Sub " Subroutine code here
MySub_r et JwP #0

Note that when using JMPRET, no "#" is used before the specification of the address which holds the
RET instruction.

Nested Subroutines

The Cog architecture does not preclude nested subroutines (where a subroutine can call another
subroutine) as each subroutine has its own return address storage associated with it (the RET instruction
). Only recursive subroutines (where a subroutines calls itself) will present a problem and require a
software stack to preserve return addresses to be constructed.

Arbitrary Subroutine Returns

With processor architectures which include a hardware or software stack it is possible to place a return
from subroutine instruction wherever it is required and the execution of those instructions will cause an
immediate return from the subroutine. Because the Cog architecture does not include a stack and the
return address is placed in a single RET instruction, a return from subroutine can only be effected by
executing that RET instruction.

Any arbitrary return from a subroutine must be implemented as a JMP to the RET instruction. Simply

inserting RET instructions within a subroutine will not have the desired effect and will cause incorrect
operation of the Cog program if executed.

Shared Subroutine Return Points

It is fairly common to have subroutines which call another before returning themselves -

Loop CALL #Subl
JVP #Loop

Subl ' Subroutine 1 code here
CALL #Sub?2

page 7 /405

Propeller
(Hss)

Subl ret RET

Sub2 ' Subroutine 2 code here

Sub2 ret RET

Such subroutines will often be optimised so the initially called subroutine 'falls-through' into the last call
and the return from the subroutine at the end of the last called will act as a return from the subroutine in

all cases. Such optimisations may be achieved with the Propeller but it is necessary to label the shared
subroutine return point for both possible subroutine calls -

Loop CALL #Subl

JMP #Loop
Subl ' Subroutine 1 code here
Sub2 ' Subroutine 2 code here
Subl ret

Sub2 ret RET

page 8 /405

Propeller
(Hss)

Assembly Programming
Cog assembler programs are embedded within Spin source code by including them in a DAT section.

While compilation and assembly is underway there are two separate addressing concepts in play; the
address of where the assembly code is in Hub memory (and Eeprom and download image) and the
address in Cog memory when the assembly code is loaded for execution at runtime. These are very
distinct addresses but both are important.

ORG

To ensure that an assembly program's Cog addressing is correct it must begin with an "ORG 0" directive.
This ensures that (regardless of where the assembly code may be in Hub memory) Cog addressing is
relative to the first instruction which is loaded into the Cog.

When a Cog program is loaded to a Cog from Hub memory, 496 longs of consecutive Hub memory are
taken and placed into the Cog. If the Cog program is shorter than 496 longs, whatever follows it in Hub
memory will also be placed in the Cog, however, this will be normally be ignored or be irrelevant to the
Cog when executing.

Because of this it generally makes no sense to include any ORG directives within the Cog program other
than the initial "ORG 0". Doing so will simply create a mismatch between the addressing the assembler
maintains during assembly and what is ultimately placed in the Cog. Only if the Cog program itself
explicitly relocates what is loaded to where it should be does using ORG make sense.

To ensure that a Cog program will fit within the Cog, the FIT directive may be used. It is recommended
that every Cog program ends with a "FIT $1F0" to avoid errors when a Cog program exceeds its largest
possible size.

Every assembler instruction of the Cog program will take up space within the Hub memory, as will every
variable (register or Cog memory location) defined by a LONG directive.

RES

Variables may also be defined by using the RES directive. When this occurs, nothing will be placed in
Hub memory, for the compiler and assembler the Hub address will remain unchanged, but the Cog
address will change as appropriate. Loaded Cog program instructions will therefore have the correct
addresses for those variables even though they take up no space in the Hub memory. The consequence of
this is that mixing RES definitions with LONG definitions or assembler instructions will cause a
mismatch of addressing when the Cog program is loaded to the Cog as a consecutive block of 496 longs
and intended execution is unlikely to be achieved.

page 9 /405

Propeller
(Hss)

Variables defined using the RES directive should only appear at the end of an assembler program, after
all other LONG definitions and assembler instructions have been specified. RES should only be used for
variables which do not require an initial, pre-defined starting value before use, and (to minimise Hub
memory use), variables which do not should be defined using RES.

Multiple DAT Sections

Assembly code and shared memory blocks may be split into multiple DAT sections within the same spin
file. The address counter for each DAT segment starts where the previous segment stopped (first one
starts at 0), unless there is an ORG directive.

References within assembly to DAT variables use the offset within the variable's own DAT section. If
this affect is not anticipated, then you could find yourself writing unexpected self-modifying code. The
compiler will NOT issue any sort of warning for the following code:

DAT

ORG 0
vl LONG O
v2 LONG O

DAT
ORG 0
L MOV v2, #0 " This line overwites the next location in nenory w
ith a 0.
JWP #:.L " This line of code is corrupted by the tinme you get
her e.

Real programs, step 1: Flashing a LED

The following code will flash a LED connected to the pin 16. For that purpose a small two object files
program will be used. The file ledflash.spin should look like:

VAR

Il ong cog This is in hub ram

PUB start(pin) : okay
pi nmask := | <pin ' This can be done because pinmas
k(cog ram) is filled before the data is | oaded into

" the cog, notice pinmask is decl

page 10/405

Propeller
(Hss)

ared a long not a res. After the cog is | oaded
" the value cannot be nodified in
this way.

Now to start the cog, notice the @ntry, |ook at the assenbly, you c
an see where it will begin

okay := cog := cognewm @ntry, 0) + 1

PUB st op

Stop flashing - frees a cog

if cog
cogstop(cog~ - 1)
DAT
org ' Sets the origin
at zero for this point
entry
or Dl RA, pi nmask ' Sets relevant p
n to an out put
or OUTA, pi nmask " Make pin high
nov time, CNT " Current clock lo
aded into tine
add tine,on_tinme " on_tine added to
time
1 oop waitcnt time,off _tinme " waits for tine t
o pass, off _tinme added to tinme automatically

xor OUTA, pi nmask " toggles pin

waitcnt time,on_tine waits for tine t
0 pass, on_tinme added to tinme automatically

Xor QUTA, pi nmask toggl es pin

j mp #:.1 oop " loop, the # nean
s that :loop is aliteral (something typed into program

rather than a re

gi ster).

" These variables are in cog ran

Initialized data

on_tine | ong 80 _000*500 "on tine in clock

page 11/405

Propeller
(Hss)

cycles, 500 * 80000 (cycles per mllisecond)

off time | ong 80 _000*500 " off time, also 5
00 mlliseconds
pi nmask | ong 0 " pinmask can be c

hanged when the programis in HUB RAM

"rxxx ATTENTION, all res variables MJUST cone after other variables ***

*xkkkkkk*k*%x

Uninitialized data

tinme res 1 "'res is used only
to create the | abel, so no code or other vari abl es

except nore res
can be placed here, because no real space is used

The file ledflash_demo.spin should look like:

{
Step 1 Flash an LED denp program

See | edflash.spin for full details.

}
CON
_cl knode = xtall + pll 16x
_Xxinfreq = 5 000_000
OoBJ
| ed : "ledflash” " The | ed object
PUB start

"start led flashing
| ed. start (16) " Start the led object (pin 16 flashes a
VGA | ed on the denoboard)

r epeat "l oop forever nore

See Also

Assembler Subroutines

page 12 /405

http://propeller.wikispaces.com//Assembler+Subroutines

Propeller
(Hss)

Common Assembler Bugs

page 13 /405

http://propeller.wikispaces.com//Common+Assembler+Bugs

Propeller
(Hss)

Atari Joystick Driver & Virtual NES Driver
Written by Jeff Ledger

This file includes a schematic for connecting an Atari joystick to either the Demoboard or Protoboard
VGA interface to save I/O for other connections. The interface consists of a DB25male, DB9male, and a
few resistors.

The second part of this file is an NES_DRIVER which converts existing code to this interface. Also there
is a drop-in replacement for NES code as well.

page 14 /405

http://obex.parallax.com/objects/87/

Propeller
(Hss)

Books, References and Tutorials

Books

e Game Programming for the Propeller Powered Hydra
e Propeller Manual

References

e Propeller Tricks and Traps - Clever programming tricks, traps to avoid

Tutorials

e Propeller Cookbook - Beginners hardware tutorial
e Programming the Parallax Propeller using Machine L.anguage

Collections

e uController.com - Tutorials section - a collection of tutorials and quick reference sheets

Books People Organization

e bookkeeping services - bookkeeping service by QUALIFIED ACCOUNTANTS removes your
anxieties and maintains your accounts at a fraction of what it normally costs

e migration services - Business Sponsorship, Working Holiday Visa & Permanent Residency (PR)
and Employee Nominated Sponsor (ENS) Visas

page 15/405

http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://propeller.wikispaces.com//Propeller+Manual
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=114128
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=206357
http://forums.parallax.com/forums/default.aspx?f=25&m=209237
http://ucontroller.com/indextutorials.html
http://www.1300bpo.com.au/
http://www.freespirit.com.au/services/visa-migration-services/Permanent-Residency-Employee-Nominated-Sponsor-Visas.htm
http://www.freespirit.com.au/services/working-holiday/Australian-Working-Holiday-Visa.htm

Propeller
(Hss)

Bootloaders

Quick LInks

AiChip Bootloader (AiLoad32 - VB6)
http://forums.parallax.com/forums/default.aspx 2f=25&m=211304

Praxis Bootloader (Dot Net 2.0, VS2008)
http://forums.parallax.com/forums/default.aspx ?f=25&m=273872

AiChip Bootloader

A working but limited "proof of concept' bootloader written in VB6 with source code.

More details here

Praxis Bootloader

A front-end for the Parallax Propellent. DLL compile/bootloader combo. Source code for the Dot Net 2.0
Framework, VS2008 available.

More details here

page 16 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=211304
http://forums.parallax.com/forums/default.aspx?f=25&m=273872
http://forums.parallax.com/forums/default.aspx?f=25&m=211304%7C
http://forums.parallax.com/forums/default.aspx?f=25&m=273872

Propeller
(Hss)

BYTE

A byte is an unsigned integer. Unlike a long which is signed.

BYTE is used as a keyword in 4 different ways:

e In a VAR block
o BYTE Synbol
e In a DAT block
o BYTE ...
e In a method
o BYTE [BaseAddr essl nByt es]
o BYTE [BaseAddr essl nBytes] [O f set | nByt es]
e In a method
o Synbol . BYTE[O f set | nByt es]

BYTE Synbol

Declaration of a Spin byte variable. When compiling, Spin groups all the byte declarations together in a
block after all the long and word declarations, so you can't count on the order of differently sized
variables in memory being as in the source. However, all same sized variables will be in the order you
declare them.

These variables only exist in Hub memory. They will exist at a place past the binary image created by
PropTool.

They are always initialised to zero.

To access them from assembler, you'd have to pass the address of one to the assembly program through
the PAR mechanism and use RDBYTE/MRBYTE.

BYTE

Declare a byte aligned label. Size [BYTEIMORDILONG] indicates how much space to allocate for that
labelled location. Size defaults to BYTE. Data will be put into the location modulus the Size field. Layout
in memory will reflect the order declared in the source, however differently aligned declarations may
result in padding.

The data exists in Hub RAM, and may be copied to Cog RAM when starting a Cog. Spin references will
use the original in Hub RAM, Assembler references will use the Cog RAM copy (unless done by
reference though PAR and RDBYTE/MRBYTE).

BYTE [BaseAddr essl nByt es]

page 17 /405

http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//BYTE#VAR
http://propeller.wikispaces.com//BYTE#DAT
http://propeller.wikispaces.com//BYTE#AddressOffset
http://propeller.wikispaces.com//BYTE#SymbolOffset
http://propeller.wikispaces.com//PAR
http://propeller.wikispaces.com//Hub+RAM
http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Cog

Propeller
(Hss)

BYTE [BaseAddr essl nBytes] [O fsetl nByt es]

In spin will read/write to a byte in Hub RAM.

Synbol . BYTE[O f set | nWr ds]

In spin will read/write to a byte in Hub RAM. Symbol may be a long, word or byte variable (although as
a byte, it'd be more straightforward to use simple array indexing - Synbol [Of f set]).

See also

LONG
WORD

Symbol Address operator

page 18 /405

http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//WORD
http://propeller.wikispaces.com//Symbol+Address+operator

Propeller
(Hss)

Cog RAM

Cog RAM is the memory local to each Cog. It consists of 496 longs of general purpose RAM for code
and data, and 16 special purpose registers. This memory is addressed by longs, $000 through $1EF being
general purpose data or instructions, and $1F0 through $1FF being the special purpose registers (see
below). Most of the instructions will manipulate the entire 32bits at the given address. The exception is
with the code self-modifying instructions MOVS, MOVD, MOVI and the CALL and JMPRET
instructions.

e MOVS allows the bottom 9 bits (b8-b0) of a Cog memory location to be modified without
affecting other bits.

MOVD allows the next 9 bits (b17-b9) to be modified.

MOVI allows the most significant 9 bits (b31-b23) to be modified.

CALL and JMPRET instructions will also modify the bottom 9 bits (b8-b0) of the RET instruction
which relates to the subroutine being called to facilitate a return from Assembler Subroutines.

b31 - b23 b22 - bl8 bl7 - b9 b8 - b0
Instruction Destination Source
MOVI MOVD MOVS, CALL,
or JMPRET

Special purpose registers:

Address Name Type Description

$1F0 PAR Read-Only Boot parameter

$1F1 CNT Read-Only System Counter

$1F2 INA Read-Only Input states for P31-P0

$1F3 INB Read-Only Input states for P63-P32*

$1F4 OUTA Read/Write Output States for P31-P0

$1F5 OUTB Read/Write Output states for
P63-P32*

$1F6 DIRA Read/Write Direction States for
P31-PO

$1F7 DIRB Read/Write Direction States for
P63-P32*

page 19/405

http://propeller.wikispaces.com//Propeller+Lingo#Cog
http://propeller.wikispaces.com//Assembler+Subroutines

Propeller

(Hss)

$1F8 CTRA Read/Write Counter A Control
$1F9 CTRB Read/Write Counter B Control
$1FA FRQA Read/Write Counter A Frequency
$1FB FRQB Read/Write Counter B Frequency
$1FC PHSA Read/Write Counter A Phase
$1FD PHSB Read/Write Counter B Phase
$1FE VCFG Read/Write Video Configuration
$1FF VSCL Read/Write Video Scale

*Unimplemented on the Propeller P8X32 chip.

page 20 /405

Propeller
(Hss)

Colors

For the VGA output the number of colors is simply hardwired to 64 colors, (2 bit per base color red,
green and blue, six bits in total).

But for composite video the situation is much more complex, and depends for a large part on the software
driver.

Not all drivers are available for both PAL and NTSC, and at the moment there are no TV drivers
available for the French/Russian SECAM system.

In the standard propeller video configuration (e.g. The Hydra), for NTSC:

e The hydra can produce 16 hues. Each hue can have 4 levels of brightness. = 64 colors.

e Additionally there are 6 monochrome shades from black through white = 6 colors.

¢ And then there is a set of 16 super saturated colors which overdrive the TV brightness signal and
don't play well with the other colors, but can be useful for special effects. = 16 colors.

e Total 86 colors maximum. (135, if all possible byte values are used, however some lower quality
signal may result)

e The number of colors you have available in a particular program depends on what palette mode is

used by your graphics driver.

Potatohead describes a way of using dithering to produce nearly 400 colors in NTSC.

With custom video hardware, apparently 1.7. million colors are available. But as yet the details are a bit
sketchy.

It is safe to say the number of colors possible on the Propeller / HYDRA really depends on the display
being generated, amount of RAM added to the on board 32kb, circuit used to interface with the display,
and the driver code written.

Notes on High-Color mode

It is useful to know all the byte values, when passed to a WAITVID in high-color mode, that produce
colors. There are 126 of these listed in the Color Lookup Table below:

$02, $03, $04, $05, $06, $07 Six intensities
$19, $l1la, $1b, $1c, $1d, $1le, $98, $af 15 Hues

$29, $2a, $2b, $2c, $2d, $2e, %$a8, $bf

$39, $3a, $3b, $3c, $3d, $3e, $b8, Pcf

$49, $4a, $4b, $4c, $4d, $4e, $c8, $df

$59, $5a, $5b, $5c, $5d, $5e, $d8, SPef Hi gh saturation colo
rs, placed
$69, $6a, $6b, $6¢c, $6d, 3$6e, $e8, Pff in table by closest

page 21 /405

http://en.wikipedia.org/wiki/Composite_video
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/SECAM
http://propeller.wikispaces.com//Palette+Mode
http://propeller.wikispaces.com//graphics+drivers
http://forums.parallax.com/forums/default.aspx?f=33&p=1&m=195345
http://propeller.wikispaces.com//Palette+Mode

Propeller

(Hss)

hue mat ch.

$79, $7a, $7b, $7c, $7d, $7e, $f8, $Of

$89, $8a, $8b, $8c, $8d, $8e, $08, $if Hues are presented

n this table

$99, $9a, $9b, $9c, $9d, $9e, $18, $2f vertically, in seque
nce as shown

$a9, $aa, $ab, $ac, %ad, $ae, $28, $3f in screenie bel ow.

$b9, $ba, $bb, $bc, $bd, $be, $38, $4f

$c9, $ca, $cb, $cc, $cd, $ce, $48, $5f Start with intensity
on left, and

$d9, $da, $db, $dc, $dd, $de, $58, $6f work to the right, s

tarting at

$e9, S%ea, %eb, %ec, %ed, %ee, $68, $7f top of table.

$f9, $fa, $fb, $fc, $fd, $fe, $78, $8f

There are 6 additional useful (not high saturation) color values, not mapped into the color table above.
(h/t to mpark for catching these!) They are: $0a, $0b, $0c, $0d, $0e, $0f

The screen capture below has been updated to show these, and is now the correct phase. This brings the
number of non-artifacted, unique colors produced by the Parallax reference video circuit to 135. These
can optionally be mapped into the CLUT above, thus:

09, 0a, Ob, Oc, 0d, Oe, 88, 9f (These form the complete set of input values, some are high saturation and
may not display well.)

There are two sets of super saturated colors. On some TVs these appear slightly different, bringing the
number of total Propeller colors, generated by the on-board video hardware, to 132 possible input values.
As noted above, 86 of these are solid, useful colors. This data provided for completeness where feeding
values to a WAITVID is concerned.

Artifacted Colors

The NTSC safe area has an effective resolution of 160 pixels horizontally. (Safe area, shown as lighter
grey background in screen shot below.) Pixels clocked (or sized) faster (or smaller) than this, will produce
color artifacts in the display. Older 8bit computers and game systems used this technique to obtain more
colors than the video hardware was designed for. On the Propeller, it is possible to get a ~400 color
display by placing two standard propeller colors together on a display with a pixel clock equal to 320
pixels, for the NTSC safe area. More color combinations, than the ones shown, are possible, using the
high saturation color sets in the artifacting process, and the additional colors, not mapped into the CLUT
above.

The standard (non artifacted) colors, in the table above, are are in line, at the bottom of the image to the
left, and in the strip to the right.

page 22 /405

Propeller
(Hss)

This artifacting technique does deliver 12 grey scales as well, if a monochrome display is desired. For this
to work, the color burst signal must not be present.

For resolutions above 160 pixels, stable color can be achieved by placing two pixels together that have
the same standard Propeller color. This allows for movement and positioning at resolutions above the 160
pixel limit, without having to worry about heavy artifacting having an impact on the display.

It is important that the left over scan be a multiple of the pixel clock for the above techniques to work.

Color Timing

Simple NTSC displays, similar to those of many older 8bit computers have the 160 pixel limit, and will
do artifacting in a stable manner. More complex timing schemes involve interlacing the pixels
horizontally, resulting in a 320 pixel NTSC display, or using clever color burst timing for a 224 pixel
display.

Reference video output circuits -vs- others

The discussion above surrounds the possibilities presented by the reference Parallax video output circuits,
and should be considered standard video output. The nature of the Propeller lends itself easily to other
video output schemes as none of the 8 COGs or I/O pins are dedicated to this task in any way. It's a
software driven design that makes other video output solutions a matter of code and appropriate output
circuits.

An 8 bit R2R ladder can be used to generate a ~160 grey scale display, for example. Because some of the
'colors' actually need to be used for the sync portion of a complete video signal, the actual number of
colors, per number of bits applied to the task, will be less than one would otherwise expect from more
mainstream graphics systems that perform signal generation in hardware.

Other examples, some in progress, include driving the Propeller video generators in VGA mode to
directly control color generation, produce more grey scales, etc...

page 23 /405

http://propeller.wikispaces.com//Propeller+Lingo

Propeller
(Hss)

My Assembler Routine Is Doing Something Weird! What's
Wrong?

We've all been there. You've got an assembler routine; in an earlier version it worked perfectly, but now
it's doing something really weird. You're read it through over and over, and it looks fine. But still it does
something weird. And debugging facilities on the Propeller are non-existent. What on earth is wrong?

Here's a check list for things to do. Do them in order, DON'T skip to the end.

1. Leave it and go do something else. Go make yourself a tea or a coffee. Go for a walk. Sleep on it.
It's amazing how often once you stop staring at the screen it occurs to you why it might not be
working. Or at least you think of a good way of narrowing down where the defect is.

2. Go through your code checking every single CALL, JMP, JMPRET and DJNZ to make sure that
the label that follows has a # in front of it. It's an extremely rare situation when you want a jump
of call that isn't immediate. And on the very rare case you do, you should comment it well.

3. Go through your code checking that every single CMP or TEST is followed by WC and/or WZ.
The only point of these instructions is to set a flag, but they won't do so unless you explicitly say
so. Also, if you are doing signed comparisons, make sure you use CMPS.

4. Go through your code checking every instance of self modifying code. There must always be at
least one instruction separating the point at which the instruction is modified and the instruction
that has been modified. Rearrange the code or use a NOP to fix.

5. Check that you have not placed a read only special purpose register in the destination field of an
instruction unless you really mean it (eg, CMP CNT,reg). The same is true for PHSX
(read-modify-write will affect the shadow register only).

6. Check that all your RES lines are at the end of your assembler DAT section. After all LONG,
WORD and BYTE declarations.

7. Try the Propeller Assembler Source-code Debugger. It IS possible to single step though your code
and examine data as you do so.

8. If you are still stuck, then ask on one of the propeller forums for someone else to take a look.
Don't copy more than half a dozen lines into the message itself - the forum software doesn't tend
to preserve the formatting at all well. Explain your problem as best you can, and describe what
you have already tried, and attach a complete SPIN file or a zip containing the entire project to the
post. Anything less is asking for help whilst at the same time ensuring that your helpers will have
one hand tied behind their backs. Usually people are very keen to help, but it's unfair to make
finding the problem even harder for them than it was for you by not giving them compilable
source.

page 24 /405

http://propeller.wikispaces.com//PASD

Propeller
(Hss)

Converting Text Output Display Type

Frequently text output demos of various objects are written using either VGA_text.spin or TV_text.spin,
but what if you only have the other type of display? Don't worry, conversion from one type of display to
the other is a simple and straight forward process. VGA_text and TV_text are symmetric objects,
meaning the same methods (with the same argument types) are located in both objects. Converting the
demo is a 3 step process:

1. In the the OBJ section, change "VGA_text" to "TV_text" (or "TV_text" to "VGA_text")

2. Change the basepin argument in the start method for the text display. For the Propeller Demo
Board the basepin for VGA is 16 and the basepin for TV is 12. For basepin values of other
Propeller development boards, check this page or the board's documentation. The lowest pin
connected to the output is the basepin value.

3. Color values for VGA and TV are different. VGA color values are 2 bits for each primary (for a
total of 6 bits) with bits 0 & 1 containing the Blue component, bits 2 & 3 containing the Green
component and bits 4 & 5 containing the Red component. Online color picking utilities can assist
in the selection of VGA color values. TV color values are composed from chroma and luminence
values, bits 0-2 is the luminance value (greyscale brightness, 2=black and 7=white *), bit 3
indicates the chroma value is used (this bit should be set to 1 for non-greyscale colors), bits 4-7 is
the chroma value (which angle of the color wheel the color lies on). Graphics_Palette.spin located
in Examples\Library of the Propeller Tool distribution provides an interactive means for picking
TV color values. This third step is only needed if the color apperance is important for the demo.

After these three steps are taken the demo has been converted to the other display type.

*) 0 is SYNC-Level and 1 is "superblack" which should be avoided. When you use color (Bit 3 set) it is
also recommended to avoid level 7, as the overlaid color signal cannot fit on top.

page 25 /405

http://propeller.wikispaces.com//Dev+Board+Differences

Propeller
(Hss)

I've Found some Propeller Code, now what?

As annoying as the idea is, the reality is all computer code comes with both a copyright and a license. For
those not having any real experience with this, Here's a summary of a recent forum thread on this topic,
that should leave you with a fairly good idea of how things work and what you need to do, if you want to
use / incorporate other code into your own work.

Copyright

The author of a creative work automatically has copyright, it happens at the moment of creation.
Copyright is essentially having a say over what is permissible where derivative works, or distribution is
concerned. Derivatives are works that embody the authors work, in whole, or in part, to form a new work.
Distribution is essentially duplication of said work, from one party to another. Use of the work, almost
always involves both of these things. (one copies code from storage to memory, in order to execute, for
example.)

License

Is essentially the terms of use, as dictated by the author. Best form is this: One does not use software
one didn't write, without a license. That's a really easy way to sort this stuff out. Everything has a
license of some kind! (I, as the initial author of this Wiki page, never knew this early on!) All anybody
needs to do is be able to cite the license they are operating under, or put another way, that grants their
entitlement to the work in question. Easiest way is to give credit, and cite the source for the license there.

In a nutshell, it's best to do some work to figure out what the license on found code is, or just contact the
author for clarification and potentially permission. Having done this, good form means giving credit to
the original author, and a reference to the license granting your use, or a statement to the effect of: "Used
with Permission". Others then, seeing your completed work, understand what is yours, what isn't, and
how you came to be in a position where the building and distributing of it is authorized.

Distribution really is the key element in all of this. If one does things on their own machines, for their
own personal purposes, this stuff can be largely ignored. Once one moves beyond that, it's important to
work through this stuff, if things are not clear.

Code found in the Parallax Object Exchange, comes with the MIT license. In this case, it's really easy!
Just credit the author, and cite the object exchange, and you are good to go. Do what you will, but do also
consider putting something into the pool for others to enjoy in like kind. The Object Exchange used to
have a "Public Domain" like license scheme. For a short while, you may well find code not yet MIT
licensed. Read the program headers, and or README, or LICENSE files to know what the terms are.

If you have already obtained code from the Object Exchange, and it was licensed under the old terms, that
license still applies. This change is really about preserving copyright for the owners, and giving credit

page 26 /405

http://www.opensource.org/licenses/mit-license.php

Propeller
(Hss)

where credit is due, while at the same time permitting a wide range of permitted uses.

eg: Magic Bubble code V 2.1 by Bob the Coder, obtained and used under the MIT license, Parallax
Object Exchange, 2008

Code found elsewhere is more grey. Best practice is for authors to state their license terms, either
directly, or by reference to a known and established license, in the program header, so that others
may know the default terms of use.

Sometimes you will see this, other times you won't. You also will see the license in a separate file, with a
name like README, GPL, license, etc... It just varies, with some people not caring enough to worry
about any of it, to others fairly concerned about commercial use. If you can't easily sort it out in a few
minutes, it is time well spent with a brief contact with the author to get permission or maybe just clarify
the license intent.

Such a contact can be really simple. Use a forum PM, e-mail, IM, or something and just let the author
know what you are wanting to do. "Hi, this is Joe and I'm working on the Propeller. Is it ok if I release a
modified version of your [whatever] code that works with my kind of development board / set-up?"

Once that exchange has happened, then it's just a matter of a credit line, somewhere in your program
header, thus:

Super sensor driver V1.x modified with permission from somebody @somedomain.net (their real name
maybe), 2008
Keyboard driver V3.0, BSD licensed, contributed by somebody @somedomain.com, 2007

You may find code on an authors web page. If this is the case, generally they will state their terms there,
or provide contact info. If the code is in a repository of some kind, code bodies are typically categorized
by their functionality and license type. You can consult the repository FAQ, and generally read the
licenses directly, as they are normally established ones, such as GPL, BSD, Creative Commons, etc...

At this time, the most common cases for finding code are here in the Wiki, Parallax Forum postings (ask
authors about those --everybody is cool about it), and the Parallax Object Exchange.

Generally speaking, most people who contribute code on-line have some understanding of how complex
or confusing these matters can be. Contacting them is perfectly OK, and welcome! Worst case, you gain
an understanding of what your options are and can make solid choices from there. Best case, you make a
friend or two! It may seem problematic to track these things down, and generally, that perception is
reality. All that can be said on the matter is it gets easier after the first time.

page 27 /405

mailto:somebody@somedomain.net
mailto:somebody@somedomain.com

Propeller
(Hss)

Cracking Open the Propeller Chip

Decoding the Spin Interpreter

Chip Gracey (Parallax) : Can anyone out there figure out how to get the proper binary image of the
current Spin interpreter from ROM?

Harley Shanko : Did I just hear a challenge?

Chip : Yep! Maybe it hasn't been pursued, out of consideration to Parallax, but if someone posts the
correct binary, I'll post the original source code.

Original thread : here

Overview

The Spin Interpreter along with the bootloader is stored in ROM, according to the Propeller Memory Map
between byte addresses $F002 and $FFFF. Although this ROM area can be easily read by a Spin or
PASM program (as other data in ROM can be, character bitmaps and trigonomic tables), the data
returned is encrypted. This data is decrypted by on-chip and unknown hardware as it is loaded into a Cog
for execution. As Chip has written ...

"The booter is at $F800 and the interpreter is at $F004. You will not be able to disassemble these
programs, though, since the data is scrambled and only gets unscrambled by the HUB during launching.
This is the only 'code protection' that the chip has and it's designed to slow down others from making
me-too Propeller-like chip products".

Original thread : here

Encryption Mechanism

The encryption method used is not known but the Propeller chip does contain an LFSR which is used
during program download and it very possible that an LFSR is used as apart of the decryption process.
The LFSR taps used are documented.

A reversible LFSR is also used to randomise Spin variables. Although this is most likely implemented as
code within the interpreter itself (there are no LFSR related Cog opcodes) there may be similarities
between that and any LFSR used for ROM decryption. The randomisation algorithm can be found here

Chip has referred to the ROM image as "scrambled" rather than "encrypted" so the mechanism used could
be quite simple, even if not easy to determine. Obvious "scrambling" mechanisms would be simple
XORing, bit rotation, bit reversal and address bit re-ordering (PASM code stored non-sequentially). Any

page 28 /405

http://forums.parallax.com/showthread.php?p=709423
http://forums.parallax.com/showthread.php?p=593557
http://forums.parallax.com/showthread.php?p=624986

Propeller
(Hss)

number of these methods, plus LFESR could be applied together, along with decryption being
accumulative, the previously decoded value affecting the decoding of the next.

The encyption could be byte, word or long oriented. While loading Cog is usually talked of in terms of
loading 512 longs, it could equally be the loading of 2K bytes.

Approaches to Decoding the Spin Interpreter

Although the Spin Interpreter reads Ram to initally configure the start address and stack, then reads Ram
to interpret the bytecode, the program counter, stack pointer and related registers are all held within the
Cog. There appear to be no Spin bytecodes which can extract data from within the Cog nor be subverted
to do so. Trying to create a 'buffer overflow' type of attack to leave code in a Cog which could dump its
contents out does not look possible.

The Spin Interpreter is launched by a Coglnit of the PASM code held at $F004 with the PAR register
pointing to a 12-byte block of memory ($0004 at first Spin Interpreter boot-up) which defines where the
Spin bytecode to execute and stack is. By executing a Coglnit of the assembler code above $F800 it may
be possible to load a PASM program held low in Hub Ram which would be loaded as part of the 496 long
load into Cog (through address wrap-round) leaving that PASM program plus some decrypted ROM in
the Cog, and with a fair wind, see that PASM code executed and reveal the decrypted bytecode. Although
the decrypted PASM code is not the actual Spin Interpreter (it's the bootloader) it would help in
verifying any decryption algorithm determined. Whether such PASM code (at the end of Cog memory)
would ever get executed is debatable and the odds would seem to be against it.

The best approach would appear to be to dump the ROM between $F000 and $FFFF and attempt to
decode that either on chip or off-chip using a PC.

Spin Interpreter ROM Image

An extracted Spin Interpreter ROM Image (in its encrypted form) is available here as SPIN.ZIP (in both
a .BIN and a .HEX form) from
Peter Jakacki and a program to extract a ROM image is provided by dartof.

Die Images

A - COG RAM - (view of the ISDR Word Line drivers)
B - HUB RAM - (view of the Column Address Decoder)
C - HUB ROM - (view of the 4-16 Decoder driver)

page 29 /405

http://forums.parallax.com/showthread.php?p=676627

Propeller
(Hss)

Possible Helpers

The Spin Interpreter needs to know where the information is from which it initialises its program counter
and stack pointer. This is provided by way of the PAR register set through a Coglnit and thus the
Interpreter should use the PAR as a source register fairly early on in its execution.

It would not be surprising to find an early 'rdbyte’, 'rdword' or 'rdlong' using PAR and, as PAR is read
only, a 'mov' from PAR and subsequent 'rdbyte', 'rdword' or 'rdlong' using the register PAR is moved to. It
would not be unreasonable to expect the first Cog instruction to be a 'mov'. Concentrating on just the
early part of the interpreter code could make a brute force attack on the encryption more feasible.

Given that there would seem to be only a limited amount of run-time data storage used within the
run-time interpreter, it would seem unlikely that the initialisation code would be within an area later in the
code which would subsequently be re-used for data storage. If that were the case, it would seem likely
that a 'jmp' or 'jmpret' would appear early in the code.

page 30/405

http://forums.parallax.com/showthread.php?p=672115

Propeller
(Hss)

Cracking Open the Propeller Chip

Decoding the Spin Interpreter

Chip Gracey (Parallax) : Can anyone out there figure out how to get the proper binary image of the
current Spin interpreter from ROM?

Harley Shanko : Did I just hear a challenge?

Chip : Yep! Maybe it hasn't been pursued, out of consideration to Parallax, but if someone posts the
correct binary, I'll post the original source code.

Original thread : here

Overview

The Spin Interpreter along with the bootloader is stored in ROM, according to the Propeller Memory Map
between byte addresses $F002 and $FFFF. Although this ROM area can be easily read by a Spin or
PASM program (as other data in ROM can be, character bitmaps and trigonomic tables), the data
returned is encrypted. This data is decrypted by on-chip and unknown hardware as it is loaded into a Cog
for execution. As Chip has written ...

"The booter is at $F800 and the interpreter is at $F004. You will not be able to disassemble these
programs, though, since the data is scrambled and only gets unscrambled by the HUB during launching.
This is the only 'code protection' that the chip has and it's designed to slow down others from making
me-too Propeller-like chip products".

Original thread : here

Cracked Open

After a flurry of activity the Propeller was cracked open and the interpreter revealed. True to his word
Chip released the original source code of the Interpreter and Bootloader.

The 'cracking' process as it evolved and interpreter source can be found here

The key to reverse engineering turned out to be embraced in Chip's description that the data was
"scrambled" rather than "encrypted". The mechanism used was simple bit swapping of data. Although
simple, it had been good enough to kept people away from attempting to decode the data or, if they tried,
from doing so. Had Chip not thrown down the challenge, and suggested it was perhaps more possible
than people were thinking it would be, then it may have remained unencoded.

page 31/405

http://forums.parallaxinc.com/forums/default.aspx?f=25&m=251014
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=132607
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=251014

Propeller
(Hss)

Even knowing the mechanism used it wasn't a simple and straight forward process to decode the entire
interpreter. Various approaches were taken, brute force, 'good guessing' and statistical analysis.

Further Developments

The full source code for INTERPRETER, BOOTER, and RUNNER was released by Chip here

Original Copy of this Page

This page has been updated to reflect the release of the interprter source code, the original page
discussing possible approaches and useful help can be found at the link here : Original Page

page 32 /405

http://forums.parallaxinc.com/forums/default.aspx?f=25&p=1&m=252691
http://propeller.wikispaces.com//Cracking+Open+the+Propeller+-+Original+Page

Propeller
(Hss)

Data Storage

e Example

page 33 /405

Propeller
(Hss)

Debuggers and Emulators

Spin Debuggers

View Port

Commercial tool now adopted by Parallax. Includes a spin debugger, which is only one currently
available.
Windows based.

More details here

SPUD
SPUD stands for Spin PASM Unit Debugger.

Spud is a spin debugger that is similar to gdb, and is available for Linux and Windows running Cygwin.
Released as open source in its forum thread here.

Cluso SPIN Debugger

Open Source Debugger capable of single stepping SPIN code. Uses a serial interface to allow stepping
and display of data, but is involved to setup your code to test. Does not have a source display. Current
release is 275/276_from its forum thread here

Also there is a similar version forP ASM.

Asm Debuggers

BMA PASM Debugger

Here is a simple on chip PASM debugger. The BMAdebugger does not use a GUL
Debugging is most effective when used in conjunction with BSTC compiler .list files.

e Small and simple on chip PASM debugger
¢ No Windows or other PC program required

page 34 /405

http://mydancebot.com/viewport
http://forums.parallax.com/showthread.php?115213-Spin-Unit-Debugger-(SPUD)-WIN32-Cut
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=290946

Propeller
(Hss)

e Feature rich command set
e Multi-COG debug ability

from its forum thread.

KISS Debugger

Commercial tool that has on chip assembly level debugging. Standalone, using propeller based 10, no
need for PC at all.
More details here

PASD

The debugger system consists of a PC program, a spin-object and a short debug the kernel, at the
beginning of the debug code to be inserted.

The debug kernel is only 12 longs large, and allows you to communicate with the PASD spin driver, in a
separate Cog runs. This spin-driver communicates via the serial programming interface with the PC and
to display current program. Apart from the pins 30 and 31 remain, all IOs of the propeller available
during debugging.

More details PASD

POD Debugger

PASM Debugger. Supports breakpoints and single stepping PASM code running on the target hardware.

POD is propeller source that you build into your project, and add a few hooks to the PASM to be
debugged.

Can display and single Latest version can be controlled via PropTerminal or similar. The original versions
used a keyboard and TV monitor directly attached to the Propeller for input and display.

More info and releases are in this thread.

page 35/405

http://forums.parallax.com/showthread.php?115068-BMA-Multi-COG-PASM-Debugger-V1.91-Now-Available
http://www.machineinteltech.com/Propeller_Debugger.html
http://propeller.wikispaces.com//PASD
http://forums.parallax.com/forums/default.aspx?f=25&m=178997&g=179300

Propeller
(Hss)

Cluso PASM Debugger

Open Source Debugger capable of single stepping PASM code. Uses a serial interface to allow stepping
and display of data, but is involved to setup your code to test. Does not have a source display. Current
release is 275/276_from its forum thread here

Also there is a similar version for SPIN.

Monitors

A monitor is a simple mechanism for observing debug output, when a debugger is not available. There
are a number of spin objects that can be used for this use, that use serial, video or LCD to display debug
information.

Monitor.spin dumps the main memory contents using a serial interface, with some support for iteration
with the terminal.
SerialMirror.spin can be used to dump out diagnostic info from spin code.

Simulators

pPropellerSim

pPropellerSim is a powerful full-featured Propeller Simulator/Assembler and Debugger. A built-in editor
with syntax highlight allows you to program in propeller assembler, to compile and to simulate your code
in a fully working COG (no hw at this time). A high compatibility level with Parallax' PropellerTool
allows for easy and rapid transfer of DAT sections.

It is program in the Java programming language which makes it able to run on Solaris, MacOS X, Linux
and more.

The manual on-line can be found here and it can be downloaded from here

GEAR

GEAR is a open source C# program the emulates the inner workings of the Propeller chip. It is able to
emulate multiple spin and PASM cogs concurrently. GEAR also has a plug-ins interface that allows
external hardware to be emulated. Current plug-ins include a VGA display, and a pin toggling (stimulus)

page 36 /405

http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=290946
http://propeller.wikispaces.com//pPropellerSim
http://sourceforge.net/projects/ppropellersim

Propeller
(Hss)

module.
Not in active development since 2007.

The latest version of GEAR can be found at the project page or on the forums.

PropList

PropList from AiChip Industries is a Windows Command Line utility to disassemble Spin Bytecode and
PASM instructions from a .binary or .eeprom file creating a symbolic list file (.Ist) or ByteCode
Assembler source (.asm) for further processing.

The utility traverses the code image for objects, methods and PASM code to maximise the amount of
usable disassembly that can be determined. The program is written in PowerBasic (PB/CC) with source

code included.

More details : here

page 37 /405

http://sourceforge.net/projects/gear-emu/
http://forums.parallax.com/showthread.php?91084-GEAR-Propeller-Debugging-Environment&p=624986#post624986
http://forums.parallax.com/forums/default.aspx?f=25&m=205628

Propeller
(Hss)

Development Board Differences

When programming for the Propeller it's useful to know the output pin and crystal differences between
the various development boards.

If you have the details for another board please add it. If the pins are identical to one of the dev boards
already listed, then don't use another column, just add the name of the board in the heading of the existing
column.

Hydra Hybrid Protoboa DemoboarSpinStudi Boss Propeller Chameleo
rd d 0 Board Prof. Dev.n
Board

XTAL 10MHz 6MHz S5MH:z SMHz SMHz GI11- 5 Mhz(re 5 MHz
G13 movable)

PO Debug Debug Available Available Socket A M3 Available Expansion
LED LED Pin 0 Port (0)

P1 NET_RX ExpansionAvailable Available Socket A M4 Available Expansion
_CLK Port (10) Pin 1 Port (1)

P2 NET_TX ExpansionAvailable Available Socket A M5 Available Expansion
_CLK Port (9) Pin 2 Port (2)

P3 Joystick Joystick Available Available Socket A M6 Available Expansion
CLOCK CLOCK Pin 3 Port (3)

P4 Joystick Joystick Available Available Socket A M7 Available Expansion
Latch Latch Pin 4 Port (4)

P5 Joystick 0 Joystick 0 Available Available Socket A M8 Available Expansion
Data Data Pin 5 Port (5)

P6 Joystick 1 Joystick 1 Available Available Socket A M9 Available Expansion
Data Data Pin 6 Port (6)

P7 Audio OutAudio OutAvailable Available Socket A M10 Available Expansion
Pin 7 Port (7)
P8 Mouse SD Available Micropho Socket B M15 Available SPI SS

CARD dO ne Pin 0
P9 Mouse SD Available Micropho Socket B M16 Available SPI MOSI
CARD clk ne Pin 1

page 38 /405

http://propeller.wikispaces.com//HYDRA+Game+Console
http://www.propgfx.co.uk/Hybrid/Docs/Hybrid_Development_System_Manual.pdf
http://propeller.wikispaces.com//Propeller+Demo+Board
http://propeller.wikispaces.com//Propeller+Demo+Board
http://propeller.wikispaces.com//SpinStudio
http://propeller.wikispaces.com//SpinStudio
http://www.gadgetgangster.com/bossboard
http://www.gadgetgangster.com/bossboard
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.chameleon-dev.com
http://www.chameleon-dev.com

Propeller

(Hss)
P10 Mouse SD Available Stereo ~ Socket B M17 Available SPI MISO
CARD di Audio OutPin 2
P11 Mouse SD Available Stereo Socket B MI18 Available SPI SCLK
CARD cs Audio OutPin 3
P12 Keyboard Keyboard Available Video OutSocket B M19 Available Video Out
Data Out Data I/O Pin 4 LSB
P13 Keyboard Keyboard Available Video OutSocket B M20 Available Video Out
DataIn Clock I/0 Pin 5
P14 Keyboard Mouse Available Video OutSocket B M21 Available Video Out
Clk Out Data I/O Pin 6
P15 Keyboard Mouse Available Video OutSocket B M?22 Available Video Out
ClkIn Clock I/0 Pin 7 MSB
P16 VGA Out Expansion*VGA VGA Out Socket C GHJ22 Available VGA Out
Port (1) Out Pin O
P17 VGA Out Expansion*VGA VGA Out Socket C GHJ21 Available VGA Out
Port (2) Out Pin 1
P18 VGA Out Expansion*VGA VGA Out Socket C GHJ20 Available VGA Out
Port (3) Out Pin 2
P19 VGA Out Expansion*VGA VGA Out Socket C GHJ19 Available VGA Out
Port (4) Out Pin 3
P20 VGA Out Expansion*VGA VGA Out Socket C GHJ18 Available VGA Out
Port (5) Out Pin 4
P21 VGA Out Expansion*VGA VGA Out Socket C GHJ17 Available VGA Out
Port (6) Out Pin 5
P22 VGA Out Expansion*VGA VGA Out Socket C GHJ16 Available VGA Out
Port (7) Out Pin 6
P23 VGA Out Expansion*VGA VGA Out Socket C GHJ15 Available VGA Out
Port (8) Out Pin 7
P24 Video OutVideo Out*Mouse Mouse Socket D GHJ10 Available Audio Out
LSB LSB Datal/O Datal/O Pin 0O
P25 Video OutVideo Out*Mouse Mouse SocketD GHJ9 Available Status

page 39 /405

Propeller
(Hss)

Clock I/0 Clock I/O Pin 1 LED

P26 Video OutVideo Out*Keyboar Keyboard Socket D GHJ8 Available Keyboard
d Data I/OData I/O Pin 2 Data

P27 Video OutVideo Out*Keyboar Keyboard Socket D GHJ7 Available Keyboard
MSB MSB d Clock Clock I/0 Pin 3 Clk
I/0

Hydra Hybrid Protoboa DemoboarSpinStudi Boss Propeller

rd d o] Board Prof. Dev.
Board
Same for all boards:
P28 EEPROM Clk
P29 EEPROM Data
P30 Serial RX
P31 Serial TX

*Pins 16-27 are available until the "Accessory Kit" is added to the Protoboard.

page 40/ 405

http://propeller.wikispaces.com//HYDRA+Game+Console
http://www.propgfx.co.uk/Hybrid/Docs/Hybrid_Development_System_Manual.pdf
http://propeller.wikispaces.com//Propeller+Demo+Board
http://propeller.wikispaces.com//Propeller+Demo+Board
http://propeller.wikispaces.com//SpinStudio
http://propeller.wikispaces.com//SpinStudio
http://www.gadgetgangster.com/bossboard
http://www.gadgetgangster.com/bossboard
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/425/Default.aspx?SortField=ProductName%2cProductName

Propeller
(Hss)

Tools to help you in developing software for the Propeller chip.

e Propeller Tool - Enhancement Requests
e Debuggers, Emulators and Disassmblers

e Bootloaders

e Code Formatter - for forum postings

e Developing in GNU/Linux Environments
e Homespun Spin Compiler

e Programming in C - Catalina
e Propeller Assembler Source-code Debugger

e BST, Brads Spin Tool: Mac, Linux and Windows native development

e Sphinx and SphinxOS: Propeller-based Spin compiler and SphinxOS

e [AS - Largos Assembler, supports standard PASM and LMM with assembler extensions for easy
LMM programming

page 41 /405

http://propeller.wikispaces.com//Prop+Tool
http://propeller.wikispaces.com//Propeller+Tool+-+Enhancement+Requests
http://propeller.wikispaces.com//Debuggers+and+Emulators
http://propeller.wikispaces.com//Bootloaders
http://www.phipi.com/format
http://propeller.wikispaces.com//Linux+Development
http://propeller.wikispaces.com//Homespun+Spin+Compiler
http://propeller.wikispaces.com//Programming+in+C+-+Catalina
http://propeller.wikispaces.com//PASD
http://propeller.wikispaces.com//Mac+and+Linux+native+development
http://propeller.wikispaces.com//Sphinx
http://mikronauts.com/software-products/las-largos-lmm-assembler/

Propeller
(Hss)

The DK Graphics Driver was written specifically for the game Dodgy Kong. However there is no reason
why it may not be extracted and used to power other games.

Specs
Screen Resolution (WxH) 256x224
Tile Resolution 8x8
Tiles 32x28
Tile Palette 4 colors per individual tile
Sprite Resolution 16x16
Sprite Palette 4 colors per individual sprite
Number of sprites 34
Sprites per line Depends on number of cogs used
Cogs needed 3+
More sprites or more tile palettes require more cogs
Files sw_dk_gfx_renderer_015.spin

sw_dk_tv_drv_022.spin

How it works

DK uses 3 or more cogs working together. 2 or more rendering cogs and a single TV driver cog. The
rendering cogs work in parallel creating data for a single scan line at a time. The TV cog takes this data
and sends it to the propeller graphics hardware.

page 42 /405

http://propeller.wikispaces.com//graphics+drivers

Propeller
(Hss)

DMX

DMX512-A is an RS-485 based communications protocol that is most commonly used to control stage
lighting and effects. Wikipedia has lots of background information. And there is a web site dedicated to
DMX, and another that has the full standard

Drivers

On the Object exchange there is a DMX-512A Receive Driver created by Timothy D. Swieter

Jon Williams' November, '09 Spin Zone column (#3) discusses DMX. You can download it from Parallax.

There is also a thread containing a DMX transmitter by Teva McMillan

Projects

Timothy D. Swieter created a DMX controlled light show built into his bookshelves and there's a nice
video of it on YouTube.

page 43 /405

http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/DMX512-A
http://www.dmx512.com/web/light/dmx512/index.htm
http://www.usitt.org/standards/DMX512.html
http://obex.parallax.com/objects/233/
http://www.parallax.com/Resources/NutsVoltsColumns/TheSpinZone/tabid/781/Default.aspx
http://forums.parallax.com/forums/default.aspx?f=25&m=171793
http://forums.parallax.com/forums/default.aspx?f=25&m=236431
http://www.youtube.com/watch?v=NGcelkoGySs

Propeller
(Hss)

Download Protocol

The following is based on the booter.spin file released by Chip Gracey of Parallax as an attachment to his
message posting to the Parallax Propeller forum titled: "Propeller ROM source code HERE".

Though there is no explicit copyright in the message or the attached source code, this Wiki editor believes
U.S. copyright law interprets that as copyrighted with all rights reserved. However, this Wiki editor is not
a lawyer.

In the Parallax Propeller forum thread titled "Standalone, cross-platform Propeller assembler", Chip
Gracey of Parallax also posted a message with the attachments: source for a download program written in
Delphi Pascal, and a text explanation of the download protocol.

Also posted by Chip Gracey of Parallax is a SPIN object for loading a Propeller from a Propeller, in the
thread titled "Propeller Loader"

Chip Gracey's "Minimal Spin bootstrap code for assembly language launch" is also a handy reference.

Three Bit Protocol (3BP)

The Propeller uses an adaptive Three Bit Protocol (3BP) for serial signaling which works at most any bit
rate, at the cost of reduced throughput because of signaling overhead. 3BP symbols begin high with an
idle line, followed by either one or two bit times low to signal a one or zero bit respectively. These two
bit times are referred to as T1 and T2.

As part of the handshake sequence, the Propeller calculates a threshold of 1.5 bit times in system clock
cycles. If the RXD pin is low for longer than this threshold, a zero symbol is received, otherwise a one
symbol is received.

Since the Propeller boots using its internal RC clock (RCFAST), which can vary in frequency from 8
MHz to 20 MHz, all timings are at best approximations. Any timeouts are calculated assuming a 20 MHz
clock.

3BP Meets SN1

Assume that 3BP(X) and 8N1(X) map data X into a unique symbol that can be signaled on a serial line,
then:

e 3BP Symbols
e 3BP(idle): 1

page 44 /405

http://forums.parallax.com/showpost.php?p=711064&postcount=1
http://forums.parallax.com/showpost.php?p=613143&postcount=25
http://forums.parallax.com/showpost.php?p=591445&postcount=1
http://forums.parallax.com/showpost.php?p=591803&postcount=28

Propeller
(Hss)

e 3BP(0): Two bit times low which is 001 transmitted least significant bit first.

8N1 Symbols
8NI1(dle): 1

Transmitting one 3BP symbol per 8N1 symbol is simplest, but very inefficient:

e 3BP(0) = 8N1(FE)
e 3BP(1) = 8N1(FF)

3BP(1): One bit time low, which is 101 transmitted least significant bit first.

8N1(8 data bits): start bit (0) + 8 data bits, least significant first + stop bit (1)

It is possible to pack one or more 3BP symbols into a traditional ten bit time 8N1 serial symbol!

Fixed length 3BP-to-8N1 symbol packing looks like this:

8N1 Symbol Line State

Idle or Stop 1
Start 0
Bit 0 Data Bit 0
Bit 1 1
Bit 2 0
Bit 3 Data Bit 1
Bit 4 1
Bit 5 0
Bit 6 Data Bit 2
Bit 7 1
Stop 1

3BP Symbol

Idle

T1

T2 or Idle

Idle

T1

T2 or Idle

Idle

T1

T2 or Idle

Idle

Idle

It is also possible to do variable length packing to reduce the back-to-back idle bit times, but it is more

complex to do as it depends on the symbols being sent.

page 45 /405

Propeller
(Hss)

Handshake Sequence

All communication with the Propeller is done using 3BP.

There is a timeout on completion of the entire handshake sequence of 375,000 cycles (150 ms at 20
MHz). There is a reset delay of 50 ms, and then COG 0 is loaded, which takes 512 longs * 16 cycles per
hub access = 8,192 cycles.

Important: With a 150 ms limit for the handshake, which requires 251 8N1 symbols to be transmitted
(2510 bits), the closest standard minimal bitrate required is 19200 BPS. With a more conservative 100 ms
for the handshake, 38400 BPS is recommended as a minimum bitrate. For lower bit-rates, multiple 3BP
symbols must be sent per 8N1 symbol.

1. Transmit on RXD: 3BP(idle).

2. Reset the Propeller (on Parallax development boards: set DTR low, wait at least 10 ms, set DTR
high).

3. Wait 100 ms. This leaves roughly 100 ms to complete the handshake.

4. Transmit on RXD: 3BP(0) followed by 3BP(1), which is equivalent to SN1(F9). This sets the bit
timing threshold.

5. Transmit on RXD: 250 bits from a Linear Feedback Shift Register (LFSR):

Initialize the LFSRto ASCII 'P (50 hex)
Repeat 250 ti nes:
Transmit on RXD: 3BP(LFSR bit 0), which is equivalent to 8NIL(
FE) if zero or 8NL(FF) if one.
Set rotate-in bit to even parity of LFSR AND B2.
Rotate LFSR | eft one bit.

which is equivalent to:

Initialize the LFSR to ASCII 'P" (50 hex)
Repeat 250 ti nes:
Transmt on RXD: 3BP(LFSR bit 0), which is equivalent to 8N1(
FE) if zero or 8NL(FF) if one.
Set LFSRto (shift LFSR left 1 bit) OR (
(
(shift LFSR right 7 bits)
XOR (shift LFSR right 5 bits)
XOR (shift LFSR right 4 bits)
XOR (shift LFSR right 1 bit)

page 46 /405

Propeller
(Hss)

) AND 1
)

The first 250 bits of the LFSR encoded with 8N1 are:

FE FF FE FF FF FF FE FE FF FF FF FF FE FF FE FF
FF FF FF FF FE FE FE FF FF FF FE FE FF FE FF FE
FE FE FF FF FF FF FE FE FE FE FF FE FE FF FE FE
FF FE FF FF FF FF FE FE FF FE FE FE FF FE FE FE
FF FF FE FF FF FE FF FF FF FE FE FE FF FE FF FF
FE FE FF FF FE FE FF FE FF FF FE FF FF FE FE FF
FE FE FF FF FF FE FF FE FF FE FF FE FF FF FF FE
FF FF FE FF FE FF FF FE FF FE FE FF FF FF FF FF
FF FF FF FE FE FF FF FE FF FF FF FF FE FF FF FF
FE FF FE FE FE FE FE FE FE FF FE FF FE FF FF FE
FE FE FF FF FE FE FF FF FF FE FE FE FE FE FE FF
FF FF FF FF FE FF FE FE FF FE FF FE FF FE FE FF
FE FE FE FE FE FF FE FE FE FE FF FF FF FE FF FF
FF FF FF FF FE FF FF FE FE FE FE FF FF FE FE FE
FF FE FE FF FF FE FE FE FE FE FF FF FE FF FE FE
FE FF FE FF FE FE FF FF FE FF

Note that the LFSR only requires an 8 bit wide register to calculate, as all higher bits are ignored.

Identify Sequence

All communication with the Propeller is done using 3BP.

The Propeller relies on received pacing symbols to frame a 3BP response for the next 250 bits of the
LFSR.

There is a timeout on transmitting each bit of 250,000 cycles (100 ms at 20 MHz), and it is reset with
each bit the Propeller sends.

1. Receive on TXD: the next 250 bits of the LFSR, and verify.

Repeat 250 ti nes:

Transmit on RXD: 3BP(1l) followed by 3BP(0) for pacing, which is e
qui val ent to 8N1(F9).

Receive on TXD: 3BP(0) or 3BP(1) for the next bit of the LFSR an

page 47 /405

Propeller
(Hss)

d verify

The next 250 bits of the LFSR encoded with 8N1 are:

FE FF FE FE FE FE FF FE FF FF FF FE FE FF FF FF
FF FE FF FE FF FF FF FF FF FE FE FE FF FF FF FE
FE FF FE FF FE FE FE FF FF FF FF FE FE FE FE FF
FE FE FF FE FE FF FE FF FF FF FF FE FE FF FE FE
FE FF FE FE FE FF FF FE FF FF FE FF FF FF FE FE
FE FF FE FF FF FE FE FF FF FE FE FF FE FF FF FE
FF FF FE FE FF FE FE FF FF FF FE FF FE FF FE FF
FE FF FF FF FE FF FF FE FF FE FF FF FE FF FE FE
FF FF FF FF FF FF FF FF FE FE FF FF FE FF FF FF
FF FE FF FF FF FE FF FE FE FE FE FE FE FE FF FE
FF FE FF FF FE FE FE FF FF FE FE FF FF FF FE FE
FE FE FE FE FF FF FF FF FF FE FF FE FE FF FE FF
FE FF FE FE FF FE FE FE FE FE FF FE FE FE FE FF
FF FF FE FF FF FF FF FF FF FE FF FF FE FE FE FE
FF FF FE FE FE FF FE FE FF FF FE FE FE FE FE FF
FF FE FF FE FE FE FF FE FF FE

2. Receive on TXD: the 8 bit Propeller chip version.

Repeat 8 ti nes:

Transmt on RXD: 3BP(1) followed by 3BP(0) for pacing, which is e
qui val ent to 8N1(F9).

Receive on TXD: 3BP(0) or 3BP(1) for the next bit of the Propelle
r chip version.

Transfer Sequence

All communication with the Propeller is done using 3BP.

All data is sent as 32 bit longs, least significant bit first. There is roughly 100 ms timeout on receiving
each long.

1. Transmit on RXD a 32 bit command:
Command = 0: Shutdown.
Command = 1: Load RAM and launch.
Command = 2: Load RAM, write and verify EEPROM, and shutdown.

page 48 /405

Propeller
(Hss)

Command = 3: Load RAM, write and verify EEPROM, and launch.

2. Transmit on RXD; 3BP(N), a 32 bit count of the number of 32 bit longs to follow. There is a
maximum of 8192 longs allowed (32 KB).

3. Transmit on RXD: 3BP(N x 32 bit longs). If less then 8192 longs, then the remaining 8192 - N are
set to 0. The 8192 longs must have a 0 checksum.

4. Transmit on RXD every 10 ms: 3BP(0) followed by 3BP(1) for pacing, which is equivalent to
8N1(F9).

5. Receive on TXD: the checksum result 3BP(0) = passed or 3BP(1) = failed, which is equivalent to
8N1(FE) = passed and 8N 1(FF) = failed.

DeSilva has prepared a quite readable article about self-clocking data streams and the
"Three-Bit-Protocol" here (Propeller Forum) some time ago...

page 49 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=222023&p=1&

Propeller
(Hss)

Editing the Propeller Wiki

Who can edit this Wiki?

Anyone can. If you see something that is wrong, or needs a extra bit of explanation, or is missing some
technical detail, or could just do with rearranging, just dive in and change it. Be bold!

You don't even have to create an account to do the editing, although if you do, you'll be better able to
keep track of what edits you've done.

If you want to create a whole new page, you will have to create an account though.

Can I create a page about my project or product?

Sure you can. If it will be of interest to other Propeller users, it's welcome here. And who better to write
about it than you? You might already have some content that you've written for the manual or your
website that you want to reproduce here. But think factual and informative rather than plugging and
advertisement.

Style

Think of the Wiki as an encyclopedia of topics related to the Propeller. Try to keep it impersonal. If you
use the personal pronoun "I", that might make sense at the time you are first creating a page, but over a
persiod of time, a page will have text written by multiple people, and "I" won't make any sense any more.
Don't worry about being comprehensive. If you omit things and they're important, someone else can add
them later.

Editing

Just hit the "Edit This Page" button at the top of the page you want to change. You start with a Visual
Editor, but you can change to a Text Editor which accepts standard wikitext markup if you prefer. If ever
you get strange things happening in the Visual Editor, it's often a good idea to switch to the Text Editor to
see what's wrong.

Creating a new page

Click "New Page" in the list of actions at the top of the column on the left. You'll have to be logged in to
see it. You then get to choose the page name. Try to make this brief but descriptive of the content. It
appears in lists elsewhere in the system and needs to be obvious.

page 50 /405

Propeller
(Hss)

Formatting

Title

At the top of every new page, place a title. Often this is the same as the page name, but here you can be
more verbose. For example the name of this page is "Editing the Wiki", but the title is "Editing the
Propeller Wiki". Format this as Heading 1, either using the drop down menu or by placing = before and
after the title.

Section Title

Then for each section of the page, give a section title. Format this as Heading 2 (use == before and after
the title) and subsections as Heading 3 which is marked with ===

Code

For multiline snippets of code, create a code section with place [[code]] at the start and end. For the
odd keyword that you want to display in-line, make the font monospaced bold, by putting { { ** at the
start and **} } at the end.

page 51/405

Propeller
(Hss)

Example

PUB Main

page 52 /405

Propeller
(Hss)

Fast-Track for the PropJavelin

This document is a fast-track guide to getting the PropJavelin up and running for those who have no
experience with Parallax's Javelin Stamp Product.

PropJavelin is a project to implement the functionality of the Javelin Stamp on the Propeller Chip. This is
the implementation of a JVM which runs on the Propeller to allow Java(TM) programming of the

Propeller. Java program development is undertaken using a modified version of the Javelin Stamp IDE.

This document assumes the user does have experience of Windows XP, installing applications under
Windows XP, has the Parallax Propeller Tool installed and working and is familiar with its use.

It is not however necessary to be familiar with the Javelin Stamp, its IDE or the Java programming
language to get a PropJavelin running, although an understanding of Java will be necessary to program

and fully utilise the PropJavelin.

Please feel free to update this document to aid other users who are unfamiliar with the Javelin Stamp and
PropJavelin.

Install the Parallax Javelin Stamp IDE

From the Parallax website, Downloads for the Javelin Stamp

Download Javelin Stamp IDE Installer - Version 2.0.3 (Win2k, XP & Vista) 2.2MB (EXE)

You may also wish to download the Javelin Stamp Users Manual Version 1.0a 1.4MB (PDF)
Execute the downloaded JvInSIDEsetupv203.exe to install the Javelin Stamp IDE.

Launch the Javelin Stamp IDE and click Help/About; this should show "Version 2.0.3 Build 0". Click on
the pop-up to close it. Close the application.

Get the PropJavelin Updates

From page 8 of the thread "JVM for Prop", download the three files ...

1. javelin.zip 763KB (ZIP)
2. jvm.zip 48KB (ZIP)
3. TerminalTest2.java 2KB (TXT)

page 53 /405

http://www.parallax.com/tabid/255/Default.aspx
http://www.parallax.com/tabid/443/Default.aspx
http://www.parallax.com/Portals/0/Downloads/sw/JvlnSIDEsetupv203.exe
http://www.parallax.com/Portals/0/Downloads/docs/prod/javelin/JavelinStampMan1-0.pdf
http://forums.parallax.com/forums/default.aspx?f=25&p=8&m=244721
http://forums.parallax.com/forums/attach.aspx?a=20594
http://forums.parallax.com/forums/attach.aspx?a=20592
http://forums.parallax.com/forums/attach.aspx?a=20593

Propeller
(Hss)

You may wish to check for later versions of these files. The rest of this document will assume that the
above files were downloaded.

Install the PropJavelin IDE

Unzip the downloaded javelin.zip and extract javelin.exe to the directory where the Javelin Stamp IDE
was installed to. This is likely to be "C:\Program Files\Parallax Inc\Javelin Stamp IDE" on many systems.

Launch Javelin.exe and click Help/About; this should show "Version 2.2.0 Build 4". Click on the pop-up
to close it. Close the application.

Install the PropJavelin Firmware on the Propeller

Create a directory to hold the PropJavelin firmware (the JVM) and extract the entire contents of jvm.zip
to it.

Launch the Propeller Tool and load the jymMain.spin file. Use "F9" to syntax check the software and
confirm all required files have been properly installed. This may take a few seconds on a slower PC.

Modify the _CLKMODE and _XINFREQ constants at the top of jvymMain.spin to match the Propeller
hardware you will be using. Note that the default is for the Spin Stamp product which uses a 10MHz
crystal and will likely have to be changed if using one of the other Propeller development platforms such
as the ProtoBoard.

If not already configured, set the commPort constant to 1.

Connect your Propeller hardware and Use "F7" to identify the COM port which will be used by the
Propeller Tool for downloading and remember it - this information will needed during the next step.

Use "F11" to burn the PropJavelin firmware to your hardware. This may take a few seconds to compile on
a slower PC, and will be followed by a download plus programming and verification of Eeprom.

Please make sure that "F11" is used and not the more frequently used "F10" as the Firmware must be
burned to Eeprom not run from RAM.

Leave the Propeller hardware powered-up and connected, and close the PropTool.

Checking PropJavelin Firmware Installation

Launch Javelin.exe. Select "Options" then "Debugger" and select the serial port used for program

page 54 /405

Propeller
(Hss)

download to the Propeller when using the Propeller Tool. Click "OK".

Click Project/Test Connection. This should show communications in the lower IDE panel and eventually
result in a pop-up indicating "Javelin found on COMx".

Run Your First Java Program

Start Javelin.exe and load the previously downloaded TerminalTest2.java into the IDE. Click "Compile"
or press "F9" to ensure the program compiles correctly; the status bar should show "Compile Successful".

Click Project/Download to RAM. The program will be compiled, linked and downloaded to the
PropJavelin. A 'progress' pop-up will show during the process, and when complete the PropJavelin will be
reset and the "Javelin Terminal" window will appear.

Re-size and adjust the splitter-bars as appropriate then in the bottom text box type "h", "e", "1", "p" and
then press return.

The Terminal will show a series of "received character" messages and then "Unknown command :
hheellpp".

PropJavelin is a work in progress and as can be seen above not everything works perfectly at this time -
every character typed is sent twice - however it was the TerminalTest2.java program running on the
PropJavelin itself which received and handled what was sent from the Terminal.

Debugging Your Java Program

Close the Javelin Terminal Window and close the PropJavelin IDE. Turn your PropJavelin hardware off
and then back on.

Restart javelin.exe, re-load TerminalTest2.java, then click Project/Debug to RAM. The "Progress' pop-up
will appear and the Java program downloaded to the PropJavelin.

Once download is complete, the "Debugger" window will pop-up and the Java program can be
single-stepped and otherwise debugged using the Debugger.

Notes

The PropJavelin project is a work in progress and incomplete at the time this document was written. A
phenomenal amount of work was completed in just five weeks of the project commencing, a credit to
Peter Verkaik and all those who have contributed to the PropJavelin project.

page 55 /405

Propeller
(Hss)

Further details of the ongoing project can be found in this thread. All contributions and help will be
gratefully received. Knowledge of Java, the Javelin Stamp or PropJavelin is not a prerequisite or obstacle
to participation.

When altering the Options/Editor configuration of the Javelin Stamp IDE or PropJavelin IDE it may be
necessary to close and restart the IDE for all changes to be applied.

When using Project/Identify do not click on Refresh or Close while scanning is in progress. A
PropJavelin when identified this way should show "Propeller, $78, 16384, No, No, Yes".

page 56 /405

http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=244721

Propeller
(Hss)

FEMTOBASIC

FemtoBASIC started out as a joke by Tomas Rokicki, a simple simulation of the Color Computer which
could handle a couple simple commands. Mike Green took it to the next level incorporating many
common BASIC commands as well as support for reading/writing to/from EEPROM and SD media.

Various spin-off's (pun intended) include the following:

FemtoBASIC The original FemtoBASIC, which continues to be improved upon by Mike Green
DongleBASIC An adaption created for use with Hitt Consulting's Propeller Dongle.

BoeBotBasic An adaption created for use with the BoeBot, supporting PING, IR,. and an HM55B
compass.

Propterminal BASIC An adaption created for use with Propterminal, supporting Propterminal graphics
commands.

FemtoBASICcolor An adaption incorporating AiGeneric drivers allowing 40x23, 16 color text.

page 57 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=126292
http://obex.parallax.com/objects/28/
http://obex.parallax.com/objects/212/
http://obex.parallax.com/objects/27/
http://forums.parallax.com/forums/attach.aspx?a=14188
http://forums.parallax.com/forums/default.aspx?f=25&m=231506

Propeller
(Hss)

FF

As everybody knows, FFT stands for Fast Fourier Transform. It is commonly available in some sort or
another for most microprocessors, and now the propeller is no exception!. The implementation shown
below uses a sine/cosine table, an input buffer (for real and imaginary part) and outputs to the same input
buffers.

Calculations are done using signed integer numbers. Multiplication is done using an unrolled Chip's
algorithm with some improvements to make it signed-aware (using the _sgn variable). Bit reversal is
performed using the convenient rev instruction, saving 75% of the time that a normal for/while algorithm
will take. The butterfly loops are just standard without surprises, the variables are scaled for better use of
the adds and subs instructions (signed math).

Spectrum of a run, using a base frequency by 5, like the test routine for int_fft.c describes

Input

The input should be an array of signed 16 bit values in the range -32768 to 32768. Scaling is applied
automatically, so it would be a good idea to use the whole range. If your data is just 8 bit from an ADC,
well scaling can be done for example in the decimation (bit-reversal) routine without incurring in too
much overhead,

Only real data is used in this bit-reversal. But imaginary data could be also shuffled adding few
instructions.

Output

The output is a 2 dimensional array (like the input), with the real part occupying the first half and the
imaginary the second one.

Samples

This implementation works for a 1024 sample FFT. It takes around 4720000 cycles, 20480
multiplications, 5120 passes of the inner butterfly. Expected. That is enough to get 16 fps (@80 MHz).
That is without the absolute value calculation (1024 multiplications, and 512 square roots, 532000 cycles)
and plot drawing routines.

Code

The code shown below can be optimized a bit more, but it works !

page 58 /405

Propeller
(Hss)

.section cog cog0 ' needed to generate

Converted to Propeller Assenbler by Pacito.Sys, based on int fft.c b

y Tom Roberts

with portability by Ml col m Sl aney.
" Distributed under the terns of the GNU GPL v2.0.

" Integer FFT
16 bit signed values are used

fft fr,cnt_rsanple ptr

fft_fi,cnt_isanple_ptr

fft _n, #1
fft_n, #BI TS_NN

#deci mat e

#l ets_rock
#cal c_abs

#pl ot

#init_end

ffe_ii,#1
fft_11,fft_n
Fft jj,fft i

fft jj,#32-BI TS_NN

fft i, fft_jj we
#| deci nate_5

fft fr i, fft i
fft fr jj,fft_jj
fft fr ii,#1

NN=1024
Bl TS_NN=10
Bl TS NNML=9
BI TS DI FF=3
init nov
ffer, 2048 bytes
nov
ffer, 2048 bytes
nov
shl
t
cal l
cal l
cal l
cal l
init_end jmp
bit-reversal, uses the nice rev instruction
deci mat e nov
nov
| deci nat e nov
rev
be reversed
cnp
if_nc jmp
nov
nov
shl
add

fft _fr ii,fft fr

real part bu

imag part bu

'1024 point ff

end

BI TS NN wi | |

page 59 /405

Propeller

(Hss)
rdword fft_tr,fft_fr_ii
shi fft _fr_jj,#1
add fft fr jj,fft _fr
rdword fft result,fft _fr_jj
wword fft_tr,fft_fr_jj
wword fft result,fft fr ii
| deci mate_5 add fft_ii,#1
cnp fft i, fft |1 we, Wz
if cor_z jnp #| deci mat e
deci nate_ret r et

" Calcs the 1024 point-FFT using 16 bit signed integers, some cal cul at
i ons
' are don with 32 bits

| ets rock nov fft I, #1
nov fft_k, #BI TS_NNML
l ets_rock_while cnp fft _11,fft_n we
if_nc jmp #lets rock while e
nov fft is,fft |1
shli fft_is,#1
nov fft_m#0
l ets_rock _for_1 cnp fft_ mfft_I1I we
if_nc jmp #lets rock for 1 e
nov fft jj,fft_m
shli fft jj,fft_k
cal | #get _si ncos
nov fft ii,fft_m
l ets_rock _for_2 cnp fft_ii,fft_n we
if_nc jmp #lets rock for 2 e
nov fft _jj,fft_ii
add fft_jj,fft_I1
nov fft fi jj,fft_jj
shl fft _fi_jj,#1 " word access
nov fft fr jj,fft _fi _jj
add fft _fr_jj,fft_fr
add fft _fi_jj,fft_fi

rdword fft result,fft fr_jj
cal | #lets mul _w

page 60 /405

Propeller

(Hss)

nov fft_tr,fft_result

rdword fft result,fft fi_jj

cal | #lets_mul _w

subs fft tr,fft result 32 bit signed
val ue

rdword fft result,fft _fi_jj

cal | #lets mul _w

nov fft_ti,fft_result

rdword fft result,fft _fr_jj

cal | #lets_mul _w

adds fft ti,fft result 32 bit signed
val ue

nov fft _fi_ii,fft_ii

shl fft fi _ii,#1 word access

nov fft _fr_ii,fft_fi _ii

add fft_fr_ii,fft_fr

add fft_fi_ii,fft _fi

rdword fft_qr,fft_fr_ii qr = fr[i]

shli fft_qr, #16

sar fft_qr, #1 scales to 32 b
it signed val ue

nov fft_result,fft_tr

rdword fft_qi,fft_fi_ii g = fi[i]

shli fft_qi, #16

sar fft_qi, #1 scales to 32 b
it signed val ue

adds fft _result,fft_qr res =tr + qr

subs fft_qr,fft_tr gr = gr - tr

shr fft result, #16 scal es down

wword fft_result,fft_fr_ii fr[i] =res =
tr + qr

nov fft result,fft ti

adds fft_result,fft_qi res =ti + qi

shr fft_qr, #16 scal es down

wword fft_qgr,fft_fr_jj fr[j] =qgr = ¢
r- tr

subs fft_qi,fft_ti gi = qgi - ti

shr fft result, #16 scal es down

wword fft_result,fft_fi _ii fi[i] =ti + ¢
[

shr fft_qi, #16 scal es down

add fft_ii,fft_is

page 61 /405

Propeller

(Hss)
wword fft qgi,fft _fi jj fi[j] =g =q
[
jmp #lets _rock _for_2
l ets rock for 2 e
add fft_m#l
jmp #lets rock for 1
|l ets_rock for_1 e sub fft_k, #1
nov fft Il,fft _is
jmp #l ets_rock_while
l ets rock while e
| ets_rock_ret ret
lets mul _w nov fft_sgn,fft_result
and fft_sgn, cnt_sgn wz
shl fft result, #16
negnz fft_result,fft_result
shr fft result, #15
shr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 e
if_ add fft _result,fft_w e
rcr fft result, #1 Wwe
if_ add fft _result,fft_w e
rcr fft result, #1 Wwe
if_ add fft _result,fft_w e
rcr fft result, #1 Wwe

page 62 /405

Propeller

(Hss)
if_ add fft _result,fft_w e
rcr fft result, #1 we
if_ add fft _result,fft_w e
rcr fft result, #1 we
if_ add fft _result,fft_w e
rcr fft result, #1 we
xor fft_sgn,fft_sgnw wz
negnz fft result,fft result
lets_mul _w _ret ret
lets_mul _wr nov fft_sgn,fft_result
and fft_sgn, cnt_sgn wz
shli fft_result, #16
negnz fft result,fft result
shr fft_result, #15
shr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 e
if_ add fft result,fft_w e
rcr fft result, #1 Wwe
if_ add fft result,fft_w e
rcr fft result, #1 Wwe
if_ add fft result,fft_w e
rcr fft result, #1 Wwe

page 63 /405

Propeller
(Hss)

lets_mul _wr_ret

Uses the ROMtable to

get _sincos

verted

t inverted

get _sincos_ret

lets_mul _qr

if _nz

if _nz

add
rcr
Xor
negnz
ret

get the

nov
shl
nov
add

t est

t est
negc
or

shl

r dwor d
nov

nov
t est

t est
negc
or

shl
rdword
nov

shl
shl
ret

nov
shl

abs
nov
shr

shr
add
rcr
add
rcr

fft_result,fft_w we
fft result, #1 we
fft_sgn,fft_sgnw wz
fft result,fft result

sine and cosine of jj

fft w, fft jj
fft_w,#BI TS D FF
fft w, fft w
fft_ w,cnt_sin_90

fft_w,cnt_sin_90 we
fft_ w,cnt_sin_180 Wz
fft wi,fft_w

fft w,cnt_sin_table

fft wi, #1

fft wi,fft_w

fft_sgnw ,cnt_sgn
fft_sgnw , #0

fft _ w,cnt_sin_90 we
fft_w,cnt_sin_180 wz
fft w, fft_ w
fft_w,cnt_sin_table

fft w, #1

fft w, fft_w

fft_sgnw, cnt_sgn
fft_sgnw, #0

fft_w,#14

fft w,#14

fft _result,fft_qr
fft_result, #16

fft result,fft result
fft_qr,fft_result

fft result, #16

fft result, #1 we
fft result,fft_qr we
fft result, #1 we
fft result,fft_qr we
fft result, #1 we

they are in

they are no

page 64 /405

Propeller

(Hss)
if_c add fft result,fft_qr Wwe
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1 we
if_c add fft result,fft_qr e
rcr fft result, #1
lets_mul _qr_ret ret
| ets_sqrt_qi nov fft_result,#0
nov fft_m#0
nov fft jj,#16
lets_sqrt_qi | shl fft_qi, #1 we
rcl fft_m#l
shl fft _qi,#1 wc
rcl fft_m#l
shl fft result, #2
or fft_result, #1
cnpsub fft _mfft _result Wwec, w
shr fft_result, #2
rcl fft result, #1
dj nz fft_jj,#lets_sqrt_qi _|
l ets_sqrt_qgi _ret r et
cal c_abs nov fft ii,#511

page 65 /405

Propeller
(Hss)

calc_abs 5

cal c_abs ret

This routine wll

pl ot

pl ot _8p

nov
nov
rdword
cal l
nov

r dwor d
add
cal l
add
cal l

wr wor d
add

dj nz

r et

fft _fr_ii,fft_fr
fft_fi_ii,fft_fi
fft _gr,fft _fr_ii

#lets_mul _qr

fft_qi,fft_result
fft_qr,fft_fi _ii

fft fi _ii,#2
#lets_mul _qr

fft_qi,fft_result

#lets sqrt_qi

fft_result,fft _fr_ii

Fft fr ii,#2

fft _ii,#calc_abs 5

next word

next word

draw t he spectrumin a lbpp 320x240 bitmap

fft_ii,#40
fft_jj,#0

fft _fr_ii,fft_fr
fft_k, #$80

fft _gr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

fft _gr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

fft _gr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

fft _gr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

fft _gr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

fft _qgr,fft _fr_ii
fft_fr_ii,#2
#put pi X
fft_k, #1

page 66 /405

Propeller

(Hss)
r dwor d fft_qr,fft_fr_ii
add fft_fr_ii,#2
cal | #put pi X
shr fft _k, #1
r dwor d fft_qr,fft_fr_ii
add fft_fr_ii,#2
cal | #put pi X
add fft_jj,#1
dj nz fft_ii,#plot_8p

pl ot _ret ret

put pi x nov fft_qi, #239
max fft_qi,fft_qr
nov fft_qr, #239
sub fft_qr,fft_qi
shli fft_qr, #3
nov fft_qi,fft_qr
shli fft_qr, #2
add fft_qr,fft_qi
add fft_qr,cnt_bitmap_ptr
add fft_qr,fft_jj
rdbyte fft 11, fft_qr
or fft _II,fft_k
wr byt e fft 11, fft_qr

put pi x_ret ret

constants

cnt _sgn | ong $8000

cnt_sin_90 | ong $0800

cnt _sin_180 | ong $1000

cnt_sin_table | ong $7000

cnt_rsanple ptr | ong $800

cnt _isanple ptr | ong $1000

cnt_bitmap _ptr | ong $4000

cnt _add _ptr | ong 512

Vari abl es

fft i | ong 0

fft_is | ong 0

fft _jj | ong 0

fft _k | ong 0

fft |1 | ong 0

fft_m | ong 0

fft_n | ong 0

page 67 /405

Propeller

(Hss)

fft_qr | ong 0

fft_qi | ong 0

fft _fr | ong 0

fft_fi | ong 0

fft_tr | ong 0

fft _ti | ong 0

fft_w | ong 0

fft_ w | ong 0

fft fi i | ong 0

fft_fr_ii | ong 0

fft _fi_jj | ong 0

fft _fr_jj | ong 0

fft_result | ong 0

fft_sgn | ong 0

fft_sgnw | ong 0O ' sign of w
fft_sgnw | ong 0 sign of w

This can be adapted with minor modifications to 256 or 512 points or extended to 2048 or 4096 points, in
those cases some constants need adjustment

e NN : Number of samples

e BITS_NN : Log2(Number of samples)

e BITS_NNMI1 : BITS_NN -1

e BITS_DIFF : Difference between the amount of samples (divided by 2) and the samples in the
sine table.

Some modifications to get_abs and plot may be then necessary.
Note: This was tested with pPropellerSim, as of today not yet available with all bugs fixed (rev, max,

etc).

Enjoy !

page 68 /405

Propeller
(Hss)

Fixed Point Math

Fixed point Math makes reference to a way of number representation that allows fast calculations without
all the burden of a full floating point implementation with some floating point advantages, i.e decimal
places. This article will be focused in 16.16 Fixed point numbers (aka FP16.16).

This representation has important properties:

There is no exponent
The number is denormalized
The fraction does not represent decimal digits, is a binary fraction.

The number one (1.0) is represented as $1_0000
The number two (2.0) is represented as $2_0000
The number 1/2 (0.5) is represented as $0_8000

Arithmetic

Addition and subtraction of two FP16.16 yields directly a FP16.16

add nl,n2
nl long $1_0000
n2 |ong $2_0000

yields nl = $3_0000

Multiplication is a bit more complicated because the result gets scaled as a consequence of taking the
number of bits of both arguments added.

mull nl, n2 i nexi stent 32x32 nultiplication, returns high 32
bits discards lower 32 bits
nl long $2_0000
n2 long §3_0000

yi el ds $6_0000

Division is a bit much more complicated, because scaling also occurs and all non-zero digits to the right
of the decimal point will be lost:

page 69 /405

Propeller

(Hss)

divl nl,n2 " hypothetic 32 by 32 bit division
nl long $5_0000 " 5.0
n2 long $0_8000 ' 0.5

will yield $0 000A, an unscaled result (should be $A 0000, 10.0)

divl nl,n2 " hypothetic 32 by 32 bit division
nl long $5_0000 " 5.0
n2 long $0_4000 ' 0.25

will yield $0 0014, an unscaled result (should be $14 0000, 20.0)

((More to come))

page 70/ 405

Propeller
(Hss)

Full Duplex Serial

(and other asynchronous serial variations)

Full Duplex Serial Created by: Chip Gracey
Extended Full Duplex Serial Created by: Martin Hebel
Simple Serial Created by: Chip Gracey
SerialMirror Created by: Mirror

Designed for serial communications.

Examples of this code in use: PropCOMM,

The original "Full Duplex Serial"

Extensions to allow reception of
character strings that end in a
carriage return for decimal,
hexadecimal and alpha-numeric
uses. Allows use of timeout values.
This version also allows use of
defined delimiter characters, and
returning whole and fractional
portions of a numeric string.

Bit-bang serial driver for low baud
rate (~19.2K) devices.

1. This driver is designed to
be method-compatible with
the FullDuplex serial
object, allowing it to be
used when high speed
comms or devoting an
independent cog for serial
I/O is not necessary.

2. Bi-directional
communication on the
same pin is also supported.

A FullDuplexSerial enhancement
that allows a single serial
connection to be used from within
multiple spin files. Primarily
aimed as a debugging aid, this file
also illustrates how to use the DAT
section to make single-instance
objects which may be called from
multiple spin files.

page 71 /405

http://obex.parallax.com/objects/54/
http://obex.parallax.com/objects/31/
http://obex.parallax.com/objects/183/
http://obex.parallax.com/objects/189/
http://forums.parallaxinc.com/forums/attach.aspx?a=16931

Propeller
(Hss)

.start(rxpin, txpin, mode, baudrate)
Start serial driver - starts a cog

mode bit 0 = invert rx

mode bit 1 = invert tx

mode bit 2 = open-drain/source tx
mode bit 3 = ignore tx echo on rx

TIx(rxbyte)
Receive a byte of data

tx(txbyte)
Send a byte of data

.str(stringptr)
Send string. Example: str(string("Hello World"))

.dec(value)
Print a decimal number

.hex(value, digits)
Print a hexadecimal number

.bin(value, digits)
Print a binary number

page 72 /405

Propeller
(Hss)

Game Programming for the Propeller Powered Hydra

by André LaMothe

ISBN 1-928982-40-9

An 812 page book which comes included in the box with the Hydra Console. It is also for sale separately.
It has an accompanying CD with a few games, lots of starters for games, other demos and some Graphics
Drivers. The software on the CD is for use by the owner. It is not open source. Drivers from the CD must
not be distributed with games.

You can download some sample chapters, useful for understanding the Parallax reference graphics
drivers.

Errata:

p.- 648 Some clones of Defender were tile-based as stated. However the original William's Defender used
a bitmapped frame buffer.

page 73 /405

http://propeller.pbwiki.com/Graphics+Drivers
http://propeller.pbwiki.com/Graphics+Drivers
http://www.parallax.com/Store/Microcontrollers/PropellerProgrammingKits/tabid/144/CategoryID/73/List/0/Level/a/ProductID/474/Default.aspx?SortField=ProductName%2cProductName

Propeller
(Hss)

Playable Games

These are mostly games for the Hydra. Many are adaptable for other Propeller boards.

Game

Aliens Invaders

Ball Buster

Defender

Dodgy Kong

Dr Hydra

HYDRA Lockn

Chase

Hydra Repeat

Manic Miner

Planetary Defense

SpaceWar!

Spintris

Picture

(Use external image
where possible to
save space)

Description

By

A vertically scrollingRemi Veilleux

shoot 'em up
A Breakout clone

A Defender Clone

A Donkey Kong
Clone

A Dr Mario Clone

A remake of the
classic "Lock 'n'
Chase"

Simon clone

A Manic Miner
clone

Defend your planet
from missiles and
aliens by shooting
them down

A Spacewar! clone

A 1 or 2 player
Tetris clone. NTSC

JT Cook

Game by Steve
Waddicor
Sound by Eric
Moyer

Game by Steve
Waddicor
Sound by Eric
Moyer

Remi Veilleux

Remi Veilleux

Spork Frog

Jim Bagley

Mpark

Eric Moyer

JT Cook

Location

On Hydra Book CD

On Hydra Book CD

Parallax forums

Dodgy Kong zip

On Hydra Book CD

On Hydra Book CD

Located in Parallax
forums

Manic Miner zip

Located in Parallax
forums

First post in the
SpaceWar! thread

Located in Parallax
forums

page 74 /405

http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://en.wikipedia.org/wiki/Breakout
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://en.wikipedia.org/wiki/Defender_%28arcade_game%29
http://forums.parallax.com/forums/default.aspx?f=33&m=226995
http://en.wikipedia.org/wiki/Donkey_Kong_%28video_game%29
http://forums.parallax.com/forums/attach.aspx?a=14566
http://en.wikipedia.org/wiki/Dr_Mario
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://en.wikipedia.org/wiki/Lock_%27n%27_Chase
http://en.wikipedia.org/wiki/Lock_%27n%27_Chase
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://en.wikipedia.org/wiki/Simon_%28game%29
http://forums.parallax.com/forums/default.aspx?f=33&m=223936
http://forums.parallax.com/forums/default.aspx?f=33&m=223936
http://en.wikipedia.org/wiki/Manic_Miner
http://www.jimbagley.co.uk/ManicMiner002.zip
http://forums.parallax.com/forums/default.aspx?f=33&m=212449
http://forums.parallax.com/forums/default.aspx?f=33&m=212449
http://en.wikipedia.org/wiki/Spacewar%21
http://forums.parallax.com/forums/default.aspx?f=33&m=187691
http://en.wikipedia.org/wiki/Tetris
http://forums.parallax.com/forums/default.aspx?f=33&m=228502
http://forums.parallax.com/forums/default.aspx?f=33&m=228502

Propeller

(Hss)
and PAL

X-Racer A car racing game inJT Cook On Hydra Book CD
the style of Pole
Position

page 75 /405

http://en.wikipedia.org/wiki/Pole_Position_%28arcade_game%29
http://en.wikipedia.org/wiki/Pole_Position_%28arcade_game%29
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra

Propeller
(Hss)

The following was originally published July 11, 2011 at
http://blog.2e-pro.com/2011/07/why-is-logo-important.html

When you are an Internet marketer, you are your own brand. Some online marketers use their first and
last name as their business name, while others actually choose a company name to go by. Either way, you
have an online brand and you should also have a logo. When it comes to business logos, no matter what
type of business the company or person is in, there are some logos which fit the bill and others that are
simply lacking.

When it comes to Internet marketing, your logo is very important and if you do not have a good logo,
then it can easily affect your marketing success. Here are 4 reasons why:

Brand

A website’s logo often becomes attached to its brand. It is what people think of when people think about a
website, an online business and the person running the business. It can also make people remember a
person’s name easier if their name is attached to the logo in some manner. If the logo is not catchy or is
poorly done, then the marketer could risk having people not remember the website, what the website is
about, the marketer and the company as a whole.

Recognition

When your logo is done well and people remember it than they remember you and your company. The
more times and the more places that they see your logo, the more they will associate with you and your
business.

Trust

A person, company and website that is using the same logo (if well done) across all of the networks
(website, social media accounts, business cards, letterhead, email signature etc.) gains trust with the
consumer. Consumers like it when everything is the same across the board. If a marketer or online
company is using different logos on different accounts or not using a logo that looks nice and is catchy
than that could decrease consumer trust or prevent the consumer from trusting the brand in the first place.
Attention

Last, a logo that is nicely done brings attention. Businesses online or off are often awarded for their logo
design and it can bring attention from other markets. The more attention a company has, the better.

Take a good hard look at your logo or think about developing one if you do not already have one.
Remember, if you have had the same logo for several years and you have a strong following, then you
may not want to change it even if it is lacking some elements. Think how changing the logo hurt the
clothing company GAP last year and the consumer backlash against it. You do not want to go down that
road but if your logo has not been around that long and you are just building up your Internet marketing
company, it is better to get your logo right now.

By ITM Marketing Blog
‘The Internet Time Machine’
www.theinternettimemachine.com

page 76 / 405

http://blog.2e-pro.com/2011/07/why-is-logo-important.html
http://www.theinternettimemachine.com/

Propeller
(Hss)

page 77 /405

Propeller
(Hss)

Graphics Drivers

Tiles and Sprites drivers

Driver
name

Cop

HEL

JLC
Spectrum

REM

VGA
Learning
Driver

Location

On Hydra
Book CD

As part of
latest Dodgy

Kong zip

On Hydra
Book CD

Parallax
Hydra forum

On Hydra
Book CD

Propeller
forum

Resolution
(WxH)

256x224

160x192?

256x192

640x480

Tiles Sprites Color PaletteCogs
32x28 map 34 total 4 colors per 3+
individual
8x8 Number per tile
pixels/tile line depends
on cogs used 4 colors per
individual
16x16 pixels sprite
10x12 map 8 total 4 colors per 1
individual
16x16 5perline tile
pixels/tile
16x16 pixels Sprites share
Horizontally palettes of
scrollable tiles they
overlap with
32x24 map No sprites. 2 colors per 17?
individual
8x8 tiles tile chosen
from a
palette of 16
plus flashing
colors.
N/A N/A 64 color (4 1
color /
16pixel
mode)

Source files

cop_drv_010
.spin

sw_dk_gfx_r
enderer_015.
spin
sw_dk_tv_dr
v_022.spin

HEL_GFX_
ENGINE_05
0.spin

JLC_Spectru
m_TV_010.s
pin

rem_gfx_en
gine_017.spi
n
rem_tv_017.
spin

VGA
Learn.spin

page 78 /405

http://propeller.wikispaces.com//Colors
http://propeller.wikispaces.com//Palette+Mode
http://propeller.wikispaces.com//Propeller+Lingo#cog
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://propeller.wikispaces.com//DK+Graphics+Driver
http://forums.parallax.com/forums/attach.aspx?a=14566
http://forums.parallax.com/forums/attach.aspx?a=14566
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://forums.parallax.com/forums/default.aspx?f=33&m=190254&g=190268#m190268
http://forums.parallax.com/forums/default.aspx?f=33&m=190254&g=190268#m190268
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://forums.parallax.com/forums/default.aspx?f=25&m=247936
http://forums.parallax.com/forums/default.aspx?f=25&m=247936

Propeller

(Hss)

NTSC Hydra forum 188x244 N/A N/A N/A 1 BAM_50_Li

Tutorial ne_Driver 0
1.spin

8x8 Tile Hydra forum 376x240 30x64 tile Any height, One byte per 5+ See post in

Driver map, 8x8 width can be pixel, use the forum.

Tutorial tiles, smooth 4, 8, 16, 32, Hydra

scroll in X 64, etc. palette.
and Y, rows pixels. Add
can be added sprites until
but need to the driver
be at least chokes, then
30. add more
cogs... ;-)

Character mode driver

TV_Text is in the standard library. PAL/NTSC support, 40 columns, 12 lines. or 16 lines for NTSC and
PAL respectively.

8x8 NTSC driver (up to 70 chars / line, 25 display lines 2 colors / screen or up to 40 chars / line, 25
display lines 2 colors per char displayed)

This driver was further developed in this thread, into 2 versions plus some derived works to make it
compatable with TV_Text. Look for the downloads from Hippy for the merged versions that have added
easy to use Pin and mode selection.

Note that there is a improved graphics driver SDM_ graphics_ XOR, that is an extension to the standard
graphics.spin to support XOR mode that can replace double buffering, and uses the internal fonts. This
reduced memory usage might mean you do not need a text mode driver.

raster-based, non-tiled graphics system(s)

e "Amazing Sand Physics demo uses 6 cogs to animate 10,000 grains of sand in realtime"
e Variable resolution simple bitmap high-color NTSC driver (horizontal 20, 40, 80, 160, 256, 320
pixels Vertical 48, 64, 96, 192 x 1 byte / pixel)

page 79 /405

http://forums.parallax.com/forums/default.aspx?f=33&m=277812
http://forums.parallax.com/forums/default.aspx?f=33&m=288732
http://obex.parallax.com/objects/205/
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=220192
http://obex.parallax.com/objects/310/
http://forums.parallax.com/forums/default.aspx?f=25&m=174335
http://forums.parallax.com/forums/?f=33&m=195345&g=195345#m195345

Propeller
(Hss)

Here is various information about the Propeller architecture and various boards that have a Propeller on
them.

Propeller P8X32 die

Architecture Information

The Propeller P§X32 chip is a multicore microcontroller. It has 8 cores, called Cogs, 32k of shared RAM,
32k of ROM, and 32 I/O pins.

The Cogs each have their own local memory, and share access to the 32k Hub memory. They also share
access to the 32 I/O pins. They, also, each have their own pair of user configurable counters with PLLs
and a Video Generator that aids in driving either NTSC/PAL or VGA video outputs.

Hub RAM - 32K Ram shared by the Cogs

Cog RAM - 512 Longs local memory per Cog

Oscillator - Options and Over-Clocking

Interrupts - Handling 'external signal events'

Video Generator - Output Video signals

Propeller Block Diagram PDF

Propeller Data Sheet v1.2 PDF

Development Boards

e SerPlug an inexpensive alternative to the PropPlug - program your propeller from a serial port or
USB to serial cable.

e Chameleon PIC/AVR a multi-processor "Arduino Like" system consisting of either a Microchip
PIC24 16-Bit or an Atmel AVR 328P 8-Bit microcontroller and a Parallax propeller.

e Propeller Demo Board included in the Propeller Starter Kit

e Professional Development Board USB & Serial versions

e Proto Board & Proto Board USB

e Education Kit 40 pin DIP & PropStick USB versions

page 80 /405

http://www.parallax.com/tabid/254/Default.aspx
http://propeller.wikispaces.com//Hub+RAM
http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Oscillator
http://propeller.wikispaces.com//Interrupts
http://propeller.wikispaces.com//Video+Generator
http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/PchipBlockRev.pdf
http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/PropellerDatasheet-v1.2.pdf
http://mikronauts.com/products/serplug/
http://www.chameleon-dev.com
http://propeller.wikispaces.com//Propeller+Demo+Board
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/515/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/BASICStampDevelopmentBoards/tabid/137/CategoryID/19/List/0/SortField/0/Level/a/ProductID/123/Default.aspx
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/423/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/509/Default.aspx?SortField=ProductName%2cProductName
http://www.parallax.com/Store/Microcontrollers/PropellerProgrammingKits/tabid/144/CategoryID/20/List/0/SortField/0/Level/a/ProductID/415/Default.aspx
http://www.parallax.com/Store/Microcontrollers/PropellerProgrammingKits/tabid/144/CategoryID/20/List/0/SortField/0/Level/a/ProductID/506/Default.aspx

Propeller
(Hss)

e PropRPM Rapid Prototyping Module

P8X32 Education Board

e PropStick USB

e Spin Stamp a Propeller chip in a stamp-like package

e HYDRA Game Console (HGC) included in the HYDRA Game Development Kit

e SpinStudio development board and various plug-in modules that can be used with other currently
available Propeller development products.

e HYBRID Development Kit available as an unassembled kit or fully assembled board.

e Hive board a three-propeller design with ethernet, SRAM, SD card slot of a mostly german
speaking community. Board is available as kit.

e The Briel PockeTerm available as a fully assembled board, a complete kit, or just blank PCB.

e Propeller Platform Arduino-style modular system.

e Propeller Platform USB Same as the previous, but has some upgrades such as MicroSD slot and
USB.

e Propeller System Module All-in-one with LCD display, accelerometer, SD Card Slot, and USB.

e Morpheus: Dual Propeller SBC with 512KB RAM, 1MB Flash, RTC, 256 color VGA and
expansion bus, Mem+ 2MB memory/IO expansion board with RS232 port & programming, SD
card support and 16 bits digital I/O

e Propteus: Propeller Prototyping Board with support for DIP Propeller, EEPROM, PropellerPlug
compatible header, Reset switch, optional 4 user LED's,large prototype area, stacks on Morpheus
or other Parallax boards, 12 servo headers, bussed large prototyping area.

e Proteus: A bussed prototyping board meant to mount on Morpheus, Propteus, Propeller Proto
Board (serial and usb version) or any 4"x3" Parallax style board.

e SmorgasBoard 2012: A collection of 23 open source propeller designs in a 11x8", tab routed PCB
panel

I/0O Bus Systems for some of the above listed development boards.
Development Board Differences- Xtals and pin usage differences between some of the above listed
boards.

Other development boards using the propeller and another processor

e pPropQL board. A hardware emulator of the Sinclair QL (using a MC68008)
e pPropQL020 board. An extended version using a MC68EC020 microprocessor
e pProp040 board. An improved version of the 020 board but with a 040 :).

page 81/405

http://www.parallax.com/Store/Microcontrollers/PropellerTools/tabid/143/CategoryID/19/List/0/SortField/0/Level/a/ProductID/443/Default.aspx
http://www.micro4you.com/store/parallax-propeller-p8x32/prod_40.html
http://www.parallax.com/Store/Microcontrollers/PropellerTools/tabid/143/CategoryID/19/List/0/SortField/0/catpageindex/2/Level/a/ProductID/411/Default.aspx
http://www.parallax.com/Store/Microcontrollers/PropellerTools/tabid/143/CategoryID/19/List/0/SortField/0/catpageindex/2/Level/a/ProductID/448/Default.aspx
http://propeller.wikispaces.com//HYDRA+Game+Console
http://propeller.wikispaces.com//SpinStudio
http://propeller.wikispaces.com//HYBRID+Development+Kit
http://hive-project.de/
http://www.retrothing.com/2009/07/the-briel-pocketerm.html
http://www.gadgetgangster.com/168
http://gadgetgangster.com/find-a-project/56?projectnum=257
http://www.gadgetgangster.com/162
http://mikronauts.com/products/morpheus/
http://mikronauts.com/products/morpheus/
http://mikronauts.com/products/propteus/
http://mikronauts.com/products/proteus/
http://smorgasboard.wikispaces.com/home
http://propeller.wikispaces.com//IO+Bus+Systems
http://propeller.wikispaces.com//Dev+Board+Differences
http://propeller.wikispaces.com//pPropQL
http://propeller.wikispaces.com//pPropQL020
http://propeller.wikispaces.com//pProp040

Propeller
(Hss)

Propeller

This site is dedicated to documenting interesting stuff related to the Parallax Propeller microcontroller.

Software

A bunch of information about programming the Propeller.

Development Tools

Tools to help you in developing software for the Propeller chip.

Hardware

Information about the Propeller Chip and several Development Boards.

Interfacing

Connecting the Propeller to various devices.

Released projects

Several software projects available for the Propeller.

Propeller Magazine

Online magazine with lots of links to interesting stuff about the Propeller. (no longer updated)

e Propeller Lingo- with some keywords about the propeller, and what it all means.
e Where in the World are other users and Propeller related companies.

e Links to other sites related to the Propeller.

e #Propeller on IRC - Chat with other Propeller users in real time

Rumoured information about the next generation Propeller II (Updated as new information is revealed)

This will only grow into something worthwhile if people contribute to it. Please feel free to add new
material, or edit and improve what's here. If you don't feel confident enough to edit a page, or if you have
a question or suggestions for improving a page, add a comment on the relevant discussion page.

page 82 /405

http://www.parallax.com/propeller/
http://en.wikipedia.org/wiki/Parallax_Propeller
http://propeller.wikispaces.com//Software
http://propeller.wikispaces.com//Development+Tools
http://propeller.wikispaces.com//Hardware
http://propeller.wikispaces.com//interface
http://propeller.wikispaces.com//Released+projects
http://propeller.wikispaces.com//PropMag
http://propeller.wikispaces.com//Propeller+Lingo
http://propeller.wikispaces.com//Where+In+The+World%3F
http://propeller.wikispaces.com//Links+to+other+sites+related+to+the+Propeller
http://propeller.wikispaces.com//Join+us+on+IRC%21
http://propeller.wikispaces.com//Propeller+II

Propeller
(Hss)

Homespun is a command-line Spin compiler that reads .spin files and outputs .eeprom files. It is written
in C# and runs on Windows with the .Net framework and on Linux with Mono.

Homespun is a personal project and not a professional product. Use Homespun at your own risk.
Download the executable here:Propeller forum thread.

In my testing, Homespun generates output that is identical to Proptool's (except the occasional
least-significant bit in floating-point constants), which was my original goal. Now I'm using Homespun as
a testbed to try out extensions to the compiler and the language. All information here is subject to change
as Homespun continues to evolve.

Installing Homespun

Installation consists simply of copying homespunXXX.exe (where XXX is the version number) to your
Windows (or Linux) machine. As long as you have the .Net framework (or Mono) installed, Homespun
should run.

Using Homespun in Linux under wine

There are two ways of running homespun. One is directly from a terminal using wine homespunXXX
[options] . The other one is using a wine terminal, for this the command has to be mono
homespunXXX.exe [options] . This seems to be a limitation of mono (at least in the 1.9.1 and 2.2
versions).

Using Homespun in Mac OS X under Darwine

There is no wine executable that you can easily call (and I'm aware of) from the Mac OS X terminal. So
the way to get homespun to run is to use a Darwine terminal settings file. This file is a settings file for the
Mac OS X terminal that will launch the command line interpreter in darwine (located in
/Applications/Darwine/Wine.bundle/Contents/bin/wine). From this command line the path to the mono
executable can be added, but it must be done every time:

set pat h=C.\ Program Fi | es\ Mono- 2. 2\ bi n; 4PATH%

A more permanent way is to add it to the registry in
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\PATH

page 83 /405

http://forums.parallax.com/showthread.php?106401
http://antscape.byethost8.com/dterm.php

Propeller
(Hss)

PATH=C. \ Wi ndows\ syst enB2; C. \ wi ndows; C. \ Program Fi | es\ Mono- 2. 2\ bi n

Every time you launch the new terminal properties file this path will be set so you can launch
homespunXXX.exe [options] . This seems to be a limitation of mono (at least in the 2.2 version I tested
under darwine).

Using Homespun

At a command prompt, type "homespunXXX filename.spin". You can omit the ".spin"; Homespun will
add it. The program will compile the Spin source code and produce a file called filename.eeprom (or
filename binary).

Command-line options

You may specify command-line options and the filename in any order. Options begin with "-".

-b - generates a .binary file instead of the default .eeprom file.

-c - generates a .dat file containing the top object's DAT data.

-d - produces a listing file, including disassembled Spin bytecode.

-D - define a symbol (as in #define); e.g. -D DEBUG

-in - controls informational messages: -i0 suppresses all messages, -i2 and -i3 show some

messages, -13 shows all messages.

-L - specify library path. See below for more information.

e -w - enables warnings for common coding pitfalls -- code that is syntactically correct but perhaps
does something other than what you intended. See below for more information.

e -sob - generates a .sob file for every .spin file compiled.

Object sharing

Details to come. Or maybe not. Is anybody reading this? Email me if you're interested.

Warnings

If the -w option is specified, Homespun will generate a warning when it encounters the following
potentially problematic code:

page 84 /405

Propeller
(Hss)

e JMP/DJNZ/etc without #

e RES without a count

e ORG without an address

e data after RES

e COGNEW containing a call to another object
e data truncation (e.g. DAT BYTE 1000)

Library search paths

Filenames in OBJ declarations and FILE directives can contain ":" and "\" (and "/"), so you can hardcode
full paths. However, a more flexible approach is to use the -L option and the SPINLIB environment
variable. Invoke Homespun using -L to specify directories (one -L per directory). For example,

Homespun028 -L \second\ -L ..\third\ first\blah.spin

If your input filename contains a directory, as in this example, that directory is searched first. If you just
supply the input filename, the current directory is searched first.

In this example, Homespun will search for blah.spin first in first\, then in \second\, then ..\third\.
Homespun will search those same directories for any objects referenced in blah.spin.

(Note: Homespun will supply the trailing "\" if necessary. It will also switch to "/" on non-Windows
systems, but to be on the safe side, add the final separator yourself.)

You can also set the SPINLIB environment variable to specify additional directories:

set spinlib=c:\fourth\;\Program Files\Parallax Inc\Propeller Tool v1.0
5.5

The /L option takes precedence over SPINLIB, so if we invoke Homespun with the same command line

as before, the search order will be

e first

¢ \second\

e . \third\

e c:\fourth\

e \Program Files\Parallax Inc\Propeller Tool v1.05.5\

Multidimensional arrays

VAR variables can now be multidimensional arrays (any number of dimensions).

VAR byte nyArray[2, 40, 13] ' a 2x40x13 array

page 85/405

Propeller
(Hss)

in a PUB or PRI
nyArray[i,j,k] := blah

No bounds-checking is performed.

#include directive

You can include a file inside another file using #include. Example:

#i ncl ude "defs. h"

Homespun will search the library paths for the file.

Conditional compilation

Homespun supports the following conditional compilation directives:

e #ifdef symbol
e #elseifdef symbol

o #else
e #endif
o #ifndef

#ifdef and #elseifdef check to see if symbol has been defined using #define (see below).

Example:

#defi ne HYDRA

xtall + pll 8x
10_000_000
HYBRI D

xtall + pll16x
6_000_000

xtal 1l + pll 16x
5_000_000

CON

#i f def HYDRA
_cl knode
_Xinfreq

#el sei f def
_cl knode
_xinfreq

#el se
_cl knode
_Xinfreq

#endi f

page 86 /405

Propeller
(Hss)

#i f ndef MYDEF
#def i ne MYDEF
#endi f

Text substitution macros

You can do simple text substitution using #define. The syntax of the #define directive is:

#def i ne <synbol > <repl acenent -t ext >

is whatever text follows on that line.
Any identifier tokens in the source file that match will be replaced with . Matching is case-insensitive.
For example:

#i fdef Propll
#defi ne ADDR LONG
#el se

#def i ne ADDR WORD
#endi f

var addr baseaddress replaces addr with long or word, but doesn't to
uch the "addr" in baseaddress.

Note that the scope of a #defined symbol is from the #define to the end of the file. Like BST, Homespun
passes #defined symbols down to sub-objects (provided the #define precedes the OBJ section).

Also note that all #-directives must start in column 1.

_SPACE constant

Homespun can reserve space in low hub memory (starting at $0010). Declare "CON _SPACE = xxx"
where xxx is the number of bytes you want to reserve. Homespun totals up the _SPACE constants in all
the objects in your program.

@ @ @ operator

@ @ @datSymbol evaluates at compile time to the absolute hub address of datSymbol. datSymbol must be

page 87 /405

Propeller
(Hss)

defined in a DAT section.

Known bugs

e -d listing is incorrect if _SPACE is in effect.
e RESULT keyword is not handled correctly.

Planned work

e Make error messages less cryptic
e (Clean up and release source code (a long way off)

Homespun is a work in progress. Feel free to contact me to report bugs or to suggest improvements.
Many thanks to those who already have done so.

Author

Michael Park (mp__-at-hotmail.com)
Edit Feb 26, 2011 by Jazzed

page 88 /405

Propeller
(Hss)

Hub Memory Map

Hub memory contains 65536 bytes (or 32768 words, or 16384 longs). Hub Ram uses half of this space
($0000-$7FFF) and ROM uses the other half ($8000-$FFFF).

$0000

$0004

$0005

$0006

$0008

$000A

$000C

$000E

LONG ClkFreq

BYTE Clk

BYTE Checksum

WORD TopObjectBase Address

WORD VariablesBaseAddress

WORD StackBaseAddress

WORD Main

WORD InitialStackPointer

This value is created by the spin
compiler, and is equivalent to the
system variable _CLKFREQ that
may be set in the Spin Top Object.
If a user program changes the
frequency using the CLKSET
command, it should also update
this value. Default is 12,000,000
which is the approximate
frequency of RCFAST mode.

Equivalent to the system variable

CLKMODE that may be set in
the Spin Top Object. If a user
program changes the frequency
using the CLKSET command, it
should also update this value.
Default is O which corresponds to
RCFAST mode.

Start address of the top object in a
spin program. PropTool currently
always sets this to $0010

Start address of Spin variables.

Start address of stack. Stack grows
upwards from here.

Address of first PUB method in
top object. Program execution
starts here.

Initial value of stack pointer. Live
stack pointer is kept in the
interpreter Cog RAM, so this value
doesn't get updated.

page 89 /405

http://propeller.wikispaces.com//Hub+Ram
http://propeller.wikispaces.com//Top+Object
http://propeller.wikispaces.com//CLKSET
http://propeller.wikispaces.com//RCFAST
http://propeller.wikispaces.com//_CLKMODE
http://propeller.wikispaces.com//Top+Object
http://propeller.wikispaces.com//CLKSET
http://propeller.wikispaces.com//Cog+RAM

Propeller
(Hss)

$0010-

$8000-$BFFF

$C000-$CFFF

$D000-$DFFF

$E000-$F001

$F002-$F003

$F004-$F7C3

$F7C4-SF7FF

Top object

Character Set

Log Table
Anti-log Table
Sine Table

Unused (padding)

Spin Interpreter

Unused

Usual start of top object.

256 characters of 16x32 (width x
height) pixels in two colours. In
fact that isn't the whole truth. The
"characters" numbered O, 1, 8, 9,
10, 11, 12, 13 are really eight
patterns of 16x16 pixels in four
colours. A fancy video driver can
give a coloured background to a
rectangle of 32x16 characters, and
use the 16x16 patterns to add
beveled edges and corners to the
rectangle. The patterns also
provide underlines, overlines, and
triangular marks inside the corners,
made visible or invisible by
changing one of the four colours.

2048 word values
2048 word values
2049 word values

The sine table contains word
values while the Spin interpreter
and boot loader are stored as long
words. They must be aligned as
described in Hub Ram. The change
in alignment creates this unused
space.

To start the Spin interpreter, a cog
is initialised with $F004 as the
entry point and PAR pointing to
$0004. The hardware copies 496
long words from this address range
into the new cog's Cog Ram. The
hardware loads the rest of the Cog
Ram with zeros.

These long words are part of the
space allocated for the Spin
interpreter but are not copied.

page 90/ 405

http://propeller.wikispaces.com//Hub+Ram
http://propeller.wikispaces.com//PAR
http://propeller.wikispaces.com//Cog+Ram
http://propeller.wikispaces.com//Cog+Ram
http://propeller.wikispaces.com//Cog+Ram

Propeller
(Hss)

$F800-$FFBF

$FFCO-$FFFF

See Also

Hub Ram
Cog Ram

Boot Loader

Unused

On reset, the hardware copies 496
long words from this address range
into cog 0's Cog Ram.
$FBB4-$FFBF (cog $OED-$1EF)
are copied but the boot loader
doesn't use them in any way.
$FF00-$FF5F (cog $1C0-$1D7)
contain a copyright notice.

These long words are part of the
space allocated for the boot loader
but are not copied.

page 91 /405

http://propeller.wikispaces.com//Cog+Ram
http://propeller.wikispaces.com//Hub+Ram
http://propeller.wikispaces.com//Cog+Ram

Propeller
(Hss)

Hub RAM

Hub RAM is the primary memory of the Propeller chip. It is entirely separate from Cog RAM.

A program running in a Cog (whether a user program or the Propeller Spin Interpreter) has access to the
Hub RAM through the use of RDLONG, RDWORD, RDBYTE, WRLONG, WRWORD and WRBYTE
instructions. The design of the Propeller is such that all of these instructions are 'atomic', which means
that they will always complete in full, never partially, and if two Cogs do write to the same Hub RAM
location, the value placed will be that of the last written. The value placed will never be a mix of what
both Cogs attempted to write. Use of Locks can be used to prevent non-atomic access to larger areas of
Hub RAM.

The Hub RAM may be considered to be 32K x 8 bits, 16K x 16 bits, 8K x 32 bits or in any combination
as circumstances dictate. To use RDLONG and WRLONG within a Cog, the address must be on a long
boundary (the two Isb's must be zero). To use RDWORD and WRWORD the address must be on a word
boundary (the I1sb must be zero).

Hub RAM is loaded from external 32K x 8 bit I2C Eeprom after Reset or downloaded into from the
Propeller Tool (or other third-party Propeller Bootloader). Once the Hub RAM has been loaded, a Spin
Interpreter is loaded into Cog 0 which begins execution of the Spin program which has been loaded.

The external Eeprom and any downloaded program must always contain a Spin program to be executed,
even if this is just a small Spin program to place the Propeller in an operating mode other than as a Spin
interpreter.

This can be better understood when you recall that the Hub RAM does not contain primary machine code
executed by the real processor as in conventional microcontrollers. The Hub RAM contains just - data.
The meaning of them depends on what the real program(s) running in the COG(s) think appropriate. As
COG O starts with the SPIN interpreter, it is the master to decide.

See alse:

Hub Memory Map

page 92 /405

http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Locks
http://propeller.wikispaces.com//Hub+Memory+Map

Propeller
(Hss)

Forums with discussion about the Hybrid can be found here.
Hybrid Technical Manual PDF

page 93 /405

http://www.propgfx.co.uk/forum/Blah.pl
http://www.propgfx.co.uk/Hybrid/Docs/Hybrid_Development_System_Manual.pdf

Propeller
(Hss)

Hydra Game Console

The Hydra Game Development Kit includes:

The HYDRA Game Console with 128K EEPROM and a plethora of I/O interfaces.
9V DC Power Wall Adapter.

e PS/2 Mouse.

e PS/2 Mini Keyboard.

e Nintendo Compatible Gamepad.

e A/V Cable.

e USB Programming Cable.

e 128K Re-Programmable Game Card to Store Games and Applications.

e Blank "Experimenter" Card to Design Your own Add-On Hardware.

"Game Programming for the Propeller Powered HYDRA" hard copy book by Andre' LaMothe.
e CD-ROM with all source, demos, and development tools.

Available from:

e Nurve Networks
e Parallax

page 94 /405

http://www.parallax.com/detail.asp?product_id=32360
http://propeller.wikispaces.com//Game+Programming+for+the+Propeller+Powered+Hydra
http://www.xgamestation.com/view_product.php?id=33
http://www.parallax.com/Store/Microcontrollers/PropellerProgrammingKits/tabid/144/CategoryID/20/List/0/SortField/0/Level/a/ProductID/467/Default.aspx

Propeller
(Hss)

Using the Propeller as an 12C Slave Device
AiChip Industries has released code which allows a Propeller to be used as a simple I2C Slave device.
Original Parallax Propeller Forum thread : here

Vetson 005 (2008-04-13) source code can be downloaded from the Parallax Forum : here - It is
recommended to check the forum thread for later versions.

A selection of source code is provided -

12cSlave_Demo : Test code to proves it all works
12cSlave_Slave : The actual I2C Slave handler (PASM)
[2cSlave_Master : I2C Master routines (Spin)

12cSlave 16Kx8Ram : Test of 16Kx8 [2C Ram
[2cSlave_32Kx8Ram : Theoretical 32Kx8 12C Ram
[2cLogger_Demo : Demonstrates 12C Bus capture / logging

The 12C Slave implementation allows a number of I2C Ram devices to be emulated, limited only by
Propeller Chip memory capacity and Cog Numbers. The entire 32KB Hub memory can be used. A 1Kx8
12C Ram can be emulated per Cog without requiring any Hub resources. The maximum capacity for a
single Propeller Chip is 39KB (one 32KBx8 plus seven 1Kx8).

A Propeller Chip I2C Ram is accessed in exactly the same way as an 12C eeprom would be. The 12C
Slave supports 7-bit and 10-bit device addressing and is written in Propeller Assembler (PASM) for
maximum speed. The I2C Ram is cleared at start-up.

In addition to the 12C Slave code a modified version of it is provided to demonstrate how 12C Bus capture
and logging could be performed.

page 95 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=263375
http://forums.parallax.com/forums/attach.aspx?a=21664
http://forums.parallax.com/forums/default.aspx?f=25&m=263375

Propeller
(Hss)

Integer GPS navigation

This page will discuss a little bit of GPS navigation, and a possible approach using integers only and
cartesian planar projection.

A little bit of background

While not propeller related a little bit of background will help you deciding wheter the approach can suit
your needs.

GPS System and Earth models

GPS (global positioning system) is a clever triangulation system that uses satellites.

GPS returns latitude-longitude coordinates in a system called WGS84.

Earth shape is extremely complex, and every mapping system must approximate the real shape. The most
used shape is an ellipsoid, where the poles are on the shorter axis. The parameters of the ellipsoid are
varying, and it is a matter of trade off.

Maps use projections of the curved shape over a plane. Projections must accept a trade off, because it is
not possible to preserve distance, angles and area at the same time.

To have an idea of the many solution adopted is possible to go to spatialreference

Moreover sea level is dependent on measures based on the gravity. So the real sea level can differ a lot
from the ellipsoid zero.

Wikipedia geoid shows a blue/red image of the difference between geoid and ellipsoid.

Navigation formulas

In order to calculate navigation data it is possible to use the Aviation Formulary.

Another source of formulas is movable type scripts.

While it simplifies the earth model is still requires heavy math, so a lighter solution can be used with the
Propeller.

Assumptions used in this document

While the earth shape is extremely complex it is possible to heavily simplify and still get very good
navigation data.

e Earth is a sphere
e 1/60th of degree on latitude (N/S coordinate) equals to 1 nautical mile
e We can accept a small error in the calculation

page 96 /405

http://www.spatialreference.org/
http://en.wikipedia.org/wiki/Geoid
http://williams.best.vwh.net/avform.htm
http://www.movable-type.co.uk/scripts/latlong-vincenty.html

Propeller
(Hss)

e We will stay away from the poles (in case an ad hoc planar projection can be used for near pole
navigation)
e The next way point will be not too far (up to few hundred miles could be ok)

The planar projection

With planar projection the points on the sphere are projected on a plane tangent to the earth
Moreover:

1 Prime difference (1/60th of degree) in latitude is one nautical mile (1nm)

1 Prime difference (1/60th of degree) in longitude is Inm*cos(avg_latitude), where avg_latitude is
the average latitude

The latitude projects to a vertical cartesian axis

The longitude projects to a horizontal cartesian axis

So we moved from a spherical system to a planar, cartesian system. Calculations are much easier and
requires less math.

On the other hand the model introduces errors and approximations.

Let's try to quantify the error with respect to the results obtained from the aviation formulary. We'll
compare the results of our calculations with the distance between two points calculated with the great
circle (shortest path, variable heading) and rhumb line (constant heading, in general longer path).
Point1-la Point1-lo Point2-la Point2-lo Dist Dist Heading Dist Heading Gerat Rhumb

t ng t ng (great (rhumb) (rhumb) (cartesia (cartesia Circle Heading
[degrees] [degrees] [degrees] [degrees] circle) n) n) Distance error[°]
Error [%]

45.5 10.5 4551 1051 0.7327 0.7327 35.02 0.7327 35.03 0.0029 0.0024

45.5 10.5 4551 105 0.6000 0.6000 0.6000

45.5 10.5 45.5 10.51 0.4206 0.4206 0.4206

45.5 10.5 45.6 10.6 7.3249 7.3249 3500 73271 35.03 0.0293 0.024

45.5 10.5 45.6 10.5 6.0000 6.0000 6.0000

45.5 10.5 45.5 10.6 4.2055 4.2055 4.2055

45.5 10.5 46.0 11.0 36.5815 36.5816 3491 36.6353 35.03 0.1469 0.12

45.5 10.5 46.0 10.5 30.0000 30.0000 30.0000

45.5 10.5 46.0 11.0 36.5815 36.5816 3491 36.6353 35.03 0.1469 0.12

40.0 10.0 50.0 15.0 636.0251636.126419.40 642.506220.96 1.0031 1.56

page 97 /405

Propeller
(Hss)

So for short distances the errors are negligible. Near the poles the errors are bigger, nonetheless the errors
are still small for distances up to few tens of nautical miles between waypoints.

Formulas

If you think this is your case let's move closer to the propeller, and try to use integers only.

The propeller is a 32 bit processor, so a variable can be 32 bit, or 4 bytes, or a long. A typical signed long
in the propeller ranges between -2/32/2 and (2"32)/2-1, or -2,147,483,648 to 2,147,483,647.

The range we expect to handle in our system is -180 to 180 degrees (for longitude). If we move to prime
the range is -10,800 to +10,800. So the idea is to add fraction of prime resolution as long as the propeller
can hold.

We can arrive up to -1,800,000,000 to 1,800,000,000, which means we can get as fine as hudreths of
tousanths of prime, or if you prefer 1/100000th of a nautical mile, which is less than a inch or less than 2
centimeters.

For example, if we have coordinates from GPS:

4512.3456 N (45° 12.3456' latitude)

01012.3456 E (10° 12.3456' longitude)

We will convert the this way:

integer latitude = (45%60+12.3456)*100000 = 271,234,560

integer longitude = (10*60+12.3456)*100000 = 61,234,560

If the coordinates are S and W the sign will be negative.

Range limits:

The max longitude is 180° -> 1,080,000,000 less than the range limit of the long.

The problem is when calculating a difference in latitude. While the max difference is 180°, if we have
two points at 179°E and 179°W, we get the following coordinates as integers:

longl = 179°W = -1,074,000,000

long2 = 179°E = 1,074,000,000

delta_longitude = long?2 - long1 = 1,074,000,000 + 1,074,000,000 = 2,148,000,000 > max long range!!

Note that if delta_longitude > 1,080,000,000 (180°) then
delta_longitude = sign(-delta_longitude)*(2,160,000,000 - Idelta_longitudel)
where 2,160,000,000 is 360°.

In our case delta_longitude = -12,000,000 which is within the range.

A possible workaround is to divide by two the coordinates, calculate the difference, and then multiply
times 2. In case of the GPS strings used for example we have plenty of resolution available and not used
(a factor of 10), so in this case the operation would be lossless.

page 98 /405

Propeller
(Hss)

The propeller can be connected to lots of different things.
NOTE: Links on this page have to be updated. Google searching with the old url generally leads to the
updated link.

e The humble LED

e TV screen -- see NTSC Palette Mode
e VGA monitor --

e Controller-less Monochrome LCD

e "the safest way to interface a 5 V signal to the Propeller": try a 1 kOhm resistor, which limits
current (and voltage) to safe amounts. For those rare cases where that isn't fast enough or powerful

enough, see interfacing 3V and 5V devices.

e USB
o To connect to a host PC -- " "Prop Dongle" Protoboard 1.5" x 2.75". Available"
o Using the Propeller as a USB Slave (full duplex serial)
o Using the Propeller as a USB Host

e SPI to and from flash memory cards: ...
o Qut-of-order SD card access
o Trying to understand the SPI object.

o Using MicroSD card
o the SPI Engine

o "booting" from a SD card
o Which SD-MMC Card ? compares various flash memory card interfaces, DRAM (!), and

FRAM.

o "SD bootloader -- a very simple EEPROM-resident program that would allow you to pick
an image file from an SD card, transfer it to RAM, and boot it. That's it -- no frills, no
drivers, just a bootloader."

o "high-speed reads and writes to an MMC card."

e SPI to and from other devices ... such as the MCP3208 and ADS1271 ADCs... how?

o "Fastest Serial Speed?" suggests that it may be possible to "send" up to about 8MBaud.
The fastest actual implementation: "Viewport v1.1 transfers data between pc host and
propeller at 2Mbps using a single cog... full duplex."

o ADC0831 ADC

o PropNIC - Interface to a ENC28J60 - connect to a local LAN or run a webserver from a
Propeller!

o MCP2515 - Interface to CAN Bus controller from a Propeller (schematic with object at
exchange) - See PropCAN web for pictures (Demo Board CAN I/F, PropCAN) Follow the
development of PropCAN at turning on propCAN an engineering notebook Blog.

e SPI combinations

o Read data from an A/D converter using SPI at 8000 samples per second: write to SD card

e 12C

o 12C 12bit ADC for the Prop

o Using the Propeller as an I2C Slave Device
e Serial ("RS232")

o Two-Resistor Serial Interface
e RFID

page 99 /405

http://propeller.wikispaces.com//LED
http://propeller.wikispaces.com//NTSC+Palette+Mode
http://propeller.wikispaces.com//MonoLCD640
http://forums.parallax.com/forums/default.aspx?f=25&m=124837
http://www.sparkfun.com/commerce/present.php?p=Sensor-Interfacing
http://forums.parallax.com/forums/default.aspx?f=25&m=194032
http://propeller.wikispaces.com//USB+Slave
http://propeller.wikispaces.com//USB+Host
http://forums.parallax.com/forums/default.aspx?f=25&m=202432
http://forums.parallax.com/forums/default.aspx?f=25&m=160682
http://forums.parallax.com/forums/default.aspx?f=25&m=199495
http://forums.parallax.com/forums/default.aspx?f=25&m=197729&g=197831
http://forums.parallax.com/forums/default.aspx?f=25&m=174744
http://forums.parallax.com/forums/default.aspx?f=25&m=161243
http://forums.parallax.com/forums/default.aspx?f=25&m=155056
http://forums.parallax.com/forums/default.aspx?f=25&m=152601
http://forums.parallax.com/forums/default.aspx?f=25&m=199979
http://forums.parallax.com/forums/default.aspx?f=25&m=192121
http://ucontroller.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=235215
http://propcan.moraco.us/DEMOBoard.html
http://propcan.moraco.us/
http://propcandev.blogspot.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=171257
http://forums.parallax.com/forums/default.aspx?f=25&m=190399
http://propeller.wikispaces.com//I2C+Slave
http://propeller.wikispaces.com//Two-Resistor+Serial+Interface

Propeller

(Hss)

e Misc

o RFID - With simple hardware

o multiple props
o PWM - Pulse Width Modulation
o TCP/IP Stack for the Propeller
o hobby RC servo motors
= hook the 3 wires up to: +5V and ground (a common ground with the propeller), and
a 1 kOhm resistor from the propeller output to the servo input (as discussed above)
= how many servos can be controlled by one Prop?
= obtaining servo position
o DMX - a serial protocol for controlling professional stage lighting devices.
o Should we give a brief summary of the "received wisdom" of the "peripherals and
interfacing" section of the "Good thread index"
o Interfacing the propeller to other microprocessors (MC680X0): software OMU, hardware
pPropQL and pPropQL020

page 100/ 405

http://propeller.wikispaces.com//RFID
http://forums.parallax.com/forums/default.aspx?f=25&m=202540
http://propeller.wikispaces.com//PWM
http://proptcp.googlecode.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=227109&g=228734
http://propeller.wikispaces.com//DMX
http://forums.parallax.com/forums/default.aspx?f=25&m=148376
http://propeller.wikispaces.com//OMU
http://propeller.wikispaces.com//pPropQL
http://propeller.wikispaces.com//pPropQL020

Propeller
(Hss)

Interrupts

The Propeller does not use interrupts as most other microcontrollers do; all external signalling events
must be detected by polling or by waiting for an incoming line to go high or low. With the Propeller's
multi-Cog architecture this is not as much of a problem as it would be for a single core processor; with
one or more Cogs dedicated to 'interrupt handling', idling until the appropriate signal conditions are met,
other Cogs can continue processing unaffected.

Multiple interrupts where response latency is not critical can be handled by a single Cog polling each
'interrupt line' in a cyclic manner and responding as appropriate. Where low latency is required a single
Cog can wait for the interrupt to occur and respond within just a few clock cycles. Such a Cog can only
handle a single interrupt, but with multiple Cogs that again is not so much of a problem.

A Propeller Chip program can consist of a main program using a single Cog with the other Cogs
dedicated as low-latency interrupt handlers. For the Propeller Chip this allows up to seven low-latency
interrupts. Because each Cog is running independently to the others all multiple interrupts will be
responded to in parallel - something which no single-core microcontroller can achieve except when
interrupts are handled by chip hardware.

The on-chip counter hardware each Cog has can be used for short signal pulse detection. These can be
used by a Cog which is polling to detect a signalling event and then respond to it at its leisure.

A Cog which is polling multiple interrupts can implement its own prioritorisation scheme for interrupt
handling. As interrupts are being handled by polling it is also possible to have interrupt events dependent
on the state of multiple signal lines rather than just a single signal. The polarity of all signal lines
monitored can of course be specified under programmer control and any of the available I/O lines can be
used to trigger interrupt events. Prioritorisation and so on can all be changed dynamically at run-time if
necessary.

A mix of Cogs can be allocated to handle low-latency interrupts and polled interrupts giving flexible
options to implement what would be called an interrupt architecture on other microcontrollers. What type
of interrupt architecture is required or implemented is entirely in the hands of the designer and
programmer not forced by the chip designer.

Culture Shock

Users of more traditional microcontrollers are often taken aback when they discover that the Propeller
does not support interrupts. For all intents and purposes it does, but not in the way that a single core
processor has its program flow interrupted while an interrupt event is handled.

As with many things Propeller related (and it is the same with any multi-core processor) it is really just a
case of doing things in different ways. What another microcontroller can do with interrupts can most
likely be achieved by a Propeller Chip. That it "does not have interrupts" is really just a terminology and
implementation issue.

page 101 /405

Propeller
(Hss)

What the Propeller Chip offers instead of traditional interrupts is far more flexible and equally as
effective. "Not having interrupts" sounds like a major failing and problem, but in reality it is not.

page 102 /405

Propeller
(Hss)

I/0 Bus Systems

Original discussion thread : here

Existing I/0O Bus Systems

Hybrid Development System
Hydra Game Station
MoBoStamp (MoBoProp)
PropBus

SpinStudio

Hybrid Development System

Hybrid Development System Home Page : here

20-way, 10 x 2, 0.1" PCB Edge Connector, female socket on board

NET RX 10 | |) (] |
NET TX 9| |) (] |
D7 81 1) (|
D6 71D
05 61 1) (|
D4 51 1) (|
03 a1 (|
D2 31 (|
D1 21 1) (|
0o 1D

40-way, 20 x 2 IDC, male socket on board

11
12
13
14
15
16
17
18
19
20

As per Hydra Gane Consol e

RES

SCK

SDA

+3V3

+3V3 Loop
+5V

+5V Loop
USB TX
USB RX
ov

| O0OO0OO0OO0O0O0OO0O0OO0OODOOOOOLOOOOO|

page 103 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=259432
http://www.propgfx.co.uk

Propeller

(Hss)
| O0OO0OO0OO0O0O0O0O0OO0O0OODOODODOOOOOO]|
Y e e e e e e e e e e e e oo NNN L o o o o o e e e e e e e e e - !
1 39
Connect ed one-to-one to 40-Pin DI P Propeller Chip
Hydra Game Console

Hydra Game Console Home Page : here

20-way, 10 x 2, 0.1" PCB Edge Connector, female socket on board

NET RX 10| |) (| | 11 RES
NET TX 9| |) (] | 12 SCK
D7 81 |) (] | 13 SDA
D6 71 1) (] | 14 +3V3
D5 61| |) (] | 15 +3V3 Loop
D4 51 1) (] | 16 +5V
D3 41 1) (] | 217 +5V Loop
D2 31 1) (] | 18 USB TX
D1 2 1 1) (] | 19 USB RX
By 171 (1 20 oV

| e "
MoBoStamp (MoBoProp)

Parallax Product Page : here

12-way, 6 x 2 IDC, male socket on board

Daught er board Connector (2mm) DB- Expander SI P Adapter (2.54m1 0.
1")
vdd 1] O O | 2 Vss B :
A7 3.0 O | 4 A6 | OOO0OO0OO0O0O0O0000O0|
A5 5 | O O | 6 A4 B T '
A3 7 | O O | 8 A2 VVAAAAAAAAVV+

page 104 /405

http://www.xgamestation.com/browse_products.php?category=7
http://www.parallax.com/tabid/528/Default.aspx

Propeller

(Hss)

Al/Anl 9 .' O O | 10 A0/ AnO s|76543210[dil|l5
Vin 11| O O | 12 +5V s| | d| n| V
PropBus

PropBus Home Page : here

10-way, 5 x 2 IDC, male socket on board

+3V3 1] O O | 2 ov

DO 3.0 O | 4 D2

D2 5 | O O | 6 D3

D4 7." O O | 8 D5

D6 9] O O | 10 D7

SpinStudio

SpinStudio Home Page : here

20-way, 10 x 2 IDC, male socket on board

oV 1] O O | 2 ov
3] O O | 4

D7 5] O O | 6 +5V

D6 7.0 O | 8

D5 9 | O O | 10 +3V3

D4 11 | © O | 12

D3 13." O O | 14

D2 15| O O | 16

D1 17| O O | 18 SCL

DO 19| O O | 20 SDA

page 105 /405

http://www.igniteautomation.com/propbus.html
http://ucontroller.com/spinstudiooverview.html

Propeller
(Hss)

SpinStudio has four sockets "A" through "D", DO-D7 representing Propeller Pins PO-P7, P§-P15,
P16-P23 and P24-P31 respectively.

D4 and D5 (the I12C lines) are not accessible on Socket "D" - they are pulled to VDD on the mainboard
by 4.7K resistors and accessible only as I2C lines on pins 18 & 20 in all 4 Mainboard Sockets

page 106 / 405

Propeller
(Hss)

page 107 / 405

Propeller
(Hss)

You can chat with other Propeller users, in real time, using the Internet Relay Chat system. (IRC) All that
is needed is a quick and free client download and the server and channel name, provided below. See you
on #propeller @ irc.freenode.net!

Xchat for win32 can be downloaded here.
A web-based client connected directly to #propeller can be accessed from here.

Once you install it, run the software and it will display a list of servers and ask you for nickname choices.
Choose freenode. It will then prompt you to choose a channel. Enter "propeller" after the pound sign, and
you are connected!

We have an in-channel robot that can teach and learn. The following commands can be used by everyone
to create and modify the fact database:
I'learn [fact key] is [fact val ue]

The !learn command will create a list of facts with numbers if more than one value is associated with the
same key.

The [fact key] can be multiple words but should be kept short. After learn, a fact can be queried directly:

'l earn foo is A short variabl e placehol der.

propbot | usernane: The command succeeded.

I'f oo

propbot | usernane: foo is A short variable placehol der.

The [fact value] can be sentence form and may contain links. For particularly long links, please use
http://tinyurl.com to shorten the url.

The database can be searched using the commands !q, !query, !k, !v.

!q, !query and 'k are synonyms. They search the [fact key] portion of the fact database.

'k hub
propbot | usernane: "hub operations” is See page 24 of the nmanual. Th
is thread has interesting g&a

http://foruns. paral | ax. com foruns/ def aul t. aspx?f=25&m202526

The !v command searches values:

page 108 / 405

http://www.silverex.org/download/
http://embed.mibbit.com/?server=irc.freenode.net&channel=%23propeller
http://tinyurl.com

Propeller
(Hss)

I'v foruns. paral |l ax. com
propbot | usernane: 'indirect addressing', 'VGA Learning Driver',
i nning assenbly', 'gear',

"hub operations', and 'spin interpreter’

beg

I gear
propbot | usernane: "gear" is http://foruns.parallax.coni foruns/defau
t.aspx?f =25&m=242685

You can remove facts in order to edit them using the "!forget" command:

I'forget foo
propbot | usernane: The command succeeded.

If there are multiple listings for the specified key, the !forget command takes a number argument,
specifying which item to delete:

I'f oo

<pr opbot > usernane: "foo" is (#1) A short variable placeholder., or (#
2) The nanme of this factoid entry.

Iforget foo 2

propbot | usernane: The command succeeded.

page 109 / 405

Propeller
(Hss)

Large Memory Model

The Propeller comes with two in built programming environments:

e Assembler is the fastest possible code, but because it runs in Cog RAM it is limited to an absolute
maximum of 496 instructions.

e Spin runs from Hub RAM, and so can use up to 32KB for code. But because it is a virtual
machine running a byte code it is many times slower than assembler. Some say 40-100 times
slower, depending on the specific code.

Large Memory Model (LMM) is an alternative programming environment suggested by Bill Henning. It
lies somewhere between the concepts for native assembler and a virtual machine. It's a minimal virtual
machine that runs on instructions that are mostly a 1:1 mapping with the native assembler instructions of
the propeller. The instructions reside in Hub memory but are copied one by one into Cog RAM to be
executed. This means that the code can amount to nearly 32KB of code, which is up to 8K instructions.

The basic virtual machine consists of just 4 lines of assembler:

nxt rdlong instr,pc
add pc, #4

instr nop " pl acehol der!
jmp nxt

As can be seen, at nxt an instruction pointed to by the Program Counter (pc) is copied to Cog memory at
instr (replacing the nop). Then after incrementing the program counter to the next long, the instruction is
executed. This loop takes 32 cycles, and so is 8 times slower than native assembler for executing code,
but several times faster than spin. However the loop can be unrolled to make it faster - Bill suggests
unrolling 4 times to get it just 5 times slower than native assembler.

Additionally note that the instruction executed could call a routine that lies elsewhere in Cog RAM. This
technique can be used to create extra pseudo instructions that don't exist in the native assembler set.
Indeed some are needed for jumping and calling to LMM code elsewhere in Hub Memory. Bill suggests
these pseudo instructions:

* FJMP addr - calls routine that replaces PCwith long at PC, th
en junps to nxt
* FCALL addr - increments SP by 2, replaces PCwith |ong at PC af
ter it saves
PC+4 at SP
* FRET - loads PC fromword at SP, decrenents SP by two
* FBRC addr - branch to far address if Carry flag is set
* FBRNC addr - branch to far address if Carry flag is clear

page 110/ 405

http://propeller.wikispaces.com//Assembler
http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Spin
http://propeller.wikispaces.com//Hub+RAM

Propeller

(Hss)
* FBRZ addr - branch to far address if Zero flag is set
* FBRNZ addr - branch to far address if Zero flag is NOT set

* FCACHE [code] O - copies a block of code, termnated by NULL into a
cache area in
Cog nenory. Then executes it.

Implementations

At the time of writing, a few people have experimented with the scheme and written some small LMM
programs which do work. However there is as yet no definitive version of the scheme, and various tools
implement slightly different versions of LMM code.

Bill Henning is working on an LMM Macro Assembler/Linker.

ImageCraft have implemented LMM in their C compiler.

Ross Higson has implemented LMM in his Catalina C compiler

More details and much discussion can be found in the original thread (old forum).

LMM Kernel Specification - Pacito version

Ale500 (aka Pacito) has drafted a Specification for a LMM usable even beyond the 32 kbytes imposed by
the HUB RAM using an external means of accessing more storage.

The specification for a Large Memory Model with access up to 512 klongs of code and 512kbytes of data
can be found here.

LMM Kernel Specification - AiChip Industries version

AiChip Industries have created a Large Memory Model Virtual Machine implementation (LmmVm)
which is designed to be usable with the Propeller Tool. Some native Propeller instructions need to be
modified for LMM usage but those changes are designed to be achievable by hand rather than requiring
any additional tools.

Details of the Large Memory Model with access up to 32klongs of code or data and using cog-based
registers can be found here.

LMM Kernel Specification - Phil Pilgrim (PhiPi) version

Phil Pilgrim (PhiP1) examined how the main LMM loop is usually written and determined a way to
overcome that loop's failure to hit 'hub access sweet spots' which requires the LMM loop to be un-rolled
to achieve maximum throughput and lowest speed degredation when compared to native PASM

page 111 /405

http://propeller.wikispaces.com//Programming+in+C
http://propeller.wikispaces.com//Programming+in+C+-+Catalina
http://forums.parallax.com/showthread.php?89640
http://forums.parallax.com/forums/default.aspx?f=25&m=154421
http://propeller.wikispaces.com//LMM+Pacito
http://propeller.wikispaces.com//LMM+AiChip+Industries

Propeller
(Hss)

execution.

The mechanism used rests upon reversing the LMM code so addresses of LMM Code reduce sequentially
rather than increment and use a clever sequence of PASM instructions to maximise LMM throughput.

Details of the Reversed Large Memory Model can be found here.

Thumb-style Code

An extension to the Large Memory Model scheme is a Thumb-style (similar to that developed by
ARM(R)) representation where 16-bit (word) codes are used to represent a subset of the native 32-bit
Propeller instructions. Word instructions are fetched from hub memory, decoded, expanded and then
executed.

While consequently slower in execution than the Large Memory Model, up to 16K instructions can be
held in hub memory. Execution should also be faster than when interpreting any arbitrary bytecode such
as that used by Spin.

AiChip Industries has proposed a Thumb VM implementation and produced proof of concept code.
Without appropriate development tools the use of Thumb VM is not practical at the current time.

AiChip Industries' Thumb VM Proposal can be found here.

The original discussion thread and proof of concept can be found here.

page 112 /405

http://propeller.wikispaces.com//LMM+Phil+Pilgrim+%28PhiPi%29
http://propeller.wikispaces.com//Thumb+VM+AiChip
http://forums.parallax.com/forums/default.aspx?f=25&m=235152

Propeller
(Hss)

Active High LED

The LED will be illuminated when the Pout pin is made an output and is taken high.

Pout >----| |- >]----.
R LED _|_ OV

Example Spin program for a LED on pin O ...

DIRA[O] :=1 ' Make pin 0 an CQutput
QUTA[0] =1 " Make Pin O high, LED on
QUTA[O0] :=0 " Make Pin O low, LED off
Active Low LED

The LED will be illuminated when the Pout pin is made an output and is taken low.

-.- 3V3

S I

Pout >----|__ |----|<]----"
R LED

Example Spin program for a LED on pin O ...
DIRA[O] :=1 " Make pin 0 an CQutput
QUTA[O0] :=0 ' Make Pin O low, LED on
QUTA[O0] =1 ' Make Pin O high, LED off

Tri-Colour LED

The Red LED will be illuminated when the PoutR pin is made an output and is taken high.
The Green LED will be illuminated when the PoutG pin is made an output and is taken high.
Both LED's will be illuminated (a yellowish colour) when both the PoutR and PoutG lines are made

outputs and taken high.

Red
Pout R >- - - R I T

page 113 /405

Propeller
(Hss)

POUL G >-- - | EETE S R

Example Spin program for a LED on pin 0 (Red) and pin 1 (Green) ...

DIRA[O] =1 " Make pin 0 an Qut put

DRA[1] :=1 ' Make pin 1 an Qut put

QUTA[0] =1 " Make Pin O high, and ...

QUTA[1] :=0 ' Make Pin 1 low, Red LED on
QUTA[O0] :=0 " Make Pin O low, and ...

QUTA[1] =1 " Make Pin 1 high, Geen LED on
QUTA[0] =1 " Make Pin O high, and ...

QUTA[1] =1 " Make Pin 1 high, both LEDs on
QUTA[O0] :=0 " Make Pin O low, and ...
QUTA[1] =0 " Make Pin 1 low, both LEDs off

Bi-Colour LED

The Red LED will be illuminated when the PoutR pin is made an output and is taken high while the
PoutG pin is made an output and is taken low.

The Green LED will be illuminated when the PoutG pin is made an output and is taken high while the
PoutR pin is made an output and is taken low.

Red
- e B REEEE
PoutR >---| | ----] | ----.
R SRR RN EEEES I
G een |
I
PoutG >---------mmmmmme e '

Example Spin program for a LED on pin 0 (Red) and pin 1 (Green) ...

DIRA[O] :=1 ' Make pin 0 an CQutput
DRA[1] =1 " Make pin 1 an Qutput
QUTA[0] :=1 " Make Pin O high, and ...

page 114 /405

Propeller

(Hss)

QUTA[1] 0 Make Pin 1 low, Red LED on
QUTA[0] 0 Make Pin O low, and ...

QUTA[1] 1 Make Pin 1 high, Green LED on
QUTA[0] 0 Make Pin O low, and ...

QUTA[1] 0 Make Pin 1 low, both LEDs off
QUTA[0] 1 Make Pin O high, and ...

QUTA[1] 1 Make Pin 1 high, both LEDs off

page 115 /405

Propeller
(Hss)

Propeller Links

A list of useful and interesting sites related to the Propeller (in Alphabetical order):
HSS Sound Driver - Hydra Sound System

Ignite Automation - PropBus modular development system

ImageCraft - Makers of a C compiler for the Propeller (ICCv7)

Object Exchange - Repository for various Propeller software objects of use by other developers
Parallax - Creators of the Propeller

PropDOS - A miniDOS for a Propeller with SD interface

Propgfx - Graphics card using a Propeller

Proptcp - TCP/IP Stack for the Parallax Propeller Chip

SpinStudio - A plug together construction set for Propeller electronics

TinyMicros wiki - assorted tips and tricks for the Propeller chip

TOMIG - The Orrville Microcontroller Interest Group

Wulfenden.org - Propeller Robot Controller

XGameStation - André LaMothe's Hydra Propeller based game console

page 116 /405

http://www.andrewarsenault.com/hss/hmedia.html
http://www.igniteautomation.com/propbus.html
http://www.imagecraft.com/devtools_Propeller.html
http://obex.parallax.com/
http://www.parallax.com/
http://www.orrtech.net/propdos
http://www.propgfx.co.uk/forum/Blah.pl
http://code.google.com/p/proptcp/
http://ucontroller.com/
http://tinymicros.com/wiki/Parallax_Propeller
http://www.orrtech.net/tomig
http://www.wulfden.org/PRC/
http://www.xgamestation.com/browse_products.php?category=7

Propeller
(Hss)

This is a mirror of Spork Frog's excellent instructions, originally published on the Propeller Forum A new
set up updated instructions can be found here

Developing with the Parallax Propeller Microcontroller under
Linux-Based Operating Systems

A step-by-step guide
Rev. OB

This is a guide to help you set up a development environment for the Propeller under native Linux
without the use of VMWare, Bochs, QEmu, VirtualBox, or other similar virtualization products.

Step 1: Prerequisites

All of the following should be installed prior to any of the other steps. Most popular distributions provide
these; see your package manager for more information.

e python
e pyserial
® wine

Step 2: The Propeller Loader

The one thing when dealing with the Propeller that never seems to work correctly is communication with
the chip itself. However, thanks to the great work of Remy Blank, there is now a Python script that runs
natively to handle communication. Although it's not as fast as the Propeller IDE, it still gets the job done
just fine.

You can find the script here.

Step 3: Propellent

Parallax has recently released a command line version of their popular Propeller IDE and compiler. It can
take in a SPIN file, compile it, and with your choice either save a binary/EEPROM file or upload to the
Prop directly. Direct upload seems once again not to work under Wine, but the compiler works fine.

You can find it on Parallax's website here.

Step 4: Tying it all together

Copy the following files to the same folder as the SPIN file you wish to compile:

page 117 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=271263
http://propeller.wikispaces.com//Mac+and+Linux+native+development
http://www.python.org/
http://pyserial.sourceforge.net/
http://www.winehq.org/
http://forums.parallax.com/forums/default.aspx?f=25&m=161911
http://www.parallax.com/tabid/442/Default.aspx

Propeller
(Hss)

Loader . py

Propel | ent . dl

Propel | ent. exe

Edit your SPIN code in your favorite text editor.
Then, through a command line, run the following:

wi ne Propellent.exe /conpile yourfile.spin /savebinary
pyt hon Loader.py yourfile.binary -r

page 118 /405

Propeller
(Hss)

LMM Kernel Specification - AiChip Industries version

AiChip Industries have created a Large Memory Model Virtual Machine implementation (LmmVm)
which is designed to be usable with the Propeller Tool. Some native Propeller instructions need to be
modified for LMM usage but those changes are designed to be achievable by hand rather than requiring
any additional tools.

The LmmVm allows to up to 8k longs of code or data and allows access to cog-based registers for fast
run-time data storage.

The LmmVm is is a linearly executing LMM engine which takes one instruction at a time, executes it,
and moves on to the next. There is no caching, overlays or 'block load and execute' operations supported.
The LmmVm is therefore most efficient with sequential rather than looping LMM code, however the
overhead of looping will often be tolerable for many LMM programs.

The LmmVm executes most native Propeller Assembler instructions in LMM mode without change (
including conditional execution plus WC, WZ and NR options) but branches, subroutines and some data
access instructions need to be replaced by calls into the LmmVm itself to perform as required. These calls
into the LmmVm are followed by parameters which indicate what the call is to achieve and are usually
specified by 'long' constant settings. This is less eficient in code space than it could be but allows the calls
to be reasonably easily created by hand.

Instructions which need to be replaced by calls into LmmVm are -

jmp
call, ret
djnz, tjz, tjnz

In addition, the LmmVm provides support for conditional execution of calls into the LmmVm (
Conditional , Skip) and for operations which would normally be done using self-modifying code with
native Propeller instructions (Get Register Indirect, Store Register Indirect, Execute Register, Case Jump
). The ability to load a register with a 10-bit to 32-bit constant which would normally require the
allocation of pre-loaded Cog register is also added (Load).

To overcome the need to modify native Propeller 'ret' instructions on subroutine calls, the LmmVm
implements a a software stack which can either be held in Cog memory or in Hub memory.
Benchmarking shows there is little, if at all any, impact on performance of LmmVm regardless of which
is used.

LmmVm is designed to extensible. New LMM instructions can be freely added to the LmmVm as
required. The only consequence is that additions will reduce the Cog memory available for LMM
program register and stack use. Conversely, LMM support can be reduced where such specific support is
not required.

LmmVm can be run standalone, executing programs written entirely as LMM programs, but it may also
be used as a sub-component of any other VM which needs to perform tasks where Cog memory

page 119 /405

Propeller
(Hss)

limitations mean that not all required code can be held within the Cog memory. The 'Primary VM' will
pass control to the LmmVm indicating where the LMM code is to execute, and the LMM program upon
completion will jump back to the Primary VM. In this way a Primary VM can have full-speed assembler
execution when required and use slower speed LMM execution as necessary. This is convenient when
designing any Primary VM as the Cog memory limitations can be ignored during development. Speed
critical parts can be brought back to within the Cog memory for native execution as development nears its
end. LmmVm evolved from originally being a sub-system in such a Primary VM.

LmmVm allows Primary VM's to be written as LMM code which can execute end-user program code (
bytecode) which has better code density than that provided for by Propeller Assembler or LMM code.
The LMM program interprets the bytecode program, while LmmVm interprets the LMM code. Again,
Cog memory limitations can largely be ignored while the Primary VM is being developed (using LMM
code) although each level of interpretation does result in a lower overall execution speed of the
interpreted bytecode.

As well as providing a VM support service for Primary VM's, LmmVm can also be utilised by any Cog
program which needs to execute more code than can be held in Cog memory and is a general purpose tool
for any Propeller Assembler Programmer.

page 120/ 405

Propeller
(Hss)

Specification for a Large Memory Model with access up to 512
klongs of code and 512kbytes of data.

LMM Kernel Specification v1.0 - pacito version

The purpose of this specification is to serve as basis for a large memory model (LMM) for the Parallax
Propeller. This would extend the usable memory area beyond the 2kbytes of COG's memory. This
specification requiers the following hardware support:

- A parallax propeller v 1.0
- Am external RAM (DRAM or SRAM) for more than 32 kbytes of code

Note: Instruction names refer to the COG native instruction set. When a reference to a new instruction is
made, its functionality is implied. The program refers to the un-preprocessed source with a mixture of
native and no native instructions. The compiled (or compiled program) refers to the above mention
program after preprocessing and compilation. It only contains COG machine code.

Scope

The COG can execute very fast machine code, so It makes sense to use this built-in language instead of
creating a second level language. If some instructions are worked around limitations to memory access
can be bypassed.

- Memory addressing is limited to 512 memory locations

- Program execution is available beyond 511 memory locations
- No support for high-level languages like C

- Up to 512 registers

The last point, as the cog works is a strength, but in our case as the program is going to be relocated has
to be reduced to a mere 16 registers, with 8 of them having special meanings.

RO..R7: general purpose registers

PC : program counter

SP : Stack pointer

DP : Data pointer (points to the beginning of the Data section)
IM : Immediate register, used by the kernel

BP : Base pointer, used for stack access

DL : Data length, length of the Data area

U0, Ul : not yet defined

To address the first two points a new set of instructions is proposed:

1db, 1dw and 1dd : These instructions can read any memory location, at byte, word and long lengths. Their
counterparts stb, stw and std write to any memory location.

page 121 /405

Propeller
(Hss)

Jump, subrutine call and return are also supported via rcall and rjmp. These instructions can access any
memory position inside program memory. Stack is handled automatically.

Stack manipulation, push, pop, and stack read and write in place with a base pointer is also provided via
special instrucions 1dbpb, ldbpw, 1dbpd, stbpb, stbpw and stbpd. As part of the stack manipulation, two
more instructions enter and leave provide stack reserving techniques. Stack overflow is checked for every
new enter instruction.

A new instruction to load long immediates from program memory is provided, too.

Some of these instructions will be subroutine calls to kernel functions, and some will require arguments.
Extra arguments will be either a long constant after the instruction (jumps and loads/stores from memory)
or a mov instruction before the call to a special kernel register in the case of small arguments. Thise will
create multi-long pseudo instructions. As the program will be divided in 32 longs chunks, special care is
taken to not have a double long instruction on the last long of a chunk. A nop will be added in these case.

Memory management

As memory inside the cog is limited to 496 instructions, the only way to extend it is to use caching
techniques. The cog's memory will act as a Level 1 cache and the HUB memory can act as a secondary
cache if desired when external memory is used, in the case that only HUB memory is used, this feature
can be left out.

The cache will occupy 128 longs and will have 4 chunks (lines) of 32 longs each, leaving the rest to the
kernel. Caching occurs transparently to the application and with special support from the extra
instructions use of the increased address space can be done. These lines will be filled on-demand and
reused as needed (without overwriting the last used line in a round-robin fashion). An aging mechanism
could be implemented if space allows.

The cache line contains two extra fields, a memory pointer to its absolute address (aligned to a 32 long
boundary) and a jump instruction at the end to return to the kernel. The first allows for fast look-up in
case of a rjump / rcall instruction and the second return the control to the kernel to load another cache line
or to continue execution if the line is already present. No multilong instructions are allowed to be
separated in two cache lines, the preprocessor will ensure this.

Data memory and stack are accessed outside the scheme. Self-modifying code is not possible at this time.
Control transfer instructions

The program shall have only rcall, rret and rjmp instructions, these instructions support transfer of control
to the whole memory space beyond cogs's memory limitation using the techniques described in the

caching section.

Each new instruction will be replaced by the preprocessor for a sequence of native cog machine code.

page 122 /405

Propeller
(Hss)

rcall #a_function_beyond_2k
is going to be replaced by

call #krnl rcall
long a_function_beyond_2k

The long is going to be ignored by the COG because its condition bits are zero. That will limit the
addressable area to 19 bits, that would mean 2719 longs, but the same restriction exists for memory

load/store, so it is limited to 219 bytes.

rret is going to be replaced just with a call to krnl_rret. No extra arguments
are needed.

The case of jumps is a bit more complicated. If jmp were to be used, the line would have to be relocated
appropriately, for that purpose all jumps will have to be rjumps. Using the scheme before, conditional
jumping can be used without problems, because the second parameter has condition IF_NEVER (all

zero), the call/jump can have a condition. That will somehow reduce the overhead.

A special rjmp could be used if the jump would occur inside the cache line, but memory constraints, i.e.
no place to implement it, can limit its availability.

Memory load/store

The special instructions 1db, 1dw, 1dd, stb, stw and std are used to access data in the data section. They are
plus the DP used to address up to 512 kbytes of data.Read and write to memory occurs without caching.

Stack load/store
The stack has its own group of instructions for stack manipulations. These lay also in a 512 kbyte area.
Program termination

The program terminates when the instruction term is executed, this instruction is replaced by a call to the
kernel routine krnl_term.

Syscall and interaction with the hardware

The syscall mechanism is going to be handled over to another COG, for that purpose, an area of HUB
memory will be used. This points need working.

Additional hardware

To use more than 32 kbytes of code/data, an external memory is needed. Two possible connection
methods have been envisioned, (but more exist). A SRAM or DRAM connected directly to the Propeller
executing the LMM kernel, or a SRAM/DRAM connected to a helping circuit, a CPLD or a second

page 123 /405

Propeller
(Hss)

propeller. This second approach is being tested as of now. This helping circuit is responsable for
obtaining the data to fill the cache lines at a rate of one long every 5 or 6 instructions, generate the lower
addresses and to interface with the memory device.

= End of the proposed specification ***

page 124 /405

Propeller
(Hss)

LMM Kernel Specification - Phil Pilgrim (PhiPi) version

Phil Pilgrim (PhiPi) examined how the main LMM loop is usually written and determined a way to
overcome that loop's failure to hit 'hub access sweet spots' which requires the LMM loop to be un-rolled
to achieve maximum throughput and lowest speed degredation when compared to native PASM
execution.

The mechanism used rests upon reversing the LMM code so addresses of LMM Code reduce sequentially
rather than increment and use a clever sequence of PASM instructions to maximise LMM throughput.
The original discussion thread on this Reversed LMM concept can be found here

The main LMM loop of most LMM interpreters had previously used the following code -

nov pc, PAR
Loop rdlong Instr,pc
add pc, #4
I nstr nop
jmp #Loop

The LMM Loop for the Reversed LMM interpreter is -

nov pc, PAR
jmp #St art
Instrl nop
rdl ong I nstr2, pc
sub pc, #7
| nstr2 nop
Start rdl ong I nstrl, pc
dj nz pc, #lnstrl

page 125 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=242762

Propeller
(Hss)

LONG

In Spin a long is a signed integer. Unlike words and bytes which are unsigned. In assembler it's your
choice whether it's signed or not, depending on what operand variants you use.

LONGis used as a keyword in 4 different ways:

e In a VAR block
o LONG Synbol
e In a DAT block
o LONG ...
o LONG [count]
e In a method
o LONG [BaseAddr essl nByt es]
o LONG [BaseAddr essl nBytes] [O f set | nLongs]
e In a method
o Synbol . LONF O f set | nLongs]

LONG Synbol

Declaration of a Spin long variable. Guaranteed to be long aligned. When compiling, Spin groups all the
long declarations together in a block before all the word and byte declarations, so you can't count on the
order of differently sized variables in memory being as in the source. However, all same sized variables

will be in the order you declare them.

These variables only exist in Hub memory. They will exist at a place past the binary image combined by
PropTool.

They are always initialised to zero.

To access them from assembler, you'd have to pass the address of one to the assembly program through

the PAR mechanism and use RDLONGWRLONG

LONG . ..
LONG [count]

Declare a long aligned label. Layout in memory will reflect the order declared in the source, however
differently aligned declarations may result in padding.

The data exists in Hub RAM, and may be copied to Cog RAM when starting a Cog. Spin references will
use the original in Hub RAM, Assembler references will use the Cog RAM copy (unless done by
reference though PAR and RDLONGWRLONG).

When a long data value is followed by a count in square brackets, that number of longs will be created.
This is useful for pre-initialising block or arrays of data within a Cog.

page 126 / 405

http://propeller.wikispaces.com//WORD
http://propeller.wikispaces.com//BYTE
http://propeller.wikispaces.com//LONG#VAR
http://propeller.wikispaces.com//LONG#DAT
http://propeller.wikispaces.com//LONG#AddressOffset
http://propeller.wikispaces.com//LONG#SymbolOffset
http://propeller.wikispaces.com//PAR
http://propeller.wikispaces.com//Hub+RAM
http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Cog

Propeller
(Hss)

LONG [BaseAddr essl| nByt es]
LONG [BaseAddr essl nBytes] [O fsetlnLongs]

In spin will read/write to a word in Hub RAM. It can only do long aligned read/write, in other words it
ignores the least significant two bits of BaseAddressInBytes.

{{LONG [BaseAddr essl nBytes] := val ue}}
"lIs equival ent to:

{{BYTE[BaseAddressl nBytes & $FFFE]
{{BYTE[BaseAddresslnBytes | $0001]

val ue & $FF}}
(value >> 8) & $FF}}

{{LONG [BaseAddressl nBytes] [OfsetlnLongs] := value}}
"lIs equival ent to:

{{BYTE[(BaseAddr ess| nByt es&FFFE) +(O f set | nWor ds* 2)]
{{BYTE[(BaseAddr essl nByt es| $0001) +(O f set | nWbr ds* 2)]
$FF}}

val ue & $FF}}
(value >> 8) &

Synbol . LONF O f set | nWr ds]

In spin will read/write to a long in Hub RAM. Symbol must be a long variable. It'd more straightforward
to use simple array indexing - Synbol [O f set] .

See also

WORD

BYTE

LONG vs RES

Symbol Address operator

page 127 / 405

http://propeller.wikispaces.com//WORD
http://propeller.wikispaces.com//BYTE
http://propeller.wikispaces.com//LONG+vs+RES
http://propeller.wikispaces.com//Symbol+Address+operator

Propeller
(Hss)

How is RES different from LONG?

This is very difficult to explain, but understanding this is one of those Eureka moments that make you
into a real Propeller assembly programmer.

As PropTool is compiling a spin program, with embedded assembler, it is keeping track of two important
pointers.

1. The Hub RAM pointer. This is the address in Hub RAM that the current code or data is going to
be placed. It starts at zero, and keeps getting incremented as spin code is compiled or assembler is
assembled. It measures memory as bytes.

2. The Cog RAM pointer. This is set by the ORG directive, and is then incremented as assembler
instructions and LONG, WORD and BYTE statements are assembled. It represents the eventual
Cog address where code and data will live once it have been copied into a cog by a COGNEW or
COGINIT. It measures memory as longs.

LONG defines an item of data. It increments the Cog RAM pointer by 1 and the Hub RAM pointer by 4.
RES reserves what will eventually be a space in Cog RAM with undefined content. It just increments the
Cog RAM pointer by 1. It leaves the Hub RAM pointer alone.

That is the difference.

Why?

When you have a long that has initialised data, then it must occupy a long in Hub RAM to start with, and
then it is copied with the rest of the code to a Cog to be executed. If it doesn't need to be initialised, you
could just store any old value (say zero) in the long in Hub RAM and have that copied. But this
unnecessarily wastes a long in Hub RAM that isn't needed. RES is a statement that allows you to mark
out space with labels at the end of Cog RAM, without that space having to be taken up in Hub RAM.

"I don't get it. Just tell me what I need to do"

e If you need initialised data in your assembler routine, e.g. from constants >$1FF, then use LONG
to define them.

¢ If you don't need data to be initialised, then use RES. But ensure that for a particular block of code
and data (between ORG and FIT) that all RES lines comes after everything else.

e If you really don't understand what all this means, just always use LONG and leave RES alone.

Another explanation

Here's what Propeller Tricks and Traps has to say on this issue:

page 128 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=114128

Propeller
(Hss)

Be sure to place RES statements at the end of any ORG segment that uses them. The following example
does it wrong:

/1 MOV Ti me, CTR
ADD Time, O f set
Ti me RES 1
O fset LONG 230
O her _val ue LONG 123
ORG
Anot her _cog o0

In this example, Offset will get clobbered when CTR is copied to Time, and 123 will get added to it
instead of 230. Why? Because when the assembler encounters a RES, it reserves space in cog memory,
but not in hub memory where the program is stored. Consequently, 230 will occupy Time’s address in hub
memory, and 123 will occupy Offset’s. Do this instead:

/1 MOV Ti e, CTR
ADD Time, O f set
O f set LONG 230
O her _val ue LONG 123
Ti me RES 1
ORG
Anot her _cog o

In this example, whatever’s assembled at Another_cog will get loaded into Time when the first cog loads.
But we don’t care, since Time will get written over anyway.

page 129 /405

Propeller
(Hss)

BST: Brad Spin Tool

The bst tool suite is a cross-platform tool set to help non-windows users get the most out of their
Propellers. BST also runs on Windows.

Binaries are provided for

1386 Linux

1386 Windows 95->XP

Universal Mac Binaries for OSX 10.4, 10.5 & 10.6

The Linux command line binaries are completely statically linked and will run without issue on x86_64
systems.

The Linux binaries have been tested down to 2.4 kernels, so pretty much anything made in the last 6-7
years will work fine.

If it doesn't, then let me know and I'll fix it!

I'm particular about supporting MacOS Intel & PowerPC and Linux. Windows bugs and features are
welcome also.

Just an update. The bst suite now has a homepage (such as it is)
http://www.fnarfbargle.com/bst.html

Download it here : http://www.fnarfbargle.com/bst after reading the bits below!

The suite consists of :

bstl : The propeller loader

This little application does nothing more than allow you to load pre-compiled .binary and .eeprom files
into your propeller.

It is a command line application that takes a couple of optional parameters and a file name. Nothing more,
nothing less.

Use bstl -h to get a list of what does what.

bstc : The Spin Compiler

bstc has bstl built in, in addition to a completely Parallax compatible SPIN and PASM compiler and
linker.

It has a few extra features (like being able to emit a list file, some basic optimisation, and zip file
generation)

As with bstl, use bstc -h for a list of what does what.

page 130/ 405

http://www.fnarfbargle.com/bst.html
http://www.fnarfbargle.com/bst

Propeller
(Hss)

bst : The IDE

This is the top of the food chain. A complete windowed IDE that aims (and still falls short) to be
comparable with the Parallax Propeller Tool.
It's simply an environment for developing your propeller code, downloading and monitoring the results.

bst is structured to be a work-alike to the Parallax Propeller Tool so that new users will find the Parallax
documentation familiar enough to be able to start from scratch without being plunged into an unfamiliar
environment.

The biggest hurdle in getting bst functioning up to scratch is the installation of a suitable Font. A
modified version of the Parallax Propeller Font can be found linked from this Wiki here :

http://propeller.wikispaces.com/Propeller+Font
Please install this font prior to running bst the first time and it will ensure the smoothest installation.

bst has a basic serial terminal built in. It's not fantastic but it does the job. Suggestions warmly welcomed.
Copy and paste as well as saving the contents is supported.

The development of bstl, bstc and bst can be followed on the Parallax forums linked below, and release
notes and Changelogs are often posted in the top post.

bstl : http://forums.parallax.com/forums/default.aspx 7f=25&m=297274
bstc : http://forums.parallax.com/forums/default.aspx ?f=25&m=297566
bst : http://forums.parallax.com/forums/default.aspx 2f=25&m=298620

Extensions to the Official Spin Compiler in PropTool

A number of extensions have been added. In BST they can be enabled using the Optimisation Panel in the
Tools->Compiler Preferences Item. This extensions are not compatible with PropTool that means that the
code generated is not going to be byte by byte the same as the one produced by PropTool (whereas when
they are not enable bst strives to generate bit for bit identical code).

One of the most interesting extensions is conditional compilation. It works is a similar manner to C's,
using the same syntax. Text replacement and macro expansion are not yet supported (v 0.18.4).

The syntax is similar to homespun's:

* #define synbol

* #undef synbol

* #ifdef synbol

* #i fndef synbol

* #el sei fdef synbol

page 131 /405

http://propeller.wikispaces.com//Propeller+Font
http://forums.parallax.com/forums/default.aspx?f=25&m=297274
http://forums.parallax.com/forums/default.aspx?f=25&m=297566
http://forums.parallax.com/forums/default.aspx?f=25&m=298620
http://propeller.wikispaces.com//Homespun+Spin+Compiler

Propeller
(Hss)

* #el sei f ndef synbol

* fel se

* #endi f

* #info I'"man information nessage

* #warn |'ma warni ng nessage

* #error I'man error nessage and will abort conpil ation

bst[c] passes the defines down to sub-objects as they compile. You will get an error if you try to define a
symbol twice.

#ifdef and #elseifdef check to see if symbol has been defined using #define (see below).
Example:

#defi ne HYDRA

#i f def HYDRA
_clknmode = xtal 1l + pll8x
_xinfreq = 10_000_000
#el sei f def HYBRI D
_clkmode = xtall + pll 16x

_xinfreq = 6_000_000
#el se
_clkmode = xtal 1l + pll 16x
_xinfreq = 5_000_000
#endi f

Another interesting extension is the @ @ @ operator. It returns the HUB address of the specified symbol.

Any comments, questions and suggestions are more than welcome to : proptools at fnarfbargle -dot- com
Note: Do not edit the wiki to post questions, just email me at the above address or use the parallax forum
Thread.

page 132 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=298620

Propeller
(Hss)

Max OS X Experiences

The intent of this page is to assist those using the various Propeller tools on the Apple Mac OS-X
platform.

Native tools

The BST tool is a third party clone of Spin Tool, which runs on OS X (in addition to Windows and
Linux).

PC Emulation using Parallels

It is possible to use all of the Propeller tools with Mac OS-x Tiger and Leopard utilizing the Parallels V3
software. At first there were some minor problems with USB ports but that has been fixed by Parallels.
You can share files, software and clipboards.

Mac How

Boot Camp

Unknown

page 133 /405

http://propeller.wikispaces.com//Mac%2520and%2520Linux%2520native%2520development
http://www.mac-how.net/

Propeller
(Hss)

Software running on Multiple COGs is equivalent to multiple threads in a single process, and the same
sorts of concurrency protection is needed to ensure correct operation. Race conditions are very easy to
create. A typical design pattern is a object that uses a number of spin utility methods to access values
stored in hub ram (DAT or VAR), and a loop in Spin or PASM main loop that runs on a COG. This
generally limits the interaction of the utility methods and the main loop is by the Hub RAM.

Access to HUB ram is atomic for 32 bit reads OR writes. You cannot read and then write back a modified
variable atomically. You cannot read more than one long variable atomically. The speed of the code
doing the read and writes is likely to be very different as at least one side will be interpreted spin code,
and the speed of spin operations is not transperant.

To ensure correct/sane results when pulling data from a Object that uses a COG thread needs to use some
way to avoid race conditions. Techniques applicable for Propellers are:

use a lock

read a single 'output' variable. i.e. calculate interesting values in the cog and store in a hub ram.
pack/unpack multiple variables into one LONG (i.e. atomic changes)

read AND write groups of variables in very carefully timed code so that a race can not occur.

e start and stop the COG on demand (seems probably fast IF it is spin)

e Use some form of queue and/or flag in hub ram for handshaking.

If the value read or written by the utilities is independent, then no further precautions are needed. A
variation would be to pack a group of variables into a long.

Handshakes via hub ram can be very simple and effective, so long as the handshakes are one direction. If
only dealing with 2 variables, it is pretty simple to ensure a race does not cause in correct behavior.

By carefully analysing the order of memory access and modifications, races may be able to be avoided.
This works because the COG's hub access is in lock step, so if one process copies in changes at the same
rate as another is reading them out, they cannot overlap and get mixed values. However this would be
rather difficult to maintain, as it requires analysis of the spin and/or PASM.

Starting and stopping a COG running spin is actually very fast, and in some cases it may turn out to be
practical to stop the cog, and then restart it again. However to be safe in this approach, the stopping of the
COG will probably need a handshake to avoid corrupting the state due to partially completed variable
updates.

Another related problem is that the looping COG might never wake up if it is using a WAIT type
instruction for an external event to occur. Stopping the COG maybe possbible if there is a way to avoid
corruption of object variables (lock, handshake, or limited preserved state) Another alternative is to use a
IO pin as a interupt and add it to the wait mask.

Example: Calculating speed

Calculating speed from a tacho type source will normally involve 2 values for the time references. From

page 134 /405

Propeller
(Hss)

this the worker COG running the main loop can calculate the speed value from its internal variables, and
store it in a hub location, after each pulse. But what do you do when it has stopped and there is NO
pulses?

In this case it is probably best is to store the BOTH the speed AND then the time of the last pulse, in that
order. Check for a RECENT pulse BEFORE using the speed. In this case, a trick is that you need to also
watch for roll over if you are using CNT as the time reference. In that case avoid the risk of a false pulse
of speed every rollover, WRITE back a speed of zero when stopped is detected. This leaves a small risk
of a speed Zero being reported until the COG queriing it has completed antother poll cycle, which is
effectively no consequence.

Stopped Cogs

Some designs might be a bit simpler with a interupt to trigger the COG to do something that is outside its
normal operation. An example could do with a timer interupt, OR they have to use locking

page 135 /405

Propeller
(Hss)

This page is still under construction, please use the discussion page for
changes/improvement, comments, etc (Ale)

MATH

The propeller contains a 32 bit ALU with support for signed and unsigned basic arithmetic, a barrel
shifter that makes all the difference and logic operations. Here it is assumed that you are familiar with the
mnemonics used by the assembler, and that you know a bit of math. Some of these topics were covered in
the "Propeller guts" document.

(Note: all code was tested using pPropellerSim and in the case of BCD math an actual propeller, too!), but
bugs could exist, use at your own risk, and read the terms of the license.

Integer math, the four operations

Addition and subtraction are straightforward, multiplication and division require a bit more work.

add X,y we, wz

Assuming x and y contain already the values to add and those are of the unsigned type. The C flag will
signal overflow, i.e. the result is bigger than 232-1, and the Z flag will signal a zero result.

For signed numbers adds perform the same operation. A signed number has a smaller range from O to
231-1 on the positive side and -1 to -23! on the negative side. So 1 + -1 will be zero (really?) and -3 + -4
will be -7 (unbelievable). As the range is smaller than unsigned, $7FFF_FFFF plus $7FFF_FFFF will
give $7FFF_FFFE and will rise the C flag.

adds X,y we, wz

The C flag will signal again overflow if the result exceeds 23!-1 or -231. The Z flag will signal again a
zero result.

If you think that 32 bits is not enough you can concatenate several operations together using the C flag to
extend the word size, so for 64 bit arguments we have (addx is the addition with carry version of add).

add xI, yl we
addx xh, yh we, wz

The addx instruction will use the carry from the first operation, on the lower 32 bits of the number, if any

page 136 /405

http://propeller.wikispaces.com//pPropellerSim

Propeller
(Hss)

and add it to the upper 32 bits. C and Z work as before. If you need still more precision, more addx
instructions can be chained as seen before.

Subtraction works in a similar manner using sub and subx:

sub xI, yl e
subx xh, yh Wwe, Wz

To multiply the propeller uses the good old addition and shift method due to the lack of a multiply
instruction. But before that let us consider some special cases: multiplication by constants. As we know
constants have the ability to conserve their value over time (!), so a fixed multiplication can save a few
longs here and there. The propeller has a barrel-shifter that is essential for this to be smaller thatn using
the normal multiplication depicted below. As we also know multiplication can be distributed across
addition and that is the key to many common values:

For x*10 = x*2+4+x*8 = (x+x%4)*2

shl X, #1
nov r, x
shl X, #2
add r, X
or..
nov r, x
add r,x
shl X, #3
add r,x

For x*80 = x*16+x*64

shl X, #4
nov r, X
shl X, #2
add r, X

The source argument is x and r is the result. The propeller lacks a lea (load effective address) instruction
so some neat tricks that can be exploited in x86 or 68k assembly, like multiplying by 3, 5 and 9 in one
instruction, are out of the question.

The good old shift-add method works with two variables and a temporal register for counting (usable up
to 16*16 bits):

page 137 /405

Propeller

(Hss)
nov r,#0
| oop
shr y,#1 wc
if_c add r, X
shi X, #1
tjnz vy, #l oop

This will only work if the lower part of a 17%16 to 32*32 bits is desired. Detection of overflow (r>232)
requires that the overflow of the add instruction be honored and passed through, of course after the tjnz
the status of the C flag must be checked.

nov
| oop
shr
if c add
shl
if_nc tjnz

r, #0

y, #1 WwC
r, x we
X, #1

y, #l oop

If a full 64 bits result is needed (rh:rl)... well some changes are required:

| oop

shr

jmp

add

addx

if_nc

| oop2
shl
rcl
tjnz

rh, #0
rl, #0
xh, #0
y, #1 we
#1 oop2
rl, xl e
rh, xh

x|, #1 e
xh, #1
y, #l oop

Of course there are variations, this can be unrolled if we know how many effective bits one of the
arguments has. If y is always smaller than x, it is better to test y against zero (tjnz instruction) than to test
x. This can reduce the running time. These examples were coded for unsigned numbers, in the case of
signed ones, the instruction abs, previous sign test could be used to produce the right result:

page 138 /405

Propeller

(Hss)
nov S, X saves sign of x
Xor S,y " calculates sign of result
abs X, X " cal cul ates absol ute val ue of x
abs Y,y of y ...
nov r, #0
| oop
shr y, #1 we
if c add r, X e
shl X, #1
if_nc tjnz vy, #l oop

nmov
negc

s,s wc ' sets C accordingly to the sign
r,r ' negates result if necessary

The division requires a similar algorithm, but we subtract instead of add, x =x/y:

nov t, #16
shi y, #15
| oop
cnpsub x,y e
rcl X, #1
djnz t,#l oop

The use of ecmpsub reduces the amount of instructions per cycle loop to only 3, a nice bonus, if space is
not a constraint these loops can be unrolled and up to 30% of time saved. If just 8 bits are used the first
mov shoud be with 8 and the shift with 24.

Let's investigate cmpsub a bit more. As you know emp is the sub instruction with the effect nr in place,
do not write result back, to only affect flags. Flags as always must be explicitly indicated. cmp will rise C
when the source is bigger than the destination. cmpsub will rise C if the source is smaller than the
destination and will subtract the source to the destination placing the result into destination:

cnpsub X,y e

X | ong
y | ong

5
7

Will not rise C neither will modify x.

cnpsub x,y e

page 139 /405

Propeller

(Hss)
X | ong 12
y | ong 7

Will rise C and subtract y from x, resulting in a value of 5 in x.
This instruction can be exploited in some instances when a sequence like this is found:

cnp X,y W
if_nc sub X,y we

X | ong 5

y | ong 7

It may not be a big difference, but a long saved here and there help when there is not that many of them.

The barrel shifter

The propeller has some neat tricks as we saw with cmpsub. It packs some more, and the barrel shifter is
one of them. Most small processors, i.e. 8-bit ones and some 16 bit (z80, H8/300, HC11, ...) have simple
1-bit shifters. You may be familiar with the typical: let's convert a binary to a hex string requiring some 4
shifts per high digit. The cog in the propeller is not your average 8 bit processor, it is a 32 bit one, and a
modern one!, so a barrel shifter was included, like in any serious (ARM, SH) processor. This shifter can
perform a shift with any number of bits between 1 and 31 in exactly the same amount of time, because the
shifter actually... has no shift registers!!, it has some multiplexors instead. Shown routines for multiply
and divide make use of this, shifts of 8 or 16 bits in one instruction. I cannot stress enough how useful
this is. The behaviour of the carry flag could seem a bit awkward, but it has its motives, (the zero flag is
always set if the result is zero). The C flag is set if the original first or 31st bit was 1 depending on if it
was a left shift (31st) or right shift (first), and also independently of it was a 10 bit shift or a 1 bit shift.

Simple binary multiplications by powers of two can be implemented using the shifter. Note that adding a
value to itself has the same effect as a 1-bit left shift (shl), being the same instruction is some
architectures.

The instruction sar shifts right arithmetically, that means it takes care of the sign. If a number is negative
it will remain negative, if it is positive it will be positive till it reaches zero. Very useful to sign extend a
number:

shi X, #16 " shifts left, sign (bit 15) bec
ones bit 31
sar X, #16 " shifts conserving the bit 31 s

page 140/ 405

Propeller
(Hss)

tatus, sign extending the nunber to 32 bits
NOTE: In the case where two's complement numbers are used and they are not 32 bit quantities, i.e. the
sign is other than bit 31, the method described above can be used to sign extend the number. A

subsequent and safe call to abs will return the absolute value of the number. A use of abs before the
number is sign extended will lead to an unmodified number.

The C and Z flags

The two flags available can be tested and modified in almost all instructions, provided that the
corresponding effects are in place. The carry flag, C, indicates, depending on the instruction, a number of
different things, parity, bit set or reset, carry, borrow, etc. In comparison instructions it indicates borrow
(mostly). Sometimes it could be useful to set or reset it.
To set C we can do:

nov X, #1

shr X, #1 WC

To clear C we can do, this will not modify x, but will reset C (actually it mirrors the status of the 31st bit
of x after the move):

FFT

A working implementation, also written by me, of a Radix-2 FFT algorithm can be found here.

Fixed point math

An article about fixed point math can be found here. (it needs some more examples and descriptions, I'm
working on that).

Double precision binary floating point

page 141 /405

http://propeller.wikispaces.com//FFT
http://propeller.wikispaces.com//Fixed+Point+Math

Propeller
(Hss)

The single precision binary floating point library from the obex is known to almost everyone, but when
single precision is not enough, double precision can solve the problem with its 53 bits of significant
providing up to 16 decimal digits. Having a 32 bit ALU, the propeller can compute these numbers quite
fast, using unrolled loops for multiplication and division, around 2000 cycles are required for either
function.

The format as per the standard is

63 62 52 51 0
R T e R +
| s | exp | significant |
R T e R +

The significand sign is the bit 63, set when negative.

The exponent is biased with the number 1023, that means that all numbers greater than 0 have an
exponent of 1023 or bigger. The exponent 2047 is used to represent Infinities and NaNs (Not a number).
Infinities have a zeroed significand while NaNs have a non zero. An exponent of zero means either that
the number is zero or that a denormalized number is presented. The support for denormalized numbers
(those where their bit 53 is zero) is somewhat lacking in the following routines.

The significand is 53 bits long, but the most significant bit is assumed set when the exponent is non-zero
and thus not stored.

Addition and subtraction are the simplest and fastest, adding 53 bits requires only 2 instructions, checking
for bad input, scaling and sign management takes the rest. A possible implementation is as follows
(LGPL v 2.0 code), see the link at the bottom for a file with all the routines.

Adds two doubl e precision nunbers
t hey shoul d be al ready unpacked, result goes to R

dSuB Xor r BSgn, cnt _h8 " changes sign of B
dADD t est flags, #FLG_NAN| FLG I NF wz
if_nz cal | #dLOADRNAN
if_nz jmp #dADD r et
nov rtl, rASgn
xor rtl, r BSgn wz
if_nz jmp #dSUB_1
nov rtl, r AExp
subs rtl, rBExp wz
abs re2,rtl

page 142 /405

Propeller
(Hss)

dADD 5

dADD 10

dADD 20

if _nz
if _nz
if _nz

dADD r et
dSUB r et

dSuB 1

al

jmp

cnp
jnp
cnp
jnp
cnp
cal |
cal |
jnp

shr
rcr
dj nz
jnp

shr
rcr
dj nz

nov
add
nov
addx
t est
shr
rcr
add

ret

nov
subs
abs

jmp

cnp
jnmp
cnp
jnmp
cnp
cal l

r RExp, r AExp
#dADD_20

rtl, #53 WC
#dADD 5

rt2, #53 WC
#dADD 10
rtl, #53 WC
#dLOADBTOR
#dLOADATOR
#dADD r et

shifts B

shifts A

rB, #1 wc
rBl, #1

rt2, #dADD 5
#dADD 20

rA #1 we
rAl, #1

rt2, #dADD_10
r RExp, r BExp

rRi, rAl

rRi, r Bl we
rRrA

rRrB

rR cnt_bit54 wz
rRr, #1 we

rR1, #1

r RExp, #1

r RSgn, r ASgn

rtl, r AExp

rtl, r BExp Wz
re2,rtl

#dSUB 10 subs, no shift,
rtl, #53 we
#dSUB 5 '
rt2, #53 we
#dSUB 5

rtl, #53 we

#dLOADBTOR

shifts B

exponents are equ

page 143 /405

Propeller
(Hss)

if_nc

cal l
j nmp

#dLOADATOR
#dSUB r et

" exp of Ais bigger than exp of B

dSUB 5

" R=A-B

if _nz

dSUB_10

if_c

shr
rcr
dj nz

nov
nov
nov
sub
nov
subx
jmp
jmp

exponents are equal,

cnp
cnpx
jnp
j nmp

rB, #1 wc
rBL, #1
rt2, #dSUB_5

r RSgn, r ASgn
r RExp, r AEXp
rRi, rAl
rRi, r Bl
rRrA
rRrB wz
#dSUB_25
#dSUB_35

transfers sign

We, Wz

so check significand

rAl, rBl Wwe, wz

rA rB we, wz

#dSUB_20 si g(A) <si g(B)
#dSUB_35 " nunbers are equa

" Bis bigger than A, we shift A and perform R=B-A

dSUB_15

' R=B-A
dSUB_20

dSUB 25
dSUB_30

if _nz

dSUB_35

shr
rcr
dj nz

nov
nov
nov
sub
nov
subx

nov
t est
jmp
sub
shl

rcl

dj nz
cal l
jmp

rA#1 we
rAL, #1
rt2, #dSUB_15

r RSgn, r BSgn
r RExp, r BExp
rrRi, rBl
rkl, rAl wc
rRrB
rRrA

rtl, #53

rR, cnt _bit53
#dSUB r et

r RExp, #1
rR1, #1 we
rR, #1

rtl, #dSUB_30
#dLOADZTOR
#dSUB r et

transfers sign

Wz

normal i zes

page 144 /405

Propeller
(Hss)

Multplication requires a bit more work, a similar as that one explained before is used, but in two stages
because a 96 bits partial result is kept instead of a full 107 when the most significant bits arer known to be
zero. Exponents are added as usual and signs are xored.

R R I b b S b b S b S b b S b S b b S b b b S b Ik S kb R R R bk S b b b S b Sk b b i b b S b b S 4

! **k k%

**** Multiplication R=EA*B

dMUL t est flags, #FLG_NAN| FLG_ I NF wz
if _nz cal | #dLOADRNAN
if_nz jmp #dAMUL_r et
t est flags, #FLG Z wz
if_z cal | #dLOADZTOR " if any of the nuners a
re zero
if_z jmp #dAMUL_r et
nov r RExp, r AEXp

adds r RExp, r BExp

" ** do not forget to check for overflow ;-)

shl rA #11
nov rtl, rAl
shl rAl, #11
shr rtl, #21
or rartl " shifts to acconpdate f
i nal product
nov rt4, #32 ' 32 bits first
nov rr, #0 " result significand
nov rrR1, #0
nov rtl, #0
nov rt2, #0
nov rt3, #0
dMJL_10 shr rB, #1 we
rcr rBl, #1 wc
if_nc jmp #dAMUL_12
add rt2,rAl wC

addx rtl, rA WC
addx rR1, rt3 WC

dMJL_12 shl rAl, #1 WC
rcl rA #1 wc
rcl rt3, #1

page 145 /405

Propeller
(Hss)

dj nz

' 32 bits are done,

dMUL_15
if_nc
dMJL_17
if _nz
if z
if z
if z
if _nz
if _nz
if _nz
dMJUL_20
dMJL_ret

nov
shr
jmp
add
addx
addx
shl
rcl
rcl
tjnz

t est
add
shl
rcl
rcl

shl
addx
addx
t est
add
shr
rcr

nov
Xor
ret

rt4, #dMJL_10

rt2, #0

rBl, #1 WwC
#dAMJUL_17
rtl, rA wc
rR1, rt3 WC
rRrt2

rA #1 we
rt3,#1 w
rt2, #1

rBl, #dMJL_15

rR, cnt _bit53 wz

r RExp, #1
rel, #1 e
rRi, #1 wC
rR #1

rel, #1 e
rR1, #0 wC
rr, #0

rR, cnt _bitb54 Wz
r RExp, #1
rr, #1 WwC
rR1, #1

r RSgn, r ASgn
r RSgn, r BSgn

Division needs also a loop, and a possible implementation follows:

doubl e di vi si on,

dDl vV
if _nz
if _nz

t est
cal l

jmp
t est

J np
t est

R=A/ B

fl ags, #FLG_NAN| FLG | NF
#dLOADRNAN
#dDI V_r et

flags, #FLG Z wz
#dDI V_2
flags, #FLGB Z wz

now we nultiply the other 21

i ncrenents exponent

rounds up

i ncrenments exponent

Wz

page 146 / 405

Propeller

(Hss)
if_nz or fl ags, #FLG_ERR DI VO x/ 0 (even 0/0)
if z cal | #dLOADZTOR " 0/x =0
jmp #dDl V_r et
dDl V_2 nov r RExp, r AExp
subs r RExp, r BExp
shl rA #11
nov rtl, rAl
shl rAl, #11
shr rtl, #21
or rArtl " shifts to acconpdate f
i nal product
shl rB, #11
nov rtl, rBl
shl rBl, #11
shr rtl, #21
or rg, rtl shifts to acconodate f
i nal product
nov rtl, #53
cnp rAl, rBl WC,
cnpx rA,brB we, wz
if_c jmp #dDl V_4
if_nz sub rel, #1
sub rAl, r Bl e
subx rArB
dD V_4 shr rB, #1 we
rcr rBl, #1
sub r RExp, #1
nov rRi, #0
nov rr, #0 WC
dDl V_5 cnp rAl, r Bl Wwe, Wz
cnpx rAbrB wc
if_c jmp #dDl V_10
sub rAl, r Bl e
subx rA,rB we
dDl V_10 rcl rR1, #1 we
rcl rR, #1 e
shl rAl, #1 wc
rcl rA #1

page 147 / 405

Propeller

(Hss)

dj nz rt1, #dDI V_5

xor rR cnt _f

xor rR1, cnt _f
dDl V_20 and rR cnt_sigh ' clears garbled bits
dDl V_ret re

A comparsion routine could be implemented as follows:

Two NaNs wil |

dCwP

if _nz

if _nz
| t

if _nz

if _nz
dCVP_r et

Some support code is also neede, to pack and unpack numbers, to set flags and so on.

| oads A from

dLOADA

Comapres A and B,

give a non equal resu

t est
nov

jnmp

chnp
j nmp

cnps
jmp
cnp
cnpx
ret

poi nt er

andn
rdl ong
add
nov
rdl ong
nov
and
add

andn

sets the flags accordingly.

| t

flags, #FLG_NAN| FLG_ I NF wz
rel, #2 Wz, wc
two NaNs or Infs give a diff resu

#dCVP_r et

r BSgn, r ASgn wz
#dCVP_r et

r AExp, r BExp
#dCVP_r et '
rAl, rBl Wz,
rArB Wz, WC

ptr and unpack

fl ags, #FLGA Z|
rA ptr

ptr, #4

r AExp, r A

rAl, ptr

r ASgn, r A

r ASgn, cnt _h8
ptr, #4

rA cnt_sexp

, WC

different signs, neg < pos

Wz, Wc
they are different
we

S

FLGA | NF| FLGA NAN

Wz

page 148 /405

Propeller
(Hss)

if_z nov rAl, r Al wz
if_z or flags, #FLGA Z " tenporal Z flag if signif
icand is zero

and r AExp, cnt _exp
cnp r AExp, cnt_exp wc ' checks for NaN or Inf
if_nc t est flags, #FLGA Z wz
if _nc_and z or flags, #FLGA | NF "infinity
if_nc_and_nz or fl ags, #FLGA_NAN " Not a nunber
shr r AExp, #20 wz
if _nz or rA cnt_bitb53 " adds inplicit 53 bit if no
t zero
if _nz sub r AExp, cnt _bi as " subtract bias if is not ze
ro
if_nz andn flags, #FLGA Z ' Is not zero anynore
dLQADA r et ret

| oads B from poi nter ptr and unpacks

dLQADB andn fl ags, #FLGB_Z| FLGB_| NF| FLGB_NAN

rdlong rB,ptr
add ptr, #4
nov r BExp, r B
rdilong rB1,ptr
nov rBSgn, r B
and r BSgn, cnt _h8
add ptr, #4
andn rB,cnt_sexp wz

if_z nov rBi, r Bl wz

if_z or flags, #FLGB _Z " tenporal Z flag if signif

icand is zero

and r BExp, cnt _exp
cnp r BExp,cnt_exp wc ' checks for NaN or Inf
if_nc t est flags, #FLGB Z wz
if nc_and z or flags, #FLGB_| NF "infinity
if_nc_and_nz or fl ags, #FLGB_NAN " Not a nunber
shr r BExp, #20 wz
if _nz or rB, cnt _bit53 " adds inplicit 53 bit if no
t zero
if _nz sub r BExp, cnt _bi as " subtract bias if is not ze
ro
if_nz andn flags, #FLGB _Z " Is not zero anynore

page 149 /405

Propeller
(Hss)

dLQADB r et

packs and saves Rto ptr,

dSAVER

if _nz

dSAVER r et

ret

andn
or

t est
add
shl

or
wr | ong
add
wr | ong
add
ret

| oads NaN into R

exp = Ox3ff

non-zero significand

dLOADRNAN

dLOADRNAN r et
loads A into
dLOADATOR

dLOADATOR r et
| oads B into
dLOADBTOR

dLOADBTOR r et

dLOADZTOR

dLOADZTOR r et

ret

| oads zero into R

Nunbers are unpacked for easier

rR, cnt _bit53
rR, r RSgn

r RExp, r RExp

r RExp, cnt _bi as
r RExp, #20
rR r RExp

rr ptr

ptr, #4

rrRi, ptr

ptr, #4

r RExp, cnt _NaN
rR, cnt _bit52
rR1, #0

rRrA

rrRi, rAl

r RExp, r AEXp
r RSgn, r ASgn

rR,rB

rRi, rBl

r RExp, r BExp
r RSgn, r BSgn

rR, #0
rR1, #0
r RExp, #0
r RSgn, #0

destroys rR,

r RExp

renoves imicit 1 at bit 53

i f

it

mani pul ati on

is zero,

keep it zero

page 150 /405

Propeller
(Hss)

explicit 53ed bit is added

rA | ong $10_0000

r Al | ong 0' $5555 5555
r AEXp | ong $3f f

r ASgn | ong 0

rB | ong $10_0000

r B1 | ong 0' $5555_ 5555
r BExp | ong $3f f

r BSgn | ong 0

rR | ong 0

rRi | ong 0

r RExp | ong 0

r RSgn | ong 0

rtl | ong 0

rt2 | ong 0

re3 | ong 0

rt4 | ong 0

res | ong 0

ptr | ong 0

fl ags | ong 0

cnt_h8 | ong $8000_0000
cnt _exp | ong $7ff0_0000
cnt _sexp | ong $fff0_0000
cnt_bith54 | ong $0020_0000
cnt_bit53 | ong $0010_0000
cnt _bit5h2 | ong $0008_0000
cnt _bi as | ong $3f f

cnt _NaN | ong $7f f

cnt _f | ong Sffff _ffff
cnt _sigh | ong $Af _ffff
BCD MATH

As everyone knows BCD stands for binary coded decimal, i.e. each decimal digit is represented in binary,
and all operations are done with decimal numbers... that means that from our stand point: exactly as we
will do them on paper. BCD arithmetic has some caveats and some advantages compared to binary
arithmetic:

page 151 /405

Propeller
(Hss)

Pros:

e No rounding problems when working with human-readable numbers
e Fastest floating-point to string conversion

e [like it

e BCD floating point

Cons

e Slower
e wastes space
e poor support in the assembler

Number representation

To represent every decimal digit, a minimum of 4 bits are needed. That means: for 8 digits a long (32
bits) will be needed, while with a binary representation a long would hold 9 or 10 digits.

For a 8 digit nunber 12345678

e
| 1| 2| 3| 4] 5] 6] 7] 8]
e

For the sanme nunber the binary woul d have been BC614E (24 bits instead
of 32)

The four basic arithmetic operations are performed on BCD numbers as we will do them on paper, but the
implementations are not that straightforward because carry/borrow from digit to digit has to be
considered, something we hardly think about with binary numbers, i.e. the addition produces a number
greater than 9. Binary operations have to be used because the propeller lacks BCD ones and daa (decimal
adjust after addition as found in the Z80, HC11, etc) or similar. A compare and add/subtract if condition
method has to be used operating on a digit-by-digit basis.

" Adds two 8 digit nunbers (Il ongs)
carry is used in negative logic !

page 152 /405

Propeller

(Hss)
mADD3 nov rcarry, #3
shr rcarry,#1 wc ' sets carry flag
mADDBC nmov rmskl, #$f
nov rt5, #0
nov rshl, #10
mADDS 1 nov ret3, rtl
and rt3, rmskl
nov rted,rt2
and rt4, rnmskl
if_nc add rt4,rcarry
add re3,rt4 we
if_nc j mp #mMADD8_5
nov rcarry,#1 wc ' clears carry flag for next roun
d
jmp #mADD8 _r et
mADD8_5 cnp rt3,rshl we
if_nc sub rt3,rshl
or res,rt3
rol rcarry,#4 ' magic
shl rshl, #4
shl rmskl, #4 wz
if_nz jmp #mADD8 1
mMADDBC r et
MADDS8 _r et ret

The code operates over longs, i.e. 8 digits, rtl is then added to rt2 with result on rtS. Several helping
variables are then needed: rmsk1 is the digit mask that after every cycle is shifted left and also used as
counter, recarry is the number that will be added to the digit that is left of the current added, rt3 is the
current digit from rtl and rt4 is from rt2, rshl is the overflow value to compare with that is also shifted
left after every cycle.

As you can see this small routine replaces the comfortable and short binary add :).

The subtraction could be implemented like this:

Subs two 8 digit nunbers (I ongs)

nSUBS nov rcarry,#1 wc ' clears carry flag
nSUB8C nov rmskl, #$f
nov rts, #0

page 153 /405

Propeller

(Hss)
nov rshl, #10
nsSuUB8 1 nov re3, rtl
and rt3, rmskl
nov rtd,rt2
and rt4, rmskl
if_c add rt4,rcarry
sub rt3, rt4 we
if_c add rt3,rshl
or res5,rt3
rol rcarry,#4 ' magic
shl rshl, #4
shl rmskl, #4 wz
if_nz jmp #mSUB8 1
nSUBBC r et
nSUB8 _r et ret

This routine uses the same tricks and variables as before but the C flag is used in positive logic instead.

Both routines can be concatenated calling mADD8/mSUBS first and mADD8/mSUBSC later without
modifying the C flag in between.

To multiply the method of shift-add as we will do by hand is one of the few resources left. Sadly, in

comparison with binary multiplication, the short add has to be replaced with a call to mADDS, but the
logic is similar. Here rA:rA1l is multiplied by rB1 using the pair rR:rR1 as result.

mul tiplies A*rBl
uses rtl, rt2, rt5, rt6, rcntl, rp, rBl, rR rR1

cl ogged by mADD8 rt3, rt4, rt5, rcarry, rnskl, rshl, rR rRl

mVUL8 nov rt7, #8
nmMVUL8 5 nov rcntl, rBl
and rent 1, #$f wz
nmov rte, #0
if z jmp #mMVUL8 15
mMMVUL8 10 nov rtl, rAl
nov rt2, rRl
cal l #mADDS
nmov rR1, rt5
nov rtl, rA

page 154 /405

Propeller

(Hss)
nov rt2,rr
cal | #mADDSC
nov rRrtds
if_nc add rt6, #1 ' carry counter
dj nz rentl, #MUL8_10
nmVUL8 15 nov rts, rr
shi rts, #4
shr rR1, #4
or rRL, rt5 " shift right rRrRlL
ror rte, #4 ' convert to MsD
or rRrt6 ' sets new carry digit
shr rBl, #4
dj nz rt7, #mvUJL8 5
nMVUL8 r et ret

What the small fragment of code does is to add rA:rAl to itself as many times as the digits in rB1 from
right to left say. mADD8 and mADDSC take care of adding rA:rA1l to rR:rR1. after each digit of rB1,
rR:rR1 is shifted right to discard the rightmost digit and to make place for the new MSD.

All this may seem like a real waste, but opens the door to BCD-floating point, the real end.

Floating point BCD (BCD12)

To complete the package, we should talk about how to operate on whole floating point numbers. For that
we will consider the following notation (which we will call BCD12 from now on), (more possibilities are
of course available, and the principles explained here apply):

T
long 0 : | S|MSD A| 9| 8| 7] 6| 5]
T
e
long 1 : | 4| 3] 2| 1 |LSD E2| E1l| EO|
e

The floating point number occupies 2 longs in HUB memory (4 in COG memory) and is packed
according to the diagram above, each cell represents a nibble (4 bits).

S is the significant sign, MSD to LSD are the significant digits, 12 in total, and the exponent occupies the
last three nibbles. The exponent is a two's complement 12 bit number. Negative numbers represent
negative powers of 10.

The number Zero is represented as two zeroed longs.

page 155 /405

Propeller
(Hss)

To better exploit the propeller capabilities, the HUB representation is unpacked to 4 longs in COG
memory (it may seem a waste, but the access to the different parts in every routine saves many more

longs than the 2 extra used for the unpacked representation):

Representation in cog's nenory.
T T S T

long O : | O|MSDL A| 9| 8| 7] 6| 5|
T T S T
L T T S e L
long1: | 4] 3] 2| 1|LSD O] O O |
L T T S e L
T T S T
long 2 : | es| es| es| es| es| E2| E1| EO|
T T S T
L T T S e L
long 3: | S| O] O] O| O O] O] O]

e

rA, rB, rR

rAl, rBl, rR1

r AExp, rBExp, rRExp
r ASgn, rBSgn, rRSgn

As you can see this representation keeps the form of the packed version, for easier access. The exponent
is sign extended with the shl/sar combination as seen in the load routines below. This allows for fast

add/compare/subtract of exponents.

A conversion routine that loads rA:rAl, rAExp and rASgn could be this one, using ptr1 as source

pointer:

Loads A from a BCD12

LOADA rdlong rA ptrl " reads first |ong
add ptrl, #4
nov r ASgn, r A
rdlong rAl, ptrl reads 2nd | ong
and r ASgn, cnt _ SMASK
andn r A, cnt _SMASK
nov r AExp, r Al
shl r AExp, #20 exponent is signed
sar r AExp, #20
and rAl, cnt _2LMASK

LQADA ret ret

cnt _SMASK | ong $8000_0000 " sign mask

page 156 /405

Propeller

(Hss)
cnt_D12 | ong $0f 00_0000 ‘" MSD (digit 12) mask
cnt _2LMASK | ong $ffff_f000 " low |l ong mask

The packing of a result to HUB memory could be implemented as below using ptrl as destination
pointer:

saves R as a BCD12
SAVER nov rtl, rR
or rtl, r RSgn
nov rt2, rRExp
andn rt2, cnt _2LMASK
nov rt3, rR1L
and rt3, cnt _2LMASK
wlong rtl,ptrl
or re2,rt3
add ptrl, #4
wlong rt2,ptrl
SAVER r et ret

The packing scheme now seems to fit nicely. The extra empty digit at the left of the MSD is used as guard
digit during addition and multiplication, and thus plays to our advantage. The empty digits at the right of
the LSD (cleared using the cnt_2L.MASK) pose a performance penalty due to its computation in mADDS8
/mSUBS, the most significant of the group could be used for instance, to better round results.

From ASCII to BCD12

To convert a string to a BCD12 (or for that matter to binary floating point) a set of rules, like always,
should be put into action. These rules help to determine what can be accepted as a valid input and what is
not.

e Spaces preceding the first valid character should be ignored. No spaces are allowed in between.

e The only valid characters are digits 0 to 9, signs + and -, the period . and the letter e.

¢ An optional significant sign, it should be the first valid character if present.

e The next valid symbol is either a digit or the period.

¢ A number of digits (any digit present beyond 12 will be chopped but they may add to the exponent
if the number has an exponent greater than 12), if only a period was present a minimum of one
digit must be present.

e An exponent composed of three parts, the letter e to indicate it, an optional sign + or - and a
minimum of 1 digit to a maximum of three digits.

page 157 / 405

Propeller
(Hss)

All these numbers must be valid then:

-0.0012

123400000

0000123000

+45e-123

-0.0000004e+40 (why someone will write a number like this is beyond me)

Some invalid combination include:

-e+4 (No significant digit(s))
ale-4 (invalid char)

4.5e- (No exponent digit(s))
. (No significant digit(s))

Will those rules we should be able to write some nice code. Note: The use of assembler for this purpose
is... not recommendable as this routine will be not only complicated but over all, long, and not time
critical at all. But as an exercise is a good one.

ASCI | TOBCD

ASCI I TOBCD ret ret

From BCD12 to ASCII

Conversion from BCD12 to ASCII is quite straightforward, but some points should be noted. To how
many places do we have to represent the number ?, that is the question to be asked. Complementary of
that are we going to use all the available range or just a small subset of numbers ?. As the propeller has a
limited COG memory, a small and specifically tailored conversion may be the way to go.

Small and tailored

A small and tailored conversion can be seen as a quick-and-dirty approach, let's say that the numbers to
represent are in the tens of thousands, decimals are unimportant, then we can truncate them without
looking back. A possibility could be:

" Converts a nunber in the 10000 to 99999 range to ascili
" Nunmber is in r, sign and decinals are uninportant
" ptrl is destination

page 158 /405

Propeller

(Hss)

TOASCI | QD nov r RExp, rRExp wc 'checks for negative exponent,
if c nov rt1, #48
if_c cal l #EM TASCI |
if_c jmp #TQOASCI | QD_40

nunber may be in range
cnp r RExp, #5 wc
if_nc nov rtl,#69 ' E signals error
if_nc cal | #EM TASCI
if_nc jmp #TQASCI | QD_40
nunber is in range
nov rt2, rRExp
add rt2, #1

nov rt3,rR"' working significant
TOASCI 1 QD _10 nmov rtl, rt3
shr rtl, #24

and rtl, #15

add rtl,#48 ' converts digit to ASCl I
call #EM TASCI |

shl rt3, #4

dj nz rt2, #TOASCI | @D_10

TOASCI | QD _40 nmov rtl, #0
cal | #EM TASCI |
TOASCI | QD ret ret
" wites an ascii to HUB and increnents pointer
rtlis the byte to wite
" ptrl is the pointer
EM TASCI | wrbyte rtl,ptrl
add ptrl, #1
EM TASCI | ret ret

The helper routine EMITASCII does... well exactly that!, and increments the pointer. Small helping
routines can save a few longs here and there, in some situations, but they can increase execution by 8
cycles each time they are called. So for simple and short loops it is the way to go.

If we were to consider rounding things may get... slower, and longer. The previous example can be taken
as rounded with the floor function, or simply put: truncation. Rounding to nearest can be implemented
adding 0.5. A simple call to mADDS8 with the properly formatted argument can be used... something like
this:

Converts a nunber in the 10000 to 99999 range to asci
" Nunmber is inr, signis uninportant. Rounding is performed if the n

page 159 /405

Propeller
(Hss)

unber is >= 1
" ptrl is destination

r RExp, r RExp wc ' checks for
rtl, #48

#EM TASCI |

#TOASCI | QDR _40

negati ve exponent,

r RExp, #5 wc

rtl, #69 '
#EM TASCI |
#TOASCI | QDR _40
adds roundi ng factor
rtl, rRrR
rt2,#5 '
rt3, #5
rt3, r RExp
rt3, #2
re2, rt3 "
#mADD3
rt2, r RExp
rt5, cnt _MsD wz

rt2,#1 ' increnments exponent if overfl ow

rt5 #4 ' shifts working significant one to the

E signals error

roundi ng ar gunent

adj ust rounding digit

rt2,#5 w
#TOASCI | QDR 5
rt2, #1
rtl, rts
rtl, #24
rtl, #15
rtl, #48 '
#EM TASCI |
rt5, #4
rt2, #TOASCI | QDR _10

converts digit to ASCl

rtl, #0
#EM TASCI |

TOASCI | QDR nmov
if_c nov
if c cal |
if_c jmp

" nunber nmay be in range
cnp

TOASCI | QDR_5
if_nc nov
if_nc cal
if_nc jmp

" nunber is in range,

nov
nmov
nov
sub
shl
shi
cal l
nmov
t est
if _nz add
if_nz shr
ri ght
cnp
if_nc jmp
add
TOASCI | QDR_10 nmov
shr
and
add
cal |
shl
dj nz

TOASCI | QDR_40 nov

cal l

TOASCI I (DR ret ret

" wites an ascii to

rtl is the byte to
" ptrl is the pointer

EM TASCI |

HUB and i ncrenents pointer
wite

wrbyte rtl,ptrl

page 160 / 405

Propeller
(Hss)

add ptrl, #1
EM TASCI | ret ret

If all numbers have to be converted, i.e. the full range at full precision, 12 digits, plus sign and exponent a
maximum of 19 characters will be generated. Shorter representations, when applicable, are possible
depending on the number. A good criteria is if the number of digits to represent is greater than say 12, a
number with exponent should be used. It is easier to read 1234 than 1.234e+3. The last notation will be
called scientific notation. A smart routine that can differentiate between this two cases has three parts.
The first is the conversion to scientific if the exponent is greater than 12 in any direction.

Note: The BCD12 representation of numbers in following examples (the ones on the left) are written in
scientific notation for clarity.

The second is the representation of numbers smaller than one, where zeroes should be inserted between
the decimal point and the first digit of the significant, the number of zeroes in this case is the absolute
value of the exponent minus 1.

The third and final case is that of numbers greater than 1 that have 12 or less digits, zeroes should be
removed after the decimal point if there are no significant digit at the right, and zeroes should be inserted
between the last digit at the right and the decimal point if required (this last case is the more complex one
of the three).

Number Representation Comment

1.34e100 1.34e100 No prettier form available,
exponent > 12

3.4e-1 34

3.4e-5 .000034 In this case some zeroes where
added after the decimal point.
Those zeroes are not in the original
BCD12 number, because they are
all normalized

1.2el 12 not like 1.2e1 or 12.0000000000

1.234e1 12.34

4.e+6 4000000 In this case zeroes where added

after the last significant digit, the
4, and the decimal point.

Now, let's see some code:

page 161 /405

Propeller
(Hss)

TOASCI |
TOASCI | _ret ret

Addition and subtraction of BCD12 numbers

The routine shown before allows for addition of two 8 BCD numbers. Based on this, and with some
improvements for speed and size a successful implementation of a complete BCD12 plus BCD12
addition/subtraction would be something like this:

k k BCDSUB xor r BSgn, cnt _ SMASK "1 love long routines ;-)
kk BCDADD nov rtl, r ASgn
xor rtl, rBSgn
t est rtl, cnt _SMASK wz
if _nz j mp #kk SUB

" falls to ADD15

' E R I b b Sk Sk S S kb Rk Sk S S Rk Sk S S S S b b b b

! * k% *

" *** addition of two bcd unpacked nunbers rR=rA + rB

kk ADD nov rtl, r AExp
subs rtl, r BExp wz
abs re2,rtl
if z jmp #kk ADD_20 ' adds, no shift
cnp rtl, #16 wc
if_c jmp #kk ADD_5 ' shifts B
cnp rt2,#16 wc
if_c jmp #kkADD 10
cnp rtl, #16 wc
if_c cal | #LOADBTOR
if_nc cal | #LOADATOR
j mp #kk ADD r et
kk ADD_5 cal | #kkmSHRB15
dj nz rt2, #kkADD_5
nov r RExp, r AExp ' exponent of A
j mp #kkADD 20
kk ADD_10 cal | #kknSHRALS

dj nz rt2, #kkADD_10

page 162 /405

Propeller

(Hss)
nov r RExp, r BExp exponent of B
kk ADD 20 novs kkmADD8 1, #r Al
novs kkmADD8_ 2, #r Bl
call #kk mADDSM
nov rRi, rt6
nov rR rts
and rt5,cnt_MsD wz
if _nz cal | #kknSHRR15
if_nz add r RExp, #1
nov r RSgn, r ASgn " sets sign fromA
j mp #kkADD r et

R R e b b S b S b S b b S b S b Sk S b S b b e bk S S R IR R I b b b b S b b S

! * k% *

*** Substraction

! * k% *

kkSUB

i f

if_
if_nc

_Z

_C

_C

c

nov
subs
novs
novs
abs
jmp
cnp
jmp
cnp
jmp
cnp
cal l
cal l

jmp

rtl, r AExp

rtl, r BExp wz
kknSUB8_1, #r Bl
kkmSUB8_2, #r Al
re2,rtl

#kkSUB_15 ' adds,
rtl, #16 wc

no shift

#kkSUB_10 " shifts B

rt2,#16 wc
#kkSUB_5

rtl, #16 wec
#LOADBTOR
#LOADATOR
#kkSUB r et

" Bis bigger than A, we shift A and perform R=B-A

kkSUB 5

exponents are

kkSUB_15
i f

_C

cal l
dj nz
jmp

equal
cal l
jmp
jm

A is bigger than B

kkSUB_10

kkSUB_17

cal |
dj nz
novs

#k K TBHRAL5
rt2, #kkSUB 5
#kk SUB_20

so check significand
#kkmCMP15
#kkSUB_20
#kkSuB_17

#kk TSHRB15
rt2, #kkSUB_10
kkmBUBS_1, #r Al

si g(A) <si g(B)

prepares for R=B-A

page 163 /405

Propeller
(Hss)

kkSUB_20

kkSUB 25
if _nz

if _nz

kkSUB_30
kk ADD _r et
kk BCDSUB r et
kk BCDADD _r et
kkSUB r et

and
jmp
sub
cal |
cal |
jmp
cal |

ret

' Adds two nunbers

kk mMADDSM

kk mADDSM r et

kk mSUBSM

kk nSUBSM r et

Adds two 8 digit
carry is used in negative logic !

kk mADD8

kkmADD8C

kkmADD8_ 1

cal |
nov
sub
sub
cal |
ret

cal l
nov
sub
sub
cal l
ret

nov
nov
nov
nov

nov
and

| ongs

kknBUBS_2, #r B1

r RSgn, r ASgn
r RExp, r AEXp
#kkmSUBSM
rRL, rt6
rRrtds

rt5,cnt_D12 wz
#kkSUB r et

r RExp, #1
#kknSHLR15

#kk mMCMPRZ
#kkSUB_25
#LOADZTOR

#k k mADD8
ree,rt5
kkmADD8 1, #1
kkmADD8 2, #1
#kk mADD8C

#kk m5UB8
rté,rtb
kkmSUB8 1, #1
kknmSUB8_2, #1
#kknmSUB8C

rcarry, #1 we
rmskl, #$f

rt5, #0

rshi, #10

rt3,0-0
rt3, rnskl

transfers sign

tests for zero

clears carry

page 164 /405

Propeller

(Hss)
kkmADD8 2 nov rt4,0-0
and rt4, rmskl
if_c add rtd4,rcarry
add re3, rt4 (e
if_c add rt3,cnt_SI X adds to convert to deci

mal if rightnost digit

kkmADD8_5 i f_nc cnpsub

or

r ol

rol

shi

if_nz jnp
kkmADD8C r et

kkmADD8_r et ret

Subs two 8 digit |ongs

kk nSUBS8 mov
kknSUBSC nov
kknmSUBS_1 mov

kknSUB8_2 nov
and

if_c add

sub

if c add
or
r ol
rol
shl
if _nz jnmp
kkmSUBSC r et
kknSUB8_r et ret

| oads Ato R
LOADATOR nov
nov rR1, rAl

rt3,rshl e
re5,rt3

rcarry,#4 ' magi c
rimskl, #4

rshil, #4 Wz
#kkmADD8_1

rcarry, #1 we '
rmskl, #$f

rt5, #0

rshi, #10
rt3,0-0

rt3, rnskl
rt4,0-0

rt4, rnskl
rtd,rcarry
rt3,rt4 WC

rt3,rshl

re5,rt3

rcarry, #4 ' magi c
rimskl, #4

rshil, #4 Wz
#kknmSUB8 1

rRrA

nov r RExp, r AEXp
nov r RSgn, r BSgn

LOADATOR r et ret

clrs carry flag

page 165 /405

Propeller
(Hss)

" loads Bto R
LOADBTOR nov rRrB
nov rRi, rBl
nov r RExp, r BExp
nov r RSgn, r BSgn
LOADBTOR r et ret
" loads zero to R
LOADZTOR nov rR, #0
nov rR1, #0
nov r RExp, #0
nov r RSgn, #0
LOADZTOR r et ret

The subtraction is implemented wrapping the addition with a sign change for the subtraend. Note that
there are actually three different stages. the first one represented by kkBCDADD (and kkBCDSUB) are
the routines you should call when rA and rB (and the other related variables) have been loaded with the
LOADA and LOADB routines described avobe.

kkADD is called when the numbers (BCD12) should be added, i.e. when the sign of both are equal. To
add the two parts then kkmADDSM is called. This last routine operates over rA:rAl and rB:rB1 as if
they where 16 digit numbers (ignoring the fact that some digits are always zero).

This code uses self-modifying techniques. This saves some longs used by variables and also some time.
Compared to the previous routine KkmADDS is 4 longs shorter and uses less variables, and the nice
cmpsub instruction. The carry is now used in positive logic, i.e. a carry set means that the last add gave
carry, (contrary to previous use).

Multiplication

Using a modified MULS routine, to support the self-modifying version of kkmADDS, a full
multiplication ca be easily implemented as shown below.

! kkhkhkkhkkhkhkkhhkhkkhkhkkhhkhkkhhkhhkhkhhkhkhkhkhhkhkhhkhhkhkhhkhkhkhkihkhkhkkhhkikkhkkikhkikikkikkx*%

' * k k%

'o*x*xx Multiplication R=A*B

k k BCDMUL nov r RExp, r AExp
adds r RExp, r BExp
** do not forget to check for overflow ;-)

nmov rR, #0 " result significand

page 166 / 405

Propeller

(Hss)
nov rR1, #0
t est rBl, rBl wz
if_nz cal l #kkmVUL8 avoid 8 zeroes if nec
essary
kkBCDMJUL_5 nov rBi, rB
call #kkmVUL8
call #kknSHLR15
nov rtl, rRrR
and rtl,cnt D12 wz
if_nz add r RExp, #1 i ncrenents exponent
if_z cal | #kkmBHLR15 " normalizes significa
nd
nov r RSgn, r ASgn
xor r RSgn, r BSgn

kkBCDMUL15_r et ret

mul tiplies A*rBl
uses rtl, rt2, rt5, rt6, rcntl, rp, rBil,

" clogged by mADD8 rt3, rt4, rt5, rcarry,
" clogged by nSHRR15 rt5, rR rRl

kk mMUL8 mv rt7, #8
kknmMUL8_5 nov rcntl, rBl
and rent 1, #$f wz
nmov rt 6, #0
if z jmp #kknmVUL8 15
kkmVUL8 10 novs kkmADD8 1, #r Al
novs kkmADD8_ 2, #r R1
cal | #kk mADDS
nmov rR1, rt5

novs kkmADD8 1, #r A
novs kkmADD8_2, #r R

cal | #kk mMADDSC
nmov rRrtb
if c add rt6, #1 '

dj nz rcent 1, #kkmMUL8_10

kKkmVUL8 15 nov rts, #4
kkmVUL8 20 shr rR, #1 wc

rR, rR1

rmskl, rshil

carry counter

page 167 / 405

Propeller

(Hss)
rcr rrRi, #1
dj nz rt5, #kkmvL8_20
ror rte, #4 " convert to MsD
or rRrt6 ' sets new carry digit
shr rBl, #4
dj nz rt7, #kkmMJL8_5
kKkmMUL8_r et ret
Division

To divide we implement a similar algorithm as before, i.e. the same algorithm you learned at school.
Some helping routines are necessary, shifts and compares. Let's see the code, but before we should note
that x/0 and 0/0 will give some errors, in rerr.

.section COG cog0 ' needed for pPropellerSim(like DAT/org conbination
)

' BCD12 DI VI SI ON

" AB
" Destroys rA'rAl rB:rBl

ERR DIVO =1
ERR DI VOO = 2

! kkhkhkkhkkhkhkkhhkhkkhkhkhhkhkkhhkhhkhkhhkhhkhkhhkhkhhkhhkhkhhkhkhkhkihkhkhkkhhkikkhkkikkikikkikk*

! * k k%
! * k%%
" **xx Division R= A/ B
! * k%%
kk BCDDI V cal | #kk mCMPBZ
if_z nov rerr, #ERR DI VO
if z j mp #kkBCDDI V_r et
cal | #kk mMCMPAZ
if z nov rerr, #ERR DI VOO
if_z jmp #kkBCDDI V_r et
" real division, exponent and sign
nmov rR, #0
nov rR1, #0

page 168 /405

Propeller

(Hss)
nov r RExp, r AExp
subs r RExp, r BExp
nov r RSgn, r ASgn
xor r ASgn, r BSgn
nov re7, #12 nunber of digits
cal | #kkmCMP15 " conpares Awith B
if_c cal l #kKknSHLALS
if_c subs r RExp, #1 decrenents exponent if A<B
kkBCDDI V_20 call #kknCVP15
if_c jmp #kkBCDDI V_30
novs kkmBUB8 1, #r Al
novs kknSUB8_2, #r Bl
call #kkn5UB8
nov rAl, rt5
novs kkmSUB8 1, #r A
novs kknSUB8_2, #r B
call #kknSUB8SC
nov rarts
if_nc add rR1, #1 " increnents count
j mp #kkBCDDI V_20
kk BCDDI V_30 cal l #kKknSHLALS if borrow, shift left
cal | #kkmSBHLR15 " shift for next digit
dj nz rt7, #kkBCDDI V_20
call #kknSHLR15
cal l #kknSHLR15 adj usts result
kkBCDDI V_r et r et
" shifts Aleft one digit
kknSHLAL15 nov rts5, rAl
shi rAl, #4
shl rA #4
shr rt5, #28
or rarts
KkmBHLA15 ret r et

" shifts Aright one digit

kk nSHRA15 nov rt5, rA
shr rA #4
shl rt5, #28
shr rAl, #4
or rAl, rt5
Kk mBHRA15 r et r et

" shifts B left one digit

page 169 / 405

Propeller

(Hss)

kknSHLB15 nov rt5,rBl
shl r B1, #4
shl r B, #4
shr rt5, #28
or rB, rt5

kkmBHLB15 r et r et

shifts B right one digit

kk nSHRB15 nov rt5,rB
shr r B, #4
shl rt5, #28
shr r B1, #4
or rBl, rt5

kk mBHRB15 r et r et

" shifts B left one digit

kknSHLR15 nov rt5 rR1
shl rR1, #4
shl rR, #4
shr rts, #28
or rRrtb5

KkmBHLR15 ret r et

shifts Rright one digit

kk n"SHRR15 nov rt5 rR
shr rR, #4
shl rt5, #28
shr rR1, #4
or rR1, rt5

Kk mBHRR15 r et r et

Kk mMCMP15 cnp rA rB
if_z cnp rAl, r Bl
kkmCMP15 ret r et

kk mMCMPRZ t est rR rR
if_z t est rkRi, rR1

Kk mMCMPRZ_r et r et

' checks if A or B are zero

kk mMCMPAZ t est rA rA
if z t est rAl, r Al

Kk MCMPAZ_r et ret

kk mMCMPBZ t est rg, rB
if z t est rBl, r Bl

page 170 /405

Propeller
(Hss)

kknCMPBZ_r et ret

cnt _SMASK | ong $8000_0000 " sign nmask
cnt D12 | ong $0f 00_0000 " MeD (digit 12) mask
cnt _2LMASK | ong $ffff_f000 " low | ong mask

Square root

The calculus of the square root can be performed using a plurality of methods, while just some of them
are useful for computers others are useful for calculation by hand. A modification of the hand method is
shown below, implemented using some of the routines already described. The times were calculated using
the corresponding arguments. The secret of the shorter calculatio time reside in the special shift routine
kkmSHRRP. This routine will shift right only a part of a number using rt7 as index for this shift. It is
implemented as two parts whether the shift occurs in the whole number or only on the right most long.
For easier handling the significant is scaled by a factor of 5, making the multiplication by 20 (see hand
algorithm at Wikipedia) unnecessary. The exponent is calculated using a simple dive by two in binary,
because it is stored as a two's complement number.

Cal cul ates the square root of the argunent in A
" As it is it takes new one, (old one was w thout self-nodifying code)

| nput cycles cycles result
' ol d one new one
.78 158344 111192 0. 883176086632
.0 7012 6564 1.0
.0 107940 76332 1.41421356237
.0 2

7

O N -

169028 118560 . 23606797749

' 50.0 142408 100176 . 07106781186

' 100. 0 7012 6564 10.0

' 1000.0 129128 90996 31. 6227766016

" 1.3e+51 134440 94668 3. 60555127546e+25

ERR SQRN = 3
kk BCDSQR call #kk nCMPAZ
if_z cal | #LOADZTOR
if z j mp #kk BCDSQR _r et ' argunent is zero
cnp r ASgn, #0 Wz
if_nz nmov rerr, #ERR_SQRN ' argunent is negative
if _nz j mp #kk BCDSQR _r et

novs kkmADD8 1, #r Al

page 171 /405

http://en.wikipedia.org/wiki/Babylonian_method#Babylonian_method

Propeller
(Hss)

novs kkmADD8_ 2, #r Al ' B+B
cal | #kk mADDSM
nov rBl, rt6
nov rg, rt5 " B=A+A
novs kkmADD8_1, #r Bl
novs kkmADD8_ 2, #r Bl " B=4*A
cal | #kk mMADDSM
nov rBl, rt6
nov r, rts
novs kkmADD8 1, #r Bl
novs kkmADD8 2, #r Al " A=A+B
cal | #kk mADDSM " A=5*A
nov rAl, rt6
nov rArtb
nov r RExp, r AEXp
t est r AExp, #1 Wz
if_z cal | #kkmSHRALS " shift right if exponen
t was even
nov rr cnt _FI VE
nov r R1, #0 " rt6:rt7 is used to calcu
late the digits
nov rB, cnt _ONE
nov r B1, #0 " we initialize constant
nov rt7, #12 " 12 digits
kkBCDSQR 10 cal | #kk nSHRRP
kkBCDSQR 17 cnp rALrR wz we
if_z cnp rAl, rR1 WZ WC
if_c jmp #kk BCDSQR_20

' subtracts result
novs kknmBUBS_1, #r Al
novs kkmBUB8 2, #r R1

cal l #kk mSUBSM
nmov rAl, rt6
nov rArtb

' adds one to result
novs kkmADD8_1, #r R1
novs kkmADD8 2, #r B1

cal | #kk mMADDSM
nov rRl, rt6
nov rRrtb
jmp #kkBCDSQR_17
kk BCDSQR 20 cal | #kknSHLAL5 " shifts left renmi nde

page 172 /405

Propeller
(Hss)

cal | #kkmSHRB15 " shift right constant
kkBCDSQR_25 dj nz rt7, #kkBCDSQR_10

kkBCDSQR r et ret

Rotate right with mask in rt7

kk mSHRRP nov rtd4,cnt ff "Oxffff _ffff
nov re3, rt7 " shift count
cnpsub rt3,#5 w w
shl rt3, #2
shi rtd, rt3 " prepares mask
if_c jmp #kkmSHRRP_20 " we will see
nov rt2,rrR1
andn rt2,rt4
shr rt2, #4
and rRl, rt4
or reRl, rt2
jmp #kKkmBHRRP_r et
kk mSHRRP_20 shr rR1, #4
nov rt2, rr
shl rt2, #28
or rkl, rt2 " lower |ong ready
nov rt2, rR
andn re2,rt4 " right half of high wor
d ready
shr rt2, #4
and rRrt4
or rkRrt2

kk mSHRRP_r et ret

Transcendentals

The need for floating point can be somewhat mitigated using for instance Fixed notation (a variant for
binary floating point), but when transcendental functions are needed, it could be difficult to avoid its use.
First of all we will consider several methods to implement some of the functions, angle functions, power
and logarithm. With some basic identities, all possible functions can be obtained.

The first function to consider will be the sine function. As everyone knows there are a number of methods
to calculate it, power series of several kinds (all related to the Taylor or McLaurin series) and the iiber-toll
CORDIC methods. Floating point coprocessors calculate them using power series while pocket
calculators on the other hand, (the HP series and TI series for example) use the CORDIC method, because
they work with decimal numbers (BCD) not with binary numbers.

page 173 /405

Propeller
(Hss)

A Taylor series for the sine will be:

The error term will be the difference between the real value (with an infinite number of terms) and the
one calculated with a reasonable number of terms.

If 16 exact digits are to be calculated a 23 term series is needed. This means, storing 23 constants and
doing 22 additions and 24 multiplications, using a simplified version (without Error term), for 4 terms
there are 5 multiplications and 3 additions/subtractions:

1 1 X2
SIN(x) =X * (1= x2 % (co- + X2 % (=== - -=2)))
3l 51 7!

When fast multiplication is available, this method could be used. In real life, some other considerations
are taken, like angle reduction (using only 1 quadrant) and partial approximations using a table of
pre-calculated constants.

The CORDIC method was developed, sadly, as an aid in missile guiding systems (read: to kill people).
But despite that, some good came from it, as is it in widespread use for more edifying purposes,
hopefully. It is based on an old method developed in the 17th century by mathematician Briggs. This
method is based on algebraic functions, and can be thought out as an I infer the result working with the
argument. There is no direct correlation between the argument and the result, because firstly an
intermediate set of results has to be calculated to be used to calculate a result. (See Jacques Laporte's site)

Lets see it with a sine case:

Soon to cone
Note 1: This examples can be found in this file here ready to be tested with pPropellerSim or if you
change the extension and add a wrapper... a ready object for you to test on a propeller. Note the license
(LGPL v2)!

Note 2: The double precision package is here.

All this is Copyright me :-), Pacito.Sys in accordance with the Creative Commons Share-Alike 3.0
License.

page 174 /405

http://jacques-laporte.org/TheSecretOfTheAlgorithms.htm
http://propeller.wikispaces.com//file/view/pbcdmath12_smc_13_08_08.pasm
http://propeller.wikispaces.com//file/view/pdoublefp.spin

Propeller
(Hss)

Method calls (subroutine and function calls) in Spin are a little complicated from a bytecode and
run-time execution perspective.

Rather than have a 'call' to a specific address where the method's executable code is, as is used in PASM
and other programming languages, Spin creates a 'method pointer table' which holds the addresses of the
methods, and a method call is done through that table using an index of the number of the method to call.
This is a technique which was used with the Parallax Basic Stamp and may be the basis for the decision to
use the same technique in Spin, however the reasoning behind the choice of architecture is not known.

The method table is placed at the start of the main program or object it relates to and is a list of 32-bit
longs, each entry split into two 16-bit words. The first long is at index +0, the second at +1 and so on.

The first entry (+0) is used to link all objects in an application together and is not discussed further in this
document. The full puropose of this entry and how it has been used by the Spin interpreter has not yet
been determined.

The second entry (+1) is the one relating to the first or only PUB method defined in the program or
object. All PUB method entries are placed in the 'method pointer table' followed by any PRI method
entries if any exist, and finally come entries to any sub-objects that may have been included.

A call to a method is a call via an index into the 'method pointer table'. A call to the first PUB method of
the program would see bytecode generated in the form of "CALL +1", a call to a second PUB method if it
existed (or first PRI method if it did not) would be a bytecode sequence of "CALL +2". In each case the
Spin Interpreter will locate the 'method pointer table', find the second (+1) or third (+2) entry respectively
and use the entry to invoke the method called.

The two words which make up the related entry in the 'method pointer table' are, frstly, the actual address
of the method's code to execute, and the second a number of bytes by which to increase the stack pointer
when the call is made. This allows space to be allocated for local variables used within the called method.
As local variables are all 32-bit longs, the number to increase the stack pointer by will be zero (no local
variables) or a multiple of four bytes. Note that the stack pointer is incremented but there is no clearing
of the data on the stack. This is why local variables are not initialised when a method is entered.

Actually making a call to a method is a little more complicated and is a three stage affair. Firstly the 'call
stack framing information' is created; this determines what should be done when the call returns, whether
any value returned from the method should be discarded or left on the stack and whether an abort from
within the method should be caught or allowed to fall through.

Once the 'call stack framing information' has been determined, any paramaters to pass to the routine are
evaluated and the resultsof each evaluation is left on the stack. Finally, the actual call to the method is
made. At the point the method is entered it should be noted that the passed-in parameter values are stored
on the stack immediately preceding any local variables used. Within the method itself both parameters
and local variables are treated the same by the Spin Interpreter, the Spin Compiler of the Propeller Tool
having determined where each will respectively be on the stack.

When the method completes, reaches the end of its code or encounters a 'return’ or 'abort', the Spin

page 175 /405

Propeller
(Hss)

Interpreter unravels the stack, handles the returned value and deals with any abort processing necessary.
The Spin Interpreter then continues executing the bytecode after the method call.

Note that all methods return a value which can be one of three things; a return value specified by a 'return’
statement, an abort value specified by an 'abort' statement, or whatever value is held in the 'result' variable
when the end of method code, or a 'return' or 'abort' statement with no expression is encountered. The
result’ variable exists for all methods and can be considered as the first local variable used within the
method, before any parameters and any explicitly defined local variables. Unlike explicit local variables,
the 'result' variable is always initialised to zero when a method is called.

Function Pointers

It has been noted that the Spin Language does not support 'function pointers', for example the address of a
'PRI GetCounter' cannot be obtained by using an '@ GetCounter' expression even though its address is
known at both compile time and run-time.

The lack of function pointers seems inexplicable to those expecting a call to a function to be simply
implemented as a call to the function's executable code, but because calls do not make sense with the Spin
Bytecode architecture a function pointer could not be used in the same way; a 'function pointer' in Spin
would need to be an index into the 'method pointer table' and not the address of the method's executable
code.

Spin methods do not include a mechanism within themselves for making local stack space available (the
necessary information for that is held in the 'method pointer table') so even if the address of a method's
executable code could be found, it could not be reliably executed unless it used no local variables.
Because the stack pointer would not have been adjusted to take account of those local variables, any
executing code would interfere with the stack space those local variables would effectively be sharing at
that time leading to all manner of peculiar results.

Because the Spin architecture was not designed to allow methods to be called directly it makes no real
sense in most cases to provide any means to obtain the address of a method's executable code and there is
no easy way to use function pointers as there is in other languages.

This is also the reason that there are no simple 'call-back mechanisms' because they intrinsically rely upon
function pointers to work.

Unfortunately the Spin language provides no known mechanism to identify the index of a particular
method in the 'method pointer table' so there is no easy mechanism to call particular methods
programmatically at run-time nor to provide call-back mechanisms. Dynamic selection of methods to call
at run-time can only really be done using 'if-else' or 'case' statements.

It is possible to 'fix-up' or 'patch' the bytecode at run-time (either in-line code or the 'method pointer
table') to dynamically select a method to call, but this is no simple task and also relies on having to
manually determine the indexing of the methods being called which can easily and frequently change as

page 176 /405

Propeller
(Hss)

code is developed. It also requires considerable understanding of teh Spin bytecode itself. It is therefore
complicated and potentially error prone to use such a strategy, and the mechanism needs additional
protections to allow it to be used with re-enterent code which is shared by one or more parallel operating
Cog programs.

The Future

There is no reason that the Spin Language could not provide a means of obtaining an index for a method
into the 'method pointer table' nor not provide a means to call a method using that information.

There has been no indication that either ability will be provided by Parallax but it is something which
could potentially be provided for by a third-party Spin Compiler.

Inter-Object Method Calls

Inter-object method calls, and consequently 'call back methods', have an additional level of complication
requiring additional 'Object Base' and 'Variable Base' pointers to be updated along with the stack pointer
when a call is made.

This is all handled by the Spin Interpreter again using information held in the 'method pointer table'. The
bytecode for a call into another object's method is in the form of 'CALLOBJ +N,+M' where the "+N" is
an index into the 'method pointer table' as with a normal method call but the entry held there is different.

The first word of such an entry is the 'Object Base' of the object referenced and the second word is an
amount of bytes to update the 'Variable Base' by when that object's methods are called. Updating the
'Variable Base' is what allows each object to have their own entirely independant VAR sections, and the
VAR sections of each object instantiation to be be unique to that object.

The first step of an inter-object method call is therefore to update the 'Object Base' and 'Variable Base'
pointers and thereafter the '+M' reference to the method to be called relates to the 'method pointer table' of
the object referenced and can be handled just as a method call within the same object can be.

For anyone undertaking the development of a Spin Interpreter, it must be noted that the alteration of the
'Object Pointer' and 'Variable Base' must be done at the last instant, just as control is passed to the called
method. Changes cannot be made to either at the time framing information is calculated as this is before
parameters for the call is evaluated and both need to remain correct for those evaluatons to take place.

When an inter-object call completes, the Spin Interpreter again unravals the stack as for a call within an
object and restores the 'Object Base' and 'Variable Base' pointers as they need to be for the object returned
to. To simplify handling of method returns, the framing information pushed to the stack appears to
contains the same informaton regardless of whether a method call is inter-object or within the same
object. A return from a same-object method call will simply 'restore' both 'Object base' and 'Variable

page 177 / 405

Propeller
(Hss)

Base' to what they were.

This means more framing information is pushed to the stack than is absolutely necessary on a same-object
method call but it does mean that method return handling is common regardless of how the call was made
and the stack frame will be the same when seen from within a method regardless of how it were called for
a method which is able to use information pushed onto the stack before it was called.

page 178 /405

Propeller
(Hss)

Driving a Controller-less Monochrome LCD

The powerful video circuitry inside the propeller can be very useful for driving TVs or Monitors. But to
drive a controllerless monochrome LCD panel when multiple data bits have to be transferred at once one
has to recur to a more normal procedure. This note will walk you on how to achieve this little task.

This circuit is an extension to pPropQL020 to add a LCD terminal. The expansion port matches that on
pPropQLO020.

A typical dual-scan LCD

Mono LCD panels come in two basic flavours, single scan and dual scan. Single scan means that one the
displayed frame is transferred one line at a time. In a dual scan panel two lines are transferred at once.
This reduces frame time but complicates the driving because two areas of memory have to be read for a
group of pixels unless the data has been stored interleaved.

The chosen panel is a KL.6448. This panel has a 640x480 resolution and has a 144x109 mm of viewing
area. The input signals have to be 5V CMOS and the LCD bias voltage is of +24 V.

Pin Description

1 FRAME - this signals marks the start of a frame

2 LOAD - this signal loads a line into the output
drivers

3 CP - the data is sampled on the falling edge of this

clock signal

4 DISPON - A high level indicates that the display
shoud be active

5 +5V - Supply voltage

6 GND - Ground

7 VEE - Positive bias voltage around 24 V, only
activate with DISPON

8 UDO Upper half data

page 179 /405

http://propeller.wikispaces.com//pPropQL020

Propeller

(Hss)

9 UD1

10 uD2

11 UD3

12 LDO Lower half data
13 LDI1

14 LD2

15 LD3

The interface is pretty simple, and so is the logic to drive it. A circuit is shown below.

According to the datasheet this display needs between 0.8*VCC and VCC as high-level, so I used a
couple of HCT gates and a 245 as buffers/level-shifters. It is not really important which one, only that it
has xxT inputs, TTL compatible because the propeller will put some 3 to 3.3 V as output. A HC gate
could probably work too.

Driving the panel

The control signals, FRM, LOAD and CP have to be driven in a timely manner. FRM will rise to
indicate the start of a frame and will fall after LOAD has fallen. LOAD will rise and fall after 80 pairs of
data have been shifted in. CP will be used to shift the data in for every high-to-low transition. An image
is worth a thousand words so here it is:

With that image in mind, I present some code to drive this panel. The code uses 3 cogs, yes 3. One is used
to generate all control signals, and the other two shift the data. It could probably be done with 2 cogs but
it is a nice example of synchronised work. To sync a waitcent instruction is used with a future value of
CNT+80000 cycles (10 ms).

The presented code will display a 80x30 text image. The variable screen is used to hold the data to
display. A 8x16 font normally used in VGA cards is also included. This allows to show the text.

Every frame is composed of 240 lines. Each line corresponds to one of the text lines and is inside a font
line. So each frame is subsequently divided into chunks of 16 lines, 15 of them. The lack of 38 kbytes of

page 180 /405

Propeller
(Hss)

memory reduces the graphic capabilities for such a big display but some alternatives like 640x400 or
640x240 or 320x480 or maybe 512x480 can be used.

To change from text to graphics on-the-fly a HUB variable is monitored every frame. When this variable
is for instance "GRPO0" a 640x400 image is generated. Other values could also be used for other modes.
Returning to text mode means that the font has to be loaded again from either EEPROM or from the host.
that should allow for custom chars, if needed.

DUal scan LCD, the two halves show the same data

CON

_cl knode
_xinfreq

xtall + pll16x
5_000_000

{
LCD Terminal - A termnal bundle for a 640x480 npnochrone LCD

(c) 2009 R A Paz Schmdt - Pacito.Sys - hppacito <at> gmail dot com
}

VAR
byt e screen[80*30]

PUB start
cognew(@Q.CD CTRL, @creen) ' control COG
cognew(@Q.CD_COGH, @creen) ' higher display part
cognew(@Q.CD_COA., @creen) ' |ower display part
‘cognew(@O COG, 0) ' 1/0 cog

CON

Di splay control signals

k FRM = 31 " Frane signal, signals frane start, aka vertical sync
k LOAD = 30 " Line |load, signals end of line shift, horizontal syn
c

k CLK = 25 ' Data Clock, data is |oaded in the falling edge

k DI SPON = 24 " Display ON, activates the display and the LCD bias s

upply (+24 V)

k_HDI SPDATA
k_LDI SPDATA

$00 fO 00 00 ' Upper half data lines
$00_Of 00 00 ' Lower half data lines

page 181 /405

Propeller
(Hss)

k_HDI SPSHL
k_LDI SPSHL
DAT

DAT

LCD CTRL

cO t frane

15 font |ines

cO_t _15line
reen

a font line
cO t fontline
cO_t _line

16

12

byt e "Hallo Welt !'!
org 0

nov QUTA, #0

nov DI RA, vO_k DI RA
nov vO r0, OCNT

add vO r0, vO_k _del ay
wr | ong vO r0, vO_k_sync
wai t cnt vOo_r0, #0

or OUTA, vO0_k_FRM
nov vO lcnt, #15

nov vO r3, #16

is a group of 16 vert lines

nov v0 r2, #80

rdbyt e vO r0, vO _k_sync
nop

nop

rdbyt e vO r0, vO _k_sync
nop

or QUTA, v0_k CLK
andn QUTA, vO0 k CLK
nop

or QUTA, vO0 k CLK
andn OQUTA, vO0_k _CLK
dj nz vO r2, #cO_t _line
or OUTA, vO0_k_LQAD
nop

nop

andn QUTA, vO0_k LOAD

Pacito. Sys !I'!'"

sets outputs

asserts FRM

15 chars per half sc

80 chars per line
uses HUB

uses HUB

slot for QUT

slot for OUT

page 182 /405

Propeller
(Hss)

er 1 frame

vO_I| cnt
vO r0
vOo_rl

vO r2

vO r3
c0_di spon

ent, indicates that the

vO_k DI RA

)

vO0_k_FRM
vO_k_LOAD
vO0_k_CLK
vO_k_DI SPON
vO_k_HDTA
v0_k_del ay
v0_k_sync

DAT

LCD COGH

nop
nop
andn
dj nz

nop
nop
dj nz
or

jnmp

| ong
| ong
| ong
| ong
| ong
| ong

| ong

| ong
| ong
| ong
| ong
| ong
| ong
| ong

fit
org

nov
nov

QUTA, vO0_k FRM
vO r3, #cO_ t fontline

vO lcnt, #cO t _15line
OUTA, vO0_k_ DI SPON " turns ON di splay aft

#cO_ t _frane

| i ne counter

OO OO O0OOo

DI SP = ON

set to 1 when 1 frane at | east was s

(1<<k_FRM) | (1<<k_LQOAD)| (1<<k_CLK)| (1<<k_DI SPON

1<<k_FRM
1<<k LOAD
1<<k_ CLK
1<<k DI SPON
k _HDI SPDATA
80_000
$7ffc

$1f 0
0

QUTA, #0
DI RA, vl k HDTA ' sets to outputs

There are two nodes of operation:

640x480 text with 80x30 chars

and

640x400 graphics,

W start

in text node

centered with 40 |ines above and bel ow

page 183 /405

Propeller

(Hss)
rdl ong vl r0, vl k_sync
wai t cnt vl r0, #0
clt frane nov vl k textbuff, PAR gets text pointer

" 15 font |ines
nov

reen

cl t_15line nov

i gh

vl lcnt, #15

vl r3, #16

afont lineis a group of 16 vert |ines

clt fontline nov

clt line rdbyt e
shi
add

rdbyt e
shl
add
shl
next 4 pixels
nop
nop
nop

dj nz

sub
add
ter to get next font
nop
of |ines
nop
nop
nop
nop

dj nz
sub

add
ter

dj nz

nop

jmp

vl r2, #80

vl r0, vl k_ textbuff
vl r0, #4

vl r0, vl k font

QUTA, v1 rO

OQUTA, #k_HDI SPSHL
vl k _textbuff, #1
OQUTA, #4

vlir2, #cl t line

vl k textbuff, #80
vl k font, #1
l'ine

vl r3, #cl t fontline

vl k font, #16

vl k textbuff, #80

vl lcnt, #cl t 15line

#cl t frane

15 chars per half sc

chars are 16 lines h

80 chars per line

reads font data
shifts data

i ncrenments pointer
shifts | ower nibble,

i ncrenents font poin

del ay between groups

restores font pointe

increnents |ine poin

page 184 /405

Propeller

(Hss)
vl | cnt | ong 0 " line counter
vl rO | ong 0
virl | ong 0
vl r2 | ong 0
vlir3 | ong 0
vl k_font | ong QOYGAFONT 16
vl k textbuff |ong 0
vl k_DI RA | ong 0
vl k HDTA | ong k_HDI SPDATA
vl k_del ay | ong 40_000
vl k_sync | ong $7ffc
fit $1f0
DAT
org 0
LCD_COGL nmov QUTA, #0
nov DI RA, v2_k _LDTA ' sets to outputs
add v2_k_ibuffptr, PAR

There are two nodes of operation:

640x480 text with 80x30 chars

and

640x400 graphics, centered with 40 |ines above and bel ow

W start in text node

rdl ong v2 r0, v2_k _sync
wai t cnt v2 r0, #0

c2 t franme nov v2_k textbuff, v2 k ibuffptr ' gets text p
oi nter

15 font |ines

nov v2 lcnt, #15 " 15 chars per half sc
reen
c2 t _15line nov v2 r3, #16 " chars are 16 lines h
i gh
"afont line is a group of 16 vert |ines
c2_t_fontline nov v2_r2, #80 ' 80 chars per line
c2t line r dbyt e v2 r0, v2 k textbuff

shli v2_ r0, #4

add v2 r0, v2 k font

r dbyt e QUTA, v2 r0 " reads font data

page 185 /405

Propeller

(Hss)
shl OUTA, #k_LDI SPSHL " shifts data
nop
shl QUTA, #4 " shifts | ower nibble,
next 4 pixels
nop
add v2 k textbuff, #1 " increnents pointer
nop
dj nz v2 r2, #c2 t line
sub v2 Kk textbuff, #80 " reverts to the sane
text line
add v2 k font, #1 " increnents font poin
ter to get next font line
nop
nop
nop
nop
nop
dj nz v2 r3, #c2_ t fontline
sub v2_k font, #16 " restores font pointe
r
add v2 Kk textbuff, #80 " increnents |line poin
ter
dj nz v2 lcnt, #c2 t _15line
nop
jmp #c2_t_franme
v2_| cnt | ong 0 | i ne counter
v2 r0 | ong 0
v2 rl | ong 0
v2 r2 | ong 0
v2_r3 | ong 0
v2 k _font | ong QOd/GAFONT16
v2_k_textbuff |ong 0
v2 k DIRA | ong 0
v2_k_LDTA | ong k_LDI SPDATA
v2_k_ibuffptr Iong 15*80
v2_k_sync | ong $7ffc
fit $1f0
DAT

* These fonts conme fromftp://ftp.sintel.net/pub/sintel net/nsdos/scr

page 186 /405

Propeller

(Hss)

een/fntcol 16. zi p
* The package is (c) by Joseph G|

* The i ndi vi dual

VGAFONT16
$00,

$81,
$ff,
$38,
$10,
$18,
$18,
$00,
$ff,
$3c,
$c3,
$cc,
$18,
$f 0,
$e?,
$18,
$cO,
$06,
$18,
$66,

$1b,

$00,
$7e,
$7e,
$10,
$00,
$3c,
$3c,
$00,
$ff,
$00,
$ff,
$78,
$18,
$e0,
$eb,
$18,
$80,
$02,
$00,
$66,

$1b,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$ff,
$00,
$ff,
$00,
$00,
$00,
$cO,
$00,
$00,
$00,
$00,
$00,

$00,

byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byte $ff,
$ff, $ff,
byt e $00,
$00, $00,
byte $ff,
$ff, $ff,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,
byt e $00,
$00, $00,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$ff,

$f f

$00,

$00

$ff,

$f f

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$80,

$00

$02,

$00

$00,

$00

$00,

$00

$00,

$00

$00, $00, $00,
$7e,
$7e,
$00,
$00,
$00,
$00,
$00,
$ff,
$00,
$ff,
$le,
$3c,
$3f,
$7f,
$00,
$cO,
$06,
$18,
$66,

$7f,

$81,
$ff,
$00,
$00,
$18,
$18,
$00,
$ff,
$00,
$ff,
$0e,
$66,
$33,
$63,
$18,
$e0,
$0e,
$3c,
$66,

$db,

fonts are public domain

$a5,
$db,
$6c,
$10,
$3c,
$3c,
$00,
$ff,
$00,
$ff,
$1a,
$66,
$3f,
$7f,
$18,
$f 0,
$le,
$7e,
$66,

$db,

$00,
$81,
$ff,
$fe,
$38,
$3c,
$7e,
$00,
$ff,
$3c,
$c3,
$32,
$66,
$30,
$63,
$db,
$f 8,
$3e,
$18,
$66,

$db,

$00,
$81,
$ff,
$fe,
$7c,
$e7,
$ff,
$18,
$e7,
$66,
$99,
$78,
$66,
$30,
$63,
$3c,
$fe,
$fe,
$18,
$66,

$7b,

$00,
$bd,
$c3,
$fe,
$fe,
$e7,
$ff,
$3c,
$c3,
$42,
$bd,
$cc,
$3c,
$30,
$63,
$e7,
$f 8,
$3e,
$18,
$66,

$1b,

$00,
$99,
$e7,
$fe,
$7c,
$e7,
$7e,
$3c,
$c3,
$42,
$bd,
$cc,
$18,
$30,
$63,
$3c,
$f 0,
$le,
$7e,
$66,

$1b,

$00,
$81,
$ff,
$7c,
$38,
$18,
$18,
$18,
$e7,
$66,
$99,
$cc,
$7e,
$70,
$67,
$db,
$e0,
$0e,
$3c,
$00,

$1b,

page 187 /405

Propeller

(Hss)

$0c,
$f e,
$18,
$18,
$3c,
$00,
$00,
$00,
$00,
$fe,
$10,
$00,
$18,
$00,
$6c,
$c6,
$c6,
$cc,
$00,
$18,
$18,
$00,

$001

$c6,
$f e,
$7e,
$18,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$00,
$6¢,
$7c,
$86,
$76,
$00,
$0c,
$30,
$00,

$001

$7c,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$00,
$00,
$00,
$00,
$00,
$00,

$001

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$18,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$7c,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$66,

$00

$00,

$00

$18,

$00

$00,

$00

$00,

$00

$30,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$c6,
$00,
$18,
$18,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$66,
$00,
$7c,
$00,
$38,
$30,
$0c,
$30,
$00,

$00,

$60,
$00,
$3c,
$3c,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$3c,
$66,
$6c,
$c6,
$00,
$6c,
$30,
$18,
$18,
$00,

$00,

$38,
$00,
$7e,
$7e,
$18,
$00,
$00,
$00,
$00,
$10,
$fe,
$00,
$3c,
$24,
$6c,
$c2,
$c2,
$6c,
$60,
$30,
$0c,
$00,

$00,

$6c,
$00,
$18,
$18,
$18,
$18,
$30,
$00,
$24,
$38,
$fe,
$00,
$3c,
$00,
$fe,
$cO,
$c6,
$38,
$00,
$30,
$0c,
$66,

$18,

$c6,
$00,
$18,
$18,
$18,
$0c,
$60,
$cO,
$66,
$38,
$7c,
$00,
$18,
$00,
$6c,
$7c,
$0c,
$76,
$00,
$30,
$0c,
$3c,

$18,

$c6,
$00,
$18,
$18,
$18,
$fe,
$fe,
$cO,
$ff,
$7c,
$7c,
$00,
$18,
$00,
$6c,
$06,
$18,
$dc,
$00,
$30,
$0c,
$ff,

$7e,

$6c,
$fe,
$7e,
$18,
$18,
$0c,
$60,
$cO,
$66,
$7c,
$38,
$00,
$18,
$00,
$6c,
$06,
$30,
$cc,
$00,
$30,
$0c,
$3c,

$18,

$38,
$fe,
$3c,
$18,
$7e,
$18,
$30,
$fe,
$24,
$fe,
$38,
$00,
$00,
$00,
$fe,
$86,
$60,
$cc,
$00,
$30,
$0c,
$66,

$18,

page 188 /405

Propeller

(Hss)

$18,
$00,
$18,
$cO,
$66,
$18,
$c6,
$c6,
$0c,
$c6,
$c6,
$30,
$c6,
$0c,
$18,
$18,
$0c,
$00,
$30,
$18,
$cO,
$c6,

$661

$18,
$00,
$18,
$80,
$3c,
$7e,
$fe,
$7c,
$le,
$7c,
$7c,
$30,
$7c,
$78,
$00,
$30,
$06,
$00,
$60,
$18,
$7c,
$c6,

$fc,

$30,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$001

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,
$00,
$00,
$00,
$3c,
$18,
$7c,
$7c,
$0c,
$fe,
$38,
$fe,
$7c,
$7c,
$00,
$00,
$00,
$00,
$00,
$7c,
$00,
$10,

$f c,

$00,
$00,
$00,
$00,
$66,
$38,
$c6,
$c6,
$lc,
$cO,
$60,
$c6,
$c6,
$c6,
$00,
$00,
$06,
$00,
$60,
$c6,
$7c,
$38,

$66,

$00,
$00,
$00,
$02,
$c3,
$78,
$06,
$06,
$3c,
$co,
$co,
$06,
$c6,
$c6,
$18,
$18,
$0c,
$00,
$30,
$c6,
$c6,
$6c,

$66,

$00,
$00,
$00,
$06,
$c3,
$18,
$0c,
$06,
$6c,
$cO,
$cO,
$06,
$c6,
$c6,
$18,
$18,
$18,
$7e,
$18,
$0c,
$c6,
$c6,

$66,

$00,
$00,
$00,
$0c,
$db,
$18,
$18,
$3c,
$cc,
$fc,
$fc,
$0c,
$7c,
$7e,
$00,
$00,
$30,
$00,
$0c,
$18,
$de,
$c6,

$7c,

$00,
$fe,
$00,
$18,
$db,
$18,
$30,
$06,
$fe,
$06,
$c6,
$18,
$c6,
$06,
$00,
$00,
$60,
$00,
$06,
$18,
$de,
$fe,

$66,

$00,
$00,
$00,
$30,
$c3,
$18,
$60,
$06,
$0c,
$06,
$c6,
$30,
$c6,
$06,
$00,
$00,
$30,
$7e,
$0c,
$18,
$de,
$c6,

$66,

$18,
$00,
$00,
$60,
$c3,
$18,
$cO,
$06,
$0c,
$06,
$c6,
$30,
$c6,
$06,
$18,
$18,
$18,
$00,
$18,
$00,
$dc,
$c6,

$66,

page 189 /405

Propeller

(Hss)

$66,
$6¢,
$66,
$60,
$66,
$c6,
$18,
$cc,
$66,
$66,
$c3,
$c6,
$c6,
$60,
$de,
$66,
$c6,
$18,
$c6,
$3c,
$66,
$c3,

$18,

$3c,
$f 8,
$f e,
$f 0,
$3a,
$c6,
$3c,
$78,
$eb,
$f e,
$c3,
$c6,
$7c,
$f 0,
$7c,
$eb,
$7c,
$3c,
$7c,
$18,
$66,
$c3,

$3c,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$0c,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$0e,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$3c,
$f 8,
$fe,
$fe,
$3c,
$c6,
$3c,
$le,
$e6,
$f 0,
$c3,
$c6,
$7c,
$fc,
$7c,
$fc,
$7c,
$ff,
$c6,
$c3,
$c3,
$c3,

$c3,

$66,
$6c,
$66,
$66,
$66,
$c6,
$18,
$0c,
$66,
$60,
$e7,
$e6,
$c6,
$66,
$c6,
$66,
$c6,
$db,
$c6,
$c3,
$c3,
$c3,

$c3,

$c2,
$66,
$62,
$62,
$c2,
$c6,
$18,
$0c,
$66,
$60,
$ff,
$f 6,
$c6,
$66,
$c6,
$66,
$c6,
$99,
$c6,
$c3,
$c3,
$66,

$c3,

$co,
$66,
$68,
$68,
$cO,
$c6,
$18,
$0c,
$6c,
$60,
$ff,
$fe,
$c6,
$66,
$c6,
$66,
$60,
$18,
$c6,
$c3,
$c3,
$3c,

$66,

$cO,
$66,
$78,
$78,
$cO,
$fe,
$18,
$0c,
$78,
$60,
$db,
$de,
$c6,
$7c,
$c6,
$7c,
$38,
$18,
$c6,
$c3,
$c3,
$18,

$3c,

$cO,
$66,
$68,
$68,
$de,
$c6,
$18,
$0c,
$78,
$60,
$c3,
$ce,
$c6,
$60,
$c6,
$6c,
$0c,
$18,
$c6,
$c3,
$db,
$18,

$18,

$cO,
$66,
$60,
$60,
$c6,
$c6,
$18,
$cc,
$6c,
$60,
$c3,
$c6,
$c6,
$60,
$c6,
$66,
$06,
$18,
$c6,
$c3,
$db,
$3c,

$18,

$c2,
$66,
$62,
$60,
$c6,
$c6,
$18,
$cc,
$66,
$62,
$c3,
$c6,
$c6,
$60,
$de6,
$66,
$c6,
$18,
$c6,
$66,
$ff,
$66,

$18,

page 190/ 405

Propeller

(Hss)

$c3,
$30,
$06,
$0c,
$00,
$00,
$00,
$cc,
$66,
$c6,
$cc,
$c6,
$60,
$cc,
$66,
$18,
$06,
$66,
$18,
$db,
$66,
$c6,

$661

$ff,
$3c,
$02,
$3c,
$00,
$00,
$00,
$76,
$7c,
$7c,
$76,
$7c,
$f 0,
$7c,
$e6,
$3c,
$06,
$e6,
$3c,
$db,
$66,
$7c,

$7c,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$0c,
$00,
$00,
$66,
$00,
$00,
$00,
$00,
$00,

$601

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$ff,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$cc,
byte
$00,
byte
$00,
byte
$66,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$60,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$10,
$00,
$00,
$00,
$30,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$78,
$00,
$00,
$00,
$00,
$00,
$3c,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$f 0,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$38,

$00

$00,

$00

$30,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$ff,
$3c,
$00,
$3c,
$6c,
$00,
$18,
$00,
$e0,
$00,
$lc,
$00,
$38,
$00,
$e0,
$18,
$06,
$e0,
$38,
$00,
$00,
$00,

$00,

$c3,
$30,
$80,
$0c,
$c6,
$00,
$00,
$00,
$60,
$00,
$0c,
$00,
$6c,
$00,
$60,
$18,
$06,
$60,
$18,
$00,
$00,
$00,

$00,

$86,
$30,
$co,
$0c,
$00,
$00,
$00,
$00,
$60,
$00,
$0c,
$00,
$64,
$00,
$60,
$00,
$00,
$60,
$18,
$00,
$00,
$00,

$00,

$0c,
$30,
$e0,
$0c,
$00,
$00,
$00,
$78,
$78,
$7c,
$3c,
$7c,
$60,
$76,
$6c,
$38,
$0e,
$66,
$18,
$e6,
$dc,
$7c,

$dc,

$18,
$30,
$70,
$0c,
$00,
$00,
$00,
$0c,
$6c,
$c6,
$6c,
$c6,
$f 0,
$cc,
$76,
$18,
$06,
$6c,
$18,
$ff,
$66,
$c6,

$66,

$30,
$30,
$38,
$0c,
$00,
$00,
$00,
$7c,
$66,
$cO,
$cc,
$fe,
$60,
$cc,
$66,
$18,
$06,
$78,
$18,
$db,
$66,
$c6,

$66,

$60,
$30,
$lc,
$0c,
$00,
$00,
$00,
$cc,
$66,
$cO,
$cc,
$cO,
$60,
$cc,
$66,
$18,
$06,
$78,
$18,
$db,
$66,
$c6,

$66,

$c1,
$30,
$0e,
$0c,
$00,
$00,
$00,
$cc,
$66,
$cO,
$cc,
$cO,
$60,
$cc,
$66,
$18,
$06,
$6c,
$18,
$db,
$66,
$c6,

$66,

page 191 /405

Propeller

(Hss)

$cc,
$60,
$c6,
$36,
$cc,
$3c,
$ff,
$66,
$c6,
$c6,
$18,
$18,
$18,
$00,
$fe,
$3c,
$cc,
$c6,
$cc,
$cc,
$cc,
$cc,

$0c,

$7c,
$f 0,
$7c,
$lc,
$76,
$18,
$66,
$c3,
$7e,
$fe,
$0e,
$18,
$70,
$00,
$00,
$0c,
$76,
$7c,
$76,
$76,
$76,
$76,

$061

$0c,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$06,
$00,
$00,
$00,
$00,
$00,
$00,
$06,
$00,
$00,
$00,
$00,
$00,
$00,

$3c,

byte
$0c,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$0c,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$7c,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$le,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$f 8,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$0c,

$00

$10,

$00

$00,

$00

$60,

$00

$38,

$00

$00,

$00

$00,
$00,
$00,
$10,
$00,
$00,
$00,
$00,
$00,
$00,
$0e,
$18,
$70,
$76,
$00,
$3c,
$cc,
$18,
$38,
$cc,
$30,
$6c,

$00,

$00,
$00,
$00,
$30,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$18,
$18,
$dc,
$00,
$66,
$00,
$30,
$6c,
$00,
$18,
$38,

$00,

$00,
$00,
$00,
$30,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$18,
$18,
$00,
$10,
$c2,
$00,
$00,
$00,
$00,
$00,
$00,

$3c,

$76,
$dc,
$7c,
$fc,
$cc,
$c3,
$c3,
$c3,
$c6,
$fe,
$18,
$18,
$18,
$00,
$38,
$cO,
$cc,
$7c,
$78,
$78,
$78,
$78,

$66,

$cc,
$76,
$c6,
$30,
$cc,
$c3,
$c3,
$66,
$c6,
$cc,
$70,
$00,
$0e,
$00,
$6c,
$cO,
$cc,
$c6,
$0c,
$0c,
$0c,
$0c,

$60,

$cc,
$66,
$60,
$30,
$cc,
$c3,
$c3,
$3c,
$c6,
$18,
$18,
$18,
$18,
$00,
$c6,
$cO,
$cc,
$fe,
$7c,
$7c,
$7c,
$7c,

$60,

$cc,
$60,
$38,
$30,
$cc,
$c3,
$db,
$18,
$c6,
$30,
$18,
$18,
$18,
$00,
$c6,
$c2,
$cc,
$cO,
$cc,
$cc,
$cc,
$cc,

$66,

$cc,
$60,
$0c,
$30,
$cc,
$66,
$db,
$3c,
$c6,
$60,
$18,
$18,
$18,
$00,
$c6,
$66,
$cc,
$c0,
$cc,
$cc,
$cc,
$cc,

$3c,

page 192 /405

Propeller

(Hss)

$c6,
$c6,
$c6,
$18,
$18,
$18,
$c6,
$c6,
$66,
$dc,
$cc,
$c6,
$c6,
$c6,
$cc,
$cc,
$c6,
$c6,
$c6,
$18,
$eb,
$18,

$66,

$7c,
$7c,
$7c,
$3c,
$3c,
$3c,
$c6,
$c6,
$f e,
$77,
$ce,
$7c,
$7c,
$7c,
$76,
$76,
$7e,
$7c,
$7c,
$18,
$f c,
$18,

$f 3,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$06,
$00,
$00,
$00,
$00,
$00,

$00,

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$0c,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$38,
$00,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$78,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$10,

$00

$00,

$00

$60,

$00

$00,

$00

$18,

$00

$60,

$00

$c6,

$00

$6c¢,

$00

$30,

$00

$00,

$00

$00,

$00

$10,

$00

$00,

$00

$60,

$00

$30,

$00

$60,

$00

$00,

$00

$c6,

$00

$c6,

$00

$18,

$00

$38,

$00

$00,

$00

$f c,

$00

$38,
$c6,
$30,
$66,
$3c,
$30,
$00,
$38,
$60,
$00,
$3e,
$38,
$c6,
$30,
$78,
$30,
$c6,
$00,
$00,
$18,
$6c,
$c3,

$66,

$6c,
$00,
$18,
$00,
$66,
$18,
$10,
$00,
$00,
$00,
$6c,
$6c,
$00,
$18,
$cc,
$18,
$00,
$7c,
$c6,
$7e,
$64,
$66,

$66,

$00,
$00,
$00,
$00,
$00,
$00,
$38,
$38,
$fe,
$00,
$cc,
$00,
$00,
$00,
$00,
$00,
$00,
$c6,
$c6,
$c3,
$60,
$3c,

$7c,

$7c,
$7c,
$7c,
$38,
$38,
$38,
$6c,
$6c,
$66,
$6e,
$cc,
$7c,
$7c,
$7c,
$cc,
$cc,
$c6,
$c6,
$c6,
$cO,
$f 0,
$18,

$62,

$c6,
$c6,
$c6,
$18,
$18,
$18,
$c6,
$c6,
$60,
$3b,
$fe,
$c6,
$c6,
$c6,
$cc,
$cc,
$c6,
$c6,
$c6,
$co,
$60,
$ff,

$66,

$fe,
$fe,
$fe,
$18,
$18,
$18,
$c6,
$c6,
$7c,
$1b,
$cc,
$c6,
$c6,
$c6,
$cc,
$cc,
$c6,
$c6,
$c6,
$cO,
$60,
$18,

$6f,

$cO,
$cO,
$cO,
$18,
$18,
$18,
$fe,
$fe,
$60,
$7e,
$cc,
$c6,
$c6,
$c6,
$cc,
$cc,
$c6,
$c6,
$c6,
$c3,
$60,
$ff,

$66,

$cO,
$cO,
$cO,
$18,
$18,
$18,
$c6,
$c6,
$60,
$ds,
$cc,
$c6,
$c6,
$c6,
$cc,
$cc,
$c6,
$c6,
$c6,
$7e,
$60,
$18,

$66,

page 193 /405

Propeller

(Hss)

$18,
$cc,
$18,
$c6,
$cc,
$66,
$c6,
$00,
$00,
$c6,
$c0,
$06,
$9b,
$96,
$3c,
$00,
$00,
$11,
$55,
$dd,
$18,
$18,

$181

$18,
$76,
$3c,
$7c,
$76,
$66,
$c6,
$00,
$00,
$7c,
$00,
$00,
$06,
$3e,
$18,
$00,
$00,
$44,
$aa,
$77,
$18,
$18,

$181

$ds,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$0c,
$06,
$00,
$00,
$00,
$11,
$55,
$dd,
$18,
$18,

$181

byte
$70,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$1f,
byte
$06,
byte
$00,
byte
$00,
byte
$00,
byte
$44,
byte
$aa,
byte
$77,
byte
$18,
byte
$18,
byte
$18,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$76,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$11,
$11,
$55,
$55,
$dd,
$dd,
$18,
$18,
$18,
$18,
$18,
$18,

$0e,

$00

$18,

$00

$0c,

$00

$18,

$00

$18,

$00

$00,

$00

$dc,

$00

$3c,

$00

$38,

$00

$00,

$00

$00,

$00

$00,

$00

$cO,

$00

$cO,

$00

$00,

$00

$00,

$00

$00,

$00

$44,

$44

$aa,

$aa

$77,

$77

$18,

$18

$18,

$18

$18,

$18

$1b,
$30,
$18,
$30,
$30,
$76,
$00,
$6c,
$6c,
$30,
$00,
$00,
$cO,
$cO,
$18,
$00,
$00,
$11,
$55,
$dd,
$18,
$18,

$18,

$18,
$60,
$30,
$60,
$60,
$dc,
$c6,
$6c,
$6c,
$30,
$00,
$00,
$c2,
$c2,
$18,
$00,
$00,
$44,
$aa,
$77,
$18,
$18,

$18,

$18,
$00,
$00,
$00,
$00,
$00,
$e6,
$3e,
$38,
$00,
$00,
$00,
$c6,
$c6,
$00,
$00,
$00,
$11,
$55,
$dd,
$18,
$18,

$18,

$18,
$78,
$38,
$7c,
$cc,
$dc,
$f 6,
$00,
$00,
$30,
$00,
$00,
$cc,
$cc,
$18,
$36,
$ds,
$44,
$aa,
$77,
$18,
$18,

$f 8,

$7e,
$0c,
$18,
$c6,
$cc,
$66,
$fe,
$7e,
$7c,
$30,
$fe,
$fe,
$18,
$18,
$18,
$6c,
$6c,
$11,
$55,
$dd,
$18,
$18,

$18,

$18,
$7c,
$18,
$c6,
$cc,
$66,
$de,
$00,
$00,
$60,
$cO,
$06,
$30,
$30,
$18,
$ds,
$36,
$44,
$aa,
$77,
$18,
$f 8,

$f 8,

$18,
$cc,
$18,
$c6,
$cc,
$66,
$ce,
$00,
$00,
$cO,
$cO,
$06,
$60,
$66,
$3c,
$6c,
$6c,
$11,
$55,
$dd,
$18,
$18,

$18,

$18,
$cc,
$18,
$c6,
$cc,
$66,
$c6,
$00,
$00,
$c6,
$cO,
$06,
$ce,
$ce,
$3c,
$36,
$ds,
$44,
$aa,
$77,
$18,
$18,

$18,

page 194 /405

Propeller

(Hss)

$36,
$36,
$18,
$36,
$36,
$36,
$00,
$00,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$18,
$36,
$00,
$36,
$00,
$36,

$361

$36,
$36,
$18,
$36,
$36,
$36,
$00,
$00,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$18,
$36,
$00,
$36,
$00,
$36,

$361

$36,
$36,
$18,
$36,
$36,
$36,
$00,
$00,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$18,
$36,
$00,
$36,
$00,
$36,

$361

byte
$36,
byte
$36,
byte
$18,
byte
$36,
byte
$36,
byte
$36,
byte
$00,
byte
$00,
byte
$00,
byte
$18,
byte
$00,
byte
$00,
byte
$18,
byte
$18,
byte
$00,
byte
$18,
byte
$18,
byte
$36,
byte
$00,
byte
$36,
byte
$00,
byte
$36,
byte
$36,

$36,
$36,
$00,
$36,
$00,
$18,
$36,
$36,
$36,
$36,
$00,
$36,
$36,
$00,
$36,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$00,
$00,
$18,
$18,
$18,
$00,
$00,
$18,
$18,
$18,
$18,
$36,
$36,
$36,
$00,
$00,
$36,
$36,
$00,
$00,
$36,
$36,
$36,

$36,

$36

$00,

$36

$00,

$18

$36,

$36

$36,

$36

$00,

$36

$36,

$00

$36,

$00

$18,

$00

$00,

$18

$18,

$00

$18,

$00

$00,

$18

$18,

$18

$00,

$00

$18,

$18

$18,

$18

$36,

$36

$36,

$00

$00,

$36

$36,

$00

$00,

$36

$36,

$36

$36,
$00,
$00,
$36,
$36,
$00,
$36,
$36,
$18,
$00,
$18,
$18,
$00,
$18,
$00,
$18,
$18,
$36,
$36,
$00,
$36,
$00,

$36,

$36,
$00,
$00,
$36,
$36,
$00,
$36,
$36,
$18,
$00,
$18,
$18,
$00,
$18,
$00,
$18,
$18,
$36,
$36,
$00,
$36,
$00,

$36,

$36,
$00,
$00,
$36,
$36,
$00,
$36,
$36,
$18,
$00,
$18,
$18,
$00,
$18,
$00,
$18,
$18,
$36,
$36,
$00,
$36,
$00,

$36,

$36,
$00,
$f 8,
$f 6,
$36,
$fe,
$f 6,
$36,
$f 8,
$00,
$18,
$18,
$00,
$18,
$00,
$18,
$1f,
$36,
$37,
$3f,
$f 7,
$ff,

$37,

$36,
$00,
$18,
$06,
$36,
$06,
$06,
$36,
$18,
$00,
$18,
$18,
$00,
$18,
$00,
$18,
$18,
$36,
$30,
$30,
$00,
$00,

$30,

$f 6,
$fe,
$f 8,
$f 6,
$36,
$f 6,
$fe,
$fe,
$f 8,
$f 8,
$1f,
$ff,
$ff,
$1f,
$ff,
$ff,
$1f,
$37,
$3f,
$37,
$ff,
$f 7,

$37,

$36,
$36,
$18,
$36,
$36,
$36,
$00,
$00,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$18,
$36,
$00,
$36,
$00,
$36,

$36,

$36,
$36,
$18,
$36,
$36,
$36,
$00,
$00,
$00,
$18,
$00,
$00,
$18,
$18,
$00,
$18,
$18,
$36,
$00,
$36,
$00,
$36,

$36,

page 195 /405

Propeller

(Hss)

$00,
$36,
$00,
$00,
$18,
$36,
$00,
$00,
$18,
$36,
$36,
$18,
$00,
$18,
$ff,
$ff,
$f 0,
$of ,
$00,
$dc,
$c6,
$cO,

$6¢,

$00,
$36,
$00,
$00,
$18,
$36,
$00,
$00,
$18,
$36,
$36,
$18,
$00,
$18,
$ff,
$ff,
$f 0,
$of ,
$00,
$76,
$cc,
$cO,

$6¢,

$00,
$36,
$00,
$00,
$18,
$36,
$00,
$00,
$18,
$36,
$36,
$18,
$00,
$18,
$ff,
$ff,
$f 0,
$of ,
$00,
$00,
$00,
$00,

$001

byte
$00,
byte
$36,
byte
$00,
byte
$00,
byte
$18,
byte
$36,
byte
$00,
byte
$00,
byte
$18,
byte
$36,
byte
$36,
byte
$18,
byte
$00,
byte
$18,
byte
$ff,
byte
$ff,
byte
$f 0,
byte
$0f ,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$36,
$36,
$18,
$00,
$36,
$00,
$00,
$18,
$00,
$36,
$36,
$00,
$18,
$00,
$00,
$18,
$00,
$36,
$36,
$36,
$18,
$18,
$18,
$00,
$00,
$18,
$ff,
$ff,
$00,
$ff,
$f 0,
$f 0,
$0f ,
$0f ,
$ff,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

$00

$36,

$36

$18,

$00

$36,

$00

$00,

$18

$00,

$36

$36,

$00

$18,

$00

$00,

$18

$00,

$36

$36,

$36

$18,

$18

$18,

$00

$00,

$18

$ff,

$f f

$00,

$f f

$f 0,

$f0

$0f,

$0f

$ff,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,
$36,
$18,
$36,
$00,
$00,
$36,
$18,
$00,
$00,
$36,
$18,
$18,
$00,
$ff,
$00,
$f 0,
$0f,
$ff,
$00,
$78,
$fe,

$00,

$00,
$36,
$18,
$36,
$00,
$00,
$36,
$18,
$00,
$00,
$36,
$18,
$18,
$00,
$ff,
$00,
$f 0,
$of ,
$ff,
$00,
$cc,
$c6,

$00,

$00,
$36,
$18,
$36,
$00,
$00,
$36,
$18,
$00,
$00,
$36,
$18,
$18,
$00,
$ff,
$00,
$f 0,
$of ,
$ff,
$00,
$cc,
$c6,

$f e,

$ff,
$f 7,
$ff,
$36,
$ff,
$00,
$36,
$1f,
$1f,
$00,
$36,
$ff,
$18,
$00,
$ff,
$00,
$f 0,
$of ,
$ff,
$76,
$cc,
$cO,

$6c¢,

$00,
$00,
$00,
$36,
$00,
$00,
$36,
$18,
$18,
$00,
$36,
$18,
$18,
$00,
$ff,
$00,
$f 0,
$of ,
$ff,
$dc,
$ds,
$co,

$6c,

$ff,
$f 7,
$ff,
$ff,
$ff,
$ff,
$3f,
$1f,
$1f,
$3f,
$ff,
$ff,
$f 8,
$1f,
$ff,
$ff,
$f 0,
$of ,
$00,
$ds,
$cc,
$cO,

$6c¢,

$00,
$36,
$00,
$00,
$18,
$36,
$00,
$00,
$18,
$36,
$36,
$18,
$00,
$18,
$ff,
$ff,
$f 0,
$of ,
$00,
$ds,
$c6,
$cO,

$6c¢,

$00,
$36,
$00,
$00,
$18,
$36,
$00,
$00,
$18,
$36,
$36,
$18,
$00,
$18,
$ff,
$ff,
$f 0,
$of ,
$00,
$ds,
$c6,
$c0,

$6c¢,

page 196 / 405

Propeller

(Hss)

$c6,
$ds,
$60,
$18,
$18,
$6¢,
$6¢,
$66,
$00,
$60,
$30,
$c6,
$fe,
$00,
$00,
$00,
$18,
$ds,
$18,
$00,
$00,
$00,

$001

$f e,
$70,
$60,
$18,
$7e,
$38,
$ee,
$3c,
$00,
$cO,
$1c,
$c6,
$00,
$ff,
$7e,
$7e,
$18,
$70,
$00,
$00,
$00,
$00,

$001

$00,
$00,
$cO,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$00,
$00,
$00,
$00,
$00,

$001

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$18,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$18,
$18,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$00

$00,

$18

$18,

$00

$00,

$00

$00,

$00

$38,

$00

$00,

$00

$00,

$00

$00,
$00,
$00,
$00,
$00,
$00,
$38,
$le,
$00,
$00,
$lc,
$00,
$00,
$00,
$00,
$00,
$0e,
$18,
$00,
$00,
$6c,
$00,

$00,

$fe,
$00,
$00,
$00,
$7e,
$38,
$6c,
$30,
$00,
$03,
$30,
$7c,
$00,
$00,
$30,
$0c,
$1b,
$18,
$00,
$00,
$6c,
$00,

$00,

$c6,
$00,
$66,
$76,
$18,
$6c,
$c6,
$18,
$00,
$06,
$60,
$c6,
$fe,
$18,
$18,
$18,
$1b,
$18,
$18,
$00,
$38,
$00,

$00,

$60,
$7e,
$66,
$dc,
$3c,
$c6,
$c6,
$0c,
$7e,
$7e,
$60,
$c6,
$00,
$18,
$0c,
$30,
$18,
$18,
$18,
$76,
$00,
$00,

$00,

$30,
$ds,
$66,
$18,
$66,
$c6,
$c6,
$3e,
$db,
$db,
$7c,
$c6,
$00,
$7e,
$06,
$60,
$18,
$18,
$00,
$dc,
$00,
$00,

$00,

$18,
$ds,
$66,
$18,
$66,
$fe,
$6c,
$66,
$db,
$db,
$60,
$c6,
$fe,
$18,
$0c,
$30,
$18,
$18,
$7e,
$00,
$00,
$18,

$00,

$30,
$ds,
$66,
$18,
$66,
$c6,
$6c,
$66,
$db,
$f 3,
$60,
$c6,
$00,
$18,
$18,
$18,
$18,
$ds,
$00,
$76,
$00,
$18,

$18,

$60,
$ds,
$7c,
$18,
$3c,
$c6,
$6c,
$66,
$7e,
$7e,
$60,
$c6,
$00,
$00,
$30,
$0c,
$18,
$ds,
$18,
$dc,
$00,
$00,

$00,

page 197 / 405

Propeller

(Hss)

$3c,
$00,
$00,
$7c,

$00,

$1c,
$00,
$00,
$00,

$00,

$00,
$00,
$00,
$00,

$00,

byte
$00,
byte
$00,
byte
$00,
byte
$00,
byte
$00,

$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,
$00,

$0f,
$00
$ds,
$00
$70,
$00
$00,
$00
$00,
$00

$0c,
$6c,
$ds,
$00,

$00,

$0c,
$6c,
$30,
$00,

$00,

$0c,
$6c,
$60,
$7c,

$00,

$0c,
$6c,
$cs8,
$7c,

$00,

$0c,
$6c,
$f 8,
$7c,

$00,

$ec,
$00,
$00,
$7c,

$00,

$6c,
$00,
$00,
$7c,

$00,

$6c,
$00,
$00,
$7c,

$00,

page 198 /405

Propeller
(Hss)

Object Reference

These objects are organized in the same format as OBEX, but are not limited to those found in the Object
Exchange.

Data Storage
e Basic I2C Driver
¢ Fatl6 routines with secure digital card layer

e i2c object
e Memory Stick Datalogger

Display

e Graphics
¢ AiGeneric Video Driver (40x24 composite 16 color text)

Protocol
e PropTCP
o Sockets Laver
o HTTP Server
e Full Duplex Serial
Signal Generation
Fun

Tool

o FemtoBASIC

Human Input

e Atari Joystick and Virtual NES Driver
¢ RCTIME Obiject

Math

Sensor

e RCTIME Object

page 199 /405

http://obex.parallax.com
http://propeller.wikispaces.com//Graphics
http://propeller.wikispaces.com//AiGeneric
http://propeller.wikispaces.com//PropTCP_SocketsLayer
http://propeller.wikispaces.com//Full+Duplex+Serial
http://propeller.wikispaces.com//FemtoBASIC
http://propeller.wikispaces.com//Atari+Joystick
http://propeller.wikispaces.com//RCTIME+Object
http://propeller.wikispaces.com//RCTIME+Object

Propeller
(Hss)

Speech & Sound

e (Hss) Hydra Sound System (7 channel audio/playback system)

page 200 / 405

http://propeller.wikispaces.com//%28Hss%29

Propeller
(Hss)

One man Unix on the pPropQL and pPropQL020

Note: The original source of OMU can be found here. Thanks Steve !
Note: This is a work in progress, so the code may change without notice.

OMU was developed (it seems) on some kind of Codata board using a version of Unix with the tools and
libc available at the time. Porting means using another compiler, another hardware, a new libc, executable

format and filesystem.

A discussion about this project can be found at Parallax' boards here

Tasks

Getting a usable compiler
e Grab binutils (2.17 or 2.18) from gnu.org
e Grab gcc-4.1.2+ from gcc.gnu.org.

The core package is enough. Newer versions need and will compile some libraries that are certainly not
needed.

To compile you will need the normal: make (gnu make), an installed compiler (gnu), autotools, flex, yacc
or bison and so on.

Let's say that all happens in a prg directory:

$ cdprg

$ bzip2 -d

$ bzip2 -d

$ mkdir gcc-m68k

$ cd gcc-m68k

$ mkdir binutils

$ cd binutils

$../../bintutil-2.17/configure —target=m68k-unknown-elf

$ make [-j 3]

$ sudo make install

page 201 / 405

http://tallyho.bc.nu/%7Esteve/omu.html
http://forums.parallax.com/forums/default.aspx?f=25&m=349951

Propeller
(Hss)

ready bintuils, if no errors. Fix the errors and redo. sometimes removing everything and relaunching
configure helps if you installed some missing program/library.

$cd.

$ mkdir gcc

$ cd gee

$../../gcc-4.1.2/configure —target=m68k-unknown-elf —disable-libssp
$ make [-j 3]

$ sudo make install

e Getting the source of OMU to at least compile with gcc:
Grab it here

Well it compiles... and gives loads of warnings :-(

Do not worry we will take care of them :-). Now, I ported all assembler code to use gcc syntax. Added
some missing headers from linux (!) (they are also GPL v2) but to test I'd rather use a simulator, a love
simulators :-). The mixed headers need to be sorted. Minimal header would be a better option: Linux' are
just messy. Too many of them. Maybe an older 1.x version has better headers.

I'm now at the point where I have some 68k simulator that needs a usable front-end. I started to write a
simulator in python from scratch, but I rather use something already done for speed reasons, of
development.

Porting the code means now: getting the kernel to run to the point where it wants to execute init. For that
some routines (libc related) have to be written. As well as a usable filesystem and a binary executable
format has to be defined and incorporated. I think the best would be to use the elf format. It supports
everything we need and want albeit it may contain too many features, but we can cross compile to it from
either GNU/linux, *BSD, Solaris or Mac OSX.

Filesystem

pPropQL has a bootloader that has to load the kernel image from SD card (serial port could also be used).
The filesystem recognition/read is built-in in this minimal bootloader. For QL a FAT fs could be used but
for OMU a Un*x fs would be more appropriate. There are several options, all of them more or less
complicated:

page 202 / 405

http://omnibus.uni-freiburg.de/%7Erp92/omu.8.05.09.tar.gz

Propeller
(Hss)

® minix
e ext2
e ufs (there are several of these, which one ?)

A possibility would be to have a filesystem contained in a file that resides in a FAT formatted SD card. A
couple of programs could be written to manipulate this image. But that does not help with selecting a
filesystem type. To keep it simple I'd choose minix. I think it represents the simplest of the bunch,
especially considering that ufs is a name for several similar but different implementations. Minix sources
for the filesystem are some 200 kbytes. A read-only mounter does not really need much more than the
reading the superblock, the inode table and the root directory.

After some thoughts and digging of the sources, I decided that a minix either filesystem in an image or in
a partition will be the way to go. A V1 filesystem can be as large as 64 MB, more than enough to host the

entire system.

The geometry of the image is as follows:

boot block 1 block

superblock 1 block

bitmap 1 to 8 blocks, 1 bit per block, 65536 bits max, 8
kbytes max

zone map same as bitmap ?

inode table each inode occupies 32 bytes

free blocks the rest of the blocks

The function of the zone in a V1 fs is not yet clear to me. I'll have to look closer into the mkfs utility.
The filesystem is divided in blocks with the first block reserved for a boot block, I believe. Each block is
1 kbytes, V2 can have larger blocks and 32 bit pointers to blocks.

The filesystem described in the headers of OMU closely resembles this, so minimum changes should be
needed.

Drivers

The most important part for propeller users is probably the interface between the propeller and a third

page 203 / 405

Propeller
(Hss)

processor. the hardware interface, level shifting and so on has been described in the pPropQL and
pPropQL020 pages. Basically the propellers act as memory mapped devices, with an address space, a data
bus and read/write strobe signals that are asserted when the devices needs to be read or written.

On the propeller side and depending on the number of peripherals one or more COGs can listen to this
strobe signals and act accordingly.

Let's see some examples.

ROM emulator

The propeller can act as a ROM. For this it only needs to serve a byte of data for every address. Using the

multiplexed BUS employed in the mentioned boards, a simple routine that listens to the state of a read
strobe can be used:

DAT

org $0
ROVEMU nov QUTA, #0

nov DIRA, cO c DRA
cO _ronenu wai t pne cO_c_PROMCS, cO ¢ PROMCS ' waits for C
S to be asserted

nov cO v_addr, INA '@ 2 gets |lo
w part of address

shr cO v _addr, #16 ‘@6

and cO0 _v_addr, #255 '@o0

add cO v _addr, PAR '@4 adds ROM
of f set

nov cO0 _v_addrh, I NA "@8 now it is

safe to get high addr

shr cO v _addrh, #8 @22

and c0_v_addrh, cO_c_IMSKADDRH

add cO v _addr, cO_v_addrh " @0

rdbyte OUTA, cO_v_addr ' @34

' @6 (max)
or DI RA, cO0_c_DATAQUT " @0

wai t peq c0_c_PROVCS, c0_c_PROVCS @4
andn DI RA, cO0_c_DATAQUT
jmp #cO_r onenu

page 204 / 405

http://propeller.wikispaces.com//pPropQL
http://propeller.wikispaces.com//pPropQL020

Propeller

(Hss)

cO_c_DI RA | ong 0

c0_c_MSKADDRH | ong $00007f 00

c0_c_PROMCS | ong 1<<25 " NROMCS, ROM read strobe
, active | ow

c0_c_DATAQUT | ong $f f

c0_v_addr | ong 0

cO0_v_addrh | ong 0

cO0 v data | ong 0

The address is sent low byte first high byte next 2 M68K cycles apart. The program waits for the strobe
signal to go high before disabling the output. OUTA can be used as destination register because no other
output PIN is been used by this COG.

Video Memory

Using a propeller as a video generator is one of the most easy to implement functions. The propeller has
special circuitry designed to generate video signals freeing the COGs for this time consuming task.

The following example shows how the propeller can act as memory mapped buffer (only write is shown).
The buffer is limited to 4 kbytes because only text is implemented.

DAT

VI DEOCOG

c2_vi deoenu

VI DEONto be asserted

w part of address

deo buffer offset

is safe to get high addr

shr
and
add

nov

nov
shr
and
add
wr byt e

$0
D RA, #0

c2_ c_VIDEON c2_c_VIDEOWN' waits for N

c2_v_addr, INA '@ 2 gets |lo
c2_v_addr, #16 ‘@6
c2_v_addr, #255 '@o0
c2_v_addr, PAR @4 adds vi
c2_v_addrh, I NA ' @8 now it

c2_v_data, c2 v _addrh

c2 v_addrh, #8 ' @26
c2_v_addrh, c2_c_IMSKADDR

c2 v_addr, c2 v _addrh ' @4
c2_v_data, c2_v_addr ' @38

page 205 / 405

Propeller

(Hss)
wai t peq c2_c_VI DEOW c2_c_VI DEOWV
jmp #c2_vi deoemnu
c2_c_VI DEOW | ong 1<<26 " NVI DEOW st robe i nput, ac
tive | ow
c2_v_addr | ong 0
c2_v_addrh | ong 0
c2_v_data | ong 0
c2_c_NMSKADDR | ong $00000f 00 " only 4 kbytes Il

A extra COG generates the corresponding video signal and produces the image according to the data in
this buffer (pointed by PAR). Graphic memory can also be used in the same manner, but probably a
bigger buffer could be needed.

Other 10

Connection of keyboard, serial interface, RTC, SD/MMC card reader, Timers and so on can be
accomplished in a similar manner to the one described above. One COG listens to reads and a second one
to writes. As 2 or 3 HUB accesses need to be done a cycle time of about 1 microsecond is needed. This
can be wasteful in some cases but adds simplicity in circuit design. More performance can be obtained
using an AVR32, ARM or ColdFire processor instead.

One possible method is for every peripheral to listen to the read or write strobes directly. That can cause
some problems and missed reads/writes. A better method is to dedicate 2 COGs to interface and the rest
are free to interface with the mentioned devices.

A simple listener that interfaces with other COGs for the different tasks is shown below. Be aware of the
fact that the normal FullDuplexSerial object has been modified to use two pointers instead of three (buffer
and pointers inside the buffer). The keyboard object can be used as it is and the SD/MMC code is the
newest mb_spi by Rokicki/Lonesock. Other peripherals have not yet been implemented. Buffer pointers
are written during initialization. This method works because the peripherals have a shared memory
interface.

DAT
org $0

This COG accepts reads fromthe processor

I ORCOG nov cO _p_rxbuffend, cO_p rxbuff
add cO0_p_rxbuff, #RXBUFFLEN
cO_iorloop wai tpne cO_c IOR ¢cO0 c_ IOR "'waits for 10

page 206 / 405

Propeller
(Hss)

R to be assert

fter IORis as

i f

ads status of

t puts

c0_v_ready

ed
nov
serted
shr
and

—nz jnp

mov
engi ne A5 == ready
or

wai t peq
andn
jmp
| ong

| ong

{ This nust be at address 01

Recei ve st at

}

c0_serrx_01
st byte receiv

S outputs

i f
il to beginnin
i f

wtail of buff
c0_p_rxhead
cO0_p_rxt ai

cO_p_rxbuff
c0_p_rxbuffend

{ returns $0f

us read

Port 1
rdl ong
rdbyte

ed
or

wai t peq
andn
cnp

_Zz nmov

g of buffer

_nz add

wr | ong
er

jnmp

| ong
| ong
| ong
| ong

| ong

if there are no by

cO v_addr, INA :

cO_v_addr, #16-4 '

@2 cycles a

@6

cO_v_addr, #$1f0 wz ‘@10

cO0_v_addr

OUTA, cO_v_ready -
DI RA, cO_c_DATAQUT :
cO c IOR cOc ICR

DI RA, cO_c_DATAQUT
#cO_i orl oop

0

O[((($+15)>>4) <<4)- 9]

cO_p_ptr2, cO_p_rxtai
OUTA, cO p ptr2

DI RA, cO_c_DATAQUT
cO c IOR cO c ICR

DI RA, c0_c_DATAQUT

cO p_ptr2, cO_p_rxbuffend
cO p ptr2, cO_p_rxbuff

cO_p_ptr2, #1
cO_p_ptr2, cO_p_rxtai

#cO_i orl oop

O O oo

O[((($+15)>>4) <<4)- 9]

tes to read

command O re

activates ou

reads | a

activate

Wz

noves ta

saves ne

page 207 / 405

Propeller

(Hss)

}

cO_serstatus_02 rdilong cO_p _ptr2, cO_p_rxtai
rdlong cO_p _ptrl, cO_p_rxhead
cnp cO p ptrl, cO p ptr2 /4
muxz OUTA, #3$0f
or DI RA, cO0_c_DATAQUT
waitpeq cO_c IOR cO0 c IOR
andn Dl RA, cO_c_DATAQUT
jmp #cO_iorl oop

c0_p_kbdhead | ong 0

cO0_p_kbdtaill | ong 0

c0_p_kbdbuf f | ong 0
| ong O[((($+15) >>4) <<4) - $]

c0 _kbdrx 03 rdlong cO_p_ptr2, cO_p_kbdtai
rdlong cO p ptrl, cO_p_kbdhead
add cO p ptrl, cO_p_kbdbuff
rdbyte OUTA, cO p ptrl
or Dl RA, cO0_c_DATAQUT ' activate

S outputs

waitpeq cO c IOR c¢cO c IOR
andn DI RA, cO0_c_DATAQUT

sub cO p ptrl, cO_p_kbdbuff
add cO p ptrl, #1

and cO_p_ptrl, #15

wlong cO _p ptrl, cO_p_kbdtai
j mp #cO _iorl oop

Returns 00 if there are chars to read
Returns OF if there are no chars to read

| ong O[((($+15) >>4) <<4) - $]

c0 _kbdstatus 04 rdlong cO_p_ptr2, cO_p_kbdtai
rdlong cO p ptrl, cO_p_kbdhead
cnp cO_p_ptr2, cO_p_ptri wz " are they

muxz OUTA, #3$0f

or Dl RA, cO_c_DATAQUT ' activate
S outputs

waitpeq cO c IOR c¢cO c IOR

andn DI RA, cO0_c_DATAQUT

page 208 / 405

Propeller

(Hss)
j mp #cO_i orl oop
cO0_p_sdcnd | ong 0
cO0_p_sdbl k | ong 0
cO_p_sdptr | ong 0
' data pointer
cO_v_dptr | ong 0
cO v _cnt | ong 0
cO_c 512 | ong 512
| ong O[((($+15) >>4) <<4) - $]
dunmy
waitpeq cO_c IOR cO0 c IOR
andn DI RA, cO0_c_DATAQUT
jmp #cO_i orl oop
| ong O[((($+15) >>4) <<4) - $]

reads the error

c0 readcnd_06
ror

oi nter

MSByt e

s outputs

Reads the sector data

c0 readdta_ 07
ror
if z
if z
oi nter

rdl ong
nov

nov
shr
nov

or

wai t peq
andn
jnp

| ong

r dbyt e

add
cnp
nmov
nmov

resets the data pointer to the beginning of the buffer

after 512 reads the pointer is reset

cO_v_data, cO_p_sdcnd " reads er
cO_v dptr, cO_p_sdptr " resets p
cO v cnt, #0 " counter
cO v _data, #24

QUTA, cO v _data ' presents
DI RA, cO0_c_DATAQUT " activate
cO c IOR cOc ICR

Dl RA, cO_c_DATAQUT

#cO_iorl oop

Of ((($+15) >>4) <<4) - §]

QUTA, cO_v_dptr " reads er
cO v cnt, #1

cO v cnt, c0 _c 512 Wz

cO v cnt, #0

cO v dptr, cO_p_sdptr resets p

page 209 / 405

Propeller
(Hss)

or
S outputs

Dl RA, cO_c_DATAQUT

waitpeq cO c IOR c¢cO0 c IOR

andn
jnp

| ong

DI RA, cO_c_DATAQUT
#cO _iorl oop

O[((($+15) >>4) <<4) - §]

Allows to read the last witten bl ock nunber

c0 readbl k_08 rdl ong
ock nunber
shr
nov
MSByt e
or
S outputs
wai t peq
andn
jm
| ong
c0 _readbl k_09 rdl ong

ock nunber
shr

MSByt e
or
S outputs
wai t peq
andn
jnp

| ong

c0 _readbl k_0OA rdl ong
ock nunber
shr
nov
MSByt e
or
S outputs
wai t peq
andn
jm

cO_v_data, cO_p_sdblk

cO v _data, #24
QUTA, c0O_ v _data

Dl RA, cO_c_DATAQUT
cO c IOR cO c ICR

DI RA, cO0_c_DATAQUT
#cO0_iorl oop

O[((($+15) >>4) <<4) - §]
cO v data, cO_p_sdblk

cO v _data, #16
QUTA, cO v _data

DI RA, cO0_c_DATAQUT
cO c IOR cOc ICR

Dl RA, cO_c_DATAQUT
#cO_iorl oop

Of ((($+15) >>4) <<4) - §]
cO_v_data, cO_p_sdblk

cO v _data, #8
QUTA, c0O_v_data

Dl RA, cO_c_DATAQUT
cO c IOR cO c ICR

DI RA, cO_c_DATAOQUT
#cO0 _iorl oop

activate

reads bl

presents

activate

reads bl

presents

activate

reads bl

presents

activate

page 210/ 405

Propeller
(Hss)

n 16

c0 readbl k_0B
ock nunber

MSByt e

s outputs

cO_c_DI RA
c0_c_MsSKADDRH
cO c ICR
c0_c_DATAQUT

c0_v_addr
cO0_v_addrh
cO v data
cO_p_ptri
cO_p_ptr2

More to come!

| ong

rdl ong

or

wai t peq
andn
jnp

| ong
| ong
| ong
| ong

| ong
| ong
| ong
| ong
| ong

jmp
fit

O[((($+15) >>4) <<4) - §]

cO_v_data, cO_p_sdblk
QUTA, cO v _data
DI RA, cO_c_DATAQUT

cO c IOR cOc ICR
Dl RA, cO_c_DATAQUT
#cO_iorl oop

0
$00f f 0000
1<<25

$f f

ol elNelNoelNo)

#cO_iorl oop
$1f 0

== .alig

reads bl
presents

activate

page 211 /405

Propeller
(Hss)

Important Note

When comparing the information here with that in the Propeller Chip Manual and Datasheet you will
notice discrepancies. For example, this page states the PLL output is rated at 64MHz to 160MHz while
the Manual states it is rated at 64MHz to only 128MHz, this page says an external crystal with PLL
enabled can have a frequency of between 4MHz and 10MHz, the Manual states 4MHz and 8MHz.

The reason is that Parallax have conservatively rated the Propeller Chip to specify the circumstances in
which it is, for want of a better phrase, "guaranteed to work". The reality is that Parallax themselves
produce product which requires operation outside the conservative ratings given; the SpinStamp uses a
10MHz crystal with the PLL output running at I60MHz. By all accounts this has never proven to
problematic.

In consequence, this page has been written with respect to "best known reality" rather than simply
reiterating the specified ratings given in the Propeller Chip Manual or datasheet.

System Clock Speed

The internal operation of the Propeller Chip is controlled by a system clock which determines how
quickly the Propeller runs and how fast the execution of programs are.

There are four sources from which a system clock can be derived -

e Internal slow oscillator (RCSLOW, 20kHz)
e Internal fast oscillator (RCFAST, 12MHz)
¢ Crystal or Resonator

e Oscillator Module

Additionally, when using a crystal, resonator or oscillator module a PLL may be enabled to increase the
system clock speed by up to a factor of 16.

The system clock speed is rated at up to 80MHz and operation at up to 100MHz can usually be achieved
under normal circumstances. As the clock speed increases above 100MHz the internal circuitry of the
Propeller Chip will start to become unstable and correct operation is not guaranteed.

There is no definitive statement possible as to what the absolute maximum system clock speed is because
that depends upon what methods are used to attain a particular system clock speed. A super-cooled
Propeller Chip will likely be able to operate at much higher clock speed than one which is simply placed
upon a PCB with no special considerations taken.

This also depends on the supply voltage. According to experiences 100MHz systems run quite reliable @
3.6V but not well @ 3V.

page 212 /405

Propeller
(Hss)

RCSLOW

While notionally running at 20kHz, the manufacturing tolerances of the the RCSLOW oscillator means
that, for any particular Propeller Chip, the oscillator may run at anywhere between 13kHz and 33kHz.

The oscillator should remain fairly stable over short periods of time but it may drift over longer periods
and the actual oscillator frequency will depend on operating temperature and supply voltage.

While allowing operation with no additional, external components the RCSLOW oscillator will unlikely
be usable in applications which require accurate timing without calibration and may require re-calibration
during application execution. For accurate timing it is recommended to use an external crystal, resonator
or oscillator module.

RCFAST

While notionally running at 12MHz, the manufacturing tolerances of the the RCFAST oscillator means
that, for any particular Propeller Chip, the oscillator may run at anywhere between 8MHz and 20MHz.

The oscillator should remain fairly stable over short periods of time but it may drift over longer periods
and the actual oscillator frequency will depend on operating temperature and supply voltage.

While allowing reasonable fast operation with no additional, external components the RCFAST oscillator
will unlikely be usable in applications which require accurate timing without calibration and may require
re-calibration during application execution. For accurate timing it is recommended to use an external
crystal, resonator or oscillator module.

The Propeller Chip uses the RCFAST oscillator while it is booting and downloading programs from a PC.
To cater for the variations between Propeller Chips the download protocol uses a mechanism which does

not require absolute timing and is suitable for all Propeller Chips regardless of the operating frequency of
the RCFAST oscillator.

Crystal or Resonator

The Propeller Chip supports the direct connection of a crystal or resonator with frequencies between DC
and 8O0MHz.

When the PLL is enabled the crystal or resonator frequency must be between 4MHz and 10MHz.

Note that no capacitors are needed in the oscillator circuit and the oscillator can simply be connected to
the appropriate Propeller Chip pins.

page 213 /405

Propeller
(Hss)

Oscillator Module

The propeller Chip supports the direct connection of an oscillator module with an operating frequency of
between DC and 128MHz.

When the PLL is enabled the oscillator module operating frequency must be between 4MHz and 10MHz.

PLL

An internal PLL can be enabled when using a Crystal controlled oscillator or an oscillator module. When
enabled it can boost the internal system clock speed by a factor of up to 16.

The PLL is a fixed "times 16" multiplier which is followed by a divider which can reduce the PLL output
to create the system clock. The PLL output is rated from 64MHz up to 160MHz which requires that the
crystal or oscillator module it is driven from is not below 4MHz and does not exceed 10MHz. The system
clock is rated at up to 80MHz which requires that the PLL output is divided down to a value no greater
than SOMHz.

Taking both these factors into account means that only certain crystal and oscillator module frequencies
are allowed when the PLL is enabled. As already stated, the crystal or oscillator module frequency must
not exceed 10MHz to keep the PLL output within rated specification. To run with a system clock speed of
80MHz, a SMHz oscillator source, multiplied by 16 by the PLL and divided by one would be acceptable
as would a 10MHz crystal, multiplied by 16 by the PLL and divided by two.

In practice the system clock speed is usually capable of reaching 96MHz under normal circumstances
allowing a 6MHz oscillator source to be used with the PLL and a post-PLL division of one. Under most
normal circumstances a system clock speed of 100MHz is attainable allowing the oscillator source to be
6.25MHz while still retaining a post-PLL division of one.

Parallax report that all Propeller Chips must pass soak testing at 104MHz system clock speed before
being allowed out the factory door.

Some success has been reported using 7.3728MHz crystals on an otherwise unmodified ProtoBoard.
Other reports are that there can be problems at this frequency when the Propeller is being worked hard.

Similar success has been reported using 14.31818MHz crystals with a PLL8x setting.
Using 15MHz is reported to present difficulties which would fit with hitting the 120MHz system clock

speed limit where Parallax report break down in reliable Cog operation. The hard limit will almost
certainly be affected by temperature, voltage and particular chip.

page 214 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=259385
http://forums.parallax.com/forums/default.aspx?f=25&m=279787
http://forums.parallax.com/forums/?f=25&m=265894&g=265922#m265922

Propeller
(Hss)

While it may be possible to achieve even higher system clock speeds under the right conditions (running
above normal operating voltage, forced cooling or even freezing), operation under normal circumstances
is not guaranteed above SOMHz.

Crystal Frequency PLL divided by 2 PLL divided by 1
4MHz 32MHz 64MHz
SMHz 40MHz 80MHz
6MHz 48MHz 96MHz
6.25MHz 50MHz 100MHz
6.5MHz 52MHz 104MHz
7.3728MHz 59MHz 118MHz
8MHz 64MHz Not allowed
10MHz 80MHz Not allowed
14.31818MHz 114.5MHz Not allowed
uOLED-96-PROP

There has been some debate and confusion over the capabilities of the uOLED-96-PROP manufactured
by 4D Systems, a small graphics display module which includes an embedded Propeller Chip as its
controller.

uOLED-96-PROP Mk 2 - 10MHz Crystal

The uOLED-96-PROP Mk 2 uses an 10MHz and has no reported issues. This can operate with up to
PLLS8x giving a maximum system clock of 80MHz.

uOLED-96-PROP Mk 1 - 8MHz Crystal
The uOLED-96-PROP Mk 1 uses an 8MHz crystal and manufacturer provided example code shows
configuration using PLL with no post-PLL division; this results in a 128MHz system clock, well above

what is "normally allowed".

The reasoning as to why this works is that the choice of Propeller Chip Packaging and board design
mitigates the potential problems of high system clock speed.

page 215 /405

Propeller
(Hss)

In practice it has been demonstrated that some code appears to execute as expected at 128MHz but it has
also been shown that some code will not and will fail in a manner as predicted by Parallax at such high
system clock speeds. There is no clear-cut, "it does" or "does not" work at 128MHz, answer. It is a case of
"Your mileage may vary" (YMMYV) and will depend very much on what the actual code is.

For those who have a uUOLED-96-PROP Mk 1 and are concerned with using a 128MHz system clock or
are having problems when trying to use that, the simple solution is to configure the application code to
use a PLLS8x setting rather than the PLL16x setting. This will reduce the system clock speed to 64MHz
but should be satisfactory for many application programs.

For those who wish to use the uOLED-96-PROP Mk 1 with a system clock speed above 64MHz, one
option would be to replace the 8MHz crystal with another. This must be done with due care and will
likely void any manufacturers warranty. It is not recommended that the crystal be changed unless you
know what you are doing and fully understand the potential consequences; you are entirely responsible
for any adverse effects or damage which may occur during such a process.

DLP-PROP

The DLP-PROP is an Propeller-based board manufactured by DLP Design which is provided as a
DIP-style plug-in module, complete with USB programming interface which also provides power and
acts as an oscillator module for the Propeller Chip.

There are two issues with this configuration which DLP-PROP users should be aware of -

¢ Firstly that the 6MHz oscillator clock provided by the USB interface is only present when the
USB interface is connected and working properly (has been "enumerated" by the host PC), and,
e The 6MHz clock source is not as stable nor as accurate as a crystal controlled oscillator source.

The consequences are that the Propeller Chip will not function when not connected to a USB host system
and accurate timing may not be possible.

Standard Configurations

The following table shows the crystals fitted and maximum system clock speeds attainable for a variety of
commercial and third-party Propeller Chip boards ...

Board Crystal Max PLL Max System Clock Notes
Parallax DemoBoard 5SMHz PLL16x 80MHz
Parallax PDB SMHz PLL16x 80MHz 1

page 216 / 405

http://www.dlpdesign.com

Propeller

(Hss)

Parallax ProtoBoard 5SMHz PLL16x 80MHz
Parallax SpinStamp 10MHz PLL8x 80MHz
DLP-PROP 6MHz PLL16x 96MHz
Hydra Games 10MHz PLLS8x 80MHz
System

PropRPM SMHz PLL16x 80MHz
PropSTICK SMHz PLL16x 80MHz
uOLED-96-PROP 8MHz PLL8x 64MHz 2
Mk 1

uOLED-96-PROP 10MHz PLL8x 80MHz
Mk 2

(1) Parallax Professional Development Board (PPDB)
(2) May be usable to 128MHz under some circumstances (see earlier notes).

The majority of boards use an 80MHz system clock speed (SMHz with PLL16x or 10MHz with PLL8x)
and software examples are usually configured for 80MHz operation. It is often necessary to adjust the
configuration settings for use with other boards.

Over-Clocking

The following tables show the performance gains which can be achieved by replacing a fitted crystal with
another to increase the execution speed of the Propeller Chip ...
To 80MHz To 96MHz To 100MHz To 104MHz To 118MHz

From 80MHz +20% +25% +30% +48%
From 96MHz -16% +4% +8% +23%
From 100MHz -20% -4% +4% +18%
From 104MHz -23% -8% -4% +14%

page 217 / 405

Propeller
(Hss)

Packaging Propeller Software

Generally speaking, it is a good idea to publish complete packages for others to learn from. This page is
about sharing tips and tricks for doing this. If you are into the prop (and that's a safe bet if you are here
reading now), adding this value will grow the community of Propeller enthusiasts. The more the merrier.

Identify target Propeller Setup(s) and Clock speed(s)

With all the boards and home-brew setups out there now, it's beginning to make sense for this to occur.
Demo board & Hydra both run @ 80Mhz. Hybrid and some others run @ 96Mhz. If your program is
easily configured for multiple boards, that's great and can easily be put in the self-documenting code
options. If this is not the case, then others will know what setup to use, or that they might need / want to
port it to their setup.

Other things to include are the video output standard(s), such as NTSC, PAL, both!, VGA, etc...

eg: some_game_HYBRID_96_PAL.zip

Propeller IDE Tool Archive function

The propeller tool has an archive function that will grab all the objects needed for a particular project and
zip them up into one simple package for others to try out, without having to locate dependent packages.
Highlight your main program, then choose FILE, ARCHIVE and go from there. Archive includes a name
and time stamp for easy tracking.

You must have successfully compiled your code, in order for the archive function to work. Just load your
main program, and compile, then archive.

Additional documents, in the form of spreadsheets, text documents, screen captures, sample assets, etc...

can be bundled with the archive created with the Parallax Propeller IDE tool, using your archive
manipulator of choice.

Combine everything into one SPIN wrapper

Bundling things together as a demo that can also be used as a building block object is another ready

page 218 /405

Propeller
(Hss)

option. This may require some greater effort, on the part of others, to utilize the work. YMMV.

Self-documenting code options

The Propeller tool includes a nice font that can render schematics, flow charts and general ASCII text
comments. Consider verbose comments in your code, particularly if you elect to produce one combined
file. Users can then run the demo, read the comments, tweak, then apply the bits that make sense.

Use the SPIN block comment to embed HTML documentation right in the program file. Good for simple
graphical elements, color palettes, etc...

Hydra CD

Really great games and game related utilities, well packaged and documented, is likely to end up on the
HYDRA CD. Quick and easy fame can be yours!

Some objects are distributable, some are not.

The sample code on the HYDRA CD, written by Andre's demo team is not freely distributable. Note
these files in your code documentation, by name so users can locate them after having obtained their own

copy.

Hanno has given permission to include the 'Conduit' object to provide ViewPort support in your
packages. This means that all of the ViewPort code used to test the spin code can stay in the distributed
version, even if the end user does not have ViewPort. Since the name 'Conduit' is the same across all
versions of ViewPort, but the software interface that it supports does not, be careful not to have users
place the copy of conduit that you provide anywhere that it might over-write a previously installed
version. if the user already has ViewPort and Conduit installed, then they should just delete the version
that you have packaged up.

Other files, published in the Parallax Object Exchange are distributable, as is the Parallax reference
material. Web forum code postings vary considerably on this, making it best to just ask before
distributing these. If your project modifies something, it is a really great idea to modify the name so
people do not confuse objects. It is also a good idea to reference the original in the program header as
well, so people can follow the logic later.

Consider staking out a name space prefix for your code, and use version numbers or the archive
timestamps for people to track changes.
eg: potatohead--wonderdriver_001.spin

page 219 /405

Propeller
(Hss)

Consider not removing incremental code changes from the Wiki or forums. These are often very helpful
to others for learning how things evolved in addition to just learning how to use the code in it's current
release form, The HYDRA book and CD illustrate this idea perfectly, with incremental changes to drivers
both in the text and on CD. You may also find your own pre-release efforts useful at some later time. If
nothing else, it makes a great off-site backup lest disaster strikes!

Include running screen shots

It's helpful to see what the expected result is! A coupla JPEGs from your capture card, camera, or screen
capture code running on the Propeller itself, help the potential user to see what it is they will be running.
Colors, etc... can be compared to, just in case setups differ somehow.

Specify your license

By default, everything is copyrighted. Take a moment to include your intent in the program header, along
with version, purpose, name, date, etc... This simple bit of meta data makes things easier for everyone.
Hobby level developers are not often concerned with these matters, but a great many others are.

The share and share alike culture surrounding the Propeller is a big value add. While not always possible,
where it is, an explicit statement can save someone some grief and maybe see your code used, improved
on, or just found useful by others.

As the software creator, you are entitled to specify most any conditions of use. Code lacking such
specifications may not be useful to others having to work in a more formal environment. This can be a
simple note, to a fairly complete specification, such as BSD, GPL, Creative Commons, etc... If you can,
keep this really simple. Others looking at the code, for the first time, can grok right away, what their
options are, and can know to ask for greater permission, if their intent warrants that.

Choosing a License

The complexities of licensing and implications of particular licenses are subjects which cannot be fully
covered here, but authors of software should bear in mind that a chosen license does not just grant
permission for things which can be done, but also places restrictions on what cannot and may also have
consequential impact on anyone using your code which they, or you, may find undesirable.

Many software authors place their work in the public domain so others may use that code and benefit
from it, however, a poorly chosen license may restrict its use more than intended. Some licenses may
require anyone using your code to also publish the work in which they use your code. This may be

page 220/ 405

Propeller
(Hss)

unsatisfactory for some who may wish to use your code but will be unable to do so. You may wish to
impose such obligations or you may not (it is a matter for the author to decide) but the author should be
aware of the consequences of whatever license they choose to use and ensure it is suitable for and
matches what they intend.

Before choosing a license, it is recommended that software authors decide what they wish to allow and
what they wish to prevent and researches how any particular licenses match with their desires. Do not
choose a license simply because it is the 'flavor of the month' or others say it is the preferred license to
use; choose a license which matches your own intent.

page 221 /405

Propeller
(Hss)

NTSC Palette Mode

The propeller's build in video hardware is designed for displaying graphics in 2 color mode or 4 color
mode NTSC.

2 Color Mode

Using this mode a program can display 2 colors per 32 horizontal pixels.

Data is sent to the video hardware using a WAITVID palette,pixels instruction. palette is a long value
with a palette of 2 colors.

Byte 3 (MSB) Byte 2 Byte 1 Byte 0 (LSB)

don't care don't care Color 1 Color 0

data is a long containing 32 single bit pixels. The color displayed is looked up from the palette. The least
significant bit is displayed first.

4 Color Mode

Using this mode a program can display 4 colors per 16 horizontal pixels.

Data is sent to the video hardware using a WAITVID palette,pixels instruction. palette is a long value
with a palette of 4 colors.

Byte 3 (MSB) Byte 2 Byte 1 Byte 0 (LSB)

Color 3 Color 2 Color 1 Color 0

pixels is a long containing 16 two-bit pixels. The color displayed is looked up from the palette. The least
significant bit-pair is displayed first.

Hi-Color Mode

This is a trick used for a mode that can display all 86 colors on any pixel. The VCFG register is set up for
a 4 color mode, but the VSCL register is set up such that it only outputs 4 pixels per WAITVID. Data is
then sent to the video hardware using a WAITVID palette,# % % 3210 instruction. So each of the 4 pixels
will always display one of the 4 palette colors. This means that we can just set the palette to the 4 colors
we want to display in order.

e.g. To display 4 pixels of black ($02), white ($06), yellow ($5D) and blue ($FB):
WAITVID colors,#% %3210

page 222 / 405

http://propeller.wikispaces.com//Palette+Mode#the 2 color mode
http://propeller.wikispaces.com//Palette+Mode#the 4 color mode
http://propeller.wikispaces.com//Palette+Mode#the 4 color mode
http://propeller.wikispaces.com//Colors

Propeller
(Hss)

"%%3210 == 11 10 01 00 (4 pixels pattern)
" 1st pixel will be color 0 ($02, black)

' 2nd pixel will be color 1 ($06, white)

' 3rd pixel will be color 2 ($5D, yellow)

" 4th pixel will be color 3 ($FB, blue)

colors LONG $02 06 5D FB

page 223 / 405

Propeller
(Hss)

Propeller Assembler Source-code Debugger

The Propeller Assembler Source-code Debugger (PASD) is a suite of software components which enable
end-users to debug Propeller assembly language code at the source level using a remote (USB attached)
Windows PC.

Author

Andy Schenk (Ariba)
Manual by Eric Moyer (epmoyer)

License

© 2007 Insonix. Free (as in beer) to download and use.

Website

Download from Insonix
Introduced on the Parallax forum here.

Overview

(from the manual)

PASD supports setting multiple break points, single-step execution, memory inspection/modification of
COG RAM, inspection of Main RAM, label recognition, and I/O pin state inspection. The debugger suite
consists of a Windows application, a spin object and a short Debug Kernel which must be inserted at the
beginning of the code to be debugged. The Debug Kernel is only 12 longs in size, and makes possible
communication with the PASD spin driver, which runs into own Cog. The PASD spin driver
communicates over the Propeller’s serial programming interface with the PASD Windows application
running on an attached PC. Except for pins 30 and 31 (the Propeller’s serial programming interface pins)
all Propeller 10 pins are freely available during debugging.

The total Propeller resource footprint of the PASD suite is:

1) Two IO Pins (30 and 31, the serial programming interface pins).

2) 12 longs at the start of COG Ram in the COG whose assembly code is being debugged.
3) The upper two longs of Main RAM ($7{f8 and $7fff).

4) The PASD driver which occupies about 223 Longs and runs in one dedicated COG.
All remaining Propeller resources (cogs, RAM, pins) are fully usable.

PASD presently supports debugging code in only one COG at a time.

page 224 / 405

http://www.insonix.ch/propeller/prop_pasd.html
http://forums.parallax.com/forums/default.aspx?f=25&m=214410

Propeller
(Hss)

This page is under construction. It is intended to contain information for people designing printed circuit
boards for the Propeller.

Currently a lot of placeholder text and links to forum threads. Will be summarizing info from threads as
time goes by.

This page is primarily maintained by mpark, but anyone is welcome to make improvements.

Propeller chips

e Connect all Vdd and Vss. Floating Vdd or Vss pins may cause PLL failure [citation needed].

e "What destroys the PLL (actually, the logic circuits downstream from the PLL) is high current
running between VDD or VSS pins. Those pins need to be tied together very closely on the PCB.
As Leon said, good PCB layout is critical. Bad PCB layout can not only cause caps to be
ineffective, but give current the opportunity to flow between VDD or VSS pins, which can
damage the Propeller. The key is to keep things very tight. Make power routing your first priority
in a PCB design. Make power traces as short as physically possible, and at least 15 or 20 mils

wide."—Chip Gracey http://forums.parallaxinc.com/forums/default.aspx 2f{=25&m=410277

e Best practice Power/Ground on Propeller Chip
e Connection of RESn Pin

e Pins 30/31

Crystal

e The Propeller specs call for a parallel-resonant crystal with about a 20pF load capacitance (for
SMHz). If you were to substitute a series-resonant crystal or one with the wrong load capacitance,
you might well see a frequency discrepancy.*

e crystal considerations thread

e 5MHz quartz with small housing required (Note: If using small watch crystal, clean out any flux
or other gunk between the closely-spaced pads. Cautionary tale: What's wrong with my PCB?

re-resolved])

EEPROM

e The Prop has to have an EEPROM with at least 32K bytes of storage like the AT24C256 or
Microchip 24L.C256. If you need to store any significant amount of data or another program
(overlay), you'd need an AT24C512 or Microchip 24L.C512 or possibly an AT24C1024B or
Microchip 24LC1025.

e Alternative: replace the eeprom with a ramtron FM31L.278 device; you will have the same
boot-eeprom capability (32K-unlimited writes) plus a real-time clock.*

Bypass/decoupling caps

page 225 / 405

http://forums.parallaxinc.com/forums/default.aspx?f=25&m=410277
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=336759
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=396172
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=394834
http://forums.parallax.com/forums/default.aspx?f=25&m=331993
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=360790
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=400197
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=442931
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=442931
http://www.ramtron.com/files/datasheets/FM31L27x_r3.0.pdf
http://forums.parallax.com/forums/default.aspx?f=25&m=387459

Propeller

(Hss)

Power

You need one 0.1uF ceramic bypass cap next to each Vdd/Vss pair.

Design rules for stable propeller operation and overclocking

decoupling caps on the prop. If you plan to socket the Propeller, you can fit them under the
propeller, that lets you get them really close to the power supply pins. I'd do one for each side. 0.1
uf or so. I've found that Machine pin 40 pin dip sockets give you the room, the cheap sockets put a
reinforcement rib right across the center, blocking the area I normally put them. My point? look at
the socket you plan to use before laying out the board, or you may find problems when you decide
to solder them together.

about decoupling caps ... put down some 1208 or 806 smd device pads with short fat traces. There
is nothing on the back so a ground plane would be nice there and will make the fab easier to spin.
If it was my board I would allow a provision for putting smd resistors in series with all propeller
traces.

Decoupling caps, the magic component

Power connector: 2.1mm center positive is what most users will have on hand.

e Power Supply Design for Propeller

(about reverse polarity protection)
"CP-202A-ND has bent pins and CP-102A-ND has smaller pins (in the pcb). Both are 2.1mm and

from Digikey"*

Power connector @rapidonline, @digikey

General

Avoid 90 degree bends in traces.

The main reason for avoiding 90 degree track angles is that it makes etching harder - you are more
likely to get shorts, especially with narrow tracks and spacing. Mitered tracks look neater, as well.
Other reasons not to use 90 angles is traces get narrowed at corners and they increase reflections
in high frequency traces.*

I would recomend if people have room have an sd card and 512kbit eeprom for comercial
products. if you do then you can use my bootloader to install updates. *

A good rule of thumb is to keep the traces no closer than 0.050 in from the edge of the board.

Ultimate Guide to Inkjet Direct PCB Printing

making your own printed circuit boards?

Making PCB's
http://www.instructables.com/id/Professional-PCBs-almost-cheaper-than-making-them-/

Surface mount

stencils from http://ohararp.com/
reflow ovens are expensive so i use a convection toaster oven as one. works just as good but

page 226 / 405

http://forums.parallaxinc.com/forums/default.aspx?f=25&m=356308
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=410277
http://forums.parallax.com/forums/default.aspx?f=25&m=281570
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=179984
http://forums.parallax.com/forums/default.aspx?f=25&m=415347&g=415363#m415363
http://www.rapidonline.com/Cables-Connectors/Connectors-Mains-Power/DC-Power-Connectors/PCB-Mount-DC-power-sockets/80891
http://search.digikey.com/scripts/DkSearch/dksus.dll?lang=en&site=US&WT.z_homepage_link=hp_go_button&KeyWords=CP-202A-ND
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://forums.parallaxinc.com/forums/default.aspx?f=15&m=382091
http://forums.parallax.com/forums/default.aspx?f=15&m=384944
http://forums.parallax.com/forums/default.aspx?f=25&m=258070
http://www.instructables.com/id/Professional-PCBs-almost-cheaper-than-making-them-/
http://ohararp.com/

Propeller
(Hss)

requires some babysitting.

e 0603 resistors are very easy to work with by hand and their smaller size makes for easier

placement. *

e dissenting opinion: "0603 parts are tiny, I think that unless space is a constraint 0805 or 1206 are
ok. Just making them smaller may not always be advantageous." *

e Soldering 0805 SMD resistors and QFP-52 ICs question

e SMB board design (mostly about solder)

e Solder Paste -Where can I get some?

e Propeller Controlled Reflow Oven

e (discussion of stencils)

e thread contains "Prop_44 pin custom component for your ExpressPCB library"

PCB fabrication houses

Advanced Circuits

BatchPCB

ExpressPCB

http://www.futurlec.com/PCBService.shtml

Gold Phoenix

PCBexpress

SeeedStudio

Related thread: Best Method for "short run" of PCBs

in Colorado*

"is the cheapest place but it does take some time to
get the boards back (they are actually made in
China)"; "Nuts and volts uses a service called batch
pcb I think. They take small orders until they have
enough for a panel and then run it. The turnaround
time varies but the price is reasonable."*; "I don't
think it is Nuts and Volts that's directly affiliated
with Batch PCB, I think it is www.sparkfun.com. If
you have a lot of boards that add up to one or more
panels, then Batch PCB can turn around fairly fast. I
believe Batch PCB uses Gold Phoenex for the actual
fab." *

"They have an automated quote generator on-line.
Reasonable prices, fast turn-around, low cost World
wide shipping available.*

in China; "If you need large panels"*

in China; "has a nice PCB service and can even
partner with the designer to distribute an open
hardware "product" through their online store. Low
cost International shipping with tracking via Hong
Kong." *

page 227 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://forums.parallax.com/forums/default.aspx?f=15&m=396804
http://forums.parallax.com/forums/default.aspx?f=15&m=393705
http://forums.parallax.com/forums/default.aspx?f=15&m=394198
http://forums.parallax.com/forums/default.aspx?f=25&m=310534
http://forums.parallax.com/forums/default.aspx?f=15&m=338940
http://forums.parallax.com/forums/default.aspx?f=25&m=415580
http://www.4pcb.com/
http://forums.parallax.com/forums/default.aspx?f=15&m=393468
http://www.batchpcb.com/
http://forums.parallax.com/forums/default.aspx?f=15&m=393468
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://expresspcb.com/
http://www.futurlec.com/PCBService.shtml
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://www.goldphoenixpcb.biz/
http://forums.parallax.com/forums/default.aspx?f=15&m=393468
http://pcbexpress.com/
http://www.seeedstudio.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=396931
http://forums.parallaxinc.com/forums/default.aspx?f=25&m=453092

Propeller
(Hss)

PCB design software

e Eagle
e Diptrace

e Express PCB
e FreePCB

e PCB123
e Advanced Circuits
e PCB Software and Production

You forgot to mention the best (IMHO), free (GPL), cross platform (MAC too) suite of programs for
EDA (Electronic Design Automation), KiCAD. KiCAD has Schematic capture, PCB layout editor,
Gerber viewer, footprint selector, footprint editor. autorouter, project manager, etc.; a complete suite
capable of producing professional quality layouts..

iut-tice.ujf-grenoble.fr/kicad/

kicad.sourceforge.net/wiki/index.php/Main_Page

There's a large (2,5k member) active KiCad Yahoo Group here:

tech.groups.yahoo.com/group/kicad-users/

Parallax approved Eagle parts

Propeller Schematic Symbols for Express PCB

There is an excellent Homebrew PCB Yahoo Group with almost 5k members. Much help on EDA and
fabricating your own PCBs:

tech.groups.yahoo.com/group/Homebrew_PCBs/

Photoboards: They really need testing. Exposure time varies from manufacturer to manufacturer (and
with the kind of paper or transparency you have), and developing too.*

Common numbers

Reminder: Units: Parts come in imperial and metric sizes, sadly. When you give size it would be
useful to have both for example: 50 mils (1.27mm), or 1.27 mm (0.05"). Or something similar.
standard via size?

I'd make your prop plug via's (holes) 1.02 mm or so - the standard size is just too small for a
standard header.

demo board pinouts

page 228 / 405

http://www.cadsoft.de/
http://www.diptrace.com/
http://www.expresspcb.com/
http://www.freepcb.com/
http://www.pcb123.com/
http://www.4pcb.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=419250
http://forums.parallax.com/forums/default.aspx?f=25&m=388258
http://forums.parallax.com/forums/default.aspx?f=25&m=171786
http://forums.parallax.com/forums/default.aspx?f=25&m=396931

Propeller
(Hss)

e protoboard dimensions
e DIP pin spacing

Members' boards

e LucidGuppy's Eagle Schematic Reference Design

e Clus099's TriBladeProp
e Phildapill's PropBoard thread

e WBA Consulting's uSD datalogger
e Cenlasoft's

e cagletalontim: wanting to get started
e Microcontrolled's mobile device development kit ideas
e Sal Ammoniac's board

Other threads of interest

e PCB drill bits

e FTDI reset bug

e buck/boost converters

e]/O cycle timings

e Minimal TV or VGA pins

e 3.3V step-up IC for Propeller apps?
e The proper way to clean PCBs...before & after soldering

e Advice on hot air rework station
e Double sided but not... [Now a review of my new PCB Fab in a Box kit! pg 2

e [ooking for help with PCB assembly

Rayman's PCB page

page 229 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=137879
http://forums.parallax.com/forums/default.aspx?f=25&m=329999
http://forums.parallax.com/forums/default.aspx?f=25&m=316328
http://forums.parallax.com/forums/default.aspx?f=25&m=387459
http://forums.parallax.com/forums/default.aspx?f=25&m=394471
http://forums.parallax.com/forums/default.aspx?f=25&m=396388
http://forums.parallax.com/forums/default.aspx?f=25&m=361625
http://forums.parallax.com/forums/default.aspx?f=25&m=410587
http://forums.parallax.com/forums/default.aspx?f=15&m=396789
http://forums.parallax.com/forums/default.aspx?f=25&m=392294
http://forums.parallax.com/forums/default.aspx?f=25&m=393100
http://forums.parallax.com/forums/default.aspx?f=25&m=262581
http://forums.parallax.com/forums/default.aspx?f=25&m=340731
http://forums.parallax.com/forums/default.aspx?f=25&m=410674
http://forums.parallax.com/forums/default.aspx?f=15&m=413718
http://forums.parallax.com/forums/default.aspx?f=15&m=406765
http://forums.parallax.com/forums/default.aspx?f=15&m=400225
http://forums.parallax.com/forums/default.aspx?f=25&m=413522
http://www.rayslogic.com/propeller/PropPCB/PCB_Boards.htm

Propeller
(Hss)

This is the PinDefs.spin standard. Proposed PinDefs.spin 1.0 Standard.
At this point it is uncommitted, and all are invited to make suggestions to how byte configuration should
be identified.

CON
"' PinDefs.spin configuration file, adjust or overwite as needed.

_clkmode = xtall + pll16x
_xinfreq = 5_000_000

" NTSC/ PAL Swit ch
PAL MODE = 0 | 50 | 60 '0=NTSC, 50/60 = PAL with 50 or 60 Hz.
Primary Keyboard Single

KEYBOARD1 = 26

Primary Mouse Connection Single
MOUSE1 = 24

Primary TV Connection Single
TV_DAC1 = 12

Primary VGA Connection Single
VGAL = -1

Primary Audi o Connection Single
AUDI O1 = 10

Secondary Audi o Connection
AUDI O2 =11

" Primary SD medi a Connecti ons

FSRWL_DO = 16
FSRWL_d k = 17
FSRWL_DI = 18
FSRWL_CS = 19

'DS1302 C ock Settings
DS1302_INCLK =0

DS1302 INNO =0

DS1302_Cs =0
Serial I/0O

SERI AL1_TX =0

SERI AL1 RX =0

XBee Configuration
XBEE1 TX =0
XBEE1 RX =0

page 230/ 405

Propeller

(Hss)

HYDRA NET Configuration

HYDRANET _TX
HYDRANET _RX

| R Em t/ Det ect

| RDETECT
| REM T

Pi ng Sensor
Pl NG_DATA =

' GPS Sensor
GPS_DATA =

NES bit encodi ngs general

NES_RI GHT
NES_LEFT
NES_DOWN
NES_UP
NES_START
NES_SELECT
NES_B
NES_A

NES bit encodi

NESO_RI GHT
NESO_LEFT
NESO DOWN
NESO_UP
NESO START
NESO_SELECT
NESO B
NESO_A

NES bit encodi

NES1_RI GHT
NES1_LEFT
NES1_DOWN
NES1_UP
NES1_START
NES1_SELECT
NES1_B
NES1_A

Nes Controll er

JOY_CLK

0
0

-1
-1

-1

-1

%90000001
%90000010
%9©0000100
%90001000
%9©0010000
%©0100000
%91000000
%1.0000000

ngs for NES ganepad O

%90000000_00000001
%90000000_00000010
%90000000_00000100

= %90000000_00001000

%90000000_00010000
%90000000_00100000
%90000000_01000000
%90000000_10000000

ngs for NES ganepad 1

%90000001_00000000
%0000010_00000000
%90000100_00000000
%0001000_00000000
%90010000_00000000
%©0100000_00000000
%9©1000000_00000000
%1.0000000_00000000

|/ O Configuration
3

for state bits

page 231 /405

Propeller
(Hss)

JOY_SHLDn
JOY_DATAQUTO
JOY_DATAQUT1

PropGFX Lite

4
5
6

|/ O Configuration

%»0000010_00000000_00000000_00000000
%»0000010_00000000_00000000_11111111
= %©0000001_00000000_00000000_00000000

PG RXSPEED = 256_000
PG RXPI N =24

PG TXPI N = 25
MYCLKVAL =

MYDI RAVAL =

MYPI NOKVAL

MYDATASHI FT = 0

' Debug LED Confi guration

" LED1
' LED2
" LED3

0
1

= 3

Servo Configuration

SERVOL =
SERVQO? =
SERVGE =
SERVO4 =
SERVCH =
SERVO6 =
SERVO/ =

' ENC28J60 Et hernet settings

PUB

ENC1_SCK = 4
ENCL_S| =5
ENC1_SO =6
ENC1_| NT =7
| P_ADDR = 192 + 168<<8 + 1<<16 + 200<<24

" HVb5B Conpass Modul e

HVB5BENa =-1 HVB5B Enabl e (active | ow)
HVB5BC k = -1 HVB5B Cl ock (active neg edge)
HVB5BDI =-1 HV65B Dat a i nput

HV65BDO = -1 HV65B Dat a out put

Start

page 232 /405

Propeller
(Hss)

pProp040

pProp040 is a new design in the pPropQL series, based around a MC68(LC)040 and a Parallax Propeller.
(While it is not intended to run any QL software per-se nothing impedes it either. A reconfiguration of the
memory map may be needed.)

This system builds on the experience gained through the other systems but using a even more powerful
processor.

Goals

A single board computer able to run a variety of OSs. The availability of a MMU means that un*x
derivatives could be used.

1. Main Board

MC68040 Processor, intended frequency is 25 to 33 MHz (depending on processor available).

Up to 16MB (x32) Static RAM with 2 cycle access (fastest) and 2-1-1-1 burst access (8 MB per board,
two boards can be stacked for 16 MB).

Parallax Propeller as boot device and slow text video interface (for testing and prototyping).

32 bit Video subsystem. 32 bit Video subsystem shares memory with the processor using BG/BR/BB
protocol, synchronous to the processor clock, so 25 MHz and 33 MHz for 640x480 or 800x600.

1.1 Design

The 5 V MC68040 is interfaced to 5V memory and to a 5V tolerant CPLD. The CPLD runs all the glue

logic and decoding needed to map memory and to guaranty fast memory access. The '040 does not have
dynamic bus sizer thus a extra FPGA (the video controller) will act as one. Level shifting is only needed
for the propeller, connected to the FPGA and the SD cand also connected to the FPGA.

(Partial) Render of version i2 (sent to manufacturing)

The design show above has been sent for manufacturing and 4 prototypes have been made. Currently
waiting for the 040s to arrive. The glue-logic has been partially written (Verilog) and tested.

page 233 /405

Propeller
(Hss)

pPropellerSim

It is a Parallax Propeller Simulator with a twist it allows you to edit, compile and debug your assembler
code. In that sense it is not a complete simulator, but has enough to let you program comfortably.

Note: This program requires java v1.5 or better to run. If you want to make it run
under java 1.4, just remove the generics used in FormCloseEvent class, java.util. Vector
refs and related. That was added to avoid the v1.5 compiler's complaints.

It is assumed through this manual that the reader is familiar with the Propeller
terminology. If this is not the case, please read the Propeller Manual first.

Features

e Display a disassembled view of COG instructions

¢ Single-step, etc debugging capabilities

e Load .binary files (Spin instructions are discarded) directly to the first cog's memory
e Compiler / Editor

Parallax syntax (what else)

_ as number separator

equates/defines/=

Built-in editor, assembler source files can be loaded, saved, compiled and debugged.

.binary files can be edited (copy source). Symbols are shown in assembler view, but not labels

e Memory dump uses symbols and highlight recently modified long (when in screen), no undo/redo
¢ Binary files, plain binary without headers, can be loaded and saved (always saves 496 longs)
e Breakpoints on Read/write or execute, accessible through a pop up menu in the Memory Dump

Assembler View

This panel shows the contents of COG 0's memory as disassembled instructions.

Labels and symbols are used for every memory (in COG's address space) accessing instruction.
This symbols are either generated when a binary file is loaded or taken from the recently
compiled source file (in editor).

The buttons in the Toolbar (run, stop, step-over, step-into, run-to-cursor and compile), and the commands
with the same names on the Run menu have the same actions:

page 234 /405

Propeller
(Hss)

e Run : Starts the cog at the current PC till a breakpoint is reached or the program reaches

address 496. Display is updated every 100,000 cycles (approx).

Stop : Stops the current running program if any (at 100,000 cycles boundaries).

e Step-over : Runs till next instruction is reached, useful for subroutines (call instructions).
Step-into : Runs just one instruction

Run-to-cursor : Runs till the PC reaches the position of the cursor

e Warm reset : Resets the cog. PC and C and Z flags are reset (0, cleared and cleared, respectively).

It does not erase memory.

e Cold reset : reset the Hub, and COG(s). Erases all memory and PC and C and Z flags
e Compile : Compiles the current editor file to COG's memory

Simulator

The included simulator tries to simulate cycle-exact operation (if that it is possible). So what
you would expect in a real propeller (between the limitations described) should be reproduced
here. Self-modifying code has the same caveats as a real Propeller does.

The Propeller works with a sort of 4 stage machine. (As described by Paul Baker).

e Source fetch

e Destination Fetch
e Execution

e Write-back

Instructions that need more than 4 cycles are delayed at the execution stage, well is what I believe,
and what I implemented. Next instruction fetch occurs at the execution stage. So Self-modifying code,
can not successfully modify the next instruction and execute the new modified instruction if there is
no other instruction in-between because the old instruction was already fetched. Jump instructions
some-how

avoid a "delay-slot", fetching the destination during source fetch, I did it also in the execution stage.

The Hub synchronization scheme is also implemented, so synchronization is needed to complete HUB
instructions. Enough wait states are used till the Hub is synced to the Execution stage (where

I believe the sync occurs).

Several threads at Parallax Forums describe part of the behavior implemented here, the rest, was
gess-work. I did not peek at GEAR so I do not know how it was implemented there.

Any new info is of course welcome.

page 235 /405

Propeller
(Hss)

Breakpoints

A breakpoint can be set/reset at he current SELECTED row by tapping with the right mouse button
(CTRL-tap in one button mice) to pop-up the Breakpoint's menu, in the assembler view pane.
The options are:

e Set breakpoint : Sets an execution breakpoint.

e Set read breakpoint : Sets a breakpoint for a read instruction on this address

e Set write breakpoint : Sets a breakpoint for a write instruction on this address

e Set breakpoint (eq) : Sets a breakpoint that is going to be triggered when the contents

of this address is equals to the supplied value.

e Set breakpoint (ne) : Sets a breakpoint that is going to be triggered when the contents
of this address is not equal to the supplied value.

¢ Clear breakpoint : Clears all breakpoints for this address.

e (lear all breakpoints : Clears all breakpoints for all addresses

Some breakpoints are exclusive, that means they cannot be set at the same address: eq and ne.

Registers View

This panel shows the current state of hardware registers, CNT, PC and flags. Newly modified
registers are red marked. To change the status flag you can simply tap with the mouse button over it.
The PC can be modified with the provided field, with immediate fetch of new instruction.

COG Memory Dump

This panel allows to view the current cog's memory contents and to modify them.

Value Modification

page 236 / 405

Propeller
(Hss)

To modify the contents of a long, just tap over its value, and an editing field will be shown

with the current value. An HEXADECIMAL value between 0 and ffffffff is expected. No '$' symbol
is needed. Optionally an assembler instruction can be entered, in the same form as in the editor.
Current symbols can be used for source/destination fields, but not symbols will be created

during the compilation phase. An input will be accepted only when its contents are valid.

The trace column shown how many times a instruction was fetched, as a sort of profiling hint.

Hardware
= Not yet implemented

Editor

The editor is a simple text editor, used to edit source code (assembler) prior to be compiled.
The Compile button is used to compile this source and to load the compiled version directly
into the cog's memory (starting always at address 0).

The cursor position is shown at the lower left position, starting at 1, 1.

Syntax highlight

The editor supports syntax highlight, so instructions, conditions, numbers, symbols and comments
are displayed with unique colors for easy identification.

Compiler

The compiler is a simple-yet-straightforward two-pass assembler. Symbol creating as well as sizing
take place on the first pass, while code is generated in the second pass. A listing file is created
every time a compile is done. its name is the assembler file's name plus ".Ist".

Errors

Detected errors are going to be displayed in the status bar (lower left panel). Several errors
can be detected, the culprit is normally shown between parentheses, with the line number:

Compilation successful : No errors detected.

page 237 / 405

Propeller
(Hss)

® Duplicated symbol : the symbol was defined more than once.

Condition unknown : the condition was not recognized, probably was misspelled.

Instruction unknown : the instruction was not recognized, probably was misspelled.

Symbol not found : A symbol was used, without being defined.

Duplicated wz or wc field : The modifier (effect) was present more than once.

Argument(s) missing : An instruction requiring one or two arguments are missing one or both.
Destination read-only : An attempt to use a read-only register (between 0x1f0 and 0x1f3) as

destination was found

e Garbage at end of line : Extra not needed arguments, not properly quoted comments, etc

(garbage), was found at the end of a line.

Syntax

Normal Propeller Tool syntax is supported with some caveats:

e No ORG directive is supported, not needed, code always starts at 0.
¢ No RES meta command is supported, nor it has any use at this point, use long 0 instead.
e No multi-line-comments are supported, just single lines with '

The rest should work without problems.

Note: A call missing the corresponding 'xx_ret' symbol is going to give a "Symbol not found error".

Load/Save

Programs (in text form, i.e. not compiled) can be loaded/saved with ctrl-o/ctrl-s or from the
File menu with ease. The default (fixed) invented extension is '.pasm'.

Hub Memory Dump

This frame provides a rapid way of peeking at the contents of the Hub memory.
Included functions are load/save the contents to a binary file (".bin'), search and fill.

page 238 /405

Propeller
(Hss)

Search

The search button allows to search for the text/pattern in the search field.
An ASCII text can be entered directly, up to 24 characters are going to be used.
A HEX pattern can be entered when it begins with a '$' sign. Just one '$' is needed.

Hexa characters are composed of one or two Hex digits, separated by spaces, or in the case

of only two-digit hex values, no spaces:

$12 34 56 is the same as $123456, usw.

Fill

This function allows to fill the (writable) area of the hub's memory with a defined pattern.

Options are:

Random values: pseudo random values are used

Incremental value : a counter from O to 255 is used

Pattern : with the same value

Clear all memory : It clears (writes with zero) the hub's memory
Apply : applies the operations

Cancel : dismisses the dialog

Keys, Commands and menus

File Menu

CTRL-N New : Cold resets the Propeller (does not clear the editor)

Open Propeller tool binary : Opens a .binary file in the assembler view, ram of cog 0
(compiled with Propeller Tool)

Open binary : Opens a file as binary in the assembler view, ram of cog 0

(compiled with this pPorpellerSim).

Save binary : Saves the contents of the cog 0 ram as binary

CTRL-O Open assembler : Opens a text file (.pasm extension) in the editor,
previous content is lost without warning, cog 0 memory

is unaltered

CTRL-S Save assembly : Saves the contents of the editor as a text file (.pasm
etension)

CTRL-Q Exits the pPropellerTool

page 239 /405

Propeller
(Hss)

Recently opened files are added to the Recent open files menu

Edit Menu

Normal Undo, Copy, Paste stuff.

Copy to Editor : Disassembles the contents of the cog 0 memory (show in
assembler view and memory dump) and transfers it to the

editor. Previous contents of the editor are lost without

warning.

CTRL-UP Cursor Up Assembler view cursor movement, one row up
CTRL-DOWN Cursor down Assembler view cursor movement, one row down

Configuration Opens config Panel, usual color stuff and
the switch to turn on/off autosave of source file

before compilation

Run Menu

F10 Compile : Compiles the contents of the editor and transfers them
to the cog 0 ram. Previous contents of the cog O ram are

lost without warning. Symbols are preserved and used in

the assembler view.

F5 Run : Runs the contents of cog 0 ram starting at the current PC

if Address 496 (PAR) is reached, execution stops

F4 Run to cursor Runs the contents of cog 0 ram starting at the current PC
till the position of the current cursor

F8 Step over Runs till next instruction is reached starting at the

current PC

F7 Step into Runs current instruction, goes into CALLs

Data Menu
Hub Memory Dump Displays the Hub memory dump frame

Program Device Placeholder for when the programming of
propellers works

Copy HUB RAM to COG RAM allows to copy up to 496 longs from HUB RAM

back to COG RAM.

Known bugs

e HUB instructions, besides read and write the rest are not (yet) implemented

page 240/ 405

Propeller
(Hss)

Propeller programming

NOTE: this was removed because... it does not work :-(

In order for pPropellerSim to be able to program Propeller chips, some libraries and
java extensions should be installed in your computer, i.e. RXTX and Sun Java Comm extension.

http://java.sun.com/products/javacomm

For GNU/Linux, I'd suggest you visit:

WWW.rxtx.org

For MacOS X, A good source of files and information is available at:

http://www.uow.edu.au/~phillip/MacInOut/serial.html

Note: is important that the directory /var/lock can be written by the members of
the group uucp, change permissions and ownership to reflect that!

For Winblows users, there is some info at www.rxtx.org, but I did not test it.

In the Programming Device Frame, (Data menu -> Program device), select the port
where the programming dongle resides. (Under linux choose something like /dev/ttyUSBO)
and for MacOS X choose /dev/tty.usbserialxxxxx.

Verify that a Propeller can be found on that port pressing the button "Discover".

Now that the propeller was found, you can program it (you can avoid the discover step
if you know for sure that a Propeller dongle/Propeller chip is connected and they work).

From the panel on the left choose the source, a PropellerTool compiled .binary file or
the current contents of the HUB memory. Press the button "Program" and if everything
goes without problems, your device should be programmed in few seconds. Any errors
found will be promptly reported.

Assembler compiler

The compiler has been rewritten from previous version (starting at 0.7.x) to match the features of the
pLMMAss (pacito LMM Assembler).

Sections (.section)

page 241 /405

http://java.sun.com/products/javacomm
http://www.uow.edu.au/~phillip/MacInOut/serial.html

Propeller
(Hss)

Sections separate symbol creation into different groups

HUB : flat address space, addresses have a byte granularity

COG : flat, used for code that will be loaded in to a cog's memory,
addresses have a long granularity (and symbols will start at

adress O after the section .directive)

LMM : addresses have a long granularity

Alignment (.align

page 242 / 405

Propeller
(Hss)

pPropQL
A hardware emulator of the SinclairQL using the propeller. For a MC68020 based one see pPropQL020

Note: The original thread at Parallax' forums is here

Introduction

The SinclairQL launched to the market in 1984 is a MC68008 based computer with custom supporting
chips. The simplicity of its design compared to the Amiga or the AtariST make it a suitable candidate to
what I call hardware emulator. Using an original processor and replacing the logic and custom chips with
some glue logic and 2 propellers it is possible to get a replica. The functionality provided via two
propellers, one as video controller and the other one as IO controller is enough, in my humble opinion, to
get a functioning QL without using a real QL using any of the ROMS available (JS, JM, Minerva).

The aim of this project is to recreate this machine to the point that unmodified firmware and software can
be used in it. Two prototypes have been built so far but more could be built if desired/needed.

pPropQlI first prototype

Interfacing the propeller to a 5V MC68008

Level shifting

The MC68008 is a 16/32 bit processor, the smallest in the M68K family, with an external 8 bit BUS. It
has a 20 bit address space in its 48 pin version and 22 in its 52 PLCC variant. It was fabricated in a
NMOS process and requires SV to operate properly. At the time of designing of the original QL 5V
systems where common but today they have been passed out by lower voltage and less power hungry
systems. The propeller cannot withstand a 5V signal, it has no 5V tolerant inputs. So several ways of
interface exist. The simplest, but not necessarily the best, is to use a current limiting resistor. The
potential will be limited by the protection diode incorporated to the inputs. A better and recommended
method is to use a level shifter.

8 bit bus

The MC68008 has one bus cycle every 4 clock ticks like the MC68000 but it only has an 8 bit bus so two
bus cycles are needed to read instructions limiting the maximum throughput to 1 MIPS @ 8MHz. Despite
that the original QL had a cycle-stealing video controller, this design has a mirrored video RAM
(mirrored to the HUB RAM) and thus affords faster execution times.

page 243 / 405

http://propeller.wikispaces.com//pPropQL020
http://forums.parallax.com/forums/default.aspx?f=25&m=345196

Propeller
(Hss)

The bus is shared between the memory, the processor and the 2 propellers. The propellers are connected
using current-limiting resistors and the bus is buffered using a 74HCT245 8 bit buffer.

Address bus

The address bus that arrives to the propeller is multiplexed using a pair of HCT157 and controlled with
the propeller. As only one propeller will access the BUS at a time the two controlling signals (HLO and
HLT1) are level-shifted using a pair of tri-state buffers (HCT125).

Memory organization

The QL has a simple memory map and pPropQL is hardwired to it.

Memory region

0x00000-0xOBFFF
0x0C000-0xOFFFF
0x10000-0x17FFF
0x18000-0x1BFFF
0x1C000-0x1FFFF
0x20000-0x27FFF

0x28000-0x2FFFF

0x30000-0x3FFFF

Use

ROM/EPROM
External ROM

Unused

/0

External 1/0

Video RAM first screen

Video RAM second screen, used for system
variables

User RAM

Using some decoding logic this map can be easily implemented (This decoding logic was implemented in
the board show above and in the code below, but it is contained in the CPLD, it remains here for easier

understanding!).

page 244 / 405

Propeller
(Hss)

An extension to this map is any RAM in the area 0x40000 to OxXFFFFF. The pPropQL provides one
decoding signal for the upper 512Kbytes, those could be used for an EPROM (as provided) or for more
RAM but a discontinuous area will exist. The code shown below will hold NRAMCS asserted (low) for
the area between 0x20000 and Ox7FFFF. The area above is controlled by UCS.

All this glue logic can be put into a CPLD. Even the smallest with only 36 macrocells can do it
(XC9536).

“tinmescale 1lns / 1ps
FEEEEELEEE bbb bbb rr i rrirrrrr
LI

/1 Conpany:

/'l Engi neer: Pacito. Sys

11

/'l Create Date: 09: 04: 29 01/21/ 2010
/1 Design Nane: pPropQ. glue logic

/1 Modul e Narne: gl uel ogi c

[l Project Nane: pPropQL

/| Target Devices: XC9536

/1l Tool versions: Xilinx WblSE 10.1

/1l Description: GQue logic for the pPropQL
11

/'l Dependenci es:

11

/'l Revi sion:

/'l Revision 0.02 - Sinmnulated

/1 Additional Coments:

11

FEELEEL T r i rrrr bbb rrirr
LIy

nodul e gl uel ogi c(

input in_clk, // clock input

input in_fcO, // function code O

input in_fcl, // function code 1

input in_nas, // Adress strobe (Asserted when | ow)
input in_nds, // Data strobe (Asserted when | ow)
input in_rw, // Read-wite signal

i nput Al5, //

i nput Al6,

i nput Al7,

i nput AlS8,

i nput Al9,

output INTA, // Input to the uP, VNA

page 245 / 405

Propeller
(Hss)

out put NDTACK, // DTACK, asserted when | ow
output HL, // HL signal for the '157s
output 1OR, // 10 read signal

output 1OWN // 10 Wite signal

out put VIDEOW // Video W

out put NROMCS, // ROM CS

out put NRAMCS, // RAM CS

output NOE, // CE for the RAM

output W // Wfor the RAM

out put PROMCS, // Extra ROMCS for propeller
out put UCS // Extra 80000.. FFFFF chip sel ect

),

reg [3:0] r_dtackshift;
[* pPropQ. Menory Map

* 00000. . OFFFF RW NROMCS

* 10000. . 17FFF RW -

* 18000..1FFFF R 1OR (with waitstates)

* 18000..1FFFF W 1OW (with waitstates)

* 20000..27FFF W VIDEOW RAMCS (with waitstates)
* 20000..27FFF R RAMCS

28000. . 7FFFF RW RAMCS

*

*/

/1l Internal signals

wireint_ r = ~(in_nas | ~(in_fcO &in_fcl)) | ~in_rw|
wire int_w= ~(in_nas | ~(in_fcO &in_fcl)) | in_rw|
wire int_roncs = A19 | Al8 | Al7 | A1l6;

wire int_extra = A19 | Al18 | Al7 | ~Al6 | AlS5;
wireint_io = Al9 | A18 | Al7 | ~Al6 | ~Al5;

wire int_video = A19 | Al18 | ~Al7 | Al6 | AlS5;

wire int_rancs = A19 | ~int _ronts | ~int_io | ~int_extra;

[l ** Qutputs **

assign INTA =in_nas | ~(in_fcO &in_fcl);
/1l Chip selects

assign NROMCS = int_ronts | int_r;
assign PROMCS = int_ronts | int_r;
assign NRAMCS = int_rants | in_nds;
assign VIDEON = int_video | int_w,
assign IOR =1int_r | int_io;
assign I1ON=int_w| int_io;
assign UCS = ~A19 | in_nds;

/1l Extra outputs

assign NOE = int_r;

assign W= int_w,

i n_nds;
i n_nds;

page 246 / 405

Propeller
(Hss)

/1 DTACK generation

wireint_ slow= VIDEON& IOR & | ON
assign NDTACK = (r_dtackshift < 14) & ~int_slow,
/1l High, |ow signal
assign HL = r_dtackshift > 1;
al ways @ posedge in_cl k)
begin

if (in_nas)

r_dtackshift <= 0;

el se
if (~int_slow begin
r dtackshift <= r_dtackshift + 1;
end
end
initial
begin
r _dtackshift = O;
end
endnodul e
Report:
Macrocells 16/36 (45%)
Pterms 56/180 (32%)
Registers 4/36 (12%)
Pins 23/34 (68%)
Function blocks 26/72 (37%)

Interfacing to software emulated peripherals

The fun part is actually the implementation of all I/O by means of two Propellers. One for video (32k
RAM used) and the other one for the rest. The microdrives are replaced with a SD card. The keyboard is
emulated using a PS/2 keyboard, the RTC is a DS1307 and one serial port is also provided.

page 247 / 405

Propeller
(Hss)

As the 68K has an asynchronous bus, the bus termination signals are generated by the video propeller and
level-shifted using a HCT125 tri-state buffer. This circuit defaults to 4 clock bus cycles for fastest
memory access. The Video RAM is mirrored to one of the propellers and thus these write (but not read)
accesses can also be slower.

Note: Due to software development it has been noted that 500 ns for I/O access is not enough. The
DTACK signal is generated then using a CPLD with code shown above.

To successfully interface to the 68K for 1/O, the propeller has to latch the address bus, read or write onto
the data bus between the stipulated time. For sake of argument let's think that a time of 500 ns is enough.

Asynchronous write cycle. Note that DTACK has to be valid before the transition S4->S5. The code
below only uses the low part of the address bus and does not touch the DTACK signal, because it is
generated automatically.

| OR nov DI RA, #0
i or_| oop wai t pne cO IOR cO0 ICOR

or DI RA, cO_SHI ADDR " Sel ects | ow address
(0)

nov cO _addrl, INA

shr cO_addrl, #8

and cO _addrl, #255 " | ow address

rdbyt e QUTA, cO_addrl ' reads data

or DI RA, #DATABUS " DATA bus is out put

nop

nop

nop

nov DI RA, cO_dira_def " Data bus as | NPUTS

jmp #i or _| oop " restarts | oop
c0_SHI ADDR | ong %00 _ 0 0 0 0_1 00000000_00000000_00000000 " W

en high high address

In the example above a very simple mechanism where one COG answers the 68K with what is available
in HUB RAM in the first 256 bytes. The QL only uses a few ports in this 32kbytes area, so all the address
decode is not necessary. Housekeeping COGs are going to fill the HUB with the right values when an
event occurs. Another method is to perform all the tasks, i.e. housekeeping, within the answering COG
delaying the processor.

page 248 / 405

Propeller
(Hss)

Video

One of the two propellers acts as a video controller. The QL has only 2 modes in its standard form.
256x256 8 colors and 512x256 4 colors. An image of a working driver for 512x256 4 colors is shown
below.

At this point the image is 512x256 pixels in a 640x480 frame with a 25 MHz clock. The unused area is
regarded as border.

ROM

The goal is to use an unmodified JS or JM ROM. A Minerva ROM could also be used. In the sense of
speeding up few parts of the 10, some modifications could be implemented. Specially slow is the access
to the 18048, keyboard controller among other things.

page 249 / 405

Propeller
(Hss)

pPropQL020 by Pacito.Sys

An extended version of pPropQL. As MC68008 are scarce and I have some, plenty, MC68EC020s I
decided to improve pPropQL with a more powerful processor, more memory, programmable logic and
loads of fun.

The glue logic of pPropQL has been incorporated into three small CPLDs, they could be replaced by a
bigger, and I mean with more 10s, CPLD. The rationale behind the CPLDs is: this board can be
re-targeted. The memory map of the QL is just not that nice to run for instance OMU or even uCLinux
(M68K port).

The two 1/0O Propellers have been kept but now the control over the address mux is handled by the
memory-decoding logic and a wait-state generator, as well as the generation of the DSACKO/1 (bus
termination signals), freeing powerful propeller pins.

The EPROM that existed in the pPropQL has been left out, so booting and loading a kernel image is the
task of a boot-loader inside the video Propeller. This bootloader reads the the image from a SD/MMC
card, copies it to memory and executes it.

Note: assert and negate are used to specify forcing a signal to a particular state. In particular, assertion
and assert refer to a signal that is active or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level (high or low) that they represent.

Note: Signals are in bold. A signal's name starting with an N means that that signal is active low,
assertion will mean a logic O level in positive logic (used here). Only one of the three will preferably used
here.

A discussion of this board can be found here.

pPropQLO020 Prototype pPropQL020 with 2 MB SRAM soldered

Hardware description

Level shifting

The MC68ECO020 processor is a 5V part thus some level shifting is needed between the propeller and the
68K. The address bus mux, inside the third CPLD, acts as a level shifter. Its core voltage is kept at 5V
while its 10 voltage is 3.3V. This part is a XC9536.

The data bus is buffered via a 74ABT245 and connected to the propeller using current-limiting resistors.
Control lines use also current-limiting resistors.

page 250/ 405

http://propeller.wikispaces.com//pPropQL
http://propeller.wikispaces.com//OMU
http://forums.parallax.com/forums/default.aspx?f=25&m=345196

Propeller
(Hss)

Glue logic

All glue logic has been implemented using XC9536s (CPLD). Memory decoding is handled by U11 and
the glue is by U10. The Glue logic has to generate the byte strobe signals for memory and several other
signals like NHALT, NRESET, NOE usw.

The 020 uses two Data Acknowledge signals to signal the end of the bus cycle and thus to determine the
port size. The port sizes used are 32 bits for SRAM and 8 bits for the propellers. At the beginning of a
cycle the signals A1, A0, SIZ0 and SIZ1 say what kind of transfer size is being performed and to which
address. Decoding of those signals yields the byte strobes for writing (NWEQ to NWE3).

In a 32 bit port, like the SRAM here, all byte strobes are used.

Byte strobe bits used Equations
NWE3 D7..D0 (A0 & Al & IRW & INDS)
NWE2 D16..D8 I((SIZ1 & Al & 'RW & INDS) |

(!SIZ0 & 'Al & 'RW & INDS) |
(A0 & 'Al & 'RW & INDS))

NWE1 D23..D16 (A0 & Al & 'RW & INDS) |
(SIZ1 & SIZ0 & 'Al & 'RW &
INDS) | (ISIZ1 & !SIZ0 & 'Al &
'RW & INDS) | (!SIZ0 & A0 &
'Al & 'RW & INDS))

NWEO(D31..D24 I((SIZ]1 & A1 & 'RW & INDS) |
(!SIZ1 & !S1Z0 & 'RW & INDS) |
(A0 & A1 & 'RW & INDS) |
(SIZ1 & SIZ0 & A0 & 'RW &
INDS))

Control signal's relationship for the '020

The QL uses only IPL2 as interrupt input and asserts the NVMA input in the MC68008 for autovector
interrupts. On the MC68020 this NVMA signal does not exist but an NAVEC input for auto-vector
interrupt recognition is provided. This signal is asserted when the function code outputs (FC2 to FCO0)
signal an interrupt acknowledge cycle.

The DSACK generator for DSACKO..1 uses a pair of cascaded shift registers. HL is asserted three cycles

page 251 /405

Propeller
(Hss)

after NAS when NSLOW is also asserted and thus the BUS cycle is not terminated by a 32-bit port
access (i.e. both DSACKO0 and DSACK1 are asserted before S4). This signal handles the address mux,
contained in U14. After one of the 1O strobes is asserted at least 50 ns pass before the propeller reads the
low address byte so 3 wait states are needed as a minimum. After this read there is place for 2 or 3 more
propeller instructions before the high address byte can be read. As the low address byte has to be masked
and shifted this does not pose a problem. (See the logic analyzer's traces below).

Memory decoding is done with simple 3-to-8 decoders and some gates

The memory map used here is similar to the QL's except for the fact that the SRAM is mapped to the
addresses 0x20_0000 to Ox5SF_FFFF, 4 MBytes.

As I'm not really interested in using this for QL and more in porting OMU to it, this memory
configuration maximizes available memory.

Video memory is as the built prototypes only writable but that can be changed to read/write with a simple
piece of wire and a change to U11 to make VIDEOR available.

A Verilog implementation of the above circuits, both condensed into one CPLD could be this one. EIOR
and EIOW are not implemented due to the lack of pins in the XC9536 used. A XC9572 could be used
instead, then the Address/Data MUX could be fitted inside too.

“tinescale 1lns / 1ps
LHETELEPEE i r i r i rr il
LHErrrrrrrr

/1 Conpany:

/'l Engi neer: Pacito. Sys

/1

/'l Create Date: 09: 04: 29 01/ 21/ 2010
/1 Design Name: pPropQ.020 glue |ogic
/1 Modul e Nane: gl uel ogi c

/'l Project Nane: pPropQ.020

/] Target Devices: XC9536

/1l Tool versions: Xilinx WblSE 10.1

/1l Description: GQue logic for the pPropQL
/1

/| Dependenci es:

/1

/'l Revi sion:

/'l Revision 0.02 - Simulated

page 252 /405

http://propeller.wikispaces.com//OMU

Propeller
(Hss)

/1 Additional Comrents:

I

FEEEEEEEE bbb rririr
LHErrrrrrir

nodul e gl uel ogi c(

i nput in_clKk,
nput in_fcO,
nput in_fcl,
nput i n_nas,
nput in_nds,

i nput in_rw,

i nput in_sizO,
i nput in_sizl,
i nput A0,

i nput Al,

nput AlS5,

nput Al6,

nput Al7,

nput Al8,

nput Al9,

i nput A20,

i nput A21,

i nput A22,

i nput A23,

out put AVEC,
out put NDSACKO,
out put NDSACK1,

out put HL,
out put 1 OR
out put | OW

out put VI DEOW
out put NROMCS,
out put NRAMCSO,
out put NRAMCS1,
out put NOE,
out put WE3,
out put WEZ2,
out put WE1,
out put WEO//,
[l out put EI OR,
[/ out put EI OW

);

reg [3:0] r_dtackshift; // wait state counter
[* pPropQ. Menory Map

page 253 /405

Propeller
(Hss)

* 000000. . OOFFFF RW NROMCS

* 010000..017FFF R EIOR (with wait states)

* 010000..017FFF W EION (Wi th wait states)

* 018000..01FFFF R I1OR (with wait states)

* 018000..01FFFF W 1ON (Wi th wait states)

* 020000..027FFF W VIDEON NRAMCSO (with wait states)
* 020000. . 027FFF R NRAMCSO

* 1FFFFF. . 1IFFFFF RW NRAMCSO

* 200000. . 3FFFFF RW NRAMCS1

*/

/1l Internal signals

wireint_ r = ~(in_nas | ~(in_fcO &in_fcl)) | ~in_rw/| in_nds;

wire int_w= ~(in_nas | ~(in_fcO &in_fcl)) | in_rw]| in_nds;

wire int_00 = A23 | A22 | A21 | A20;

wire int_roncs = int_00 | A19 | Al18 | Al7 | Al6;

wire int_extra =int_00 | A19 | A18 | Al7 | ~Al6 | Al5;

wireint_io =int_00 | Al19 | A18 | Al7 | ~Al6 | ~Al5;

wire int_video =int_00 | A19 | A18 | ~Al7 | Al6 | Al5;

wire int_nrancsO = A23 | A22 | A21 | ~int_roncs | ~int_io | ~int_extra

A

re int_nrancsl = A23 | A22 | ~A21,

[l ** Qutputs **

assign AVEC = in_nas | ~(in_fcO &in_fcl);
/1 Chip selects

assign NROMCS = int_ronts | int_r;

assign NRAMCSO = int_nrantsO | in_nds;
assign NRAMCS1 = int_nrantsl | in_nds;
assign VIDEOWN = int_video | int_w,
[lassign EIOR = int_r | int_extra;
[lassign EION=int_w /| int_extra;
assign IOR =1int_r | int_io;

assign ION=int_w| int_io;

[/l Extra outputs

assign NOE = int_r;

assign WE3 = ~(~A0 & ~Al & ~in_rw & ~in_nds);

assign WE2 = ~((in_sizl & ~Al & ~in_rw & ~in_nds) |

(~in_siz0 & ~A1 & ~in_rw & ~in_nds) |

(A0 & ~A1 & ~in_rw & ~in_nds));

~((~A0 & A1 & ~in_rw & ~in_nds) |
(in_siz0 &in_sizl & ~A1l & ~in_rw & ~in_nds) |
(~in_sizl & ~in_siz0 & ~A1l & ~in_rw & ~in_nds) |
(~in_siz0 & AO & ~in_rw & ~in_nds));

assign WEO = ~((in_sizl & A1 & ~in_rw & ~in_nds) |

(~in_sizl & ~in_siz0 & ~in_rw & ~in_nds) |

assign WE1l

page 254 / 405

Propeller
(Hss)

(A0 & AL & ~in_rw & ~in_nds) |
(in_sizl &in_siz0 & AO & ~in_rw & ~in_nds));

/'l DTACK generation
wireint_ slow= VIDEON& IOR & | ON

assi gn NDSACKO (r _dtackshift < 14) & ~int_slow,
assi gn NDSACK1 i nt_sl ow,

/1l High, |ow signal
assign HL = r_dtackshift > 1;
al ways @ posedge in_cl k)
begin
if (in_nas)
r_dtackshift <= 0;

el se
if (~int_slow begin
r _dtackshift <= r _dtackshift + 1;
end
end
initial
begin
r _dtackshift = 0;
end
endnodul e

Propellers as peripherals

Two propellers are used as video controller one and IO controller the other one. They are memory
mapped and thus act as any other memory. This propellers present a simple interface, data bus (D24..31)
address bus (multiplexed AO to A15) and one strobe signal per function, read, write and so on.

Upon assertion of the strobe signal the propeller decodes the address and performs whatever action is
needed. All this processing has to take place in the allocated time, 15 or 16 MC68K cycles. 1 us @ 16
MHz or 2 us @ 8§ MHz (used now for testing).

The following logic analyzers' trace show the state of various signals when NIOR is asserted. PA0..7 are
the multiplexed addresses and D24..31 are the lowest significant bits of the data bus used for 8 bit
transfers.

The assertion of NVIDEOW proceeds in a similar manner.

page 255 /405

Propeller
(Hss)

As can be seen the data bus changes state some 700 to 800 ns after the assertion of NIOR/NVIDEOW.
As the data is latched on the rising edge of NDS (or'd to NIOx/NVIDEOQ) there is enough time. All this
examples were done @ 8 MHz.

The answering code for this could be something like this:

DAT

org $0
VI DEOCOG nov DI RA, #0
c2_vi deoenu wai tpne c2_c_VIDEOWN c2_c_VIDEON' waits for V
| DEONVto be asserted

nov c2_v_addr, INA '@ 40 gets
ow part of address

shr c2_v_addr, #16 '@ 80

and c2_v_addr, #255 @20

add c2_v_addr, PAR ' @60 adds vid
eo buffer offset
#i f def MB8K 8MHz

nop " this NOPs en
sure that the high address

nop " is avail able
to be read

nop
#endi f

nov c2_v_addrh, I NA "@20 now it i
s safe to get high addr

nov c2_v_data, c2 v _addrh

shr c2_v_addrh, #8 ' @60

and c2_v_addrh, c2_c_IMSKADDR

add c2 v_addr, c2 v _addrh @00

wbyte c2_v_data, c2_v_addr ' @40

@15 (nmax)
wai tpeq c2 ¢ VIDEON c2 ¢ VIDEON' waits for N
VI DEONto be negated
j mp #c2_vi deoenu

c2_c_VI DEOW | ong 1<<VI DEOW

page 256 / 405

Propeller

(Hss)

c2_v_addr | ong 0

c2_v_addrh | ong 0

c2_v_data | ong 0

c2_c_NMSKADDR | ong $00000f 00 " only 4 kbytes Il
Reset

The reset is handled by one COG and one PIN as output. As the video propeller acts as boot ROM, it
answers the NPROMCS signal. After reset the stack pointer and the reset vector are fetched and
execution starts at that address (0x0000_0010 in this case).

The following code fragment shows the (wasted) cog. Any COG would do in principle, so it can be
devoted to something else afterwards.

DAT
org $0
RESETCOG nmov QUTA, #0
nov DIRA, cl c DRA
or QUTA, cl c_RESET ' negates NRES
ET and NHALT
nov cl v _wait, CNT
add cl v wait, cl c_80M
cl | oop waitcnt cl v wait, cl c_80M
jmp #cl | oop
cl c DRA | ong 1<<RESET " RESET
cl c_RESET | ong 1<<RESET
cl v wait | ong 0
cl c_80M | ong 80_000_000

page 257 / 405

Propeller
(Hss)

Programming in C

Currently there are no C compilers available for the Propeller. But progress is being made in this area.

ImageCraft ICCv7 for Propeller C STD

ImageCraft are currently developing a Propeller target for their well established range of embedded C
compiler tools. Tentative price is $199. The product includes a Windows IDE, C compiler, relocatable
assembler, linker and other tools. (The implication being that there will not be any Mac or Linux support).
It will support the Large Memory Model (LMM).

April 19th 2007 Announcement.

Nov 17th 2007 Status Update.

Dec 19th 2007 Status Update reads:

e Compiler:
o All non-floating point operations supported
o need to do: function entry / exit code
o need to do: register allocator tuning, peephole, codegen optimizations

e Assembler:
o all instructions, effects etc. supported
o most directives supported. Memory area attributes need to be done
o operators not yet supported

e Linker:
o Most relocations done
o need to support library files

e Library
o at the minimum, need to support mul and div/mod

e C machine LMM kernel
o Design mostly complete, coding to be started

e IDE
o not yet started, need Propeller download utility

Others

Some people have suggested porting one of the existing open source GPL C compilers: GCC (Gnu C
Compiler) or SDCC (Small Device C Compiler). Both these were written to be retargetable, so a back end
for the Propeller should be possible, again probably using the LMM. So far no one has announced that

page 258 / 405

http://www.imagecraft.com/
http://propeller.wikispaces.com//Large+Memory+Model
http://forums.parallax.com/forums/default.aspx?f=25&m=186560
http://forums.parallax.com/forums/default.aspx?f=25&m=231284
http://forums.parallax.com/forums/default.aspx?f=25&m=231284&g=234581#m234581
http://gcc.gnu.org/
http://sdcc.sourceforge.net/

Propeller
(Hss)

they are working on this. An open source LMM assembler is probably a prerequisite, and as yet no one
has released one.

page 259 / 405

Propeller
(Hss)

Catalina - a FREE C Compiler for the Propeller Chip

Ross Higson has developed Catalina - a free ANSI compliant C compiler for the Propeller Chip. Catalina
can be downloaded from SourceForge. The current release is 3.0.

Catalina is based upon LCC (a robust, widely used and portable C compiler front-end), with a custom
back-end that generates Large Memory Model (LMM) PASM code for the Propeller. For general details
on LMM, go here.

Catalina is now essentially complete. Bugs and maintenance releases will still be issued, but no more
functional additions are expected - at least not until the Prop II arrives!

The Parallax forums should be used for contacting the author or interacting with other Catalna users - see
this Parallax forum thread

Major features of Catalina:

ANSI C compliant, with C89 library (plus some C99 library functions).
Floating point support (32 bit IEEE 754).
Debugger support. Several debuggers are now supported:
o POD debugger and PropTerminal for assembly level debugging; or
o BlackBox (Windows or Linux command line) for source level debuggin; or
o BlackCat (Windows GUI) for source level debugging.
Basic support for all Propeller platforms, plus extended support for specific platforms - the targets
provided support the Hydra, Hybrid, TriBladeProp, Morpheus, DracBlade, RamBlade, C3
and the Demo Board. Others can be easily added.
Platform independent - Win32 and Linux binaries provided. Easily ported to other platforms.
e All source code provided (compiler, libraries and tools).
e XMM support for programs larger than 32K (requires additional hardware).
e Supports the Code::Blocks Integrated Development Environment.
e It's FREE!

Catalina supports three different addressing modes:

e Tiny - all code and data share the 32Kb of Hub RAM. This mode is used by all LMM and EMM
programs, and is suitable for use on any Propeller platform.

e Small - code can be up to 16Mb, but all data (including the stack and heap) must still share the
32kb of Hub RAM. This is the original XMM mode as implemented in the various beta releases.
This mode requires dedicated XMM hardware (i.e. external SRAM). Currently supported are the
Hydra and Hybrid (using the HX512 external SRAM card), the TriBladeProp, RamBlade,
DracBlade Morpheus and C3.

e [arge - code, data and heap can be up to 16Mb (combined), and only the stack uses the 32Kb of
Hub RAM. This mode uses a completely new code generator (the previous code generator remains

page 260 / 405

http://catalina-c.sourceforge.net/
http://propeller.wikispaces.com//Large+Memory+Model
http://forums.parallax.com/showthread.php?130739-Catalina-3.0
http://propeller.wikispaces.com//Debuggers+and+Emulators#POD Debugger
http:////insonix.ch/propeller/prop_term.html
http://forums.parallax.com/showthread.php?121407-BlackCat-a-GUI-source-code-debugger-for-Catalina-C

Propeller

(Hss)

in use for the other modes), and also an enhanced XMM Kernel. This requires the same dedicated
XMM hardware as the Small mode. When the Prop II eventually surfaces, the space available for
stack under the Large addressing model is expected to be increased to 256Mb. However, note that
larger’ is not always 'better' - programs that use the larger addressing modes will generally be
slower than programs that use the smaller addressing modes. A programs should always use the
smallest addressing mode it can.

Other notable enhancements in recent releases are as follows:

e Multi-cog and multi-thread support. Catalina can execute C code on all 8 cogs concurrently, and

execute multiple C threads on each cog.

An SD Card program loader (Catalyst). Catalyst is an interactive program loader and a set of
utility programs that simplifies the execution of Catalina programs (LMM and XMM) on
platforms with an SD card. Catalyst can also be used to load normal SPIN/PASM binaries.
Catalyst includes several example applications programs, such as the vi editor, the Lua scripting
language and a fully ISO compliant Pascal PS5 compiler. These require XMM RAM.

A serial program loader (Payload). Payload can load LMM or XMM programs (up to 16Mb) into
the Propeller directly from a PC. Payload can also be used to load normal SPIN/PASM binaries.
Suport for Code::Blocks for graphical editing and compiling of C programs. Code::Blocks can
be downloaded from here

Support for multi-CPU systems such as the TriBladeProp and Morpheus. This includes support for
"proxy devices" (in a multi-CPU system, this is the ability to use devices physically connected to
another CPU as if they were directly connected to the CPU on which the Catalina program is
running).

Simplified compiler command-line options (no more obscure options like -WI-W-d or -x5).
Environment variables can be used to to store commonly used configuration options.

A standard target package that inlcudes all supported platforms. All platform-specific target
configuration can now be done on the command-line using. New "custom" platforms can be added
to the standard target package, or a completely new target can be created instead.

Here is a picture of Catalina being used from within Code::Blocks:

page 261 /405

http://www.codeblocks.org/

Propeller
(Hss)

PropForth

Sal Sanci has revised SpinForth and posted PropForth. There is a spin template that appended with forth
definitions. The spin file is loaded into eeprom as any spin program. After that, the propeller can support
any serial terminal (teraterm was used successfully). The forth dictionary can be extended in ram using
standard colon definitions. The RAM image can be resaved to eeprom using the prop specific "saveforth"
word. New definitions are added at the end, redefinitions of words hide old definitions. Eventually, it
becomes advantageous to re-generate the propforth image. The spinmaker word causes the prop to
generate a new version of the forth source text which can then be copied and pasted into the
propforth-template.spin file. This allows the Propeller Tool to resolve any forward references in the forth
source code without the use of defered words. Regenerating the propforth.spin image alse recovers
dictionary space lost to redifined words, as spinamaker only finds and uses the most recent definition for
each word.

There is a software logic analyzer extension which can use 1 cog to sample all the i/o pins at a rate of 40
or more clocks, or uses four cogs to sample all the pins every clock.

There is default support for the forth software cooperative multitasking round robin, which transfers
control from task to task using the pause word.

There is also an assembler multitasker that occurs between forth words. This permits very frequent access
to whatever needs very frequent access. Since this has an impact on the speed of execution on the core,
the assembler time slicer can be made to run on a specific core, and has no effect on the others.

The documentation is being revised for clarity. The order of the topics addressed is driven by questions
that are asked.

The project can be found at

http://code.google.com/p/propforth/

PropellerForth

Cliffe Biffle has created an open source complete Forth development system for the Propeller, called
PropellerForth. If you are not familiar with what Forth is about, its basically a programming language and
development environment that runs entirely on the Propeller. You do not need a PC to program your
Propeller board (Prop Demo, Hydra supported) anymore. Once you use the Propeller Tool to upload the
single binary image all your other development tasks are performed on the Propeller directly. Simply plug
in a keyboard, hook up a TV, and off you go! I was a little confused a while back about what Forth is
really about, so the best analogy I can give would be: It's like an open programmable dynamic "operating
system" that can be modified on the fly, in real-time, while the system is running.

Your best bet is to go download this rather amazing peice of work, and install it on your Propeller system.
More information and links to file downloads available on the PropellerForth homepage.

It's important to note that this system is complete and ready to run right now. At the time this page was
created, they were at version 8.01.

JDForth

page 262 / 405

http://code.google.com/p/propforth/
http://www.cliff.biffle.org/software/propeller/forth/index.php

Propeller
(Hss)

On 8 August 2008, Carl Jacobs introduced a commercial Forth to Spin compiler for the Propeller, called
JDForth. In contrast to PropellerForth (and most other Forths), this Forth is able to co-exist with Spin in
the Propeller.

e JDForth allows for the easy inclusion of propeller assembly words. These words may be either
linked at compile time, or dynamically included at run time.
e JDForth has words to support 32-bit floating point in IEEE-754 compliant format.

The details of JDForth - as well as purchasing information - can be found at the
JDForth homepage.

JDForth was announced on the Parallax Forum.

page 263 / 405

http://www.jacobsdesign.com.au/software/jdforth/jdforth.php
http://forums.parallax.com/forums/default.aspx?f=25&m=284015

Propeller
(Hss)

A Propeller JVM for the Java Programming Language

Fast-Track

PropJavelin is a project to implement the functionality of the Parallax Javelin Stamp on the Propeller
Chip. This is the implementation of a JVM which runs on the Propeller to allow Java(TM) programming
of the Propeller. Java program development is undertaken using a modified version of the Javelin Stamp
IDE.

A fast-track for getting the PropJavelin running can be found here

Introduction

Peter Verkaik proposed on the Propeller Forum to implement a JVM for the Propeller to enable the use of
the Java(TM) programming language.

Original forum thread : here

End-user Java development would be undertaken using the Jikes(TM) compiler for the Java language and
post processing by the JavelinDirect linker as used for Parallax JavelinStamp (suitably modified).
Development could also be undertaken using the JavelinStamp IDE, to produce the required bytecode for
inclusion with a Propeller JVM program or for download directly into a Propeller Chip running such a
JVM program.

The bytecode generated by JavelinDirect is in a .jem bytecode file using JEM bytecode opcodes which

have different values to Sun's JVM bytecode opcodes in a .class file although they are essentially the
same.

Trademark Acknowledgements

Java and all Java-based marks' are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Jikes is a trademark or registered trademark of International Business Machines Corporation in the United
States, other countries, or both.

Development Tools

The following development tools will be useful for anyone interested in becoming involved with the JVM

page 264 / 405

http://www.parallax.com/tabid/255/Default.aspx
http://propeller.wikispaces.com//Fast-Track+for+PropJavelin
http://forums.parallax.com/forums/default.aspx?f=25&m=244721

Propeller
(Hss)

develoment.

Jikes Compiler

The Jikes compiler was developed by IBM and has been made open source with source code available
under IBM's Public License.

The easiest way to get hold of the Jikes compiler executable for Windows is probably to download the
JavelinStamp IDE from Parallax and install that. This will provide the graphical IDE for the JavelinStamp
and allows the installation to be tested.

JavelinStamp IDE download page from Parallax : here

The Jikes compiler on Sourceforge : here

JavelinDirect / PropDirect Linker
Original JavelinDirect Source download page from Parallax : here
The updated JavelinDirect Package download via Yahoo Groups : here

A Propeller Specific JavelinDirect (PropDirect) hosted on the Parallax forum : here(forum thread)

JIDE Runtime

JavelinDirect and PropDirect require RTL60.BPL and VCL60.BPL to be installed in
\Windows\System32.

The JIDE Runtime download via Yahoo Groups : here

The JIDE Runtime hosted on the Parallax forum : here(forum thread)

Example Compilation Process

Compiling a test’VM.java source file -

page 265 / 405

http://www-128.ibm.com/developerworks/library/os-ipl.html
http://www.parallax.com/ProductInfo/Microcontrollers/JavelinDownlads/tabid/443/Default.aspx
http://jikes.sourceforge.net
http://www.parallax.com/ProductInfo/Microcontrollers/JavelinDownlads/tabid/443/Default.aspx
http://tech.groups.yahoo.com/group/JavelinCode/files/JavelinDirect
http://forums.parallax.com/forums/attach.aspx?a=19734
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=244721
http://tech.groups.yahoo.com/group/JavelinCode/files/JavelinDirect
http://forums.parallax.com/forums/attach.aspx?a=19752
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=244721

Propeller
(Hss)

Set JI KESEXE="C:\ Program Fi | es\ Paral |l ax Inc\Javelin Stanp |DE\Ji kes\Ji
kes. exe"

Set JI KESCLS="C:.\Program Fi |l es\Parall ax Inc\Javelin Stanp IDE\I|ib"

%1 KESEXE% - cl asspath %1 KESCLS% t est JVM j ava

Linking the test’VM.class to produce testiVM.jem and jem.out -

PropDirect --path .; %I KESCLS% --1ink --debug testJVM

Including the testJVM.jem file in a Propeller Spin program -

PRI ShowAl | Byt ecode_Version_1 | hubPtr
repeat hubPtr from @enBytecodeStart to @enByt ecodeEnd
ShowThi sByt ecode(byte[hubPtr])
PRI ShowAl | Byt ecode_Version_2 | i
repeat i fromO to BytecodeLength - 1
ShowThi sByt ecode(byte[@enBytecodeStart + i])

PRI Byt ecodelLength
return @enByt ecodeEnd - @enByt eCodeSt art

DAT
JenByt eCodeSt ar t

FILE = "testJVM j ent
JenByt eCodeEnd

Links

Documentation

The Java(TM) Virtual Machine Specification Second Edition from Sun Microsystems, Inc.

Read online : here

Other JVMs which may be of interest

Java for GBA - A port of the KVM (J2ME/CLDC) for the Game Boy Advance.

page 266 / 405

http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html

Propeller
(Hss)

Source Code : here

LeJOS/TinyVM - LeJOS is replacement firmware for LEGO Mindstorms RCX and NXT bricks, a
continuation in development on its fore-runner, Tiny VM.

LeJOS : here
TinyVM: here

NanoVM - Java for the AVR. The NanoVM is a Java virtual machine for the Atmel AVR ATmega8
CPU, the member of the AVR CPU family. The NanoVM and its tools are distributed under the GPL and
can be used on other AVR based systems as well.

More information : here

SimpleRTJ - A small footprint Java VM for embedded and consumer devices. The simple
Real-Time-Java for the small embedded and consumer devices is a clean room implementation of Java
Virtual Machine that has been specifically designed to run on devices with the small amount of system
memory. In contrast to other embedded implementations of the virtual machine the simpleRTJ requires
on average about 18-24KB of code memory to run. The evaluation version of simpleRTJ for embedded
and consumer devices is available under the RTJ Computing's non-commercial source code license for
private, educational and evaluation purposes.

More information from RTJ Computing : here

Taurus Java VM - A clean-room Java™ Virtual Machine implementation, designed to be highly
portable, optimised for use on small, low-power devices. From version 1.04a onwards, JavaVM is
covered by the terms of the GNU General Public License (GPL).

Specification, Documentation, Whitepapers, Sources and Downloads.

More information from Taurus Software & Consulting : here

Development and Design Issues

The proposed Propeller JVM leverages the existing toolset used for development of programs for the
JavelinStamp and the design of the Propeller JVM will therefore be influenced by that toolset.

The Jikes compiler is a full Java compatible compiler delivering complete bytecode for Java class files.
The JavelinDirect / PropDirect tool bridges the divide between class files and the JEM bytecode the
Propeller JVM will execute and thus is the primary tool (along with the JVM itself) which will influence
design decisions and will need to change as design decisions are made.

page 267 / 405

http://www.torlus.com/index.php?2004/01/05/25-java4gba---a-java-virtual-machine-for-gba
http://lejos.sourceforge.net
http://tinyvm.sourceforge.net
http://www.harbaum.org/till/nanovm/index.shtml
http://www.rtjcom.com
http://www.tsac.co.uk/javavm

Propeller
(Hss)

Goal

There are two potential goals; a JVM which supports 'Java' as it is on the JavelinStamp (an emulation
with just minor changes to the toolset to better suit the Propeller) or an enhancement to provide a Java
which is ideally suited towards the Propeller with less regard to the JavelinStamp itself.

Development could be incremental and phased, delivering emulation then enhanced, or initially targeted
to be ideally suited to the Propeller.

Primitive Type Size

Because the JavelinStamp is based upon a constrained architecture, int is implemented as 16-bit not
32-bit, long (64-bit) is not supported at all.

There are two choices for the Propeller, to retain the fundamental type-size as 16-bit internally with short
and int as 16-bit and long as 32-bit, or to use a fundamental type-size of 32-bit with short as 16-bit, int as
32-bit and long as 32-bit rather than 64-bit.

The argument for a 16-bit type-size is less runtime memory use for holding method and local variables
when a programmer uses int (16-bit) but that is set against a more complicated and larger foot-print JVM
which has to support both 16-bit and 32-bit primitive data sizes.

The argument for a 32-bit type-size is the simplification and smaller foot-print of the JVM dealing with

only one 32-bit primitive data size at the expense of higher memory use for method and local variables at
runtime.

Virtual Peripherals

The JavelinStamp uses a 'Virtual Peripheral' mechanism to implement a degree of concurrent processing.
Whether that should be retained for the Propeller or how it should be changed needs to be decided.

Native Methods

The JavelinStamp native methods are part and parcel of the Java class files provided as part of the Java
programming environment. Which of those should be retained, changed or removed, and which new
native methods should be added for the Propeller needs to be decided.

Threads

page 268 / 405

Propeller
(Hss)

The JavelinStamp like many constrained JVM implementations does not support threads. While any JVM
should ideally support threads it needs to be decided if the Propeller JVM will or not and if it does the
JVM will need to be designed to support them.

Garbage Collection

The JavelinStamp like many constrained JVM implementations does not support garbage collection.
While any JVM should ideally support garbage collection it needs to be decided if the Propeller JVM will
or not and if it does the JVM will need to be designed to support them.

page 269 / 405

Propeller
(Hss)

Pascal P4 for the Propeller Chip

AiChip Industries are developing a 'reference design' for running Pascal P4 derived bytecode on the
Propeller Chip.

Original Parallax Forum thread : here

Overview

The AiChip_P4_XXX.spin program interprets P4 bytecode held in hub memory. That bytecode is
produced by AiChip's PrettyP4 linker from the P4 p-code generated by a P4 compiler.

The P4 compiler written by Urs Ammann, Kesav Nori and Christian Jacobi, and described in the book
"Pascal Implementation" by Steven Pemberton and Martin Daniels, produces P4 p-code. P4 p-code was
designed for execution on an imaginary Stack Computer (the "SC" as described by Wirth) and was
initially implemented on a CDC 6000. P4 is the latest of a series of P compilers and supersedes PL/0 and
Pascal-S.

The P4 compiler is a pre-compiled executable for Windows XP command line use provided by Scott A
Moore. Source code of the compiler (itself written in Pascal) is available for download.

The PrettyP4 linker takes the P4 p-code and translates it into an equivalent P4 bytecode to be interpreted
while performing a considerable amount of compression on the original P4 p-code which (for the
Propeller Chip) is notionally designed for a completely 32-bit architecture. Compression primarily
reduces the size of data in the constant pool (strings and runtime bounds checking information) but also
compresses a number of P4 p-codes to allow for efficient storing of various operand sizes, bytes, words or
long. The rather reader-unfriendly format of the P4 p-code file (file.p4) is converted to a much more
reader-friendly form (file.p4a and file.p4b) and a complete listing of the linked and assembled P4
bytcode is produced (file.lst).

PrettyP4 is P4 Virtual Machine aware so can also reduce the number of P4 opcodes required where the
Virtual Machine code is the same regardless of data type. This reduces the number of opcodes and speeds
up Virtual machine execution.

The PrettyP4 linker is provided by AiChip Industries and runs as a command line executable. The
PrettyP4 linker is currently a 16-bit MS-DOS program and thus only supports 8-dot-3 filenames.

Once the P4 compiler and PrettyP4 linker have executed, two files (Spin-P4.bin and Spin-P4.spin) will
have been created which the AiChip_P4_XXX.spin includes with itself. When the AiChip_P4_XXX. spin
program is compiled and executed the P4 bytcode will be interpreted and the Pascal program will be
executed.

page 270/ 405

http://forums.parallax.com/forums/default.aspx?f=25&m=246603

Propeller
(Hss)

Development Lifecycle

1) Create the pascal source code - file.pas

2) Compile using pcom.exe - produces file.p4 and file.err

3) Run PrettyP4 on file.err - reports any compilation errors

4) Run PrettyP4 on file.p4 - produces a more readable file.p4a

5) Run PrettyP4 on file.p4a - reformats the source for assembly as file.p4b
6) Run PrettyP4 on file.p4b - produces an assembly listing as file.lst

7) Run PrettyP4 on file.lst - produces the executable bytecode as file.bin
8) Load AiChip_P4_XXX.spin and execute

Language Support

The P4 Pascal compiler is a complete compiler in its own right, prmimarily designed to be able to cmpile
itself it was never intended to support the full features of standard Pascal but does offer a considerably
close approach to that.

The most significant absence is any 'string' type. Strings can only be implemented as arrays of characters.
Other omissions of an unmodified P4 Pascal from Standard Pascal include -

No Procedures or functions as parameters.

No Inter-procedure goto.

Only files of type "text" can be used.

Only predefined (input, output, prr and prd) files can be used.
Mark and Release replaces Dispose.

Curly bracket comments {} are not implemented.

The predeclared identifiers maxint, text, round, page, dispose are not implemented.
The Reset, Rewrite, Pack and Unpack are not implemented.
No undiscriminated variant records.

No output of boolean types.

No output of reals in "fixed" format.

No Set constructors using subranges ('0"..'9").

Primitive Types

The following types are supported -

Boolean - 1-bit (value O or 1)

Char - 8-bit (value 0 to 255)

Integer - 16-bit or 32-bit

Real - 16-bit or 32-bit (not implemented yet)

page 271 /405

Propeller
(Hss)

Set - 16-bit or 32-bit (16 or 32 set members)

The P4 Virtual Machine will run with either a 16-bit or 32-bit stack which is selected at runtime. The
same code will run regardless of which size is selected and out of range values will be trapped when using
16-bit and 32-bits is required. If the Pascal program does never exceeds the 16-bit limitation it will run
equally well on a 16-bit platform as it will on 32-bit. Using real numbers on a 16-bit machine will howver
cause considerable errors of numeric resoluton.

Input and Output

Four I/0O streams are provided for -

Input - PS/2 keyboard

Output - TV Display

Prd - "Propeller Debugging", serial out on TX, P30
Prr - "Propeller Receive", serial in on RX, P31

These can be defined in the program heading of the Pascal source code -

program nypascal fil e(i nput, out put, prr, prd);
var ch : char;
begin
witeln(output, Hello TV);
witeln(prd,'Hello Serial Qut');
read(i nput, ch);

writeln(output,' Typed : ', ch);

read(prr,ch);

witeln(prd,'Echo : ', ch);
end.

The 1/0O streams can be redefined or redirected by modifying the P4 Virtual Machine.

Future Plans

Because the P4 Compiler, PrettyP4 and Virtual Machine are all available as source code, it is possible to
enhance the P4 Pascal language to support Propeller specific extensions.

No enhancements or extensions have been planned so far.

Development Tools

page 272 / 405

Propeller
(Hss)

Pascal to P4 P-Code Compiler

This is the command line compiler which takes Pascal source code and emits the P4 p-code. The compiler
works under Windows XP but not under Windows 98SE.

Executable and Source download from Scott A Moore's site : here

Linker

Executable and Source are included in the AiChip_P4 XXX.zip download available from the Parallax
Forum.

Bytecode Interpreter

Source code is included in the AiChip P4 XXX.zip download available from the Parallax Forum.

Other Compilers

If the P4 Pascal source code is changed to add more functionality to the compiler, it must itself be
re-compiled to produce a newer version of the P4 Compiler executable. This requires a third-party Pascal
compiler as the P4 Pascal compiler appears to be unable to compile itself these days and the complexities
of self-compiling or self-interpreting the p-code of the compiler is too complex to consider as a practical
methodology. Unfortunately it seems there are few Pascal compilers which can compile the P4 Compiler
source "as is" and thus some modification to the source will be required to get it working. The IP Pascal
compiler from Scott A Moore is claimed to compile the P4 Compiler source "as is" but is a non-free
commercial product and the demo version too restricted to do so. Alternative compilers which would be
worth considering are -

BACI - Ben-Ari Concurrent Interpreter. A compiler and interpreter written by M. Ben-Ari, based on the
original Pascal compiler by Niklaus Wirth. A suite of programming tools orientated around p-code with
concurrency and associated abilities added. More information : here

Blaster Master Pascal - A pascal compiler based on the QCC compiler from Quake, so everything
should be almost like standard pascal. It's almost a mix of the best of both C and Pascal. More
information : here

Borland - Borland Software Corporation have released their Turbo Pascal versions 1.0, 3.02 and 5.5 as
"Antique Software" in their Software Museum for free download through their CodeGear Developer

Network (no registration required). Download Turbo Pascal, Turbo C and Turbo C++ : here

Free Pascal - Free Pascal (aka FPK Pascal) is a 32 and 64 bit professional Pascal compiler. It is available

page 273 / 405

http://www.moorecad.com/standardpascal/p4.html
http://forums.parallax.com/forums/default.aspx?f=25&m=246603
http://forums.parallax.com/forums/default.aspx?f=25&m=246603
http://www.mines.edu/fs_home/tcamp/baci
http://www.programmersheaven.com/download/16888/download.aspx
http://dn.codegear.com/museum/antiquesoftware

Propeller
(Hss)

for different processors: Intel x86, Amd64/x86_64, PowerPC, PowerPC64, Sparc, ARM. Released under
the GNU General Public License. More information : here

GNU Pascal - A native and cross-compiler tool for a variety of platforms released under the GNU
General Public License. More information : here

Pascal X - a complete Pascal (development) environment with a very fast compiler/interpreter for
Windows 95/NT "console". More Information here

Documentation

Pascal Implementation - by Steven Pemberton and Martin Daniels,

Published by Ellis Horwood, Chichester, UK
ISBN: 0-13-653-0311

Read online at Steven Pemberton's site : here

The Pascal User Manual and Report - by Kathleen Jensen and Niklaus Wirth
Published by Springer Verlag 1974, 1985, 1991

ISBN 0-387-97649-3

ISBN 0-540-97649-3

Details here

Links

Compiler Executable and Source Code download : http://www.moorecad.com/standardpascal/p4.html

P4 Virtual Machine interpreter and PrettyP4 Linker download from the Parallax Forum:
AiChip_P4 XXX.zip

page 274 / 405

http://www.freepascal.org
http://www.gnu-pascal.de/gpc/
http://www.readyideas.com/pascalx.htm
http://homepages.cwi.nl/%7Esteven/pascal
http://www.cs.inf.ethz.ch/%7Ewirth/books/Pascal
http://www.moorecad.com/standardpascal/p4.html
http://forums.parallax.com/forums/default.aspx?f=25&m=246603

Propeller
(Hss)

Propeller Tool

Propeller tool (also known as Prop Tool and PropTool) is the IDE including Spin/PASM compiler for the
Propeller.
It is available as a free download. The current version is 1.2.7.

Known issues and workarounds

Time out

This should be fixed in version 1.1 of the Propeller Tool

The Problem: Sometimes people complain that they have trouble programming the propeller chip. That
programming will fail 4 times out of 5 or more. While the programming dialog is still displaying
"Loading RAM" or "Verifying RAM", the propeller will restart, loading up whatever happens to be in the
EEPROM at the time. The problem happens more frequently with longer programs, so as a program
grows over it's development period, it will appear to be a growing problem.

The Diagnosis: The propeller has a fixed time out. Once programming has begun, it has to be finished in
a fixed period of time before the time out resets the chip. If the PC has any delays in execution whilst
programming the attempt will fail.

The Work Around: After you hit F10 or F11 to compiler and program the propeller, do not switch to
another program until the propeller has successfully been programmed. e.g. No filling in time with a little
browsing. The time taken to switch applications can slow Prop Tool and cause the time out.

Close down other programs, especially ones that may be doing processing at the same time as Prop Tool.

No Disk

The Problem: When Prop Tool starts up, it displays an error message with "No Disk " in the title bar.

The Diagnosis: This can happen when you have a flashcard reader connected to your PC without a flash
card actually inserted.

The Work Around: You can press the Cancel or Continue buttons, and Prop Tool will launch without
further problems.

Place a flash card in the reader and it'll stop doing it.

Release Notes

This is the contents of the ReadMe.txt that ships with Prop Tool

Welcome to the Propeller Tool software for the Propeller microcontroller.
This file contains information about the Propeller Tool not found elsewhere.

page 275 / 405

http://www.parallax.com/ProductInfo/Microcontrollers/PropellerDownloads/tabid/442/Default.aspx

Propeller
(Hss)

WHERE TO FIND INFORMATION
Documentation on this product is contained in the Propeller Manual.
Please visit the Parallax web site periodically to find updated software and documentation.

http://www.parallax.com/propeller

SYSTEM REQUIREMENTS

Windows 2000 or later

The recommended processor for the Operating System
The recommended RAM for the Operating System

40 MB Free Hard Drive Space

24-bit, or better, SVGA video card

1 Available USB port or COM port

INSTALLATION

The Propeller Tool is available as an install file downloadable from the Parallax web site. Simply run the
downloaded file and follow the prompts. After

installation, run the Propeller.exe program to run the Propeller Tool software.

WHAT'S NEW

Version 1.2.6

---General---

Changed "Plain" element in Preferences' Syntax Elements list to "Regular." This better describes the
element.

Enhanced Preferences to display "Use Default" checkboxes as either "Use Regular" or "Use BLOCK" to
indicate which setting will actually be used. Updated

the hint descriptions for these as well.

Updated Help menu to include Enhanced Propeller Help and links to Propeller Datasheet v1.2, Propeller
Education Kit Labs (pdf) v1.1, Object Exchange

website, and PE Kit Tools and Applications forum thread.

Included Parallax Serial Terminal with installer.

---Bug Fixes---

Fixed bug in Preferences causing the Background option to be available in non-Block elements.

Fixed bug causing Restore button to not update syntax highlighting when the scheme changed as a result
of it.

--LIBRARY---

Added 4x4 Keypad Reader v1.0.

Updated FullDuplexSerial to v1.2.

Updated HM55B Compass Module Asm to v1.2.
Updated Memsic2125 to v1.1.

Updated Numbers to v1.1.

Added Parallax Serial Terminal v1.0.

Added PropellerRTC_Emulator v1.0.

page 276 / 405

http://www.parallax.com/propellerSYSTEM

Propeller
(Hss)

Updated Servo32 to v1.5.
Updated Simple_Serial v1.3.
Added SPI_Asm.spin v1.2.
Added SPI_Spin.spin v1.0.

---LIBRARY DEMOS---

Added 4x4 keypad Reader Demo v1.0.

Added HM55B Compass Calibration v1.0.
Deleted HM55B Compass Module.

Added HM55B Compass Module_Serial Demo v1.1.
Added HM55B Compass Module_TVDemo v1.4.
Updated memsic_demo.spin to v1.1.

Added Parallax Serial Terminal Demo v1.0.
Added Parallax Serial Terminal QuickStart v1.0.
Added PropellerRTC_Emulator_Demo v1.0.
Updated Servo32 Demo to v1.5.

Added SPI Asm Demo v1.0.

Added SPI Spin Demo v1.0.

---Misc---

Updated FTDI VCP Driver (USB to Serial) to v2.04.16.

Updated Propeller Datasheet (pdf) to v1.2.

Updated Propeller Manual (pdf) to v1.1.

Updated Propeller Quick Reference (pdf) to v1.6.

Enhanced Propeller Help examples folder structure (formerly Manual examples).
Added PE Kit Labs examples.

Version 1.2.5
---General---
Modified the Block Group Indicators preference to be True by default.

---Bug Fixes---

Enhanced to prevent system-level dialog indicating "No Disk in Drive..." when a drive and/or path is
scanned on a removable media drive that has no media in it. This

would occur on some systems with media card readers either upon Propeller Tool startup, during the
session, or both.

Version 1.2

---General---

Enhanced circular reference error message to diagram the relationship between objects to make it more
clear where the problem is.

Enhanced serial routines to support FTDI VCP Driver v2.4.6 to avoid a possible "Write Error on COMx"
message.

page 277 / 405

Propeller
(Hss)

Enhanced to automatically check file associations during the first run.

---Bug Fixes---

Fixed bug causing confusing circular reference message when a child references a parent object with
multiple instances.

Fixed bug that allowed for the possibility of an invalid circular reference error if two same-named objects
existed in two different folders and both appeared along

a branch of the project hierarchy.

Fixed bug in serial routines that caused a "Propeller Not Found..." error message to be unclear when the
Serial Search Method is set to a specific port.

Fixed bug in serial routines causing non-existent COM ports to be displayed in error message as
COMG65535.

--LIBRARY---
Updated H48C Tri-Axis Accelerometer.spin
Updated Servo32v3.spin

---LIBRARY DEMOS---
H48C Tri-Axis Accelerometer DEMO.spin

---Misc---
Updated FTDI VCP (Virtual Com Port) Driver to v2.4.6.

Version 1.1

---General---

Rewrote all serial routines and related items to increase reliability of Propeller chip identification and
download process on machines who's CPU and/or other hardware

is heavily burdened. This should significantly decrease the occurrence of "Propeller chip lost on COMx
error messages during download.

Enhanced to prevent software lock-up when accessing serial port hardware that is malfunctioning,
misconfigured, or otherwise unusable by the Propeller Tool.

"

---Bug Fixes---

Fixed bug causing Progress Form to disappear behind the Info Form if focus changed to Info Form.
Fixed bug causing Progress Form to remain visible and "stuck" if communication completed while
application is minimized.

---LIBRARY---

Updated AD8803.spin
Removed ADC.spin
Updated Clock.spin
Updated CoilRead.spin
Updated CTR.spin
Updated Debug_Lcd.spin
Removed DS1620.spin

page 278 / 405

Propeller
(Hss)

Added Float32.spin

Added Float32A.spin

Added Float32Full.spin

Updated FloatMath.spin

Updated FloatString.spin

Updated FullDuplexSerial.spin
Updated Graphics.spin

Updated H48C Tri-Axis Accelerometer.spin
Updated HM55B Compass Module Asm.spin
Updated Inductor.spin

Updated Keyboard.spin

Added License.spin

Updated MCP3208.spin

Updated memsic2125.spin

Updated Monitor.spin

Updated Mouse.spin

Updated MXD2125 Simple.spin
Added MXD2125.spin

Updated Numbers.spin

Updated Ping.spin

Updated PropellerLoader.spin
Updated Quadrature Encoder.spin
Added RCTIME.spin

Updated RealRandom.spin

Updated Servo32v3.spin

Added Serial_LCD.spin

Updated Simple_Numbers.spin
Updated Simple_Serial.spin

Updated Simple_Debug.spin
Updated Stack Length.spin

Updated StereoSpatializer.spin
Updated Synth.spin

Updated TSL230.spin

Updated TV.spin

Updated TV_Terminal.spin

Updated TV_Text.spin

Updated VGA.spin

Updated VGA_1280x1024_Tile_Driver_With_Cursor.spin
Updated VGA_1600x1200_Tile_Driver_With_Cursor.spin
Updated VGA_512x384_Bitmap.spin
Updated VGA_HiRes_Text.spin
Updated VGA_Text.spin

Updated VocalTract.spin

---LIBRARY DEMOS---
Updated AD8803_Demo.spin

page 279 / 405

Propeller
(Hss)

Updated Coil_Demo.spin

Updated Debug_ILcd_Test.spin

Updated Dither.spin

Removed DS1620-Thermometer-v1.0.spin
Updated Float_Demo.spin

Updated FrequencySynth.spin

Updated Graphics_Demo.spin

Updated Graphics_Palette.spin

Updated H48C Tri-Axis Accelerometer Demo.spin
Updated HM55B Compass Module.spin
Updated Inductor Demo.spin

Updated Keyboard_Demo.spin

Updated Memsic_Demo.spin

Updated Microphone_to_Headphones.spin
Updated Microphone_to_VGA.spin
Updated Monitor_Demo.spin

Added MXD2125 Demo.spin

Updated MXD2125 Simple Demo.spin
Updated Ping_Demo.spin

Added Propeller Floating Point.pdf

Added RCTIME_background_Demo.spin
Added RCTIME_foreground_Demo.spin
Updated ReadRandom_Demo.spin
Updated Servo32v3_Demo.spin

Updated SingingDemo.spin

Updated SingingDemoSeven.spin
Updated SpatialSoundDemo.spin

Updated Stack Length Demo.spin
Updated TSL230 Demo.spin

Updated TSL230 Simple Demo.spin
Updated TV_Terminal_Demo.spin
Updated TV_Text_Demo.spin

Updated VGA_512x384_Bitmap_Demo.spin
Updated VGA_Demo.spin

Updated VGA_HiRes_Text_Demo.spin
Updated VGA_Text_Demo.spin

Updated VGA_Tile_Driver_Demo2.spin
Updated VGA_Tile_Driver_Demo3.spin
Updated VocalTractDemo_Mama.spin
Updated VocalTractDemo_Mixer.spin

Version 1.06

---General---

Enhanced serial port configuration options to allow user to include/exclude ports based on port ID or port
description. Also, user can specify the search order of ports.

page 280/ 405

Propeller
(Hss)

See Edit -> Preferences -> Operation -> Edit Ports for options.

Added Serial Port Search field to Preferences' Operation tab that allows selection of: 1) AUTO (to scan
all ports according to serial search preferences), or 2) a

specific port.

Enhanced to be aware of serial port add/remove events the moment they occur.

Enhanced all serial-related error messages to indicate port events and status.

Added support for Auto Recovery of fatal Serial Port Scanning failures.

Updated Object View and Info View to use enhanced hint window code.

Updated Propeller Quick Reference to v1.5.

Updated FTDI USB Virtual COM Port Drivers to v2.02.04.

---LIBRARY---

Added ADC.spin

Added CoilRead.spin

Updated FloatString.spin

Added Inductor.spin

Added MXD2125 Simple.spin

Added Servo32v3.spin

Added Synth.spin

Added TSL230.spin

Added VGA_1280x1024_Tile_Driver_With_Cursor.spin
Added VGA_1600x1200_Tile_Driver_With_Cursor.spin
Updated VGA_HiRes_Text.spin

---LIBRARY DEMOS---

Updated AD8803_Demo.spin

Added FrequencySynth.spin

Added Inductor Demo.spin

Added Memsic_Demo.spin

Added Microphone_to_Headphones.spin
Added Microphone_to-VGA.spin
Added MXD2135 Simple Demo.spin
Updated Ping_Demo.spin

Added Servo32v3_Demo.spin

Added TSL230 Demo.spin

Added TSL230 Simple Demo.spin
Added VGA_HiRes_Text_Demo.spin
Added VGA_Tile_Driver_Demo2.spin
Added VGA_Tile_Driver_Demo3.spin

Version 1.05.8

---Bug Fixes---

Updated compiler to fix bug causing local labels of exactly 16 characters to be processed incorrectly. This
was fixed in version 1.05.5 but was

page 281 /405

Propeller
(Hss)

mistakenly broken again in v1.05.6 and v1.05.7.

Version 1.05.7

---Bug Fixes---

Fixed scaling issues with Progress window, Object Info window, and Preferences window, that occur
when system has a DPI setting other than 96 dpi.

Fixed to disallow filenames without the proper extension. This is to support .spin, .eeprom, and .binary in
one deterministic fashion.

Fixed bug preventing .binary or .eeprom files (listed on the command line) from opening upon initial
startup.

Version 1.05.6
Updated compiler to support $ as a "here" operator.

Version 1.05.5

---General---

Added preference item to the Operations tab to control how the Propeller Reset Signal is output. The
signal can now appear on the: DTR pin (default), RTS

pin, or on both DTR and RTS pins.

Added "undo after save" preference item to the Files and Folders tab.

---Bug Fixes---

Updated compiler to fix bug causing local labels of exactly 16 characters to be processed incorrectly.
Updated serial communication routines to including scanning of COM ports that don't register normally
with the system. This issue was preventing some

manufacturer's COM port devices from being recognized by the Propeller Tool.

Version 1.05.2

---General---

Enhanced to allow stub-loader configurations of binary and eeprom files. Adjusted Info View to display
memory info and map in dark gray for everything

that could be code space (based on image size) and medium-gray for everything that is outside that
region.

Adjusted look of block syntax preference items.

Removed *.binary and *.eeprom from normal Save As dialog.

Enhanced compiler to:

1) Support a new directive, ORGX, to allow user to stop COG address incrementing for large-model
assembly programs.

2) Enhance arguments of ORG, RES, FIT, and ‘repeat’(in BYTE/WORD/LONG value[repeat]) so that
they are allowed the same scope as instruction operands.

3) Support RES as _RET destinations.

4) Support TESTN instruction (which is an ANDN instruction, no result write... similar to how TEST is

page 282 /405

Propeller
(Hss)

really an AND, no result write).

Updated syntax highlighting to include ORGX.

Updated syntax highlighting for TESTN.

Enhanced to refresh the file list if a Top Object File was SaveAs'd.

Added help menu items for the Propeller Quick Reference, Propeller Manual and Propeller Demo Board
Schematic.

---Bug Fixes---

Fixed bad syntax highlighting when an equal immediately follows a comment in CON section ('=).
Fixed corrupt label on About window that caused immediate exceptions upon execution.

Fixed Progress display to show current compiled code rather than the last object name in the immediate
chain.

Fixed bug causing multiple versions to mistake each other's auto-recover files as their own.

Fixed bug causing exceptions upon resizing edits.

Fixed bug causing tab to be activated without updating status bar after a tab was deleted.

Fixed Info Window to properly color code the Info Box and the Memory Map.

Fixed source location methods to prevent rare error when creating an Archive.

Version 1.0

---General---

Added Preferences feature (Edit -> Preferences). Includes options for changing syntax highlighting, file
association checks, launching into single

or multiple editors, showing/hiding bookmarks, line numbers, and block group indicators, auto-recover,
saving and loading syntax schemes.

Updated color scheme.

Standardized sounds for all messages.

Enhanced forms to reposition themselves if they are more than 50% outside of visible space.

Optimized compilation process.

Enhanced Find/Replace to allow blank Replace fields (so user can replace text with nothing if desired).
Enhanced serial routines to prevent tool from hogging CPU cycles unnecessarily.

Added Auto-Recovery feature; if a system failure occurs, the next session recovers the last-used files up
to the point they were last compiled and

relays options to user.

Eliminated limit of 32 objects per Propeller Application.

Modified to decrease startup time by retaining Show Recent Only button state between sessions (press
Show Recent Only button to limit Integrated

Explorer's workload).

Enhanced Archive error message "Object View Empty..." to be more clear.

---Bug Fixes---

Eliminated memory leak in compilation process.

Fixed bug preventing undo/redo after saves.

Fixed issue causing the tool to process many key presses twice.
Fixed bug that allowed out-of-range font size values.

Fixed menus from responding during application initialization.

page 283 /405

Propeller
(Hss)

Fixed syntax highlighting of code and doc comments after a LONG declaration in DAT block.
Fixed syntax highlighting of WORD and LONG declarations in DAT block after line end.
Fixed syntax highlighting of assembly local labels after instruction.

Fixed syntax highlighting of = operator after 2 or more spaces in CON block.

VERSION 0.98

---General---

Updated/Added Objects in Library.

Updated compiler to support multi-pass CON/VAR/OBJ blocks to allow CON-defined constants
to be used throughout those blocks.

Updated syntax highlighting rules to support IFNOT and ELSEIFNOT reserved words.

Enhanced Info's OpenFile method to indicate that file may not be a Propeller Application

file, upon error.

Added Close All Others option to both Edit shortcuts and Edit Tab shortcuts.

Updated compiler to support TRUNC, ROUND, and FLOAT as automatic CONSTANT directives in
addition to their normal tasks.

Adjusted parser rules to not use _, $, or % as delimiters so that labels with underscores,

or hex or binary numbers are selected properly with double-clicks.

Enhanced serial communication to prevent sticking on invalid ports and to user better feedback.
Modified/Updated Shortcut keys to following:

Ctrl + Shift + B : Show/Hide Bookmarks

Ctrl + Shift + N : Show/Hide Line Numbers

Ctrl + B : Toggle current line's bookmark on/off

Ctrl + N : New file

Ctrl + W : Close current file

ALT + T : Set Current File as Top File.

Removed Minimize/Maximize buttons from Object Info window.

Removed "+ Run" from Load RAM and Load EEPROM menu options. Removed Load EEPROM menu
option.

Updated hints. Made corresponding changes to Object Info window. Removed F12 and Ctrl + F12
as a shortcut keys.

Enhanced to allow opening *.binary and *.eeprom files into Object Info window.

Updated compiler to error out when literals greater than 9 bits are used in the source field of
assembly instructions.

Enhanced Archive to enabled status all the time; it now prompts user if the Object View is empty.
Updated compile to fix STRING bug when in CASE-OTHER block.

---Bug Fixes---

Fixed bug in Archive feature that caused it to truncate binary files.

Fixed bug causing Edit Tab shortcuts Close and Close All to not necessarily match up with that of
Edit shortcuts.

VERSION 0.95.1
-—-General---

page 284 / 405

Propeller
(Hss)

Added copyright notice to About window.
Updated/Added Objects in Library.

---Bug Fixes---

Updated compiler to fix REBOOT command.

Updated Parallax font to v0.70.

VERSION 0.95
Initial pre-release.

page 285 /405

Propeller
(Hss)

This page covers the proposed new Instructions for the Next Propeller chip.

The new chip will have all the the existing instructions with the same binary layout. New instructions
have been mapped into the unused slots. (Reference = Chip Gracey Post)

Instructions:

e MUL - multiply instruction. This is the only post I could find with any mention of the multiply.

¢ Pre/post increment/decrement RDxxxx/WRxxxx enhancement. New SETPTRA/B instructions
and PTRA/B registers. See this post for details.

e REP[x,y] - repeat y instructions x times. The repeated instructions will be 2 instructions after this
one due to pipelining. See this post for details.

e SWAPZC D - swap the Z and C flags with the 0 and 1 bits in D. See this post for details. (this
may be out based on some later discussion)

e JMPD/JMPRETD - delayed jump. The jump would occur two instructions later. This allows the
two instructions already in the pipeline to finish and the new instruction after the jump to pipeline
in without a stall. See this post for details.

e RDQUADL/WRQUADL - read/write 4 longs to/from HUB memory. See this post for details
(also just above it where he first mentions 8 longs but changes to 4).

e 777 - Instructions to read/write a 256 word (16bit) color look up table (CLUT). This post mentions
it. This post says that this memory will also be usable as 128 longs of just general data storage.

Other related info:

In this post, Chip mentions a divider circuit. The concept is that you would write your values to registers
and then some number of clocks later read the results back out. This same concept is mentioned for
square root elsewhere in the same thread.

This post mentions: CORDIC, MAC/MACS, REPeat, indirect register addressing, and hub memory
pointers.

Chip mentions in other posts some instructions called SETINDA/B, and associated INDA/B registers.
These are the "indirect register addressing" feature. This post has some more info on these.

He, also, mentions the PTRA/B and SETPTRA/B instructions when talking about the post/pre
increment/decrement feature enhancement to RDxxxx/WRxxxx. These are the "hub memory pointers"
feature.

It's unknown at this time if the PTRA/B and INDA/B registers are just more special registers at the end of
cog memory (most likely) or if they are something new.

page 286 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=288953#m288990
http://forums.parallax.com/forums/default.aspx?f=25&m=156993&p=5#m157585
http://forums.parallax.com/forums/default.aspx?f=25&p=003&m=288953#m289174
http://forums.parallax.com/forums/default.aspx?f=25&m=288953&p=3#m289188
http://forums.parallax.com/forums/default.aspx?f=25&m=288953&p=11#m289685
http://forums.parallax.com/forums/default.aspx?f=25&p=8&m=288953#m289499
http://forums.parallax.com/forums/default.aspx?f=25&m=288953&p=25#m292980
http://forums.parallax.com/forums/default.aspx?f=25&p=025&m=288953#m293069
http://forums.parallax.com/forums/default.aspx?f=25&p=025&m=288953#m293116
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=269640#m289047
http://forums.parallax.com/forums/default.aspx?f=25&p=010&m=288953#m289633
http://forums.parallax.com/forums/default.aspx?f=25&p=017&m=288953#m290595

Propeller
(Hss)

Propeller Demo Board

I'm going to assume you have the entire Propeller Starter Kit which includes the propeller demo board.
(It's possible to get the Propeller Demo Board by itself).

Quick Start installation (is there a better step-by-step tutorial anywhere else?):

Put the CD in your computer. (It's vaguely titled "Software, documentation, product briefs,

catalogs, and image files.")

e choose "Software".

e Open the "Propeller" folder, and choose "Propeller Tool". Hit the "Install" button.

e Hit "next" a bunch of times to install.

e A "Propeller Tool" icon should show up on your desktop.

o ... (There's no need to Hit the "back" button, and choose "Documentation”, because the above
installation already installed the "Propeller Manual" and the "Propeller Demo Board
Schematic".)

e ... Is there something else I'm supposed to install from the CD?

e ... Are there any updates/patches I'm supposed to download from the web site? ...

e Now click on the "Propeller Tool" icon, and choose "Yes".

e Connect the Propeller Demo Board to the "wall wart" power supply that came in the Started Kit
and turn the power on. (The LEDs should blink in an interesting pattern).

® You can now connect your VGA monitor, TV and speakers to see and hear the demo program in
the EEPROM.

e Connect the Propeller Demo Board to your PC using the USB cable that came in the Starter Kit.

e Start the Propeller Tool software on the PC, and press F7 (or select from the top menu "Run" |

"Identify Hardware". You should see a "Information" dialog box pop up with a "Propeller ...

found" message.

Now you are all set up for

e Propeller Programming Tutorials
e more tutorials.

e vyet more tutorials

The kit includes the Propeller Manual. You probably also want to download the Supplement and Errata
for Propeller Manual.

e English language Propeller chip forum

e English language HYDRA Game Development Kit forum

e Sprechen Sie Deutsch?
o Das deutsche Forum zum Parallax Propeller existiert leider schon eine Weile nicht mehr.
o Zum auf 3 Propeller-Chips basierenden Hive-Computer-Projekt gibt es eine Webprisenz

page 287 / 405

http://www.parallax.com/Store/Microcontrollers/PropellerProgrammingKits/tabid/144/CategoryID/20/List/0/SortField/0/Level/a/ProductID/382/Default.aspx
http://www.parallax.com/Store/Microcontrollers/PropellerDevelopmentBoards/tabid/514/CategoryID/73/List/0/Level/a/ProductID/340/Default.aspx?SortField=ProductName%2cProductName
http://forums.parallax.com/forums/default.aspx?f=25&m=204210
http://forums.parallax.com/forums/default.aspx?f=25&m=211608
http://ucontroller.com/
http://www.parallax.com/dl/docs/prod/prop/PMv1.0Supplement-v1.1.pdf
http://www.parallax.com/dl/docs/prod/prop/PMv1.0Supplement-v1.1.pdf
http://forums.parallax.com/forums/default.aspx?f=25
http://forums.parallax.com/forums/default.aspx?f=33
http://propellerforum.sps-welt.de/index.php
http://hive-project.de/

Propeller
(Hss)

mit Forum und dort dreht sich die Welt auch mehr um den Hub als um den Hive, so
hivespezifisch wie es der Name suggeriert geht es dort nicht zu. Jeder
Propeller-Interessierte ist willkommen.
An english sub-forum exists aswell.

e Habla Espanol? Esta lista de discusion esta orientada a usuarios de productos Parallax.

page 288 / 405

http://hive-project.de/board/
http://hive-project.de/board/viewforum.php?f=18
http://espanol.groups.yahoo.com/group/ParallaxenEspanol/

Propeller
(Hss)

The PropellerTool includes a built in Parallax font that is used to display the special drawing characters,
and corresponds to the internal font table in the Propeller ROM. When PropellerTool is started, it will
install the font Parallax.ttf on startup.

It seems the current version (0.700) of this font is very sensitive to resolution variations. Often can be
seen as bad kerning, in particular on linux all the characters often get totally corrupted both under wine
and in native applications. This can be seen by changing point sizes and italic/bold modes.

The easiest fix is to download the a tweaked font file from

http://forums.parallax.com/attachment.php?attachmentid=53903&d=1212437073, and replace the
existing font.

Linux

In linux you replace the font in two places, wine and Xwindows.

Wine will keep it in ~/.wine/drive_c/windows/fonts/

Gnome/Xwindows location used to be able to use the Gnome file manager to access 'fonts:///', but that no
longer works for me (Ubuntu 8.1).

What worked for me was:

cd /tnp

wget --content-disposition http://foruns. parall ax.confattachnment. php?a
ttachmenti d=53903&0=1212437073

sudo nkdir /usr/share/fonts/truetype/ nyfonts/

cd /usr/share/fonts/truetype/ nyfonts/

sudo unzip /tnp/Parallax.ttf.zip

sudo fc-cache -f -v .

Windows

Open the control panel and delete the existing font, and drag in the new version.

From Scratch

The fixed font has all the bitmapped fonts stripped from the Parallax.ttf font file. The resulting vector font
then seems to work fine.

The instructions are:

page 289 / 405

http://forums.parallax.com/attachment.php?attachmentid=53903&d=1212437073

Propeller
(Hss)

. copy/backup the original Parallax.ttf file that get puts in the windows font directory.
. open the Parallax.ttf file with fontforge.

. When prompted import none of the bitmap fonts.

. Select Element->Font Info

. Update the version name and comments. (ONLY!)

. Choose File->Generate Fonts

. Overwrite your Parallax.ttf

NN BN

Note that it seems the font name is embedded in the TTF file, so you cannot simply create a new file
name and then be able to use both the old and new font. If you want to do that, go back and edit the font
name fields in the Font Info and generate to a new file name.

Mac OSX

On Mac OSX the application FontBook can be used to install fonts for the different users. From the
menu File->Add Font select the directory containing the Parallax.ttf (or any font file for that matter) and
press the OK button. The file will be installed into ~/Library/Fonts, i.e. the fonts directory for your user.
You can also move it there manually. If you do not want the font anymore, just move the file to the trash.
(The font Monaco works very well in BST too). A font point of 16 with anti-alias (select it from BST
editor preferences pane) works very well.

Discussion posted on http://forums.parallax.com/showthread.php?t=98307 and a copy of the modified
font file http://forums.parallax.com/attachment.php?attachmentid=53903&d=1212437073

page 290 / 405

http://forums.parallax.com/showthread.php?t=98307
http://forums.parallax.com/attachment.php?attachmentid=53903&d=1212437073

Propeller
(Hss)

Propeller 2

The next generation of the Propeller chip is currently under development by Parallax. It will undoubtedly
be called something featuring the word "Propeller" at release. For now we refer to it as the Propeller 2.
Nothing is certain about this chip so far, but Parallax has told the community about a lot of features they

are expecting to include.

Early on they had talked about going with 16 COGs, but due to silicon size and other considerations they
have gone back to 8. This may change, or they might do another version later with 16.

The primary values that seem to be settled on for now are 8 COGs, 128K Hub RAM (tentatively Beau
Schwabe has said 256K is still a possibility), 32K ROM, 92 I/Os, and 160Mhz.

Here is a page with information about proposed: Propeller 2 Instructions.
Here is a link to the Propeller 2 feature list released by Parallax: Propeller 2 Feature List

Features mentioned in posts on the parallax forums:

Feature Quantity Comments Forum post link

Cogs 8v COG instructions 8 COGs post (other
pipelined (1 per clock mentions in the newer
effective) posts from Aug 2008 to

Hub instructions take 2 Sept 2008)

clocks, you can fit 6 Other data: Chip post
regular instructions

between successive hub

accesses.

Quad-long read (four

longs in one hub

instruction) is on the slate

for implementation as

well

HUB access every 8 Chip post
clocks

512 longs per COG (same Chip post
number, but more will be

available for coding than

the Prop 1, 506 vs 496)

256 entry 16bit CLUT, Chip post
used with VSU to get
16bit color data per pixel. Chip post

page 291 / 405

http://propeller.wikispaces.com//Propeller+2+Instructions
http://www.parallax.com/Propeller2FeatureList/tabid/898/Default.aspx
http://forums.parallax.com/showthread.php?p=746714
http://forums.parallax.com/showthread.php?p=157003
http://forums.parallax.com/showthread.php?p=617536
http://forums.parallax.com/showthread.php?p=157008
http://forums.parallax.com/showthread.php?p=750476
http://forums.parallax.com/showthread.php?p=898214

Propeller
(Hss)

Memory

HUB Address Space

1I/0s

ADC/DAC

RAM 128K v

ROM 32K v

32bit v

92 v

92 v

Also accessible as 128
longs of general storage.
"The CLUT will not be
rewritten during a cog
reload, so it will retain its
prior contents."

HUB memory Beau Post
Layout Engineer Beau

Schwabe assures room on

the die for at 128K, and

some rearranging may

allow for 256K.

ROM includes entire 128k ROM: Chip post
development system. (No Other: Chip post
need for PC!) Released

info from Parallax says

32K.

In order to have 128KB Chip post
RAM and 32KB ROM,

they had to expand. They

decided to go all the way

to 32bit.

Most recent posts say it's Chip post Chip post
92 now.
Chip post
"each pair of adjacent
Prop II I/Os has a
high-speed comparator
between them that can
toggle at SOMHz"

"EVERY pin will have Chip post
one these babies in it,
along with a comparator,
a delta-sigma ADC, a
delta-sigma DAC, a high
speed signal/video
75-ohm DAC,
pull-ups/downs, slew
control, float/weak/strong
HIGH/LOW combos,
schmitt input w/feedback,

page 292 / 405

http://forums.parallax.com/showpost.php?p=939755&postcount=77
http://forums.parallax.com/showthread.php?p=659751
http://forums.parallax.com/showthread.php?p=659778
http://forums.parallax.com/showthread.php?p=289051
http://forums.parallax.com/showthread.php?p=880074
http://forums.parallax.com/showthread.php?p=879700
http://forums.parallax.com/showthread.php?p=858570
http://forums.parallax.com/showthread.php?p=858588

Propeller
(Hss)

Serializer / Deserializer ?

PLL speed 160Mhz ?
Packaging

Process 180nm v
Pins 128

crystal oscillator, and a
few other things"

"I just need to narrow Chip post
down what kinds of

demodulation we should

support. Manchester and

NRZ come to mind"

They hope to reach Chip post
160Mhz.

TQFP-128 (14x14mm) ? Chip post
QFN-128 (12x12mm) ? Chip post

Beau post
92 1/0s v VIO pins: Chip post

8 VPO-7 power 1 per 8

I/0Os (1.8v - 3.3v) (more Pin arrangement Image
functional at 3.3v) v from Beau: Image

8 GPO-7 grounds 1 per 8

I/Os v

8 VDD 1.8v Core power v

8 GND v

1 RESn Reset v

2 X1/XO Clock v

1 BOEn Brown Out v

legend: ? = not yet defined by Parallax | v = mentioned by Parallax (Chip, Paul, Beau)

The information on this page and the Propeller 2 Instructions page was gathered primarily from the

following posts:

e What would you want more of, cogs or RAM? (started 24Nov06)

e More Prop Il info..!?! (started 21 Aug08)

e Should the next Propeller be code-compatible? (started 27Aug08)

e Prop II on-chip development question (started 22Nov(09)

page 293 / 405

http://forums.parallax.com/showthread.php?p=745665
http://forums.parallax.com/showthread.php?p=659764
http://forums.parallax.com/showthread.php?p=747021
http://forums.parallax.com/showthread.php?p=858423
http://forums.parallax.com/showthread.php?p=746692
http://forums.parallax.com/showthread.php?p=722960
http://forums.parallax.com/attachment.php?attachmentid=74729&d=1288195867
http://propeller.wikispaces.com//Propeller+2+Instructions
http://forums.parallax.com/forums/default.aspx?f=25&m=156993
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=287081
http://forums.parallax.com/forums/default.aspx?f=25&m=288953
http://forums.parallax.com/forums/default.aspx?f=25&m=403348

Propeller
(Hss)

Propeller Lingo

This page is dedicated to the growing number of Propeller specific terms, used elsewhere in this
WikiSpace. Unlike most all other CPUs, the Propeller is a multi-processor design, featuring deterministic
timing, no interrupts and highly flexible on board hardware and I/O capability.

What is a COG?

A cog refers to one of 8 internal CPU cores. Each COG runs independent of the others, has a 2KB
memory space, apart from the shared 32KB HUB memory space. Think of a COG as one element of a
multi-processor system. All cogs share access to the I/O pins in real time. It is possible to have one COG
watching and acting on what another COG does with the I/O pins.

When not active, COGs do not consume power.

When active, a COGs memory space is filled from the HUB, then program execution begins.

All COGs are identical, featuring on board counters, video generator, etc... Programs have no need to
specify specifc COGs to execute on, unless some hard coded software need warrants this.

What is the HUB?

On the Propeller, there is a shared memory space called the HUB. The 16 bits of addressable space is
evenly divided into RAM and ROM areas, both accessible to programs running on a COG. Each COG
gets round robin access to the shared HUB memory space. This was done to make the design completely
deterministic, thus reducing the complexity normally associated with multi-processor designs.

CNT --or-- Global System Counter

This is the read only system wide counter. It is visible to all COGs and is 32 bits in size. Typical use case
is to store the current count, calculate some offset, then compare it within a COG to establish known and
deterministic timing between COGs, or as a base counter for other deterministic tasks within a given
COG that may or may not be using it's own counters.

What is SPIN?

Spin is a higher level language, run from an internal and on chip interpeter. Spin programs are compiled
with the Propeller tool, and run on one or more COGs.

page 294 / 405

Propeller
(Hss)

What is Spin Bytecode?

Spin bytecode is the sequence of bytes which make up the instructions and data of a compiled Spin
program. The Spin Bytecode is executed by the Spin Interpreter which is loaded from ROM into any
COG which is required to run a Spin program.

What is PASM?

Propeller ASseMbly. Machine code, nirvana, or the cause for delicate nerves.

What is LMM?

Large Memory Model. This is a form of PASM where Propeller assembly instructions are held in Hub
memory rather than in COG memory and are interpreted by the COG program rather than directly
executed.

There is no single version of LMM but they all have core functionality in common; the ability to execute
most non-branching Propeller instructions at high-speed with those instructions which cannot be directly
executed replaced by a jump into the LMM handling COG program to perform the task required.

The Propeller and Propeller Tool do not natively support LMM. LMM implementations have to be
designed and implemented by Propeller developers themselves.

What is a VM or Virtual Machine?

A Virtual Machine is a Spin, or more usually a COG, program which can interpret a sequence of
instructions stored somewhere within or external to the Propeller chip and cause the intended operations
of the interpreted code to occur.

A Virtual Machine allows a processor to execute an instruction set which is not native to it, that is, is not
in its own native assembly language.

The ROM-based Spin Interpreter and LMM handling COG programs are Virtual Machines.

What is a WAITVID?

"WAIT for VIDeo generator to be ready to accept pixel data." It's an assembly instruction, often used in
plain English to describe the task of feeding pixels to the hardware. eg: "My driver delivers 4 pixels per
WAITVID."

page 295 / 405

Propeller
(Hss)

What is a Register?

On the Propeller, there are two distinct memory spaces, one being HUB memory, the other being COG
memory.

In the simplest sense, a "register" on the Propeller really is just one of the 512 COG memory locations. In
the not so simple sense...

Many CPU's have any number of internal registers, used for operations on data that resides somewhere in
the addressable memory space. (A, X, rl, etc...) These registers are typically addressed in a way distinctly
different from ordinary RAM or ROM memory. eg: LDA $100 That particular instruction, for 6309,
6502, and probably others, instructs the CPU to move the contents of memory location $100 into register
A, by way of example, where A is an internal register, with no address other than the bit field in the
instruction that specifies it, and $100 being one of the addressable memory locations.

The Propeller does not make use of this model, in that all 512 addressable COG memory locations simply
contain values, with said values either being instructions or data, based on the programmers intent. On the
prop then, a similar instruction would be: MOV A, $100

The difference being A is just a label, pointing to another COG memory location, instead of referring to
some internal location! One could just as easily do this: MOV frank, $100. If frank and A both point to
COG memory location $1a0, for example, then the contents of location $100, would be moved to location
$1a0.

Essentially, if you plan on executing the contents of a given COG memory location, it then works like an
instruction. If those contents are to be consumed or operated on by the program, then it's more like data.
The most common use of the word "register", in the context of the Propeller, is to refer to a COG memory
location that contains data, to be operated on according to instructions given, in a fashion similar to how
an internal register would be used on other CPU models.

What is PropJavelin?

PropJavelin is a project to implement the functionality of the Parallax Javelin Stamp on the Propeller
Chip. This is the implementation of a JVM which runs on the Propeller to allow Java(TM) programming
of the Propeller. Java program development is undertaken using a modified version of the Javelin Stamp
IDE.

More information on PropJavelin and programming the Propeller with Java can be found here

page 296 / 405

http://www.parallax.com/tabid/255/Default.aspx
http://propeller.wikispaces.com//Programming+in+Java

Propeller
(Hss)

Propeller Manual

by Jeff Martin

ISBN 1-928982-38-7

A 438 page book which comes included in the box with the Propeller Starter Kit.

Also _online.

errata:

e http://www.parallax.com/dl/docs/prod/prop/PMv1.0Supplement-v1.1.pdf
e Antilog tables: There is an error in the propeller manual 1.0 describing how to use the antilog

(2"x) tables. a _discussion thread tells the right way to do it. It should read: t abl e_anti | og
l ong $D000 'anti-log table base
¢ minor bug in the loadTable routine used by the log and exp functions _has been fixed.

page 297 / 405

http://www.parallax.com/Portals/0/Downloads/docs/prod/prop/WebPM-v1.01.pdf
http://www.parallax.com/dl/docs/prod/prop/PMv1.0Supplement-v1.1.pdf
http://forums.parallax.com/forums/default.aspx?f=25&m=210071
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=218467

Propeller
(Hss)

page 298 / 405

Propeller
(Hss)

Propeller Tool Enhancement Requests

This is a list of enhancements which Propeller Developers believe could be made to the Propeller Tool to
provide more functionality than the latest released version delivers. It is also a useful guide to what a
third-party developer of programming tools for the Propeller may wish to consider implementing to
satisfy the perceived needs of developers.

This page has been split into three sections -

New Feature Requests - Features which can be implemented in an IDE or other front-end to enhance the
compilation process or programming languages (Spin and/opr PASM) which can be achieved through
pre-processing in the IDE or using another application and do not require a change in the compilation
process.

Compiler Enhancement Requests - Enhancements which can only be provided for by a change to the
compiler itself and cannot be achieved through pre-processing by the IDE or other application before
compilation.

Propeller Tool Improvement Requests - Enhancements which are suggested for the Parallex Propeller
Tool IDE.

New Feature Requests

Macros and Conditional Compilation

C-style #include, #define, #if-else-endif and similar pre-processor directives.

Third-Party Hooks / Plug-Ins

1) A mechanism to integrate third-party pre-processing tools into the compilation process.
2) A mechanism to allow third-party downloaders to be used instead of the in-built IDE downloader. This
will allow end-users to use three-wire (RX/TX/0V) download mechanisms which do not have DTR

signalling for Propeller Reset.

3) A mechanism to launch third-party tools after download completes, for example third-part debugging
tools and and terminal emulators.

Separate Tokeniser

page 299 / 405

Propeller
(Hss)

A separation of the IDE front-end and Spin Compiler back-end would be desirable for those wishing to
write their own front-ends, IDE's and GUT's.

Ideally multi-platform command-line tokenisers would be made available.

Library Paths

The means to supply user-specified paths which can be used to locate pre-written Spin modules which
have been specified in a program's OBJ section.

Paths Within Object Specifications

The current definition of a sub-object in the OBJ section of a program is name : "filename". The filename
should allow a path to specified, an absolute path, or relative to the directory the current object (that
including the sub-object) has been saved in.

Object Base Address Identifier

A mechanism like "@Mymethod" which allows the start of an object to be identified within hub memory.

Method Index Identifier

A mechanism to determine the index of a method (subroutine or function) within the vector table held
within an object through which a method call is made.

String Packing

Compile-time directives additional to String() to allow 5-bit, 6-bit and 7-bit character encoding and
packing within hub memory, with and without terminating zero.

Compile-time directives to allow 5-bit, 6-bit and 7-bit character encoding and packing within a 32-bit
long variable, left or right aligned.

String Hashing

A compile-time directive which will return a 32-bit constant being a hash of a supplied string. Ideally this

page 300 / 405

Propeller
(Hss)

would use the same syntax as the "String()" directive but return a hash value rather than a pointer to the
string.

Pre-Defined String Constants

Compile time constants which work like String() but return pointers to text strings which indicate the
top-object filename, current filename, compilation date (including non-US date formats) and time.

SizeOf Operator

A SizeOf() compile-time directive which returns the number of bytes reserved for a variable, or number
of bytes reserved for an 'array'.

Address Variable Type

Provide an "Addr" variable type of the correct size to hold a hub address of the Propeller Chip for which
the code is being compiled for. This would be a word for the Propeller Mk I, a long for the forthcoming
Propeller Mk II.

PASM should also be updated to provide rdaddr and wraddr as equivalents for rdword/rdlong and
wrword/wrlong and Spin also updated to include addr[] arrays.

Top-Object Only Download

A mechanism to avoid accidentally downloading and running anything other than a top-object. One
suggestion is to check for the presence of _CLKMODE in the open file being downloaded. If present
allow downloads, if not present allow a syntax check F9, but do not allow an F10/F11 download.

Enhanced Assembly Options

A mechanism to cause the use of long or other PASM instructions used after res' to be flagged as an
error. The option should be user-selectable so it can be disabled for those cases where such use is
intentional.

Target Identification

page 301 /405

Propeller
(Hss)

A means to identify whether source code is targeted at Mk I, Mk I, or both Propeller Chips and a
mechanism to inform the Propeller Developer that they are using incompatible source for their intended
target.

Automatic generation of .eeprom or .binary files

A mechanism to allow the automatic generation of .eeprom or .binary files with every compilation
without having to perform an explicit F8 or confirm the deletion of existing .eeprom or .binary files,
while deleting any outdated .eeprom and .binary files.

Compiler Enhancement Requests

Listing and Symbol Table File

The production of human-readable and/or computer-readable listing and/or symbol tables of the
compilation to allow the location of labels to be related to hub memory address (and cog address where
relevant) for that compilation.

Current Hub Address Identifier

An "@" token which will specify current hub address within DAT sections in a similar way that the "$"
token is used to specify current cog address. This would be particularly useful for developers of LMM
code and VM's.

Propeller Tool Improvement Requests

Better COM/Serial Port Selection/Polling

This has been implemented by Parallax staff and is available from version 1.06 (2008-01-22) - Thanks
Jeff (Parallax).

A Debug Terminal Display

This is currently scheduled for implementation by Parallax staff.

page 302 / 405

Propeller
(Hss)

Tabs

1) The ability to reorder (organize) the tabs when several tabs are open.

2) The "x" for closing the tabs to be located on the tab itself instead of right most side of the window.
Similar to Internet Explorer 7.

Windows 2000 compatibility

Probably not high on most people's lists

Printing
1) Ability to print in landscape orientation

2) Remember my settings (e.g. 'Header', and 'Line numbers')

Compiler output

Add option to always generate the .BINARY and .EEPROM files (instead of running the internal loader).
This would allow the use of external loaders for linux and mac users. It would also allow two propellers
(or more) propellers to be attached via USB and programmed by the external loader (for example, you
could run two copies of Loader.py in watch mode, watching different binary files and connected to two
different USB ports) by just compiling the appropriate top level object.

Configuration Override

The ability to specify a _CLKMODE and _XINFREQ which overrides whatever is specified in source
code. Most home users will use one Propeller board or multiple boards configured the same and this will
save having to alter other source code to match the target hardware they have. This is particularly useful
should the crystal be some unusual frequency prone to typing error. It also allows those users to deliver
source code set for the standard XTAL1+PLL16x / SMHz while developing with whatever they are
actually using.

page 303 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=161911

Propeller
(Hss)

A Propeller+CPLD project by Pacito.Sys

The goal of this project is to use a CPLD to augment the video circuitry of the propeller to obtain high
resolution frame-buffer based video.

A CPLD, complex programmable logic device, provides the glue logic needed to access a external SRAM
where the frame-buffer is stored and also provides a way to access the SRAM from the propeller using as
few lines as possible.

A thread at Parallax' forums can be found here.

The circuit is shown below:

CPLD and SRAM

The circuit uses 2 CPLD, one XC9572 and one XC9536 because is what I had laying around. If you get a
X(C95144(XL) or bigger you can fit both parts into the same CPLD.

The color capabilities rise to 256 simultaneous colors from a palette of the same amount using 3:3:2 for
R:G:B. In a FPGA a better wider DAC could be used and a palette could be held in memory but that is
"Zukunftsmusik".

How it works:

Video refresh. The propeller generates synchronism signals for vertical and horizontal as well as a pixel
enable and pixel clock signal. This pixel clock signa has to be 2 times the pixel clock. The pixel enable
signal has to be asserted during the visible cicle of the image. Every other cycle the memory will be ready
to be read or written by the propeller. As the CPLD use is a bit of a tight fit no two consecutive cycles can
be used for read or write during blanking but it could be in a bigger device.

The memory waveform explaining this interleaved process is shown below. Here the simulator and

test-bench signals are shown. The software used is Xilinx WebISE 10.1 but newer or older versions work
as well.

A logic analyzer hooked to the memory and clock signals show the following.

page 304 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=389979&p=1

Propeller

(Hss)

Image here

The actual board has been done as a single side PCB with few bridges. The photo process worked quite
well, for being the third board I do using this process. Details can be found here. Note that removing the
oil before developing is very important for the NaOH to attack the photo sensible layer!

Image here

Fully built circuit can be seen here

The Code inside the XC9572 is shown below (Verilog), it is fixed for 640x480 i.e. 307200 pixels.

“tinmescale 1lns / 1ps
FEELEEL b r b r bbb rrirrirr

LI

/1 Conpany: Pacito Systens Co.

/'l Engineer: Pacito.Sys hppacito <@ gmail.com

11

/'l Create Date: 18: 04: 13 10/ 03/ 2009

/| Design Nane:

/1 Modul e Nare: top

/'l Project Nane:

/| Target Devices: XC9572(XL)

/| Tool versions: WeblSE 10.1 (Linux)

/'l Description: A VGA and nenory controller for the propeller
11

/'l Dependenci es:

11

/'l Revi sion:

/'l Revision 0.02 - The finite state machines are used to handl e nenory

read and wite

Il

Addi tional Comments: (c) Copyright 2009 R A. Paz Schm dt (aka Pacit

0. Sys, Pacito Systens Co.)

Il

FEETLELEEE i r b rrrrr i rrirrirr
LIy
nodul e t op(

page 305 / 405

http://sfprime.net/pcb-etching/index.htm

Propeller
(Hss)

output [18:0] maddr, // Menory address

output mnce, // nmenory chip enable

out put mnoe, // nmenory output enable

output mnwe, // nmenory wite enable

output [1:0] wstate, // only for sinulation

output i0_read le, // latch enable when readi ng

output il vga le, // vga |atch enable

output i2 _nembe, // buffer enable for nenory wite cycle

input in_clk, // input clock, two tines desired pixel clock

input in_pixel _en, // clock enable, pixel clock will be active whe
nthis signal is 1

input in_dataw, // data wite signa

input in_datar, // data read signal

input [7:0] in_data // data bus from propeller

)
paranmeter MEM AW DTH = 19;
par aneter MEM DW DTH = 8;

paraneter MAX PI XELS = 11' b01010110000;
reg [MEM AW DTH-1: 0] r_pixel _counter;
reg [MEM AWDTH 1: 0] r_nenory_ptr;

reg cl k_pi xel ;

reg [1:0] r_wstate, r_nwstate;

reg [1:0] r_rstate, r_nrstate; // not needed
reg r_pixel _en;

reg [1:0] r_ridx;

reg r_nem noe;
reg r_nem nwe;

W re w_video_noe;

wire clk_mem= ~cl k_pixel;

wre wcecnmd wite = in_datar & in_dataw, // command wite when both are
asserted

wWire wdataw = in_dataw & (in_dataw ~ in_datar); // internal wite sig
nal

wWre wdatar = in_datar & (in_dataw ” in_datar); // internal read sign

al
assign wstate = r_wstate;

/'l every other clock we refresh the display if needed

page 306 / 405

Propeller
(Hss)

al ways @ (posedge in_clKk)
begi n
cl k_pi xel <= ~cl k_pi xel ;
if (in_pixel_en == 0) begin
r_pixel _en <= 0;
end el se begin
r_pixel _en <= 1,
end
end

/1 Command wite on the rising edge
al ways @ (posedge w _cnd_write)
begin
r ridx [1:0] <= in_data[1l:0];
end
/1l Value wite to the right register on the falling edge
al ways @ (negedge w cnd _wite)

begi n
case (r_ridx[1:0])
2'b00: r_nmenory ptr[7:0] = in_data;
2'b01: r _menory ptr[15:8] = in_data;
2'b10: r_nmenory_ptr[MEM AW DTH 1: 16] = i n_datal MEM AW DTH- 17: 0
1
/12" bll: r_nmenory ptr[MEM AW DTH 1: 16] = in_data] MEM AW DTH 17
:0]; // we do the sane...
endcase
end

/[l I ncrements pointer
al ways @ (posedge cl k_nmem

begi n
if (r_pixel_counter[18:8] == MAX_ Pl XELS)
r_pixel _counter = 0;
el se
if (r_pixel_en == 1)
r _pixel _counter = r_pixel _counter + 1;
end

[l CPLD <-> Propeller conm

Il Wite
al wvays @*)
begin
r nwstate = 0;
r-memnwe = (r_wstate == 2) ? 0:1;

if (r_wstate == 0)

page 307 / 405

Propeller

(Hss)
if (wdataw) r_nwstate = 1; // changes state when w_dataw goes
hi gh
if (r_wstate == 1)
if (clk_nmem r_nwstate = 2; // changes state when nenory cycle

is active
else r_nwstate = 1; // keep current state
if (r_wstate == 2)
if (clk_nmem r_nwstate = 2; // keeps current state
end

al ways @ (posedge in_cl k)
r wstate <= r_nwst at e;

al wvays @*)

begin
r nrstate = 0;
r_memnoe = (r_rstate == 2) ? 0:1,

if (r_rstate == 0)
if (wdatar) r_nrstate

1; // changes state when w_dataw goes
hi gh
if (r_rstate == 1)
if (clk_mem r_nrstate
is active
else r_nrstate = 1; // keep current state
if (r_rstate == 2)
if (clk_nmem r_nrstate = 2; // keeps current state

I
N

/'l changes state when nenory cycle

end

al ways @ (posedge in_cl k)
r rstate <= r_nrstate;

/1 Menory interface
assign w_video_noe = ~(clk_pixel & r_pixel _en);

assign maddr = (w_video _noe == 0) ? r_pixel _counter:r_nmenory ptr;
assign mnce = r_nmemnwe & r_nmemnoe & w Vi deo_nhoe;

assign mnoe = r_nemnoe & w_vi deo_noe;

assign mnwe r _mem nwe;

assign i0_read_le = r_mem noe;
assign il vga | e = w video_noe;
assign i 2_nembe = !r_nmem nwe;

initial
begin
cl k_pixel = 0;

page 308 / 405

Propeller
(Hss)

r wstate = 0;

r nwstate = 0;

r_pixel _counter = 0;

[lr_memnoe = 1;

[1r_memnwe = 1;
end

endnodul e

The text code for the propeller is shown below

" VGA driver by Chip Gacey (c) 2006 Parallax Inc.
CPLD code by ne (c) 2009 Pacito. Sys

CON

_cl knode
_Xinfreq

xtall + pll16x
5_000_000

VGASYNCPI NS = 8

VGACLK = 27
VGAPI XEN = 26
DATAR = 25
DATAW = 24
hp = 640 "horizontal pixels
vp = 240 "vertical pixels
hf = 24 "horizontal front porch pixels
hs = 40 "horizontal sync pixels
hb = 128 "hori zontal back porch pixels
vi = 9 "vertical front porch lines
vs = 3 "vertical sync lines
vb = 28 "vertical back porch lines
hn = 1 "horizontal normal sync state (0| 1)
vn = 1 "vertical normal sync state (0] 1)
pr = 25 "pixel rate in Mz at 80MHz system cl ock (5MHz granul a
rity)
" Tiles

xtiles = hp / 32
ytiles = vp / 32

page 309 / 405

Propeller
(Hss)

H V i nacti ve states

hv_inactive = (hn << 1 + vn) * $0101

OoBJ
term: "Full Dupl exSerial"

VAR
byte buffer[16]

PUB start

cognew(@gasync, 0) ' starts VGA subsystem
cognew @renctrl, @uffer)

termstart (31, 30, 0, 115200)
termstr(string("Test, new run...", 13))
term hex(buffer[0], 2)

term hex(buffer[1], 2)

term hex(buffer[2], 2)

term hex(buffer[3], 2)

termtx(13)

DAT
{ This COG generates the synchronisnmus signals needed for VGA refresh
the cl ock signal and the pixel enable signals

}
org 0

nenctr | nov DIRA, c6 cnt _dira
nov c6_v _buff, PAR
nov c6_v_addr, #511
nov c6_v_dat a0, #$00
cal | #c6_witedata
nmov c6_v_dat a0, #$ff
nov c6_v_addr, #1
cal l #c6_writedata
nov c6_v_addr, #511
nmov c6_v_dat a0, #$77
cal | #c6_witedata
nov c6_v_addr, #51
nov c6_v_dat a0, #$00

page 310/ 405

Propeller
(Hss)

c6_writeaddr

c6 _witeaddr ret

c6_witedata

t ched

c6 witedata ret

c6_readdata

cal l

nov
cal |
wr byt e
add
wr byt e
add
wr byt e
add
wr byt e
add

jmp

shr
andn
ret
cal l

or

or
andn

andn
ret

cal |

#c6_witedata

c6_v_addr, #511
#c6_readdat a

c6_v _dataO, c6_v_buff
c6 v buff, #1
c6_v_datal, c6_v_buff
c6 v buff, #1
c6_v_data2, c6_v_buff
c6 v buff, #1

c6_v data3, c6_v_buff
c6 v buff, #1

#$

DI RA, #$ff

QUTA, c6_cnt_reg0
QUTA, c6_v_addr
QUTA, c6_cnt_regl
c6_v_addr, #8
QUTA, c6_v_addr
QUTA, c6_cnt _reg2
c6_v_addr, #8
QUTA, c6_v_addr

DI RA, #$ff

#c6_wri t eaddr

Dl RA, #$ff

QUTA, c6_v_dat a0
QUTA, c6_cnt _dat aw

DI RA, #$ff dat a has bee

QUTA, c6_cnt _dat aw

#c6_writeaddr

QUTA, c6_cnt datar
QUTA, c6_cnt _datar
c6_v_dataO, |INA
c6_v_datal, |INA
c6_v_data2, |INA

| a

page 311 /405

Propeller
(Hss)

c6_readdata ret

c6_cnt _cndw
c6_cnt _reg0
c6_cnt _regl
c6_cnt _reg2

c6_cnt _pe
c6_cnt _dat aw
c6_cnt datar
c6 cnt _dira
c6_v_addr
c6_v_buff
c6_v_dat a0
c6_v_datal
c6_v_data2
c6_v_data3

DAT

"andn
r et

| ong
| ong
| ong

| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong

c6_v_data3, |INA
QUTA, c6_cnt _datar

(1<<DATAR) | (1<<DATAW
(1<<DATAR) | (1<<DATAW | 1
(1<<DATAR) | (1<<DATAW | 2

(1<<VGAPI XEN)
(1<<DATAW
(1<<DATAR)

(1<<DATAR) | (1<<DATAW | (1<<VGAPI XEN)

0

O O OOoOOo

{ This COG generates the synchronisnmus signals needed for VGA refresh

the cl ock signa

}

vgasync

n ctra (VCO runs at 4x)

te

pi xel rate

te

figuration

and the pi xel

org

novVi

novVi

novVi

noVi

enabl e signals

0

DIRA, c7 cnt _dira
ctra, #%0001 101
frqa, #(pr / 5 << 3
ctrb, #VGACLK

ctrb, #%%0010_110
frgb, #(pr / 5) << 3

vcfg, reg_vcfg

" Main | oop, display field and do invisible sync |ines

field

nov

col or_ptr, col or _base

"enabl e PLL i

"set pixel ra

cl ock out put
" PLL 2 tines

"set pixel ra

'set video con

"reset color p

page 312 /405

Propeller

(Hss)
oi nter

nov pi xel _ptr, pi xel _base "reset pixel p
oi nter

nov y, #ytil es "set y tiles
“ytile nov yl , #32 "set y lines p
er tile
2yline nov yX, #2 'set y expans
on
: yexpand nov X, #xtil es "set x tiles

nov vscl, vscl _pi xel "set pixel vsc
I
cxtile rdword col or, #0 'get col or wor
d

nov col or, hv "set h/v inact
ive states

rdl ong pixel, #0 ‘get pixel lon
g

wai tvid col or, #0 'pass colors a
nd pixels to video

dj nz X, #: xtile "anot her x til
e?

nov X, #1 "do hori zont al
sync

cal | #hsync

dj nz yX, #: yexpand 'y expand?

dj nz yl,#:yline "another y lin
e in same tile?

dj nz y,#: ytile "another y til
e?

"wr | ong col or mask, par "vi si bl e done
, Wite non-0 to sync

nov X, #vf "do vertical f
ront porch |ines

cal l #bl ank

nov X, #Vs "do vertical s
ync |ines

cal | #vsync

nov X, #vb "do vertical b

ack porch |ines

page 313 /405

Propeller
(Hss)

cal | #vsync

j mp #field "field done, |
oop

Subroutine - do blank |ines

vsync xor hvsync, #$101 "flip vertica
sync bits

bl ank nov vscl, hvis "do bl ank pi xe
| s

wai tvid hvsync, #0
hsync nov vscl , #hf "do hori zont al
front porch pixels

wai tvid hvsync, #0

nov vscl , #hs "do hori zont al
sync pixels

wai tvid hvsync, #1

nov vscl , #hb "do horizont al
back porch pixels

wai tvid hvsync, #0

dj nz X, #bl ank "anot her |ine?
hsync_r et
bl ank ret
vsync_r et ret
" Data
reg _dira | ong 0 "set at runtim
e
reg dirb | ong 0 "set at runtim
e
reg_vcfg | ong $200002f f 'set a
t runtine
col or _base | ong 0 "set at runtim
e (2 contiguous |ongs)
pi xel _base | ong 0 "set at runtim
e
vscl _pi xel | ong 1 << 12 + 32 "1 pixel per c
| ock and 32 pixels per set
col or mask | ong $FCFC "mask to isola

page 314 /405

Propeller
(Hss)

te RGB bits fromH V
hvi s

s per scan line

hv

hvsync

S

c7 cnt _dira
| NS)

Uninitialized data

color_ptr
pi xel _ptr
col or

pi xel

X

y

yl

yX

| ong

| ong
| ong

| ong

res
res
res
res
res
res
res
res

hp "vi si bl e pixel
hv_i nactive '-H, -V states
hv_i nactive * $200 "+/-H -V state

(1<<VGACLK) | (1<<VGAPI XEN) | (3<<VGASYNCP

PR RRPRRPRRRR

An image on a TFT monitor at 640x480 can be seen below. Note the use of graphics not possible with a

bare propeller.

page 315 /405

Propeller
(Hss)

Propeller Magazine

2008

e June 2008

e May 2008

e April 2008
e March 2008

Editing the Magazine
Anyone can edit the Magazine; simply select the latest issue then click on the Edit Page link at the top.

To create a new section use == before and after the section title, for example ...
==Advertisenment s==

To add a link, select or create an appropriate section, then on the first line describe what the link is, then

on a second line give the link to the Propeller Forum post with [[before and]] after the link, for
example ...

==Recent News==

Prop Magazine mgrates to Propeller WKi
[[http://foruns/p.../foruns/defaul t.aspx?f=25&m=263618]]

page 316 /405

http://propeller.wikispaces.com//PropMag-2008-06
http://propeller.wikispaces.com//PropMag-2008-05
http://propeller.wikispaces.com//PropMag-2008-04
http://propeller.wikispaces.com//PropMag-2008-03

Propeller
(Hss)

Prop Magazine - March 2008

Next issue April 2008

The Prop Magazine, with many thanks to the work put in by Fred Hawkins.

http://forums.parallax.com/forums/default.aspx 2f=25&m=256872

Shock News

DeSilva Tosses Towel (or takes Sabbatical)

http://forums.parallax.com/forums/default.aspx 2f=25&m=256944
Sabbitical seems likely, see book below

Basics

bookmarked Propeller manual pdf, w/ google search tips, Ray's logic link
http://forums.parallax.com/forums/default.aspx 2f=25&m=254507

external web pages: "Building blocks"
Useful information for new propeller users.
Simple audio interface boards get a mention with two pictures.

http://forums.parallax.com/forums/default.aspx ?f=25&m=251102

book: DeSilva outlines his How to start Microcontrolling using the Parallax Propeller,
http://forums.parallax.com/forums/default.aspx 2f=25&m=257218

cognew or coginit and kiss thoughts. (IE don't make stuff hard to do)
http://forums.parallax.com/forums/default.aspx ?f=25&m=257791

clear thinking is possible -- kiss
http://forums.parallax.com/forums/default.aspx 2f=25&m=255146

division, spin,
with tips for flogging integer math to do floating point work
http://forums.parallax.com/forums/default.aspx ?f=25&m=258422

spin instruction timing
http://forums.parallax.com/forums/default.aspx ?f=25&m=259389

variables between cogs
http://forums.parallax.com/forums/default.aspx 2f=25&m=257464

page 317 /405

http://propeller.wikispaces.com//PropMag-2008-04
http://forums.parallax.com/forums/default.aspx?f=25&m=256872
http://forums.parallax.com/forums/default.aspx?f=25&m=256944
http://forums.parallax.com/forums/default.aspx?f=25&m=254507
http://forums.parallax.com/forums/default.aspx?f=25&m=251102
http://forums.parallax.com/forums/default.aspx?f=25&m=257218
http://forums.parallax.com/forums/default.aspx?f=25&m=257791
http://forums.parallax.com/forums/default.aspx?f=25&m=255146
http://forums.parallax.com/forums/default.aspx?f=25&m=258422
http://forums.parallax.com/forums/default.aspx?f=25&m=259389
http://forums.parallax.com/forums/default.aspx?f=25&m=257464

Propeller
(Hss)

Spin, global variables across cogs and objects: discussion.
http://forums.parallax.com/forums/default.aspx ?f=25&m=254609

bit masking, in spin and assembly
http://forums.parallax.com/forums/default.aspx 2f=25&m=256775

spin, bit masking. Code fragments included.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260279

controlling servos, using Beau's servo32v3.spin (in Prop Tool, starting with version 1.06).
http://forums.parallax.com/forums/default.aspx 2f=25&m=255594

lots to chew on -- laptop serial to prop, robot fits where?
http://forums.parallax.com/forums/default.aspx ?f=25&m=258177

prop plug and reset avoidance, w/ nested links to previous threads.
http://forums.parallax.com/forums/default.aspx 2f=25&m=258255

mosquito's timer module
http://forums.parallax.com/forums/default.aspx 2f=25&m=258441

Prop Demo board's tv clipping
http://forums.parallax.com/forums/default.aspx 2f=25&m=259567

prop Ul theory discussion
http://forums.parallax.com/forums/default.aspx 2f=25&m=259991

Basics and Beyond

CommentedFullDuplexSerial.spin (grasshopper's collation of Mike Green's wisdom)
http://forums.parallax.com/forums/default.aspx ?f=25&m=258162

Assembly: Sample code that uses a cog's $1{0-1ff special purpose registers as part of the program space.
http://forums.parallax.com/forums/default.aspx ?f=25&m=256591

Assembly, ina is source only. Plus nice code minimalization discussion. (w/ examples)
http://forums.parallax.com/forums/default.aspx ?f=25&m=258143

assembly, remember sign of cnt when comparing. (w/ code sample.)
http://forums.parallax.com/forums/default.aspx ?f=25&m=260776

synchronizing cogs, program counter
http://forums.parallax.com/forums/default.aspx f=25&m=257095

page 318 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=254609
http://forums.parallax.com/forums/default.aspx?f=25&m=256775
http://forums.parallax.com/forums/default.aspx?f=25&m=260279
http://forums.parallax.com/forums/default.aspx?f=25&m=255594
http://forums.parallax.com/forums/default.aspx?f=25&m=258177
http://forums.parallax.com/forums/default.aspx?f=25&m=258255
http://forums.parallax.com/forums/default.aspx?f=25&m=258441
http://forums.parallax.com/forums/default.aspx?f=25&m=259567
http://forums.parallax.com/forums/default.aspx?f=25&m=259991
http://forums.parallax.com/forums/default.aspx?f=25&m=258162
http://forums.parallax.com/forums/default.aspx?f=25&m=256591
http://forums.parallax.com/forums/default.aspx?f=25&m=258143
http://forums.parallax.com/forums/default.aspx?f=25&m=260776
http://forums.parallax.com/forums/default.aspx?f=25&m=257095

Propeller
(Hss)

PropMonitor, PropTerminal links
http://forums.parallax.com/forums/default.aspx 2f=25&m=257718

hyperterminal settings
http://forums.parallax.com/forums/default.aspx 2f=25&m=259697

Spin, 1 second timers:
http://forums.parallax.com/forums/default.aspx ?f=25&m=254589

event timestamping, spin
http://forums.parallax.com/forums/default.aspx 2f=25&m=256874

simple ADC, link to rayman's web page with program zip, schematic and resistor calculator applet.
sending serial data (to Pololu Micro Dual Serial Motor Controller)

http://forums.parallax.com/forums/default.aspx 2f=25&m=256547

spin and assembly, towards a micro-stepping controller program.
http://forums.parallax.com/forums/default.aspx ?f=25&m=261026

more simple ADC in spin.
http://forums.parallax.com/forums/default.aspx 2f=25&m=256645

bare bones adc links and Perry's vid capture code
http://forums.parallax.com/forums/default.aspx ?f=25&m=260159

spin execution speed, profiling
http://forums.parallax.com/forums/default.aspx 2f=25&m=256763

on FloatMath timing (a bit). & Stevenmess' remark on Float pdf error.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260417

towards closed loop controller (industrial)
http://forums.parallax.com/forums/default.aspx 2f=25&m=257608

Spin syntax, OR's in Cases: Peter's Ladder Logic thread (below) spun out of this thread where Ron
suggests the CASE construct is much like PLC's.

http://forums.parallax.com/forums/default.aspx 2f=25&m=256295

"Is my propeller dead?", troubleshooting gambits. Not mentioned, low 9v battery on ed kit
http://forums.parallax.com/forums/default.aspx 2f=25&m=255083

spin, LOCKSET, LOCKNEW review
http://forums.parallax.com/forums/default.aspx 2f=25&m=259235

spin, LOOKDOWN LOOKUP discussion

page 319 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=257718
http://forums.parallax.com/forums/default.aspx?f=25&m=259697
http://forums.parallax.com/forums/default.aspx?f=25&m=254589
http://forums.parallax.com/forums/default.aspx?f=25&m=256874
http://forums.parallax.com/forums/default.aspx?f=25&m=256547
http://forums.parallax.com/forums/default.aspx?f=25&m=261026
http://forums.parallax.com/forums/default.aspx?f=25&m=256645
http://forums.parallax.com/forums/default.aspx?f=25&m=260159
http://forums.parallax.com/forums/default.aspx?f=25&m=256763
http://forums.parallax.com/forums/default.aspx?f=25&m=260417
http://forums.parallax.com/forums/default.aspx?f=25&m=257608
http://forums.parallax.com/forums/default.aspx?f=25&m=256295
http://forums.parallax.com/forums/default.aspx?f=25&m=255083
http://forums.parallax.com/forums/default.aspx?f=25&m=259235

Propeller
(Hss)

http://forums.parallax.com/forums/default.aspx 2f=25&m=259987

spin, ascii string to integer conversions and, marginally, gps/rtc stuff.
http://forums.parallax.com/forums/default.aspx 2f=25&m=258771

spin to assembly, advice
http://forums.parallax.com/forums/default.aspx 2f=25&m=259580

spin niceties: i/0 pin notation () versus subscript declaration []
http://forums.parallax.com/forums/default.aspx 2f=25&m=260027

spin, writing long variables (remember: byte by byte transfer from @address)
http://forums.parallax.com/forums/default.aspx ?f=25&m=260064

spin strings, function referencing (misleading metaphor) Links to workarounds
http://forums.parallax.com/forums/default.aspx 2f=25&m=260504&p=1

Possible? guitar to midi conversion
http://forums.parallax.com/forums/default.aspx 2f=25&m=260907

Sine wave generation
http://forums.parallax.com/forums/default.aspx 2f=25&m=261056

PropDOS 1.6 released by Oldbitcollector
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=224206

and then a full text editor for PropDOS -- "Think of this as NOTEPAD"
http://forums.parallax.com/forums/default.aspx 2f=25&m=255771

Mirror releases current code for Gear. This is the current Gear thread including the stimulus plug-in. Also
links backward to the original version.

http://forums.parallax.com/forums/default.aspx 2f=25&m=242685

Oldbitcollector's PropBBS for Ethernet
http://forums.parallax.com/forums/default.aspx f=25&m=257661

and now, FemtoBASIC in Color
http://forums.parallax.com/forums/default.aspx ?f=25&m=231506

tvIRC client for propeller
http://forums.parallax.com/forums/default.aspx 2f=25&m=258073

Games

page 320/ 405

http://forums.parallax.com/forums/default.aspx?f=25&m=259987
http://forums.parallax.com/forums/default.aspx?f=25&m=258771
http://forums.parallax.com/forums/default.aspx?f=25&m=259580
http://forums.parallax.com/forums/default.aspx?f=25&m=260027
http://forums.parallax.com/forums/default.aspx?f=25&m=260064
http://forums.parallax.com/forums/default.aspx?f=25&m=260504&p=1
http://forums.parallax.com/forums/default.aspx?f=25&m=260907
http://forums.parallax.com/forums/default.aspx?f=25&m=261056
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=224206
http://forums.parallax.com/forums/default.aspx?f=25&m=255771
http://forums.parallax.com/forums/default.aspx?f=25&m=242685
http://forums.parallax.com/forums/default.aspx?f=25&m=257661
http://forums.parallax.com/forums/default.aspx?f=25&m=231506
http://forums.parallax.com/forums/default.aspx?f=25&m=258073

Propeller
(Hss)

Spinpong
http://forums.parallax.com/forums/default.aspx 2f=25&m=256210

Hardware

Beau troubleshoots his 3axis H48C module's prop code
http://forums.parallax.com/forums/default.aspx 2f=25&m=225297

a different 3axis sensor: LIS3L.V02DQ test program by JoMo (nice chip, no external adc needed, runs on
2v to 3.6v, gfn package though)

http://forums.parallax.com/forums/default.aspx?f=25&m=151211

position sensing, kicks around using a LVDT (Linear Variable Differential Transformer) to measure an
physical movement.

http://forums.parallax.com/forums/default.aspx 2f=25&m=255994

{ LVDT: [[http://en.wikipedia.org/wiki/lLinear_variable_differential transformer }]]
Also Beau points back to his July 31 2006 post for a homemade LVDT joystick, an overlooked wonder.

Good stuff.
http://forums.parallax.com/forums/default.aspx ?f=25&m=138059

towards implementing ADS8341 16 bit 4 channel A/D converter
http://forums.parallax.com/forums/default.aspx ?f=25&m=257373

links to chinese caliper threads
http://forums.parallax.com/forums/default.aspx 2f=25&m=255194

towards interfacing with vinculum vdrive 2 from FTDI to USB memory stick
http://forums.parallax.com/forums/default.aspx 2f=25&m=257357

messing w/magnets (railguns and why one needs a blockhouse on range)
http://forums.parallax.com/forums/default.aspx ?f=25&m=253606

on XBee modules, briefly. Link to Martin's site. Demo I/O programs added.
http://forums.parallax.com/forums/default.aspx 2f=25&m=258257

Ping, briefly w/ links. Mike Green's ground plane discussion.
http://forums.parallax.com/forums/default.aspx ?f=25&m=257936

managing ground traces
http://forums.parallax.com/forums/default.aspx 2f=25&m=260436

Handy GPS search link for prop forum.
http://forums.parallax.com/forums/default.aspx 2f=25&m=258918

page 321 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=256210
http://forums.parallax.com/forums/default.aspx?f=25&m=225297
http://forums.parallax.com/forums/default.aspx?f=25&m=151211
http://forums.parallax.com/forums/default.aspx?f=25&m=255994
http://en.wikipedia.org/wiki/Linear_variable_differential_transformer
http://forums.parallax.com/forums/default.aspx?f=25&m=138059
http://forums.parallax.com/forums/default.aspx?f=25&m=257373
http://forums.parallax.com/forums/default.aspx?f=25&m=255194
http://forums.parallax.com/forums/default.aspx?f=25&m=257357
http://forums.parallax.com/forums/default.aspx?f=25&m=253606
http://forums.parallax.com/forums/default.aspx?f=25&m=258257
http://forums.parallax.com/forums/default.aspx?f=25&m=257936
http://forums.parallax.com/forums/default.aspx?f=25&m=260436
http://forums.parallax.com/forums/default.aspx?f=25&m=258918

Propeller
(Hss)

tips for pulling protoboard prop chip
http://forums.parallax.com/forums/default.aspx 2f=25&m=259005

shhh, let sleeping props lie: power down alternatives.
http://forums.parallax.com/forums/default.aspx ?f=25&m=258976

about gfn chips. with Ti's qfn.pdf (nice!)
http://forums.parallax.com/forums/default.aspx 2f=25&m=260015

technochip's Vinculum SPI, with spec sheet corrections.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260159

sinking 5v to the prop, discussion only no schematics.
http://forums.parallax.com/forums/default.aspx 2f=25&m=259960

Ymodem: transfer files from prop's SD to a pc
http://forums.parallax.com/forums/default.aspx ?f=25&m=260146

towards USB hosting. Nifty proposal: making a sniffer first.
http://forums.parallax.com/forums/default.aspx 2f=25&m=260298

PCA9555 10 expander driver. W/link to deSilva's Small 12¢ Driver
http://forums.parallax.com/forums/default.aspx ?f=25&m=260896

FTDI ComPort to Propeller: 2M baud, 3M still theoretical. (w/ link to FTDI app notes). No code yet, but
one can hope. Exploits on Stephen's blog: http://propcandev.blogspot.com
Discursive prose about probs and props, yes! (de-obscurify: probs ~ problems)

http://forums.parallax.com/forums/default.aspx ?f=25&m=260892

advice on making pcbs with cnc's, and alternatives. (w/ links.)
http://forums.parallax.com/forums/default.aspx ?f=25&m=254578

Images & displays

text over camera image
http://forums.parallax.com/forums/default.aspx 2f=25&m=259649

spudview: displays ppm images
http://forums.parallax.com/forums/default.aspx 2f=25&m=259578

Tim's assembly graphics driver for tOLED-96-Prop (eeprom bin release). In Object Exchange.

http://forums.parallax.com/forums/default.aspx 2f=25&m=258383
(Subtext: Beat this to win the contest.)

page 322 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=259005
http://forums.parallax.com/forums/default.aspx?f=25&m=258976
http://forums.parallax.com/forums/default.aspx?f=25&m=260015
http://forums.parallax.com/forums/default.aspx?f=25&m=260159
http://forums.parallax.com/forums/default.aspx?f=25&m=259960
http://forums.parallax.com/forums/default.aspx?f=25&m=260146
http://forums.parallax.com/forums/default.aspx?f=25&m=260298
http://forums.parallax.com/forums/default.aspx?f=25&m=260896
http://propcandev.blogspot.com/
http://forums.parallax.com/forums/default.aspx?f=25&m=260892
http://forums.parallax.com/forums/default.aspx?f=25&m=254578
http://forums.parallax.com/forums/default.aspx?f=25&m=259649
http://forums.parallax.com/forums/default.aspx?f=25&m=259578
http://forums.parallax.com/forums/default.aspx?f=25&m=258383

Propeller
(Hss)

Resurgent threads

steppers in assembly. Alberto adds a driver.
http://forums.parallax.com/forums/default.aspx ?f=25&m=241108

'Objects' module for PE Kit Labs -- hyperterminal alternative.
http://forums.parallax.com/forums/default.aspx?f=25&m=169419

new vid of Alberto's led curtain. (follow more-vids-from to see his mp3 player)
http://forums.parallax.com/forums/default.aspx 2f=25&p=5&m=179824

Advanced

cogstop, coginit and cognew considerations. (Use cogstop....or not; nor CASE) and finally, add a wait so
that a new stack settles down.

http://forums.parallax.com/forums/default.aspx 2f=25&p=2&m=250812

assembly, towards programs bigger than cog memory. A rudimentary introduction to this topic but has
links to LMM and prior threads

http://forums.parallax.com/forums/default.aspx f=25&m=254117

notes on high speed sampling (25MHz), towards low rez vision. [no code, schematic, just theory].
sidebars: assembly 8x8 font routine (w/ bugs, more or less squashed), size & alignment issues

http://forums.parallax.com/forums/default.aspx ?f=25&p=1&m=255764

Malloc memory manager, version 011.
http://forums.parallax.com/forums/default.aspx ?f=25&m=256052

advanced skinny branches, Forth: Peter Jakacki offers up a droll implementation of Ladder Logic
http://en.wikipedia.org/wiki/LL.adder_logic
used typically by Programmable Logic Controllers (PLC's)

http://en.wikipedia.org/wiki/Programmable_logic_controller
The discussion delves into the how-to but not so much the why-do-it.

http://forums.parallax.com/forums/default.aspx f=25&m=256393

high frequency synthesis, with link back to a 2006 thread with Chip's teaser about a quickie microphone
to fm transmitter (no specifics alas, shall we pester him?)

http://forums.parallax.com/forums/default.aspx 2f=25&m=255074

towards a prop mp3 player (or just an UI frontend -- that's doable)
http://forums.parallax.com/forums/default.aspx ?f=25&m=259258

page 323 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=241108
http://forums.parallax.com/forums/default.aspx?f=25&m=169419
http://forums.parallax.com/forums/default.aspx?f=25&p=5&m=179824
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=250812
http://forums.parallax.com/forums/default.aspx?f=25&m=254117
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=255764
http://forums.parallax.com/forums/default.aspx?f=25&m=256052
http://en.wikipedia.org/wiki/Ladder_logic
http://en.wikipedia.org/wiki/Programmable_logic_controller
http://forums.parallax.com/forums/default.aspx?f=25&m=256393
http://forums.parallax.com/forums/default.aspx?f=25&m=255074
http://forums.parallax.com/forums/default.aspx?f=25&m=259258

Propeller
(Hss)

TV object color limitations
http://forums.parallax.com/forums/default.aspx 2f=25&m=258584

Prop VGA IRC Client
http://forums.parallax.com/forums/default.aspx 2f=25&m=260624

adjusting video refresh rates with crystals
http://forums.parallax.com/forums/default.aspx 2f=25&m=260446

towards FFT, DFT implementation. Links to past work.
http://forums.parallax.com/forums/default.aspx ?f=25&m=259917

networking props. Links back to transfer speeds, Phil's reverse LMM.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260226

Fundamentalists

Skinning the onion -- any further and you're scraping hardware. Chip Gracey releases ROM source code.
Booter, spin interpreter and runner.

http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=252691

programming advanced, towards developing an independent spin compiler. Some solid ground here too,
with fundamental text links. Sourceforge details too.

http://forums.parallax.com/forums/default.aspx ?f=25&p=1&m=253050

spawning eeproms for the prop
http://forums.parallax.com/forums/default.aspx 2f=25&m=257265

under development, Ale's Large Memory Model assembler
http://forums.parallax.com/forums/default.aspx 2f=25&m=233324

Esoterica

CP/M operating system on a prop. Still handy. (links to reference sites)
http://forums.parallax.com/forums/default.aspx ?f=25&p=2&m=252784

JVM (Java Virtual Machine) for the prop. Long thread documenting its implementation. Latest entries
have best/stable/working code.

http://forums.parallax.com/forums/default.aspx ?f=25&p=001&m=244721

England, props, importers and VAT, egads!
http://forums.parallax.com/forums/default.aspx ?f=25&m=260775

page 324 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=258584
http://forums.parallax.com/forums/default.aspx?f=25&m=260624
http://forums.parallax.com/forums/default.aspx?f=25&m=260446
http://forums.parallax.com/forums/default.aspx?f=25&m=259917
http://forums.parallax.com/forums/default.aspx?f=25&m=260226
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=252691
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=253050
http://forums.parallax.com/forums/default.aspx?f=25&m=257265
http://forums.parallax.com/forums/default.aspx?f=25&m=233324
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=252784
http://forums.parallax.com/forums/default.aspx?f=25&p=001&m=244721
http://forums.parallax.com/forums/default.aspx?f=25&m=260775

Propeller
(Hss)

Schedule

Prop Graphics Workshop at ATEA (April 2 - 4)
http://forums.parallax.com/forums/default.aspx 2f=25&m=233234

uOLED-96-Prop design contest (April 30)
http://forums.parallax.com/forums/default.aspx 2f=25&m=248327

2008 Prop design contest (September 1, 2008)
http://www.parallax.com/Default.aspx ?tabid=603

IRC Saturdays at 17:00 gmt
http://forums.parallax.com/forums/default.aspx 2f=25&m=252351

IRC Thursdays at 8pm to 10pm Eastern Australia (Canberra) time. (GMT+10?)
http://forums.parallax.com/forums/default.aspx ?f=25&p=1&m=253060

Unofficial NE Prop Expo in Sandusky, Ohio (tentative Aug 22-23, 2008)
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=246525

Propeller Tool

Running multiple tools simultaneously now possible
http://forums.parallax.com/forums/default.aspx 2f=25&m=255765

Propeller Tool 1.1 re-released. Near bulletproof prop programming.
http://forums.parallax.com/forums/default.aspx ?f=25&m=244899

Prop Tool 1.1 problems
http://forums.parallax.com/forums/default.aspx ?f=25&m=260734
http://forums.parallax.com/forums/default.aspx 2f=25&m=260683

http://forums.parallax.com/forums/default.aspx ?f=25&m=260801
linux flavored wine:

http://forums.parallax.com/forums/default.aspx ?f=25&m=261123

DYI tales

automobile lcd (rca input) from ebay
http://forums.parallax.com/forums/default.aspx 2f=25&m=249064

page 325 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=233234
http://forums.parallax.com/forums/default.aspx?f=25&m=248327
http://www.parallax.com/Default.aspx?tabid=603
http://forums.parallax.com/forums/default.aspx?f=25&m=252351
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=253060
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=246525
http://forums.parallax.com/forums/default.aspx?f=25&m=255765
http://forums.parallax.com/forums/default.aspx?f=25&m=244899
http://forums.parallax.com/forums/default.aspx?f=25&m=260734
http://forums.parallax.com/forums/default.aspx?f=25&m=260683
http://forums.parallax.com/forums/default.aspx?f=25&m=260801
http://forums.parallax.com/forums/default.aspx?f=25&m=261123
http://forums.parallax.com/forums/default.aspx?f=25&m=249064

Propeller
(Hss)

on Printed Circuit Boards, shops and tools (link to toner technique)
http://forums.parallax.com/forums/default.aspx ?f=25&m=258070

Outside apps

character (cursor) bitmap encoder for Windows
http://forums.parallax.com/forums/default.aspx 2f=25&m=257207

Luggable towtruck. Get one for your trunk today, because you never know
http://forums.parallax.com/forums/default.aspx ?f=25&m=258479

STM32 Primer
http://forums.parallax.com/forums/default.aspx 2f=25&m=259602

Projects

two player game console
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=251914

Alberto's homemade mp3 player. (using Vmusic2 chip) With code.
http://forums.parallax.com/forums/default.aspx ?f=25&m=259540

Remote control props. With recursion sidebar discussion.
http://forums.parallax.com/forums/default.aspx ?f=25&p=2&m=256003

Adverts

guitar effects pedal, Howler goes metal
http://forums.parallax.com/forums/default.aspx ?f=25&m=252772

prop powered stickers
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=242622

PropGFX Lite DIP40 almost ready
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=248778

PropGFX: new modes
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=259544

page 326 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=258070
http://forums.parallax.com/forums/default.aspx?f=25&m=257207
http://forums.parallax.com/forums/default.aspx?f=25&m=258479
http://forums.parallax.com/forums/default.aspx?f=25&m=259602
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=251914
http://forums.parallax.com/forums/default.aspx?f=25&m=259540
http://forums.parallax.com/forums/default.aspx?f=25&p=2&m=256003
http://forums.parallax.com/forums/default.aspx?f=25&m=252772
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=242622
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=248778
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=259544

Propeller
(Hss)

almost here: ImageCraft C
http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=254114

ImageCraft C alpha is here
http://forums.parallax.com/forums/default.aspx 2f=25&m=260575

page 327 / 405

http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=254114
http://forums.parallax.com/forums/default.aspx?f=25&m=260575

Propeller
(Hss)

Prop Magazine - April 2008

last issue March 2008
next issue May 2008

Ramblings by the editor

Well, this is the 3rd edition of Prop Magazine. It won't be that long and it will be time for an anniversary.
Speaking of anniversaries, this must be about the 2nd anniversary of the Propeller Chip (If someone
knows the exact date can they drop a note in this thread please). So, I have decided to include some of the
old posts in this edition. On a more recent note there have been a fair few object releases this month.
Check out the new games, I2C slave, nice user interface on the Quad DRO and the others listed below.

The ESC was also this month and some of the people from Parallax were there. Check out their reports
below. Also on show was the Coyote-1 and the danceBot.

History

A miracle chip?
http://forums.parallax.com/forums/default.aspx ?f=25&m=110889

FullDuplexSerial is posted. Probably the most widely used object.
http://forums.parallax.com/forums/default.aspx?f=25&m=111614

Some early notes about the propeller.
http://forums.parallax.com/forums/default.aspx ?f=25&m=113461

Propeller Guts - Some early documentation. Still helpful although most things are now in the manual and
data sheet.

http://forums.parallax.com/forums/default.aspxf=25&m=111215

Special Threads

Being April there were of course a couple of special threads. First up was the release of the Relleporp.
http://forums.parallax.com/forums/default.aspx?f=25&m=261265&g=261647#m261647

And secondly a hidden assembly instruction was found!
http://forums.parallax.com/forums/default.aspx ?f=25&m=261282

page 328 /405

http://propeller.wikispaces.com//PropMag-2008-03
http://propeller.wikispaces.com//PropMag-2008-05
http://forums.parallax.com/forums/default.aspx?f=25&m=110889
http://forums.parallax.com/forums/default.aspx?f=25&m=111614
http://forums.parallax.com/forums/default.aspx?f=25&m=113461
http://forums.parallax.com/forums/default.aspx?f=25&m=111215
http://forums.parallax.com/forums/default.aspx?f=25&m=261265&g=261647#m261647
http://forums.parallax.com/forums/default.aspx?f=25&m=261282

Propeller
(Hss)

Basics

Request for programs to put in a kiosk program for ESC (with any luck they will release what they used,
get the hint?)

http://forums.parallax.com/forums/default.aspx ?f=25&p=1&m=262904
http://forums.parallax.com/forums/default.aspx 2f=33&m=262907

Questions about how long it takes to start a cog and other ways of accomplishing things.
http://forums.parallax.com/forums/default.aspx 2f=25&m=263541&g=263593

Sine wave output from the prop
http://forums.parallax.com/forums/default.aspx 2f=25&m=261056&g=261067

Pre-fetch and self modifying code. Something to watch out for!
http://forums.parallax.com/forums/default.aspx 2f=25&m=260965

Some questions and answers on accessing bytes in larger variables.
http://forums.parallax.com/forums/default.aspx 2f=25&m=262787

Some general questions and answers about what the prop can do.
http://forums.parallax.com/forums/default.aspx ?f=25&m=264271

Getting data from one pin to another and a how to use the timers to do it.
http://forums.parallax.com/forums/default.aspx ?f=25&m=264649

Changing variables between long and byte.
http://forums.parallax.com/forums/default.aspx ?f=25&m=265586

Basics and Beyond

A question about required crystal accuracy.
http://forums.parallax.com/forums/default.aspx ?f=25&m=261089&g=261115

and more questions about crystals

http://forums.parallax.com/forums/default.aspx ?f=25&m=259385& g=264662
http://forums.parallax.com/forums/default.aspx 2f=25&m=264577&g=264843

What are the threshold voltages of the prop? This tells you for one prop.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260930&g=261152

Questions and answers about what can hang a cog
http://forums.parallax.com/forums/default.aspx ?f=25&m=260908 & g=261255

page 329 /405

http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=262904
http://forums.parallax.com/forums/default.aspx?f=33&m=262907
http://forums.parallax.com/forums/default.aspx?f=25&m=263541&g=263593
http://forums.parallax.com/forums/default.aspx?f=25&m=261056&g=261067
http://forums.parallax.com/forums/default.aspx?f=25&m=260965
http://forums.parallax.com/forums/default.aspx?f=25&m=262787
http://forums.parallax.com/forums/default.aspx?f=25&m=264271
http://forums.parallax.com/forums/default.aspx?f=25&m=264649
http://forums.parallax.com/forums/default.aspx?f=25&m=265586
http://forums.parallax.com/forums/default.aspx?f=25&m=261089&g=261115
http://forums.parallax.com/forums/default.aspx?f=25&m=259385&g=264662
http://forums.parallax.com/forums/default.aspx?f=25&m=264577&g=264843
http://forums.parallax.com/forums/default.aspx?f=25&m=260930&g=261152
http://forums.parallax.com/forums/default.aspx?f=25&m=260908&g=261255

Propeller
(Hss)

Another fried PLL and some hints from Paul about how prevent it happening.
http://forums.parallax.com/forums/default.aspx ?f=25&m=261542&g=262166

Pops and clicks in audio and how to avoid them.
http://forums.parallax.com/forums/default.aspx 2f=25&m=261767

Tools and methods for fixing memory corruption problems.
http://forums.parallax.com/forums/default.aspx ?f=25&m=253901

Using the pos/neg edge detector timer modes.
http://forums.parallax.com/forums/default.aspx 2f=25&m=262573

Initial states for the c and z flags.
http://forums.parallax.com/forums/default.aspx 2f=25&m=262837&g=263003

QTT sensor code is here.
http://forums.parallax.com/forums/default.aspx 2f=25&m=263689&g=263689

What does the @ operator do in asm? Also a tip on the @ @ operator.
http://forums.parallax.com/forums/default.aspx ?f=25&m=264399

Questions about graphics and VGA (again, hopefully some answers this time).
http://forums.parallax.com/forums/default.aspx 2f=25&m=264361&p=1

More discussion about high speed comms.
http://forums.parallax.com/forums/default.aspx ?f=25&m=264379&g=264477

Problems with the CORDIC object.
http://forums.parallax.com/forums/default.aspx 2f=25&m=264018

Questions about SPIN speed and the interpreter.
http://forums.parallax.com/forums/default.aspx ?f=25&m=266040&g=266043#m266043

Advanced

Creative use of the object[x].method notation to solve some problems
http://forums.parallax.com/forums/default.aspx ?f=25&p=1&m=260504

Questions about queues and some examples
http://forums.parallax.com/forums/default.aspx 2f=25&m=262504

Discussions on loading new LMM cogs in ImageCraft C
http://forums.parallax.com/forums/default.aspx ?f=25&m=263048 & g=263456

page 330/ 405

http://forums.parallax.com/forums/default.aspx?f=25&m=261542&g=262166
http://forums.parallax.com/forums/default.aspx?f=25&m=261767
http://forums.parallax.com/forums/default.aspx?f=25&m=253901
http://forums.parallax.com/forums/default.aspx?f=25&m=262573
http://forums.parallax.com/forums/default.aspx?f=25&m=262837&g=263003
http://forums.parallax.com/forums/default.aspx?f=25&m=263689&g=263689
http://forums.parallax.com/forums/default.aspx?f=25&m=264399
http://forums.parallax.com/forums/default.aspx?f=25&m=264361&p=1
http://forums.parallax.com/forums/default.aspx?f=25&m=264379&g=264477
http://forums.parallax.com/forums/default.aspx?f=25&m=264018
http://forums.parallax.com/forums/default.aspx?f=25&m=266040&g=266043#m266043
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=260504
http://forums.parallax.com/forums/default.aspx?f=25&m=262504
http://forums.parallax.com/forums/default.aspx?f=25&m=263048&g=263456

Propeller
(Hss)

Discussions about new features for the spin compiler.
http://forums.parallax.com/forums/default.aspx ?f=25&m=260170&g=261362

Using the prop as an RF transmitter and receiver.
http://forums.parallax.com/forums/default.aspx 2f=25&m=261275

New Programs and Objects

An I2C Slave driver is now available in spin and assembly thanks to hippy (who has a D'Oh moment
while testing multiple slaves).

http://forums.parallax.com/forums/default.aspx 2f=25&m=263375&g=263520

Distance and Bearings calculations object for the prop by Chuck.
http://forums.parallax.com/forums/default.aspx 2f=25&m=263181&g=263266#m263266

Ymodem upload utility by Rayman. Upload files from your propeller to your PC!
http://forums.parallax.com/forums/default.aspx 2f=25&m=261220

High speed serial by Stephen.
http://forums.parallax.com/forums/default.aspx ?f=25&m=262414&g=263008

Quad DRO by Richard. Useful if you have a mill/lathe or anything else you need measurement info for.
http://forums.parallax.com/forums/default.aspx 2f=25&m=262412&g=263235

A pop3 email client for the prop that displays the message From: and Subject: fields on your TV.
http://obex.parallax.com/objects/259/

On prop development using a spin like syntax. Again thanks to hippy.
http://forums.parallax.com/forums/default.aspx 2f=25&m=264289& g=264403

Steven finally finishes the XOR version of Graphics.spin including the ROM font.
http://forums.parallax.com/forums/default.aspx 2f=25&m=248864 & g=26488 1 #m264881

PropBASH, a modded version of PropDOS that is more like BASH
http://forums.parallax.com/forums/default.aspx 2f=25&m=265024

VGA Text driver for ImageCraft C.
http://forums.parallax.com/forums/default.aspx ?f=25&m=266216

Gotcha

page 331 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=260170&g=261362
http://forums.parallax.com/forums/default.aspx?f=25&m=261275
http://forums.parallax.com/forums/default.aspx?f=25&m=263375&g=263520
http://forums.parallax.com/forums/default.aspx?f=25&m=263181&g=263266#m263266
http://forums.parallax.com/forums/default.aspx?f=25&m=261220
http://forums.parallax.com/forums/default.aspx?f=25&m=262414&g=263008
http://forums.parallax.com/forums/default.aspx?f=25&m=262412&g=263235
http://obex.parallax.com/objects/259/
http://forums.parallax.com/forums/default.aspx?f=25&m=264289&g=264403
http://forums.parallax.com/forums/default.aspx?f=25&m=248864&g=264881#m264881
http://forums.parallax.com/forums/default.aspx?f=25&m=265024
http://forums.parallax.com/forums/default.aspx?f=25&m=266216

Propeller
(Hss)

Assembly, MUL details divulged. (w/commented code)
http://forums.parallax.com/forums/default.aspx 2f=25&m=261282

References

Basics

Prefetch impacts self-modifying code (w/link to deSilva asm tutorial)
http://forums.parallax.com/forums/default.aspx ?f=25&m=260965

Can a cog get stuck waiting?
http://forums.parallax.com/forums/default.aspx ?f=25&m=260908

byte basics
http://forums.parallax.com/forums/default.aspx f=25&m=262787

Basics and Beyond

Audio: pops at start and stop of wav file
http://forums.parallax.com/forums/default.aspx 2f=25&m=261767

Debugging programs, best practices (divide and conquer)
http://forums.parallax.com/forums/default.aspx ?f=25&m=253901

On negative edge counting (counter setups)
http://forums.parallax.com/forums/default.aspx 2f=25&m=262573

Advanced

On queues
http://forums.parallax.com/forums/default.aspx 2f=25&m=262504

GPS: conversions, ddmm.mmmm to dd.dddd, radians. (link to Circuit Cellar)
http://forums.parallax.com/forums/default.aspx 2f=25&m=262819

Parallax stuff

embedded props get a write up.

page 332 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=261282
http://forums.parallax.com/forums/default.aspx?f=25&m=260965
http://forums.parallax.com/forums/default.aspx?f=25&m=260908
http://forums.parallax.com/forums/default.aspx?f=25&m=262787
http://forums.parallax.com/forums/default.aspx?f=25&m=261767
http://forums.parallax.com/forums/default.aspx?f=25&m=253901
http://forums.parallax.com/forums/default.aspx?f=25&m=262573
http://forums.parallax.com/forums/default.aspx?f=25&m=262504
http://forums.parallax.com/forums/default.aspx?f=25&m=262819

Propeller
(Hss)

http://forums.parallax.com/forums/default.aspx 2f=25&m=261005

propplug logo up on protoboard
http://forums.parallax.com/forums/default.aspx 2f=25&m=262269

Hardware

on radio control,
http://forums.parallax.com/forums/default.aspx 2f=25&m=262102

signals between 3.6v and 5v chips
http://forums.parallax.com/forums/default.aspx ?f=25&m=262865

Counters

FSK, signal synthesis, decoding discussion.
http://forums.parallax.com/forums/default.aspx 2f=25&m=261275

Demos

Ymodem: upload data as [binary] file
http://forums.parallax.com/forums/default.aspx 2f=25&m=261220

Circuitry

circuit design precautions and guidelines (how?2 stop frying pll's)

http://forums.parallax.com/forums/default.aspx 2f=25&m=261542&p=1

use a 1K pull-up on prop plug whose cable will removed

http://forums.parallax.com/forums/default.aspx 2f=25&m=261253
more info inc fish's schematic:

http://forums.parallax.com/forums/default.aspx 2f=25&m=192068

on pull-up resistors
http://forums.parallax.com/forums/default.aspx 2f=25&m=261993

page 333 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=261005
http://forums.parallax.com/forums/default.aspx?f=25&m=262269
http://forums.parallax.com/forums/default.aspx?f=25&m=262102
http://forums.parallax.com/forums/default.aspx?f=25&m=262865
http://forums.parallax.com/forums/default.aspx?f=25&m=261275
http://forums.parallax.com/forums/default.aspx?f=25&m=261220
http://forums.parallax.com/forums/default.aspx?f=25&m=261542&p=1
http://forums.parallax.com/forums/default.aspx?f=25&m=261253
http://forums.parallax.com/forums/default.aspx?f=25&m=192068
http://forums.parallax.com/forums/default.aspx?f=25&m=261993

Propeller
(Hss)

Adverts

Imagecraft C 20% discount
http://forums.parallax.com/forums/default.aspx 2f=25&m=261910

page 334 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=261910

Propeller
(Hss)

Prop Magazine - May 2008

last issue April 2008
next issue June 2008

Ramblings by the editor

Welcome to the 4th edition of Prop Magazine. Everyone is welcome to create new sections and add new
links.; there is no need to login to or register do so.

Events

Oldbitcollector's Unofficial Propeller expo NE: SATURDAY - AUGUST 23RD
http://forums.parallax.com/forums/default.aspx ?f=25&m=246525&p=3

Software

Propellent Library and Executable - standalone Windows SPIN and ASM compiler
http://forums.parallax.com/forums/default.aspx 2f=25&m=270747

Getting two copies of the PropTool IDE running simultaneously
http://forums.parallax.com/forums/default.aspx ?f=25&m=267915

Reducing the size of the VGA drivers
http://forums.parallax.com/forums/default.aspx 2f=25&m=267605

Latest ImageCraft ICCV7 information
http://forums.parallax.com/forums/default.aspx 2f=25&m=267452

TV Text Driver for ImageCraft C compiler
http://forums.parallax.com/forums/default.aspx 2f=25&m=270075

FullDuplexSerial Driver for ImageCraft C compiler
http://forums.parallax.com/forums/default.aspx ?f=25&m=269905

VGA Text Driver for ImageCraft C compiler
http://forums.parallax.com/forums/default.aspx 2f=25&m=266216

Mouse Driver for Imagecraft C compiler
http://forums.parallax.com/forums/default.aspx ?f=25&m=267752

page 335 /405

http://propeller.wikispaces.com//PropMag-2008-04
http://propeller.wikispaces.com//PropMag-2008-06
http://forums.parallax.com/forums/default.aspx?f=25&m=246525&p=3
http://forums.parallax.com/forums/default.aspx?f=25&m=270747
http://forums.parallax.com/forums/default.aspx?f=25&m=267915
http://forums.parallax.com/forums/default.aspx?f=25&m=267605
http://forums.parallax.com/forums/default.aspx?f=25&m=267452
http://forums.parallax.com/forums/default.aspx?f=25&m=270075
http://forums.parallax.com/forums/default.aspx?f=25&m=269905
http://forums.parallax.com/forums/default.aspx?f=25&m=266216
http://forums.parallax.com/forums/default.aspx?f=25&m=267752

Propeller
(Hss)

ImageCraft : CLIB COG and how to do a CMPEXCH?
http://forums.parallax.com/forums/default.aspx 2f=25&m=270933

Virtual Interrupts using LMM
http://forums.parallax.com/forums/default.aspx 2f=25&m=266441

How to read strings representing floating point numbers
http://forums.parallax.com/forums/default.aspx ?f=25&m=266569

Some info on BB_FullDuplexSerial
http://forums.parallax.com/forums/default.aspx 2f=25&m=265580

Library code for using a DS1307 and 32-bit Unix Time
http://forums.parallax.com/forums/default.aspx ?f=25&m=232817

Numeric Conversion Program!
http://forums.parallax.com/forums/default.aspx 2f=25&m=271093

Integer Square Roots
http://forums.parallax.com/forums/default.aspx 2f=25&m=269640

Handling DS1631 12C temperature sensor data
http://forums.parallax.com/forums/default.aspx 2f=25&m=270815

GameCube Driver
http://forums.parallax.com/forums/default.aspx 2f=25&m=270337

SD Card File Copy
http://forums.parallax.com/forums/default.aspx 2f=25&m=268224

Bugs in MIDI Object
http://forums.parallax.com/forums/default.aspx ?f=25&m=269919

Hardware

USB Powered ProtoBoard
http://forums.parallax.com/forums/default.aspx 2f=25&m=268412

Using LDO with 3.7V LiPo battery
http://forums.parallax.com/forums/default.aspx 2f=25&m=267584

Creating a lightpen for the Propeller
http://forums.parallax.com/forums/default.aspx f=25&m=267885

page 336 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=270933
http://forums.parallax.com/forums/default.aspx?f=25&m=266441
http://forums.parallax.com/forums/default.aspx?f=25&m=266569
http://forums.parallax.com/forums/default.aspx?f=25&m=265580
http://forums.parallax.com/forums/default.aspx?f=25&m=232817
http://forums.parallax.com/forums/default.aspx?f=25&m=271093
http://forums.parallax.com/forums/default.aspx?f=25&m=269640
http://forums.parallax.com/forums/default.aspx?f=25&m=270815
http://forums.parallax.com/forums/default.aspx?f=25&m=270337
http://forums.parallax.com/forums/default.aspx?f=25&m=268224
http://forums.parallax.com/forums/default.aspx?f=25&m=269919
http://forums.parallax.com/forums/default.aspx?f=25&m=268412
http://forums.parallax.com/forums/default.aspx?f=25&m=267584
http://forums.parallax.com/forums/default.aspx?f=25&m=267885

Propeller
(Hss)

Getting TV input working
http://forums.parallax.com/forums/default.aspx 2f=25&m=267011

Getting Servo32 up and running
http://forums.parallax.com/forums/default.aspx 2f=25&m=267973

Latest report on AiChip Industries 12C Slave
http://forums.parallax.com/forums/default.aspx 2f=25&m=263375

Updated discussion on using IDE drives with a propeller
http://forums.parallax.com/forums/default.aspx 2f=25&m=246610

Interfacing 12C 3V3 to 5V

http://forums.parallax.com/forums/default.aspx 2f=25&m=262865&p=3

Interfacing SD Card using the VGA connector
http://forums.parallax.com/forums/default.aspx 2f=25&m=267538

Some questions on hooking up an SD Card
http://forums.parallax.com/forums/default.aspx ?f=25&m=266862

Getting PINK and XBee working with the Propeller
http://forums.parallax.com/forums/default.aspx 2f=25&m=267342

Motor control with the Propeller
http://forums.parallax.com/forums/default.aspx 2f=25&m=267202

Trials and tribulation in getting RS232 comms working
http://forums.parallax.com/forums/default.aspx 2f=25&m=266245

Using the Propeller as a PS/2 device
http://forums.parallax.com/forums/default.aspx 2f=25&m=267553

DTMF generation and detection
http://forums.parallax.com/forums/default.aspx 2f=25&m=266381

Damaged 1/0 pins

http://forums.parallax.com/forums/default.aspx 2f=25&m=268573
http://forums.parallax.com/forums/default.aspx 2f=25&m=268602

Multiple PWM Outputs
http://forums.parallax.com/forums/default.aspx 2f=25&m=270722

Powering Propeller from higher voltages
http://forums.parallax.com/forums/default.aspx ?f=25&m=270832

page 337 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=267011
http://forums.parallax.com/forums/default.aspx?f=25&m=267973
http://forums.parallax.com/forums/default.aspx?f=25&m=263375
http://forums.parallax.com/forums/default.aspx?f=25&m=246610
http://forums.parallax.com/forums/default.aspx?f=25&m=262865&p=3
http://forums.parallax.com/forums/default.aspx?f=25&m=267538
http://forums.parallax.com/forums/default.aspx?f=25&m=266862
http://forums.parallax.com/forums/default.aspx?f=25&m=267342
http://forums.parallax.com/forums/default.aspx?f=25&m=267202
http://forums.parallax.com/forums/default.aspx?f=25&m=266245
http://forums.parallax.com/forums/default.aspx?f=25&m=267553
http://forums.parallax.com/forums/default.aspx?f=25&m=266381
http://forums.parallax.com/forums/default.aspx?f=25&m=268573
http://forums.parallax.com/forums/default.aspx?f=25&m=268602
http://forums.parallax.com/forums/default.aspx?f=25&m=270722
http://forums.parallax.com/forums/default.aspx?f=25&m=270832

Propeller
(Hss)

Battery Monitoring
http://forums.parallax.com/forums/default.aspx 2f=25&m=270848

ADCO0838 as DVM for Propeller

[http:/forums.parallax.com/forums/default.aspx 2f=25&m=270062]]

Prop Tool

Prop Tool on Asus EEE PC
http://forums.parallax.com/forums/default.aspx 2f=25&m=270368

Prop Tool and documentation version numbering mis-matches

http://forums.parallax.com/forums/default.aspx 2f=25&m=260734
http://forums.parallax.com/forums/default.aspx 2f=25&m=270442

Prop Tool Line Continuation / Multi-Line Statements
http://forums.parallax.com/forums/default.aspx f=25&m=269758

Prop Tool file locating
http://forums.parallax.com/forums/default.aspx ?f=25&m=269896

Propeller Download via XBee
http://forums.parallax.com/forums/default.aspx 2f=25&m=270015

Propeller Download without Reset connection
http://forums.parallax.com/forums/default.aspx 2f=25&m=270355

Resources and Learning

Discussion and resources on learning about digital logic
http://forums.parallax.com/forums/default.aspx ?f=25&m=266117

Discussion about the lack of interrupts on the Propeller
http://forums.parallax.com/forums/default.aspx ?f=25&m=266423

An explanation why the Prop doesn't have on-chip Eeprom
http://forums.parallax.com/forums/default.aspx ?f=25&m=266601

WAITPEQ and WAITPNE timing
http://forums.parallax.com/forums/default.aspx ?f=25&m=267689

page 338 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=270848
http://forums.parallax.com/forums/default.aspx?f=25&m=270062
http://forums.parallax.com/forums/default.aspx?f=25&m=270368
http://forums.parallax.com/forums/default.aspx?f=25&m=260734
http://forums.parallax.com/forums/default.aspx?f=25&m=270442
http://forums.parallax.com/forums/default.aspx?f=25&m=269758
http://forums.parallax.com/forums/default.aspx?f=25&m=269896
http://forums.parallax.com/forums/default.aspx?f=25&m=270015
http://forums.parallax.com/forums/default.aspx?f=25&m=270355
http://forums.parallax.com/forums/default.aspx?f=25&m=266117
http://forums.parallax.com/forums/default.aspx?f=25&m=266423
http://forums.parallax.com/forums/default.aspx?f=25&m=266601
http://forums.parallax.com/forums/default.aspx?f=25&m=267689

Propeller
(Hss)

Starting Cogs with an arbitrary number of parameters
http://forums.parallax.com/forums/default.aspx ?f=25&m=267499

Launching multiple Cogs
http://forums.parallax.com/forums/default.aspx 2f=25&m=268862

Inter-Cog communications
http://forums.parallax.com/forums/default.aspx ?f=25&m=266026

Fast timing / short waits in Spin
http://forums.parallax.com/forums/default.aspx 2f=25&m=268748

High-Temperature Sensors
http://forums.parallax.com/forums/default.aspx 2f=25&m=268702

Discussion on UTF-8 versus UTF-32 in the Propeller Tool and in general

http://forums.parallax.com/forums/default.aspx 2f=25&m=268608

Parallel Processing
http://forums.parallax.com/forums/default.aspx 2f=25&m=269360

I2C Slave Addresses

http://forums.parallax.com/forums/default.aspx ?f=25&m=270079
http://forums.parallax.com/forums/default.aspx 2f=25&m=269595

Mixing Spin and Assembler

http://forums.parallax.com/forums/default.aspx 2f=25&m=270347
http://forums.parallax.com/forums/default.aspx 2f=25&m=270698

Random thought for Prop II: Separate execution units for hub ops.

http://forums.parallax.com/forums/default.aspx 2f=25&m=270924

Spin Start/Stop Methods
http://forums.parallax.com/forums/default.aspx 2f=25&m=270964

USB with the Propeller
http://forums.parallax.com/forums/default.aspx ?f=25&m=269677

Propeller current consumption
http://forums.parallax.com/forums/default.aspx 2f=25&m=270041

Physical contact sensing alternatives
http://forums.parallax.com/forums/default.aspx ?f=25&m=271136

page 339 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=267499
http://forums.parallax.com/forums/default.aspx?f=25&m=268862
http://forums.parallax.com/forums/default.aspx?f=25&m=266026
http://forums.parallax.com/forums/default.aspx?f=25&m=268748
http://forums.parallax.com/forums/default.aspx?f=25&m=268702
http://forums.parallax.com/forums/default.aspx?f=25&m=268608
http://forums.parallax.com/forums/default.aspx?f=25&m=269360
http://forums.parallax.com/forums/default.aspx?f=25&m=270079
http://forums.parallax.com/forums/default.aspx?f=25&m=269595
http://forums.parallax.com/forums/default.aspx?f=25&m=270347
http://forums.parallax.com/forums/default.aspx?f=25&m=270698
http://forums.parallax.com/forums/default.aspx?f=25&m=270924
http://forums.parallax.com/forums/default.aspx?f=25&m=270964
http://forums.parallax.com/forums/default.aspx?f=25&m=269677
http://forums.parallax.com/forums/default.aspx?f=25&m=270041
http://forums.parallax.com/forums/default.aspx?f=25&m=271136

Propeller
(Hss)

Fun and Games

Rayman's Ladder Game
http://forums.parallax.com/forums/default.aspx 2f=25&m=267604

The Propeller-based Space Invaders Clock
http://forums.parallax.com/forums/default.aspx 2f=25&m=266560

The Propeller as an Art Form

http://forums.parallax.com/forums/default.aspx 2f=25&m=266855
http://forums.parallax.com/forums/default.aspx 2f=25&m=266710

Predicting the future with a Propeller Chip
http://forums.parallax.com/forums/default.aspx 2f=25&m=268823

The Pixelmusic 3000 on Make 14
http://forums.parallax.com/forums/default.aspx f=25&m=270787

Projects

Ideas for project sought
http://forums.parallax.com/forums/default.aspx ?f=25&m=266703

Persistence of Vision
http://forums.parallax.com/forums/default.aspx 2f=25&m=267954

Quad DRO, and a request for beta testers
http://forums.parallax.com/forums/default.aspx ?f=25&m=262412

The Incredible Message Machine
http://forums.parallax.com/forums/default.aspx 2f=25&m=267679

A nice and compact LED Matrix display
http://forums.parallax.com/forums/default.aspx ?f=25&m=267021

Latest news on the OpenStomp(TM) Coyote-1 (Guitar Effects Pedal)
http://forums.parallax.com/forums/default.aspx ?f=25&m=252772&p=3

NAVCOM Al UAV/UMYV code and schematics
http://forums.parallax.com/forums/default.aspx ?f=25&m=190494

An on-screen function plotter
http://forums.parallax.com/forums/default.aspx 2f=25&m=268700

page 340/ 405

http://forums.parallax.com/forums/default.aspx?f=25&m=267604
http://forums.parallax.com/forums/default.aspx?f=25&m=266560
http://forums.parallax.com/forums/default.aspx?f=25&m=266855
http://forums.parallax.com/forums/default.aspx?f=25&m=266710
http://forums.parallax.com/forums/default.aspx?f=25&m=268823
http://forums.parallax.com/forums/default.aspx?f=25&m=270787
http://forums.parallax.com/forums/default.aspx?f=25&m=266703
http://forums.parallax.com/forums/default.aspx?f=25&m=267954
http://forums.parallax.com/forums/default.aspx?f=25&m=262412
http://forums.parallax.com/forums/default.aspx?f=25&m=267679
http://forums.parallax.com/forums/default.aspx?f=25&m=267021
http://forums.parallax.com/forums/default.aspx?f=25&m=252772&p=3
http://forums.parallax.com/forums/default.aspx?f=25&m=190494
http://forums.parallax.com/forums/default.aspx?f=25&m=268700

Propeller
(Hss)

Some thoughts on emulating a PICmicro 18F84
http://forums.parallax.com/forums/default.aspx ?f=25&m=266879

Vision for the Propeller
http://forums.parallax.com/forums/default.aspx 2f=25&m=268814

Juicebox Weather Station
http://forums.parallax.com/forums/default.aspx ?f=25&m=269246

Propeller-based datalogger
http://forums.parallax.com/forums/default.aspx 2f=25&m=268880

New OS - PorthOS is born
http://forums.parallax.com/forums/default.aspx 2f=25&m=269867

Competitions

Results of uOLED-96-PROP Object Design Contest
http://forums.parallax.com/forums/default.aspx 2f=25&m=248327

Propeller Products

New ProtoBoard with USB on-board on its way
http://forums.parallax.com/forums/default.aspx 2f=25&m=269025

Parallax Propellent Downloader Library and Executable v1.0

http://forums.parallax.com/forums/default.aspx ?f=25&m=270747
http://forums.parallax.com/forums/default.aspx 2f=25&m=268343

The new Parallax Serial Terminal (PST)
http://forums.parallax.com/forums/default.aspx 2f=25&m=267427

New Propeller Videos and Audio Podcast
http://forums.parallax.com/forums/default.aspx 2f=25&m=268524

Upgrading the Eeprom on a PropStick
http://forums.parallax.com/forums/default.aspx ?f=25&m=265409

What to buy
http://forums.parallax.com/forums/default.aspx f=25&m=267645

Choosing between Spin Stamp and Propeller

page 341 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=266879
http://forums.parallax.com/forums/default.aspx?f=25&m=268814
http://forums.parallax.com/forums/default.aspx?f=25&m=269246
http://forums.parallax.com/forums/default.aspx?f=25&m=268880
http://forums.parallax.com/forums/default.aspx?f=25&m=269867
http://forums.parallax.com/forums/default.aspx?f=25&m=248327
http://forums.parallax.com/forums/default.aspx?f=25&m=269025
http://forums.parallax.com/forums/default.aspx?f=25&m=270747
http://forums.parallax.com/forums/default.aspx?f=25&m=268343
http://forums.parallax.com/forums/default.aspx?f=25&m=267427
http://forums.parallax.com/forums/default.aspx?f=25&m=268524
http://forums.parallax.com/forums/default.aspx?f=25&m=265409
http://forums.parallax.com/forums/default.aspx?f=25&m=267645

Propeller
(Hss)

http://forums.parallax.com/forums/default.aspx 2f=25&m=267071

Buying and Shipping
http://forums.parallax.com/forums/default.aspx ?f=25&m=267606

Wanting a Parallax Quad Rover
http://forums.parallax.com/forums/default.aspx 2f=25&m=269525

Propeller Mk I with 64 Pin I/O update
http://forums.parallax.com/forums/default.aspx ?f=25&m=270526

Adverts

New third-party Propeller board
http://forums.parallax.com/forums/default.aspx ?f=25&m=268789

USB FTDI bare PCB's for sale
http://forums.parallax.com/forums/default.aspx f=25&m=269145

PropSTICK Kit Bare Printed Circuit Boards
http://forums.parallax.com/forums/default.aspx ?f=25&m=271072

New Sparkfun Protoboard
http://forums.parallax.com/forums/default.aspx ?f=25&m=270979

A case (box) for the Propeller
http://forums.parallax.com/forums/default.aspx ?f=25&m=269900

page 342 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=267071
http://forums.parallax.com/forums/default.aspx?f=25&m=267606
http://forums.parallax.com/forums/default.aspx?f=25&m=269525
http://forums.parallax.com/forums/default.aspx?f=25&m=270526
http://forums.parallax.com/forums/default.aspx?f=25&m=268789
http://forums.parallax.com/forums/default.aspx?f=25&m=269145
http://forums.parallax.com/forums/default.aspx?f=25&m=271072
http://forums.parallax.com/forums/default.aspx?f=25&m=270979
http://forums.parallax.com/forums/default.aspx?f=25&m=269900

Propeller
(Hss)

Prop Magazine - June 2008

last issue: May 2008

Ramblings by the editor

Welcome to the 5th edition of Prop Magazine. Everyone is welcome to create new sections and add new
links.; there is no need to login to or register do so.

Events

Oldbitcollector's Unofficial Propeller expo NE: SATURDAY - AUGUST 23RD
http://forums.parallax.com/forums/default.aspx ?f=25&m=246525&p=3

Software

Fryview (based on Spudview idea) image viewer and converter released,
http://forums.parallax.com/forums/default.aspx f=25&m=272283

Hardware

Prop Tool

Propeller Tool 1.2 Released
http://www.parallax.com/tabid/442/Default.aspx

Parallax Propellent Library and Executable v1.0
http://forums.parallax.com/forums/default.aspx ?f=25&m=270747

Resources and Learning

Discussion about connecting PSX controllers
http://forums.parallax.com/showthread.php?104124-Playstation-Controller-Guitar-Hero

page 343 /405

http://propeller.wikispaces.com//PropMag-2008-05
http://forums.parallax.com/forums/default.aspx?f=25&m=246525&p=3
http://forums.parallax.com/forums/default.aspx?f=25&m=272283
http://www.parallax.com/tabid/442/Default.aspx
http://forums.parallax.com/forums/default.aspx?f=25&m=270747
http://forums.parallax.com/showthread.php?104124-Playstation-Controller-Guitar-Hero

Propeller
(Hss)

Fun and Games

New Game: Jumping Jack
http://forums.parallax.com/showthread.php?104089-New-Game-Jumping-Jack

Projects

Google Earth GPS SD Card Logger
http://forums.parallax.com/showthread.php?104049-Google-Earth-GPS-SD-Card-L.ogeer-COMPLETE!

Competitions
Propeller Products

Adverts

page 344 /405

http://forums.parallax.com/showthread.php?104089-New-Game-Jumping-Jack
http://forums.parallax.com/showthread.php?104049-Google-Earth-GPS-SD-Card-Logger-COMPLETE%21

Propeller
(Hss)

Current Beta API:

Et hernet TCP/I P Socket Layer Driver (I1Pv4)

Copyright (C) 2006 - 2007 Harrison Pham

This file is part of PropTCP.

PropTCP is free software;
it under the terns of the GNU CGeneral
t he Free Software Foundati on;
(at your option) any |later version.

PropTCP is distributed in the hope that it wll

you can redistribute it and/or
Public License as published by
ei ther version 3 of the License, or

nodi fy

be useful,

but W THOUT ANY WARRANTY; wi thout even the inplied warranty of

MERCHANTABI LI TY or

G\U General Public License for nore details.

You shoul d have received a copy of the GNU Gener al

FI TNESS FOR A PARTI CULAR PURPCSE.

See t he

Publ i ¢ License

along with this program |If not, see <http://ww.gnu.org/licenses/>
Qbj ect "driver_socket"” Interface:
PUB start(cs, sck, si, so, int, xtalout, macptr, ipconfigptr) okay
PUB stop
PUB |isten(port)
PUB connect(ipl, ip2, ip3, ip4, renoteport, |ocalport)
PUB cl ose(handl e)
PUB i sConnect ed(handl e)
PUB i sVal i dHandl e(handl e)
PUB readByt eNonBl ocki ng(handl e) r xbyte
PUB readByt e(handl e) r xbyt e
PUB witeByteNonBl ocki ng(handl e, txbyte)
PUB witeByte(handle, txbyte)
PUB resetBuffers(handl e)
Program 1, 798 Longs
Vari abl e: 131 Longs
PUB start(cs, sck, si, so, int, xtalout, nmacptr, ipconfigptr) okay

page 345 /405

Propeller
(Hss)

Call this to | aunch the Tel net driver

Only call this once, otherwise you will get conflicts
macptr = HUB nenory pointer (address) to 6 contiguous mac addres
s bytes

i pconfigptr = HUB nenory pointer (address) to ip configuration bl ock
(20 bytes)
Must be in order: ip_addr. ip_subnet, ip_gateway, ip_dn
s

PUB stop

Stop the driver

PUB |isten(port)

Sets up a socket for listening on a port
Returns handle if available, -1 if none avail able
Nonbl ocki ng

PUB connect(ipl, ip2, ip3, ip4, renoteport, |ocal port)

Connect to renpte host
Returns handle to new socket, -1 if no socket avail abl e
Nonbl ocki ng

PUB cl ose(handl e)

Cl oses a connecti on

PUB i sConnect ed(handl e)

Returns true if the socket is connected, fal se otherw se

PUB i sVal i dHandl e(handl e)

Checks to see if the handle is valid, handles will becone invalid onc
e they are used
In other words, a closed listening socket is nowinvalid, etc

page 346 / 405

Propeller
(Hss)

PUB readByt eNonBl ocki ng(handl e) : rxbyte

Read a byte fromthe specified socket
WIIl not block (returns -1 if no byte avail)

PUB readByte(handle) : rxbyte

Read a byte fromthe specified socket
WIIl block until a byte is received

PUB witeByteNonBl ocki ng(handl e, txbyte)

Wites a byte to the specified socket
WIIl not block (returns -1 if no buffer space avail abl e)

PUB witeByte(handl e, txbyte)

Wite a byte to the specified socket
WIIl block until space is available for byte to be sent

PUB resetBuffers(handl e)

Resets send/receive buffers for the specified socket

page 347 / 405

Propeller
(Hss)

Pulse Width Modulation

The topic of PWM is complex - and trivial at the same time.
When you have the need to dim an LED connected to I/O = ledPin between dimPercent =0 to 99%, do
just this:

DIRA[ledPin] :=1
CTRA : = %0 0110<<26 + | edPin
FRQA : = $7FFF_FFFF/ 50 * di nPer cent

In the following sections we shall discuss

1. What is PWM in the first place?

2. How to control a PWM channel with SPIN

3. How to control two PDM channels using the timers/counters
4. How to control A LOT of PWM channels

5. Adding a low-pass filter makes a DAC!

... but maybe AFTER Xmas..

What is PWM in the first place?

Someone "doing PWM" will generate some of the signals shown in the following sketch. You notice that
they are digital wrt ("with respect to") amplitude. They can also be discrete wrt the time axis. A signal
transports information. The information with PWM ("pulse width modulation") is coded into the relative
length of the pulse wrt the period.

The quotient between both is called duty cycle, which is a value between 0 and 100% (or between 0 and
1, when you are using REAL numbers)

This is the definition "by the book". Note the beauty of it: It is not only independent of the amplitude,
making it immune against typical "noise" effects, but also independent of the choice of the period, so
avoiding a strict synchronization of clock speeds.

In most situations however the period is a fixed design parameter, giving the pulse width (measured in
absolute units) a meaning of its own. So you speak of a "2ms pulse" when driving servos, independent of

the "duty cycle" or period.

In both cases the receiver can have problems with duty cycles of exactly 0 or 100%, so theses values
should be avoided.

So the information transported consists of a series of values (the "duty cycles", or the absolute "pulse

page 348 / 405

Propeller
(Hss)

widths") within (generally) fixed length time slots (= each "period"). Such kind of information can also be
transported in many other ways:

e as (P)AM ("amplitude modulation"): The value of the signal voltage is modified - this is what we
are accustomed to.

e as (P)FM ("frequency modulation"): The number of on/off signals within the time slot (the
"frequency") is modified - old-fashioned modems worked that way.

e as PPM ("phase modulation"): The exact location of a small spike within the time slot is modified
- this is very related to PWM, a differentiated PWM signal as it were.

e as PDM ("density modulation"): A certain number of fixed length pulses ("spikes" again!) is
arranged within the time slot (=period). This is quite similar to PWM (where all those pulses are
assembled at one side of the period, so to speak) but not exactly the same. It is the way we used
the DUTY-mode of the Propeller timer/counter in the first example above.

A PDM signal is generally interpreted as a Bitstream of "ones" and "zeroes"; the decoded value
being the (moving) average.

Each of those modulations has its pros and its cons wrt to noise immunity, ease of transmission
("encoding"), ease of receiving ("decoding"), cost,....

In "microcontrolling” we use PWM (and also PDM) mainly for three reasons.

1. To control a servo (period: 20ms, pulse width: 1 .. 2ms)

2. To control the average current transported to an inert device (light bulb, motor, the system
LED/human eye,...)

3. DAC: To generate a duty cycle proportional voltage, utilizing an appropriate low-pass filter
(period

How to control a PWM channel with SPIN

So "hands-on"! An LED is such a useful device; one should invent it if it wasn't already there. The
brightness of an LED is roughly proportional to the current flowing through it. According to this current
the LED controls its voltage drop. It is always close to the forward voltage, a little bit higher with high
current, a little bit lower with low current.

We can easily construct a Current-DAC by - say - connecting the LED with three Propeller pins, each
with a different resistor, as 220 Ohms, 470 Ohms, 1k, e.g. So we can readily provide different currents
(20 mA ... 2mA), but at the cost of three pins.

The more common solution however is to pulse the LED, e.g. 50 ms off, 50 ms on, using the full output
of one single I/O pin. The signal will look exactly as the middle situation in the above sketch. The LED
will now shine with half its intensity. So we hope.

page 349 / 405

Propeller
(Hss)

DIRA[O] :=1
dimtryl(0, 50)

PUB dimtryl(ledPin,

" LED is connected to I/OO0 "

dutyCycle) | onePercentTick, deadline

" version 3.1 2007 by deSilva '

Dins an LED, dutyCycle is O to 100, ledPinis O to 31"
| F dutyCycle =< 0
QUTA[l edPin] := 0
RETURN
| F dutyCycle =>100
QUTA[l edPin] =1
RETURN
deadline := CNT
onePercent Ti cks : = CLKFREQ 1000 Inms = 1%
REPEAT
deadl i ne += onePercent Ti cks*100 100 ns | oop'

VWAl TCNT(deadl i ne)
OUTA[l edPin] =1
WAl TCOUNT(deadl i ne + onePercent Ti cks*dut yCycl e)
OUTA[l edPin] := 0

Hey, it works! However...
(a) It flickers!
(b) The routine DIM_TRY1 never returns!

The period has to be adjusted to the application! We are sending zeros and ones - so we "see" zeros and
ones. To trick our eyes we have to be faster, like a true magician. Have you already spotted the relevant
parameter? Right, it's 1000, setting 1% of a period to 1ms (thus the period to 100 ms). We can readily
change this to 10_000, making the period 10 ms which will suffice to do the trick.

Can we make it even faster? Try it out!

There are limits with SPIN: We are waiting for a time gap of "onePercentTicks" for a 1% dutyCyle; this
must be >800, which means around a 1 kHz period. Sorry folks, that's simple SPIN . We will do much
better soon, with a little help from a timer/counter.

It is typical for Propeller programming to have routines that can never return, as they have to be on the
alert for the environment. We often call those routines "drivers". Other microcontrollers use "Interrupts"
for this; the Propeller way is to engage a COG.

SUB mai n | dutyCycle, someStack[20]
COGNEWdi mtry2(0, @lutyCycle), @onmeStack)

page 350/ 405

Propeller
(Hss)

REPEAT
REPEAT WHI LE ++dutyCycl e <100
WAI TCNT(CNT+CLKFREQ 100)
REPEAT WHI LE - - dutyCycle >0
WAl TCNT(CNT+CLKFREQ 100)

We have to make some modifications to our routine:

¢ In a fresh new COG the I/O characteristics have to be set again (DIRA in this case)
e We now provide an address rather than a value for the dutyCycle parameter
e We have to care for the occurrence of "bad values" within the main loop

PUB dimtry2(ledPin, dutyCycleAddr) | onePercentTi cks, deadline,
dutyCycl e

" version 4.0 2007 by deSilva '

" Dinms an LED, dutyCycle is O to 100, ledPinis O to 31"

DIRA[ledPin] :=1
deadline : = CNT

onePercent Ti cks : = CLKFREQ 10 000 " 100ps = 1%
REPEAT

dutyCycle := 0 #> LON{ dut yCycl eAddr] <# 100

deadl i ne += onePercent Ti cks*100 " 10 s | oop'

VWAl TCNT(deadl i ne)

| F dutyCycle

QUTA[l edPin] =1

| F dutyCycle < 100
WAl TCOUNT(deadl i ne + onePercent Ti cks*dut yCycl e)
OUTA[l edPin] := 0

---> [left a BUG here, for the gentle reader to spot :-)

Now, onto the last part of this section. Isn't it a shame that we have to constrain ourselves to pulses of at
most 10 us within a period of 1 ms? The main issue will most likely be not the period, but the accuracy of
the pulse length. Having 100 choices only would mean an angular accuracy of 3.6° for a servo.

Do we really need assembly language to overcome that?

Not at all! There is something much better in every COG: a timer (even two A and B - see next section).
The working of the timers is thoroughly explained in Parallax ANOO1 (and most likely somewhere here in
the wiki soon...link?)

It's simplicity itself: In their NCO mode

e A timer keeps adding the FREQ register to the PHS register each and every tick.

page 351 /405

Propeller
(Hss)

e The MSB (bit 31) of the PHS becomes connected to one of the I/O pins.
Thats all, really! Think some time what different things you can do with this!

The PWM algorithm then goes like this:

Set FRQ to 1

Set PHS to the negative number of ticks for your pulse
Start the timer

Do this in a loop of the length of your period

.. and here comes the code..

PUB dimtry3(ledPin, dutyCycleAddr) | onePercentTi cks, deadline,
dutyCycl e
" version 2007 by deSilva '

Dinms an LED using TMRA, dutyCycle is O to 100, ledPinis O to 31"

DRA[ledPin] :=1
deadl ine := CNT
onePercent Ti cks : = CLKFREQ 10_000 " 100ps = 1%
REPEAT
dutyCycle := 0 #> LONG dut yCycl eAddr] <# 100
WAl TCNT(deadl i ne += onePer cent Ti cks*100) " 10 ns | oop’

---- this part contains the inprovenent using a tiner:
Programm ng tinmerA for PWW node ("NCO')
i.e. pulse = sign bit (bit 31); thus preset register with M NUS pul

se width
CTRA := 0 ' reset timer
1

FRQA : = ' adding 1 @systemclock = 80 MHz'
PHSA : = -(onePercentTicks * dutyCycle)
CTRA := (%_00100 << 26) + ledPin

Now there is a all the tinme of the world to do other things

Note that it is not very critical as the pulse is reset automaticall
y! '

How to control two PDM channels using the timers/counters

(...coming soon)
In the meantime have a look at Martin Hebels BS2 functions. This is exactly what we did in the intro

page 352 /405

Propeller
(Hss)

example

How to control A LOT of PWM channels

(...coming soon)
In the meantime please refer to some forum-threads, e.g.
http://forums.parallax.com/forums/default.aspx f=25&m=227109&g=229281

Adding a low-pass filter makes a DAC!

(to be continued...)

page 353 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=227109&g=229281

Propeller
(Hss)

RCTIME Object

by Beau Schwabe

This object measures the time constant of an RC circuit. You can use RCTIME to read a variable
resistance such as a potentiometer (e.g., volume knob or joystick), photosensor (CdS cell), thermistor
(temperature), etc.

This object can operate in one of two modes:
* Background mode, in which a separate process (cog) asynchronously updates a variable.
* Foreground mode, in which a method call performs a "one-shot" time constant measurement.

RCTIME in foreground mode functions much like the Basic Stamp's RCTIME command.

Hardware

Build your variable resistance into a circuit such as this:

RC circuit (Type I)

RCTIME charges the capacitor to Vdd (the 200 ohm resistor limits the charging current to protect the
Propeller's I/O pin) and then measures the time it takes for the capacitor to discharge through the variable
resistance to Vdd/2.

You can also wire up the circuit as follows:

RC circuit (Type 1)
For this second type of circuit, RCTIME first discharges the capacitor and then measures the time for it to
charge to Vdd/2.

The first circuit is recommended as it provides slightly higher resolution due to the I/O threshold not
being exactly Vdd/2.

Theory of operation

The results that RCTIME provides are proportional to the variable resistance R, not a direct measurement
of R. The time to discharge (or charge) to Vdd/2 is given by this equation:

t=RCIn2
where t is the charging time in seconds, R is the resistance in ohms, and C is the capacitance in farads.

The result returned by RCTIME is t x clkfreq / 16 (RCTIME divides by 16 to eliminate the noisy least
significant bits).

page 354 /405

Propeller
(Hss)

Example

Assume a resistance that can vary between 1000€2 and 2000€2 and a fixed capacitance of 0.1uF. At the
low end (R = 1000€2), the discharge time is 69.3us and the result given by RCTIME is 347 (assuming an
80MHz system clock).

At the high end (R =20002), the discharge time is 139us and the result given by RCTIME is 693.

Therefore, you would expect readings to vary over the range of the resistance from 347 to 693
(approximately; real numbers will of course differ from the calculated values).

Using RCTIME in background mode

To use RCTIME in background mode, call the St art method with the following arguments:

1. pin: the number of the Propeller's I/O pin that is attached to the RC circuit
2. state: this argument should be 1 for Type I circuits, O for Type II.
3. variable address: the address of a long variable that is to be updated.

Example:

‘" ... clock definitions go here...
obj RC. "RCTI ME"
var | ong pot _position
pub main
RC.start(5, 1, @ot_position)
r epeat
" here do sonething with pot _position, know ng that RCTIME i s upda
ting it
" automatically in the background with new val ues

Note that the variable (in this example, pot _posi t i on) will only be updated as fast as the circuit
discharges (or charges). You can monitor more than one pin, but keep in mind that background mode
consumes an additional cog for each pin being monitored.

Using RCTIME in foreground mode

To use RCTIME in foreground mode, call the RCTI IVE method to initiate a measurement. Pass the same
arguments that you would passto st art :

1. pin: the number of the Propeller's I/O pin that is attached to the RC circuit.

2. state: this argument should be 1 for Type I circuits, O for Type II.

3. variable address: the address of a long variable that will contain the result.

page 355 /405

Propeller
(Hss)

Example:

‘" ... clock definitions go here...

obj RC. "RCTI ME"

var | ong pot _position

pub main

r epeat
RC. RCTIME(5, 1, @ot _position) ' Read pot position
" here do sonething with pot_position

Note: You cannot mix background and foreground operation in the same program.

Download

http://obex.parallax.com/objects/276/

page 356 /405

http://obex.parallax.com/objects/276/

Propeller
(Hss)

Some calculations of the spin code SIZE to reference 'global' variables in various ways. Speed was not
tested.

For reference, when variables are the same object. Referencing a stack variable and object VAR 1 byte.
Referencing a DAT variable 2 bytes. Referencing a memory location from a Constant pointer was 4
bytes.

For variables shared from another object there is normally a 2 step process, retrieve the pointer and then
retrieve the variable using the pointer. Because of the large difference in how a variable is accessed seen
above, the storage of the pointer becomes key. If used in only one location, the best method is to retrieve
the address on initialisation, and store with either in a object word VAR. If used more than once in the
same method, store the pointer in a stack variable. These 2 techniques use 3 and 2 bytes to dereference
respectively, and the code setting up the pointer is similarly sized. Once the extra 2 byte to store a stack
pointer (long) vs a VAR pointer (word) is taken into account they are the same size. However the local
var method is prefered as is expected to be faster as less code is loaded into the cog in the loop.

If you are using a pointer to iterate an array, there is significant difference depending how the array
offsets are handled. The most effective is to use the offset array syntax, as the increment code is far
smaller, except for BYTE arrays. So use blah := WORD/LONG/BYTE[stackPtr][stackOffset++], where
both the ptr and offset are stored in stack variables.

page 357 / 405

Propeller
(Hss)

Several software projects available for the Propeller.

e A list of playable games.
e A list of graphics drivers.

e Object Reference - in the same format as the Propeller Object Exchange

page 358 /405

http://propeller.wikispaces.com//Games
http://propeller.wikispaces.com//graphics+drivers
http://propeller.wikispaces.com//Object+Reference
http://obex.parallax.com/

Propeller
(Hss)

RFID with simple hardware

Micah Dowty has produced what might be "the world's simplest RFID reader design" using a Propeller
Chip and just a few passive components, no pre-built RFID receiver / interface module required.

Details of the hardware plus an explanation of operation and associated software can be found in the
Propeller Forum : here

page 359 /405

http://forums.parallax.com/forums/default.aspx?f=25&m=287204

Propeller
(Hss)

The propeller is unusual in that it can generate a video signal in software. There is hardware support, but
you need to have software constantly feeding that hardware with pixel and sync data. A complete video
frame's worth of data 60 times a second for NTSC (50 for PAL).

The simplest graphics drivers consist of a single cog which both prepares the data for display and sends it
to the video hardware. Examples of this kind of graphics driver are:

e The Parallax TV driver - (Hydra version: tv_drv_010.spin, Other boards: TV.spin)

o This uses a tile map, which can also be configured to be used like a screen buffer.
e HEL - the graphics driver on the Hydra Book CD

o Builds on the Parallax TV driver, and adds sprites. (Up to 5 per line)
e The demo SimpleNTSC

o Has a flag and some color bars hard-coded

The limitation of this pattern is that there is a very limited amount of time available on the single cog for
doing anything other than sending pixel and sync data to the video hardware. Especially if you want to
use Hi-Color, high horizontal resolutions, display lots of sprites, or preprocess graphic assets such as
change their color depth on the fly. In such situations you can use the Cooperative Rendering Pattern.

page 360 / 405

http://propeller.wikispaces.com//Hydra+Book
http://propeller.wikispaces.com//Palette+Mode#hi-color
http://propeller.wikispaces.com//Cooperative+Rendering+Pattern

Propeller
(Hss)

A bunch of information about programming the Propeller.

Developer Info:

e PinDefs.spin standard (under development)

e Propeller Font
e Development Board Differences- Xtals and pins

e An answer to the question "How many colors can the Hydra produce?"

e Books, References and Tutorials

e Packaging Propeller Software, about how to distribute the software you have written.

e ['ve found some Propeller Code and want to use / incorporate it into my project, what do I need to
do?

e Programming in C (obsolete info about ICC) needs update>

e Programming in C - Catalina

e Programming in Java

e Programming in Pascal

e Programming in Forth
e Download Protocol

e Converting Text Output Display Type from VGA_text to TV_text and vice versa.
e Managing Concurrency (inter COG communications)
e Large Memory Model

Spin:

e BYTE, LONG, WORD

e Strings

¢ Cracking Open the Propeller Chip - Decoding the Spin Interpreter
e Reset Sequence - What the Propeller does on power-on or reset

e Integer only GPS navigation

Spin Bytecode:

e Spin Byte Code
e Method Calls

e Referencing Globals

Assembler:

e Assembly Programming
e Assembly, step by step

How to load a spin-variable into assembly-code (load SPIN-variable from hub to cog within
assembly using par and rdlong

How to store assembly-data into hub ram using wrlong

propasm - An open source alternative assembler for the Propeller.

page 361 /405

http://mycooldesktop.com
http://propeller.wikispaces.com//Propeller+Font
http://propeller.wikispaces.com//Dev+Board+Differences
http://propeller.wikispaces.com//Colors
http://propeller.wikispaces.com//Books+References+Tutorials
http://propeller.wikispaces.com//Packaging+Propeller+Software
http://propeller.wikispaces.com//Copyright+and+Licensing
http://propeller.wikispaces.com//Programming+in+C
http://propeller.wikispaces.com//Programming+in+C+-+Catalina
http://propeller.wikispaces.com//Programming+in+Java
http://propeller.wikispaces.com//Programming+in+Pascal
http://propeller.wikispaces.com//Programming+in+Forth
http://propeller.wikispaces.com//Download+Protocol
http://propeller.wikispaces.com//Converting+Text+Output+Display+Type
http://propeller.wikispaces.com//Managing+Concurrency
http://propeller.wikispaces.com//Large+Memory+Model
http://propeller.wikispaces.com//BYTE
http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//WORD
http://propeller.wikispaces.com//Strings
http://propeller.wikispaces.com//Cracking+Open+the+Propeller+Chip
http://propeller.wikispaces.com//Reset+Sequence
http://propeller.wikispaces.com//integer_navigation
http://propeller.wikispaces.com//Spin+Byte+Code
http://propeller.wikispaces.com//Method+Calls
http://propeller.wikispaces.com//Referencing+Globals
http://propeller.wikispaces.com//Assembly+Programming
http://forums.parallax.com/forums/default.aspx?f=25&m=187621
http://www.cliff.biffle.org/software/propeller/propasm/

Propeller
(Hss)

e My Assembler Routine Is Doing Something Weird! What's Wrong?

e Things you never wanted to know but were forced to find out

How is RES different from LONG?

Large Memory Model

LAS - Largos Assembler, supports standard PASM and LMM with assembler extensions for easy
LMM programming

e BYTE, LONG, WORD

e MATH (binary, BCD, integer, fixed and floating point) on the propeller

e 2's complement create it calculate with it

e FET in propeller assembler

page 362 /405

http://propeller.wikispaces.com//Common+Assembler+Bugs
http://forums.parallax.com/showpost.php?p=864343
http://propeller.wikispaces.com//LONG+vs+RES
http://propeller.wikispaces.com//Large+Memory+Model
http://mikronauts.com/software-products/las-largos-lmm-assembler/
http://propeller.wikispaces.com//BYTE
http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//WORD
http://propeller.wikispaces.com//MATH
http://academic.evergreen.edu/projects/biophysics/technotes/program/2s_comp.htm#calculate
http://propeller.wikispaces.com//FFT

Propeller
(Hss)

SphinxOS - A Parallax Propeller Operating System

Original Sphinx web page can be found here: Sphinx Web Page
Original threat at Parallax' forums can be found here: Thread

SphinxOS is an operating system for the Propeller based on the pioneering (and quite amazing) work of
mpark: Sphinx (A Spin/PASM compiler that runs of the propeller itself). Built on top of his HAL/BIOS
concept, together with new drivers and utilities. Several forum members are working right now on
different parts of it (p3/p4 of the above mentioned thread).

The first TODO list as of January 5th 2010:

e Sphinx OS
o Extensions - mpark ?
o Extensions - Mike Green, OBC, localroger ?
o Use "-1" instead of "0" for status to allow all 256 character code transfers - cluso (no: add
high bit $100)
o Spin Interpreter to use SRAM - cluso (later)
e Drivers
SD to use latest fsrw - ?
1-pin video - cluso (wip)
1-pin keyboard - cluso (wip)
o vga-?
FDX (to substitue for keyboard & video) - cluso (completed)
LCD (2x40, 128x64) - Rayman, Peter, Drac?
o Ethernet - ?
o USB-?
o Others - ?
o Utilities
o File transfers (PC to/from FAT16/32) - already done by mpark
o Xmodem or Y or Z - OBC, Mike Cook, JamesL, Dracula ?
o Ed - already done by mpark
o Preditor - CassLan ?
o Others - ?
e Languages
o Compiler spin/pasm - already done by mpark
o PropBasic - Bean ?
o Catalina - Ross ?
o FemtoBasic - Mike Green, OBC ?
o Forth ?
o Others ?
e Miscellaneous
o ZiCog & CPM - heater, cluso & dracula
o Sound - Ariba, etc ?

o

O

o

o

O

page 363 /405

http://www.sphinxcompiler.com/
http://forums.parallax.com/showthread.php?114023

Propeller
(Hss)

o Games - baggers, etc ?
e Missing items...
o Editor being useable over a serial connection

Proposed Hub Memory Layout v0.010 1Feb2010 by Cluso99

page 364 / 405

Propeller
(Hss)

Spin Byte Code

Spin Byte code was long undocumented. However they have been reverse engineered by Cliffe L. Biffle
and Robert Vandiver ("asterick"). The meaning of the operand types can be deduced from the source. The
names of the byte codes is unofficial. Even though the source code of the SPIN interpreter is released,
there is no official list of opcode names whatsoever.

Opcode structure

Opcodes are divided into two main categories: LOWER and UPPER opcodes. Opcodes $00 to $3F are
LOWER opcodes and $40 to $FF are UPPER opcodes. That is, if two highest bits of an opcode are zero,
the opcode is a LOWER opcode. Otherwise it is an UPPER opcode.

LOWER opcodes are decoded in the main loop with a jump table. UPPER opcodes are handled in a
separate subroutine.

Structure of LOWER opcodes

Following is the structure of opcodes, based on the source code of SPIN interpreter. The names of the

fields are not official.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

0 0 L L B B C NZ

The L and B fields tell to which subroutine (of 16 different) the SPIN interpreter jumps to.

L: LONG. These bits mean from what long the jump address is read. (The jump table is in 4 longs, each
long has four one-byte pointers). For UPPER instructions

B: BYTE. Which byte of the long is used as a jump destination?

C: CARRY. Value of the C flag is set to the value of this bit.

NZ: NONZERO. Value of the Z flag is set to the negative value of this bit.

Structure of UPPER opcodes

UPPER opcodes are divided into 3 classes: variable ops, memory ops and math ops. Math ops handle
mathematical operations and always operate on the stack. Memory ops (memops) operate on memory,
addressed by an operand in the stack. Variable ops (varops) also operate on memory, but an index is
embedded in the instruction, it is not read from the stack. They are used to save memory as use of
memory op would take an extra long.

For variable ops bit 7 is clear and bit 6 is set, ie. opcodes from $40 to $7F are variable ops. For memory
ops, bit 7 is set, but either bit 6 or 5 is clear. So opcodes from $80 to $DF are memory ops. For math ops,
bits 7 to 5 are set. Therefore opcodes from $EO to $FF are math ops.

page 365 / 405

Propeller
(Hss)

Struture of Variable ops

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 SIV X X X O O

S/V-field: Operate on VAR or STACK? Zero means that the instruction operates on VAR region, one
means it operates on local stack (function local variables).

X-field: Offset. These three bits tell which LONG to access. The long offset is added to stack pointer or
VAR base pointer.

O-field: Operation field. What to do with the memory location?

00: Read (Push result in the stack)

01: Write (Pop value from the stack)

10: Assignment (effect). In this mode, a second opcode (different from the normal opcodes), called an
assignment operator, is executed and its result is stored in the target. These opcodes can be math
operators, or for example random number operators, sign-extend operators or decrement/increment
operators.

11: Push the address of destination into stack.

Structure of Memory ops

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 S S I B B O O

S-field: Size of address operand. 00: Byte; 01: Word; 10: Long; 11: Illegal (would be a math op). If the
I-field is set to 1, the index value is shifted left by S bits.

I-field: Index field. If 1, the target register is determined by adding an index popped from stack to a base
address determined by the B-field. If 0, an absolute address is popped from the stack.

B-field: Base mode. If I-bit is 1, this indicates what base address the offset is added to. 00: Base is popped
from stack. 01: Base is the object base address 10: VAR base. 11: Stack base.

O-field: See Structure of Variable ops.

Structure of Math ops
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
1 1 1 X X X X X

X-field: The 5-bit X-field determines the operation to be executed.

page 366 / 405

Propeller
(Hss)

Spin Byte Code Instruction List

The following table is extracted from asterick's GEAR source code, and gives a list of the byte codes.

Byte Code Operand Type Opcode class
$00 FRAME_CALL_RETUR OP_NONE LOWER
N
$01 FRAME_CALL_NORET OP_NONE LOWER
URN
$02 FRAME_CALL_ABORT OP_NONE LOWER
$03 FRAME_CALL_TRASH OP_NONE LOWER
ABORT
$04 BRANCH OP_SIGNED_OFFSET LOWER
$05 CALL OP_BYTE_LITERAL LOWER
$06 OBJCALL OP_OBJ_CALL_PAIR LOWER
$07 OBJCALL_INDEXED OP_OBJ_CALL_PAIR LOWER
$08 LOOP_START OP_SIGNED_OFFSET LOWER
$09 LOOP_CONTINUE OP_SIGNED_OFFSET LOWER
$0a JUMP_IF_FALSE OP_SIGNED_OFFSET LOWER
$0b JUMP_IF_TRUE OP_SIGNED_OFFSET LOWER
$0c JUMP_FROM_STACK OP_NONE LOWER
$0d COMPARE_CASE OP_SIGNED_OFFSET LOWER
$0e COMPARE_CASE_RANOP_SIGNED_OFFSET LOWER
GE
$0f LOOK_ABORT OP_NONE LOWER
$10 LOOKUP_COMPARE OP_NONE LOWER
$11 LOOKDOWN_COMPAROP_NONE LOWER
E

page 367 / 405

http://propeller.wikispaces.com//GEAR

Propeller
(Hss)

$12

$13

$14

$15

$16

$17

$18

$19

$la

$1b

$Slc

$1d

$le

$1f

$20

$21

$22

$23

$24

$25

$26

$27

LOOKUPRANGE_COM OP_NONE

PARE

LOOKDOWNRANGE_COP_NONE

OMPARE

QUIT

OP_NONE

MARK_INTERPRETED OP_NONE

STRSIZE
STRCOMP
BYTEFILL
WORDFILL
LONGFILL
WAITPEQ
BYTEMOVE
WORDMOVE
LONGMOVE
WAITPNE
CLKSET
COGSTOP
LOCKRET

WAITCNT

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

READ_INDEXED_SPR OP_NONE

WRITE_INDEXED_SPR OP_NONE

EFFECT_INDEXED_SP OP_EFFECT

R

WAITVID

OP_NONE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

page 368 / 405

Propeller
(Hss)

$28

$29

$2a

$2b

$2¢

$2d

$2e

$2f

$30

$31

$32

$33

$34

$35

$36

$37

$38

$39

$3a

$3b

$3c

$3d

COGINIT_RETURNS

LOCKNEW_RETURNS

LOCKSET_RETURNS

LOCKCLR_RETURNS

COGINIT

LOCKNEW

LOCKSET

LOCKCLR

ABORT

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

ABORT_WITH_RETUR OP_NONE

N

RETURN

POP_RETURN

PUSH_NEG1

PUSH_O

PUSH_1

PUSH_PACKED_LIT

PUSH_BYTE_LIT

PUSH_WORD_LIT

PUSH_MID_LIT

PUSH_LONG_LIT

UNKNOWN OP $3C

INDEXED_MEM_OP

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

LOWER

OP_PACKED_LITERAL LOWER

OP_BYTE_LITERAL

LOWER

OP_WORD_LITERAL, LOWER

OP_NEAR_LONG_LITE LOWER

RAL,

OP_LONG_LITERAL, LOWER

OP_NONE

LOWER

OP_MEMORY_OPCOD LOWER

E,

page 369 / 405

Propeller
(Hss)

$3e

$3f

$40

$41

$42

$43

$44

$45

$46

$47

$48

$49

$4a

$4b

$4c

$4d

INDEXED_RANGE_ME OP_MEMORY_OPCOD LOWER

M_OP E

MEMORY_OP
E

PUSH_VARMEM_LON OP_NONE
G_0

POP_VARMEM_LONG_OP_NONE
0

EFFECT_VARMEM_LO OP_EFFECT
NG_0

REFERENCE_VARME OP_NONE
M_LONG_O

PUSH_VARMEM_LON OP_NONE
G_1

POP_VARMEM_LONG_OP_NONE
1

EFFECT_VARMEM_LO OP_EFFECT
NG_1

REFERENCE_VARME OP_NONE
M_LONG_1

PUSH_VARMEM_LON OP_NONE
G2

POP_VARMEM_LONG_OP_NONE
2

EFFECT_VARMEM_LO OP_EFFECT
NG_2

REFERENCE_VARME OP_NONE
M_LONG_2

PUSH_VARMEM_LON OP_NONE
G_3

POP_VARMEM_LONG_OP_NONE

OP_MEMORY_OPCOD LOWER

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

page 370/ 405

Propeller
(Hss)

$4e

$4f

$50

$51

$52

$53

$54

$55

$56

$57

$58

$59

$5a

$5b

$5¢

EFFECT_VARMEM_LO OP_EFFECT
NG_3

REFERENCE_VARME OP_NONE
M_LONG_3

PUSH_VARMEM_LON OP_NONE
G_4

POP_VARMEM_LONG_OP_NONE
4

EFFECT_VARMEM_LO OP_EFFECT
NG_4

REFERENCE_VARME OP_NONE
M_LONG_4

PUSH_VARMEM_LON OP_NONE
G_5

POP_VARMEM_LONG_OP_NONE
5

EFFECT_VARMEM_LO OP_EFFECT
NG_5

REFERENCE_VARME OP_NONE
M_LONG_5

PUSH_VARMEM_LON OP_NONE
G_6

POP_VARMEM_LONG_OP_NONE
6

EFFECT_VARMEM_LO OP_EFFECT
NG_6

REFERENCE_VARME OP_NONE
M_LONG_6

PUSH_VARMEM_LON OP_NONE
G_7

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

page 371 /405

Propeller
(Hss)

$5d

$5e

$5f

$60

$61

$62

$63

$64

$65

$66

$67

$68

$69

$6a

$6b

$6¢

POP_VARMEM_LONG_OP_NONE
7

EFFECT_VARMEM_LO OP_EFFECT
NG_7

REFERENCE_VARME OP_NONE
M_LONG_7

PUSH_LOCALMEM_LOOP_NONE
NG_0

POP_LOCALMEM_LONOP_NONE
G_0

EFFECT_LOCALMEM_ OP_EFFECT
LONG_0

REFERENCE_LOCALM OP_NONE
EM_LONG_O

PUSH_LOCALMEM_LOOP_NONE
NG_1

POP_LOCALMEM_LONOP_NONE
G_1

EFFECT_LOCALMEM_ OP_EFFECT
LONG_1

REFERENCE_LOCALM OP_NONE
EM_LONG_1

PUSH_LOCALMEM_LOOP_NONE
NG_2

POP_LOCALMEM_LONOP_NONE
G2

EFFECT_LOCALMEM_ OP_EFFECT
LONG_2

REFERENCE_LOCALM OP_NONE
EM_LONG_2

PUSH_LOCALMEM_LOOP_NONE

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

page 372 / 405

Propeller
(Hss)

$6d

$6e

$of

$70

$71

$72

$73

$74

$75

$76

$77

$78

$79

$7a

$7b

NG_3

POP_LOCALMEM_LONOP_NONE
G_3

EFFECT_LOCALMEM_ OP_EFFECT
LONG_3

REFERENCE_LOCALM OP_NONE
EM_LONG_3

PUSH_LOCALMEM_LOOP_NONE
NG_4

POP_LOCALMEM_LONOP_NONE
G_4

EFFECT_LOCALMEM_ OP_EFFECT
LONG_4

REFERENCE_LOCALM OP_NONE
EM_LONG_4

PUSH_LOCALMEM_LOOP_NONE
NG_5

POP_LOCALMEM_LONOP_NONE
G_5

EFFECT_LOCALMEM_ OP_EFFECT
LONG_5

REFERENCE_LOCALM OP_NONE
EM_LONG_5

PUSH_LOCALMEM_LOOP_NONE
NG_6

POP_LOCALMEM_LONOP_NONE
G_6

EFFECT_LOCALMEM_ OP_EFFECT
LONG_6

REFERENCE_LOCALM OP_NONE
EM_LONG_6

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

VAROP

page 373 /405

Propeller
(Hss)

$7c PUSH_LOCALMEM_LOOP_NONE VAROP
NG_7

$7d POP_LOCALMEM_LONOP_NONE VAROP
G_7

$7e EFFECT_LOCALMEM_ OP_EFFECT VAROP
LONG_7

$7f REFERENCE_LOCALM OP_NONE VAROP
EM_LONG_7

$80 PUSH_MAINMEM_BYTOP_NONE MEMOP
E

$81 POP_MAINMEM_BYTE OP_NONE MEMOP

$82 EFFECT_MAINMEM_B OP_EFFECT MEMOP
YTE

$83 REFERENCE_MAINME OP_NONE MEMOP
M_BYTE

$84 PUSH_OBJECTMEM_B OP_UNSIGNED_OFFSE MEMOP
YTE T

$85 POP_OBJECTMEM_BY OP_UNSIGNED_OFFSE MEMOP
TE T

$86 EFFECT_OBJECTMEM OP_UNSIGNED_EFFEC MEMOP
_BYTE TED_OFFSET

$87 REFERENCE_OBJECT OP_UNSIGNED_OFFSE MEMOP
MEM_BYTE T

$88 PUSH_VARIABLEMEM OP_UNSIGNED_OFFSE MEMOP
_BYTE T

$89 POP_VARIABLEMEM_ OP_UNSIGNED_OFFSE MEMOP
BYTE T

$8a EFFECT_VARIABLEM OP_UNSIGNED_EFFEC MEMOP
EM_BYTE TED_OFFSET

$8b REFERENCE_VARIAB OP_UNSIGNED_OFFSE MEMOP
LEMEM_BYTE T

page 374 / 405

Propeller
(Hss)

$8c PUSH_LOCALMEM_B OP_UNSIGNED_OFFSE MEMOP
YTE T

$8d POP_LOCALMEM_BYTOP_UNSIGNED_OFFSE MEMOP
E T

$8e EFFECT_LOCALMEM_ OP_UNSIGNED_EFFEC MEMOP
BYTE TED_OFFSET,

$8f REFERENCE_LOCALM OP_UNSIGNED_OFFSE MEMOP
EM_BYTE T

$90 PUSH_INDEXED_MAI OP_NONE MEMOP
NMEM_BYTE

$91 POP_INDEXED_MAIN OP_NONE MEMOP
MEM_BYTE

$92 EFFECT_INDEXED_M OP_EFFECT MEMOP

AINMEM_BYTE

$93 REFERENCE_INDEXE OP_NONE MEMOP
D_MAINMEM_BYTE

$94 PUSH_INDEXED_OBJE OP_UNSIGNED_OFFSE MEMOP
CTMEM_BYTE T

$95 POP_INDEXED_OBJEC OP_UNSIGNED_OFFSE MEMOP
TMEM_BYTE T

$96 EFFECT_INDEXED_OB OP_UNSIGNED_EFFEC MEMOP
JECTMEM_BYTE TED_OFFSET,

$97 REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP

D_OBJECTMEM_BYTET

$98 PUSH_INDEXED_VARI OP_UNSIGNED_OFFSE MEMOP
ABLEMEM_BYTE T

$99 POP_INDEXED_VARIA OP_UNSIGNED_OFFSE MEMOP
BLEMEM_BYTE T
$9a EFFECT_INDEXED_VA OP_UNSIGNED_EFFEC MEMOP

RIABLEMEM_BYTE TED_OFFSET,

$9b REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP

page 375 /405

Propeller
(Hss)

D_VARIABLEMEM_BYT

TE

$9¢ PUSH_INDEXED_LOC OP_UNSIGNED_OFFSE MEMOP
ALMEM_BYTE T

$9d POP_INDEXED_LOCALOP_UNSIGNED_OFFSE MEMOP
MEM_BYTE T

$9e EFFECT_INDEXED_LO OP_UNSIGNED_EFFEC MEMOP
CALMEM_BYTE TED_OFFSET

$of REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP

D_LOCALMEM_BYTE T

$a0 PUSH_MAINMEM_WO OP_NONE MEMOP
RD

$al POP_MAINMEM_WOR OP_NONE MEMOP
D

$a2 EFFECT_MAINMEM_WOP_EFFECT MEMOP
ORD

$a3 REFERENCE_MAINME OP_NONE MEMOP
M_WORD

$ad PUSH_OBJECTMEM_W OP_UNSIGNED_OFFSE MEMOP
ORD T

$a5 POP_OBJECTMEM_WOOP_UNSIGNED_OFFSE MEMOP
RD T

$a6 EFFECT_OBJECTMEM OP_UNSIGNED_EFFEC MEMOP
_WORD TED_OFFSET

$a7 REFERENCE_OBJECT OP_UNSIGNED_OFFSE MEMOP
MEM_WORD T

$a8 PUSH_VARIABLEMEM OP_UNSIGNED_OFFSE MEMOP
_WORD T

$a9 POP_VARIABLEMEM_ OP_UNSIGNED_OFFSE MEMOP
WORD T

$aa EFFECT_VARIABLEM OP_UNSIGNED_EFFEC MEMOP

page 376 / 405

Propeller
(Hss)

EM_WORD TED_OFFSET

$ab REFERENCE_VARIAB OP_UNSIGNED_OFFSE MEMOP
LEMEM_WORD T

$ac PUSH_LOCALMEM_W OP_UNSIGNED_OFFSE MEMOP
ORD T

$ad POP_LOCALMEM_WO OP_UNSIGNED_OFFSE MEMOP
RD T

$ae EFFECT_LOCALMEM_ OP_UNSIGNED_EFFEC MEMOP
WORD TED_OFFSET

$af REFERENCE_LOCALM OP_UNSIGNED_OFFSE MEMOP
EM_WORD T

$b0 PUSH_INDEXED_MAI OP_NONE MEMOP
NMEM_WORD

$bl POP_INDEXED_MAIN OP_NONE MEMOP
MEM_WORD

$b2 EFFECT_INDEXED_M OP_EFFECT MEMOP

AINMEM_WORD

$b3 REFERENCE_INDEXE OP_NONE MEMOP
D_MAINMEM_WORD

$b4 PUSH_INDEXED_OBJE OP_UNSIGNED_OFFSE MEMOP
CTMEM_WORD T

$b5 POP_INDEXED_OBJEC OP_UNSIGNED_OFFSE MEMOP
TMEM_WORD T

$b6 EFFECT_INDEXED_OB OP_UNSIGNED_EFFEC MEMOP

JECTMEM_WORD TED_OFFSET

$b7 REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP
D_OBJECTMEM_WOR T
D

$b8 PUSH_INDEXED_VARI OP_UNSIGNED_OFFSE MEMOP

ABLEMEM_WORD T

$b9 POP_INDEXED_VARIA OP_UNSIGNED_OFFSE MEMOP

page 377 / 405

Propeller
(Hss)

BLEMEM_WORD T

$ba EFFECT_INDEXED_VA OP_UNSIGNED_EFFEC MEMOP
RIABLEMEM_WORD TED_OFFSET

$bb REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP
D_VARIABLEMEM W T
ORD

$bc PUSH_INDEXED_LOC OP_UNSIGNED_OFFSE MEMOP
ALMEM_WORD T

$bd POP_INDEXED_LOCALOP_UNSIGNED_OFFSE MEMOP
MEM_WORD T

$be EFFECT_INDEXED_LO OP_UNSIGNED_EFFEC MEMOP
CALMEM_WORD TED_OFFSET

$bf REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP

D_LOCALMEM_WORDT

$c0 PUSH_MAINMEM_LO OP_NONE MEMOP
NG

$cl POP_MAINMEM_LON OP_NONE MEMOP
G

$c2 EFFECT_MAINMEM_L OP_EFFECT MEMOP
ONG

$c3 REFERENCE_MAINME OP_NONE MEMOP
M_LONG

$c4 PUSH_OBJECTMEM_L OP_UNSIGNED_OFFSE MEMOP
ONG T

$c5 POP_OBJECTMEM_LO OP_UNSIGNED_OFFSE MEMOP
NG T

$c6 EFFECT_OBJECTMEM OP_UNSIGNED_EFFEC MEMOP
_LONG TED_OFFSET

$c7 REFERENCE_OBJECT OP_UNSIGNED_OFFSE MEMOP
MEM_LONG T

$c8 PUSH_VARIABLEMEM OP_UNSIGNED_OFFSE MEMOP

page 378 / 405

Propeller
(Hss)

_LONG T

$c9 POP_VARIABLEMEM_ OP_UNSIGNED_OFFSE MEMOP
LONG T

$ca EFFECT_VARIABLEM OP_UNSIGNED_EFFEC MEMOP
EM_LONG TED_OFFSET

$cb REFERENCE_VARIAB OP_UNSIGNED_OFFSE MEMOP
LEMEM_LONG T

$cc PUSH_LOCALMEM_LOOP_UNSIGNED_OFFSE MEMOP
NG T

$cd POP_LOCALMEM_LONOP_UNSIGNED_OFFSE MEMOP
G T

$ce EFFECT_LOCALMEM_ OP_UNSIGNED_EFFEC MEMOP
LONG TED_OFFSET

$cf REFERENCE_LOCALM OP_UNSIGNED_OFFSE MEMOP
EM_LONG T

$d0 PUSH_INDEXED_MAI OP_NONE MEMOP
NMEM_LONG

$d1 POP_INDEXED_MAIN OP_NONE MEMOP
MEM_LONG

$d2 EFFECT_INDEXED_M OP_EFFECT MEMOP

AINMEM_LONG

$d3 REFERENCE_INDEXE OP_NONE MEMOP
D_MAINMEM_LONG

$d4 PUSH_INDEXED_OBJE OP_UNSIGNED_OFFSE MEMOP
CTMEM_LONG T

$d5 POP_INDEXED_OBJEC OP_UNSIGNED_OFFSE MEMOP
TMEM_LONG T

$d6 EFFECT_INDEXED_OB OP_UNSIGNED_EFFEC MEMOP

JECTMEM_LONG TED_OFFSET

$d7 REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP
D_OBJECTMEM_LONGT

page 379 / 405

Propeller
(Hss)

$d8

$d9

$da

$db

$dc

$dd

$de

$df

$e0

$el

$e2

$e3

$ed

$e5

$e6

$e7

$e8

$e9

$ea

PUSH_INDEXED_VARI OP_UNSIGNED_OFFSE MEMOP

ABLEMEM_LONG

T

POP_INDEXED_VARIA OP_UNSIGNED_OFFSE MEMOP

BLEMEM_LONG

T

EFFECT_INDEXED_VA OP_UNSIGNED_EFFEC MEMOP

RIABLEMEM_LONG TED_OFFSET

REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP
D_VARIABLEMEM_LOT

NG

PUSH_INDEXED_LOC OP_UNSIGNED_OFFSE MEMOP

ALMEM_LONG

T

POP_INDEXED_LOCALOP_UNSIGNED_OFFSE MEMOP

MEM_LONG

T

EFFECT_INDEXED_LO OP_UNSIGNED_EFFEC MEMOP

CALMEM_LONG

TED_OFFSET

REFERENCE_INDEXE OP_UNSIGNED_OFFSE MEMOP
D_LOCALMEM_LONG T

ROTATE_RIGHT

ROTATE_LEFT

SHIFT_RIGHT

SHIFT_LEFT

LIMIT_MIN

LIMIT_MAX

NEGATE

COMPLEMENT

BIT_AND

ABSOLUTE_VALUE

BIT_OR

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

page 380 /405

Propeller
(Hss)

$eb

$ec

$ed

$ee

Sef

$f0

$f1

$£2

$f3

$f4

$£5

$f6

$f7

$£8

$f9

$fa

$fb

$fc

$fd

$Sfe

$ff

BIT_XOR

ADD

SUBTRACT

ARITH_SHIFT_RIGHT

BIT_REVERSE
LOGICAL_AND
ENCODE
LOGICAL_OR
DECODE
MULTIPLY
MULTIPLY_HI
DIVIDE
MODULO
SQUARE_ROOT
LESS

GREATER
NOT_EQUAL
EQUAL
LESS_EQUAL
GREATER_EQUAL

LOGICAL_NOT

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

OP_NONE

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

MATHOP

page 381 /405

Propeller
(Hss)

The SpinStudio Development System

The SpinStudio theory:

The SpinStudio system is the buffet style development system. Start with a Main Board as your plate, and
fill it full of good stuff from the robust selection of peripheral modules. Configure your board your way!
Decide for yourself which devices you want to interface with your Propeller.

The system is obsolete-proof! As new ideas are developed, a Peripheral module can be easily created and
plugged into your existing Main Board. Also, when the Propeller II is released, keep all your existing
Peripheral modules and just upgrade your Main Board. Got a great idea that you want to make into a
peripheral module yourself? There's the SpinStudio ProtoCard that you can solder together your own
module!

SpinStudio Main Boards and peripheral boards are sold as kits, and assembled by the customer before
use. Some basic soldering skills and tools are necessary are required. All components are through-hole
and spaced for easy soldering.

More About the SpinStudio MainBoard:
The Main Board has the following features.

® On board voltage regulation both 3.3V and 5V to feed both the Propeller and all 4 Peripheral
sockets.
e Socket for 40 pin DIP version of the Propeller
e Socket for a 8 pin DIP serial EEPROM
¢ 5 mhz Crystal
¢ 4 pin PropPlug connector
e Power Switch
e Reset switch
¢ 4 connectors for Peripheral Modules each containing the following signals:
o 3.3V
o 5V
o VSS
o 12c¢ Bus (SDA and SCL)
o Access to 8 Propeller 10 Pins

New ! The SpinStudio Main Board now includes a free Propeller and EEPROM. The EEPROM
will be preloaded with Jeff Ledger's PropDOS.

The following parts are required for use and must be purchased separately
e a 7-9 volt wall transformer - with a 2.1mm center positive barrel connector

e PropPlug for Programming
e Various soldering and hand tools needed for assembly

page 382 /405

Propeller
(Hss)

Upon request, an EEPROM loaded with the latest version of Jeff Ledger's PropDOS will be included with
any SpinStudio Main Boards purchased. PropDOS will allow you to load and run compiled Binary files
from an SD card with the optional SD Card adapter. This will allow you to get up and running with
SpinStudio without the purchase of a PropPlug for programming.

Peripheral Modules that are available now:

There are currently 9 different Peripheral Modules available -

Mouse/Keyboard

e VGA

Composite Video / Audio
Parallel LCD

PropNIC ethernet adapter
XBee adapter

SD card adapter

Input / Output / Servo
Blank ProtoCard

More to come!

Stand-alone SpinStudio Modules?

Modifications to Parallax's ProtoBoard can be made so that SpinStudio modules will plug right in! The
procedure to convert your Proto Board into a SpinStudio clone is detailed in Jeff Ledger's Propeller
Cookbook, which you can access in the tutorial section at uController TutorialsThis is the easy way to
add features to your Proto Board. Certain SpinStudio modules were designed to be plugged directly into a
solderless breadboard too! Any module that can plug into a solderless breadboard can also be interfaced
with any other available development board that you may already own, such as Parallax's Demo Board,
EasyProp, PropRPM, PropDongle and others. The following chart explains how Modules can be used.

Module Name Use with SpinStudio? Use with modified Proto Use with Solderless
Board? BreadBoard?

Mouse/Keyboard X X

VGA X X

Composite Video/Audio X X

Parallel LCD X X

PropNIC Ethernet adapter X X X
XBee Adapter X X

SD Card Adapter X X X

page 383 /405

http://ucontroller.com/indextutorials.html

Propeller

(Hss)
Input/Output/Servo X X
Blank ProtoCard X X

Where to Purchase SpinStudio systems or components?
SpinStudio can be purchased directly through the uController.com website. Also find useful Reference
material and Tutorials on the Tutorials page of the same site.

Or contact Brian Meade directly by any of the following means:

e Email to - Brian@uController.com
e Private message to parts-man73 on Ignite Automation's Forums
e Private message to parts-man73 on Parallax's Forums

page 384 /405

http://ucontroller.com/
http://ucontroller.com/indextutorials.html
mailto:Brian@uController.com
http://www.igniteautomation.com/forums/index.php
http://forums.parallax.com/forums/default.aspx?f=25

Propeller
(Hss)

Strings

Introduction

A string is just a sequence of characters, one after another, but first; what is a character ?

To humans, characters are simply shapes which we recognise and attribute meaning to singularly and
when making up a string or word. A computer or processor like the Propeller has no comprehension or
understanding of those shapes. In order to use characters each must be represented in a form which can be
used digitally. This was largely done through the American Standard Code for Information Interchange
(ASCII) which specified an 8-bit, byte, value which represents the characters we use. Providing everyone
agrees on what value a character has we can move characters (and strings) from the digital to our real
world and vice-versa. We can deal with characters as shapes, the Propeller can deal with byte values
representing those characters.

Digitally then, a string is just a sequence of ASCII codes which represent the values of each character, for
example the string "ABC" is represented by three consecutive bytes of hexadecimal value $41, $42 then
$43.

String Length

It is convenient to know how long a string is, to know where it ends and where another string (or
something else entirely) starts. There are two ways to deal with the length of strings; by prefixing the
string with a byte, word or long value which specifies how many bytes there are in the string, or by
ending the string with a unique value, much like ending a sentence with a period.

Both have their advantages and disadvantages. A length prefix requires the size of the entity representing
the length to be large enough to hold the length of the string or the length of string becomes limited (255
characters for a byte-sized length), but a larger sized entity is wasteful for smaller strings. A mechanism
to use variable sized entities depending upon length is possible but makes processing and dealing with
strings complicated.

The alternative of using a unique terminating value allows for any arbitrary length of string but the
characters of a string must be counted up to the terminating value to determine its length and the
terminating value cannot be contained within the string itself.

Strings and Spin

The Propeller Tool chooses to deal with strings in the second way, with a unique terminating value, and
this value is chosen to be zero. This is also the way in which the C programming language deals with
strings. The common term for such a string representation is "zero terminated string".

page 385 /405

Propeller
(Hss)

The Spin programming language provides three functions which can be used to deal with strings; String,
StrSize and StrComp. Any other string processing functions have to be implemented by the Spin
programmer themselves.

String

The String directive allocates a sequence of byte values and a zero valued terminator in hub memory and
returns a pointer to the first character of the string.

Our previous example, the string "ABC", when created using the String("ABC") function has the
following byte value sequence created within hub memory; $41, $42, $43 then $00.

String(..) ist not a function executed during runtime (thus called "directive"). It has an extended syntax in
that comma separated values can be used as parameters, concatenated at compile time. Obviously only
constants and "literals" can be used for this.

ptr := string("ABC")

is in each and every respect equivalent to

ptr := @_string99

DAT

_string99 LONG BYTE "ABC",0

StrSize

The StrSize function takes a pointer to a string in hub memory, counts how many characters there are up
to the zero value terminator and returns that, the size or length of a string.

With StrSize(String("ABC")) the value returned would be 3.

StrComp

The StrComp function takes two pointers each to two strings and compares each byte of the strings and
returns a true value (-1) if they are the same byte sequences and a false value (0) otherwise.

With StrComp(String("ABC"),String("ABC")) the value returned would be true, with

StrComp(String("ABC"),String("abc")) the value returned would be false. Note that every character has
its own unique value so upper and lowercase characters are not the same.

String Handling

page 386 / 405

Propeller
(Hss)

Propeller strings (created by the String function) are effectively fixed at compile time and unalterable,
read-only. They could be altered but doing so would likely cause incorrect operation of the program and
in some cases corruption of the entire program. Read-only strings are useful for displaying and sending
messages which do not need to change but strings which are changeable are useful in a number of cases.
Changeable strings can be created an manipulated under programmer control.

A string as discussed is simply a sequence of byte values terminated by a zero value. There is no reason
that such sequences cannot be created within byte arrays. Once this is done, those byte arrays can be
manipulated and used to perform complex string operations.

Setting a String

VAR
byte dst String[256]

PUB Mai n
SetString(@stString, String("ABC'))

PRI SetString(dstStrPtr, srcStrPtr)
repeat until (byte[dstStrPtr++ | := byte[srcStrPtr++]) ==
- Or -
PRI SetString(dstStrPtr, srcStrPtr)
Byt eMove(dst StrPtr, srcStrPtr, StrSize(srcStrPtr)+1)
"+1 for zero term nation

Concatenating Two Strings

VAR
byte dst String[256]
byte srcStringl[256]
byte srcString2[256]

PUB Mai n
SetString(@rcStringl, String("ABC'))
SetString(@rcString2, String("DEF"))
AddString(@stSring, @rcStringl, @rcString2)

PRI AddString(dstStrPtr, srcStrPtrl, srcStrPtr2)

repeat until (byte[dstStrPtr++] := byte[srcStrPtrl++]) == 0
dstStrPtr--
repeat until (byte[dstStrPtr++] := byte[srcStrPtr2++]) == 0

- Or -
PRI AddString(dstStrPtr, srcStrPtrl, srcStrPtr2) | len
len := StrSize(srcStrPtrl)

page 387 /405

Propeller
(Hss)

Byt eMbve(dst StrPtr, srcStrPtrl1, |en)
Byt eMove(dstStrPtr += len, srcStrPtr2, StrSize(srcStrbtr2)+1)
"+1 for zero term nation

Appending a Character to a String

VAR
byte dst String[256]

PUB Main
SetString(@stString, String("ABC'))
AppendChar (@lst String2, "D')

PRI AppendChar(dstStrPtr, char)

repeat until (byte[dstStrPtr++] := byte[srcStrPtrl++]) ==
byte[dstStrPtr-1] := char
byte[dstStrPtr] :=0

- Or -

PRI AppendChar(dstStrPtr, char)
dstStrPtr += StrSize(dstStrPtr)
byte[dstStrPtr++] := char
byte[dstStrPtr] :=0

Making a String Uppercase

Making a String Lowercase

Getting the Leftmost Characters of a String
Getting the Rightmost Characters of a String
Getting a Sub-String of a String

Finding an Occurrence of a Sub-String Within a String

Other Character and String Representations

A character doesn't have to be a single 8-bit byte. It can be larger (16-bit is often used for unicode) and
smaller, either padded to make it a multiple of a common number of bits, or placed bit-contiguous within
its storage area. Each character could be of a differing size as it is with morse code where the number of
dots and dashes vary according to letter.

A string does not necessarily need a zero terminator; that can be any value which is otherwise unused or
defined for the purpose, or a string may begin with a character which is also used to terminate the string,
the two not being considered a part of the string itself. The terminator can also be left out entirely where
the length of a string is known in advance or it can be indicated by a length which is prefixed before the

page 388 /405

Propeller
(Hss)

string itself.

Strings do not have to be contiguous although they usually are. Non-contiguous strings will require
complicated mechanisms to determine where the parts of the the string are which makes processing them
difficult.

page 389 /405

Propeller
(Hss)

Working sub- titles: (will publish existence of each in forum when more content for each is ready)
- C multi-tasking - go beyond 8 cogs without thread headaches
- C programs larger than 32K with an hx512

- fishing without a license? ignore your limits!
aka: use an SD card and allow 2gig memory for your C app

- putting events, exceptions and "interrupts" into a C application
... without giving up strict control of timing

- mufflers, meters, valves and jets - pipes on steroids (or sockets)
to couple your cogs

- persistent memory - transparent saving
of hub data back to an EEprom

- persistent memory II - restartable programs and
crash-only software

- persistent memory III - restartable pipes!
- grow your own OS in C, be your own boss!

- C objects that can be "run" by any cog in a storm
... delayed binding and "thunks"

- what good is a bad pointer?

- how real estate issues relate to Prop connectivity
... and how DNS can help point the way to a solution

- the great YAML vs JSON vs serialize() debate...
... and how apps in C on a Prop can win either way

- access to memory in other cogs - even in other Props!
- distributed computing, content addressable cogs

- Subsumption architecture in C on a Prop or three

page 390/ 405

http://propeller.wikispaces.com//what+good+is+a+bad+pointer

Propeller
(Hss)

Obtaining a Cog Address from Spin

To obtain the cog address of a label in a DAT section from spin the method used is -
cogAddress := @ coglabel >> 2 - @ cogBaselLabel >> 2
This will return the address of the cog label ($000-$1F0).

For example, the cog address of 'CogLabel' is $003 in the following example

DAT
org $000
CogBaselLabel nop ' $000
nop ' $001
nop ' $002
CogLabel nop ' $003

This is nice to know, but will there be any use?

Well, an advanced programming style consists of generating your COG machine program "on the fly", or
at least thoroughly "parametrize" it using SPIN.

This has some advantages:

e The COG code can become smaller, as it can be computed according to the specificsituation and
need not contain all unused variations

e This might be the only way to stay within the COG's 2k limit

e The COG code can become simpler when you (dynamically) arrange all its parameters in a
cunning way ("pushing"), rather than let it find everything out itself ("pulling")

Note that the formula above depends on ORG having been set to $000, otherwise this offset has to be
added. Note also that using an ORG 0 is VERY advanced :-)

page 391 /405

Propeller
(Hss)

A Thumb-Style VM Implementation for the Propeller Chip

Thumb VM Implementation - Aichip Industries Version - 0.01

All Thumb VM opcodes are 16-bit sized, an 8-bit opcode and an 8-bit operand, or an 8-bit opcode and
24-bit operand for branches and branches to subroutine. The Thumb VM can support up to 32MB of code
space.

The Thumb VM provides 256 long registers ($00-$FF) for Thumb VM program use. These are mapped to
Cog registers $100-$1FF giving 240 usable registers plus access to the 16 special purpose and hardware
registers of the cog. Registers can be used for run-time data or be pre-loaded with long constants.

Most opcodes take the form '0oooooo0o0 rrrrrrrr' where 'o' is an opcode, an 8-bit index into a Cog lookup
table ($0xx-$0FF), which specifies the native Propeller opcode to execute, and 'r' is an 8-bit register or
immediate value to use with that opcode.

The opcode lookup table contains native Propeller opcodes to use but stored in a modified way to indicate
how the 'r' should be used. The lower 8 bits of the source register field are used as the address of a handler
within the Thumb VM interpreter to create the correct native opcode to use. Note that this means there
must be precise knowledge of the VM layout by the Assembler. It is envisaged that an Assembler would
generate a .binary or .eeprom which contains the Spin code to launch the VM, the VM itself plus the VM
object code and VM opcode lookup table and register initialisation sequences.

There are a number of types of opcode processing which can be applied -

Source Register

The bottom 8-bits of the native opcode source register are replaced by the 8-bit 't' value. This facilitates
normal 'mov' from source register and immediate loads.

This is used for implementing "mov d,r" and "mov d,#r" VM instructions, where 'd" is defined within the
Native Opcode lookup.

Source Indirect

As per Source Register but the 't' value specifies the register whose contents are used as the effective
address of the register used in the native instruction. This indirection avoids the need for self-modifying
code.

This is used for implementing "mov d,[r]" VM instructions where 'd" is defined within the Native Opcode
lookup.

Destination Register

The bottom 8-bits of the native opcode destination register are moved to the bottom 8-bits of the native
source register and the bottom 8-bits of the native opcode destination register are replaced by the 8-bit 'r'
value. This facilitates normal 'mov' into destination registers.

This is used for implementing "mov r,s" and "mov r,#k" VM instructions where 's' or 'k' are defined
within the Native Opcode lookup.

page 392 /405

Propeller
(Hss)

Destination Indirect

As per Destination Register but the 't' value specifies the register whose contents are used as the effective
address of the register used in the native instruction. This indirection avoids the need for self-modifying
code.

This is used for implementing "mov [r],s" and "mov [r],#k" VM instructions where 's' or 'k’ are defined
within the Native Opcode lookup.

In addition, the opcode types include types for branch (BRA), branch to subroutine (BSR), and return
from subroutine (RTS). The actual opcode held in the native opcode lookup table is irrelevant save for the
type indicator.

The BRA and BSR VM opcodes have the format '00000000 aaaaaaaa aaaaaaaa aaaaaaaa' with the 24-bit
address 'a" added to the current pc as a two's complement number. This makes VM code position
independent.

The RTS VM opcode has the format 'ooooooo rrrrrrrr’. When the return address is popped the 't' value is
added to it. This allows execution to continue immediately after the BSR or some instruction later. This is
convenient for BSR calls which need to behave differently depending upon result -

bsr #TestNumber

bra #LessThanZero
bra #Zero

bra #GreaterThanZero

An Indirect Branch 'bra r' is supported with opcode ‘00000000 rrrrrrrr'. This will cause a branch to the pc
which is held within the register 't'.

The Cog contains a 'hardware stack' to save having to modify hub memory. This is used for subroutine
calls but it is possible that VM opcodes can be mapped to native opcodes to manipulate the stack.

Because BRA, BSR and RTS do not actually use any native opcode, a mechanism has to be found to
provide conditional execution. This is achieved by creating a VM opcode which maps to the inverse
condition to allow execution and adds 2 or 4 to the PC to skip the following instruction. Such VM
opcodes will have the format 'oooooooo 00000010’ or 'oooooooo 00000100" and will be mapped to native
opcode lookup table type 'source register'. The looked-up native opcode will represent 'IF_X add pc,#r'

page 393 /405

Propeller
(Hss)

Just as it is possible to "Interface 5V signals to the Propeller" higher than 5V signals can be interfaced,
providing current limiting is enforced. This can be done using a single resistor.

This can be used to provide a minimal component count, low-cost serial interface for PC or other device
connection (for run-time communications, not for program downloading).

A +/-12V RS232 receive line can be connected through just a single resistor and a Propeller output pin
can usually drive an RS232 transmit line. This is the absolute minimum circuit and is not recommended.
The receive line should be pulled down to prevent the input pin from floating when the serial cable is
disconnected, negative input voltages can be blocked by a simple diode, a diode clamp will keep the input
pin within accepted voltage range and help protect the internal clamping diodes from any adverse effects,
the output pin can be protected by a current limiting resistor.

The author has used the following circuit with no apparent adverse effects for an extended period of time

--------------- | |-------------< Pout
| 330R
| 1N4148
- | ---|>]---> 3V3
TXto PC | O]<--- o |
RX fromPC| O|-------- | >|----- e I > Pin
oV | O]----. 1N4148 | 560K
ool | ap
| | | 10K
| | _|
ov _|_ _l_

The Propeller Chip is conservatively rated to withstand +/-500uA injection current and the 560K resistor
ensures that the injection current is considerably below that (+/-21uA at +/-12V).

The circuit can be reduced to just the 560K and 10K, hence the description as a "two resistor interface".
The interface is not RS232 specification compliant and may not be suitable for all circumstances. In

particular, the output from the Propeller Chip will be 0V/+3V3 which may be too low for some receiver
devices, however this has not been found to be the case with serial interfaces the author has tested.

Link : "Original thread"

page 394 / 405

http://forums.parallax.com/forums/default.aspx?f=25&m=124837
http://forums.parallax.com/forums/default.aspx?f=25&m=214812

Propeller
(Hss)

Using the Propeller as a USB Host

There is a work-in-progress implementation of a full-speed (12 Mb/s) USB Host now (as of March 2010)

e Source code (subversion repository)

o http://svn.navi.cx/misc/trunk/propeller/usb-host/
e Forum Discussion

o http://forums.parallax.com/forums/default.aspx 2f=25&p=1&m=440787
Forum Discussions

http://forums.parallax.com/showthread.php?p=760011

Useful Links

Cornell University

http://www.asahi-net.or.jp/~gxSk-iskw/robot/usbhost.html
http://www.mikrocontroller.net/topic/30029

page 395 /405

http://svn.navi.cx/misc/trunk/propeller/usb-host/
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=440787
http://forums.parallax.com/showthread.php?p=760011
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2007/blh36_cdl28_dct23/blh36_cdl28_dct23/index.html
http://www.asahi-net.or.jp/%7Eqx5k-iskw/robot/usbhost.html
http://www.mikrocontroller.net/topic/30029

Propeller
(Hss)

Using the Propeller as a USB Slave
BradC has written a bit-banged USB Slave interface for the Propeller.

This is a run-time, program controlled, interface separate to any USB interface used for downloading into
the Propeller and this does not replace nor substitute for a USB2SER or PropPlug.

The USB Slave interface allows the Propeller to connect to a PC host (Windows 98SE, XP etc, Linux
and others) using just a standard USB cable.

The Propeller interface is a standard USB socket plus three resistors and requires three Propeller 1/0O lines.
Two Propeller Cogs are required to support the USB interface.

When connected and operating, the Propeller will appear as a USB serial device and can be accessed from
the PC host through a Virtual Serial Port as if it were just another serial communications port.

BradC has also produced a USB Slave interface which allows the Propeller to emulate a USB keyboard.

More details, including the required Propeller software, Windows Drivers and necessary circuit
connection, can be found in the original thread here

USB Hardware Connection

NC--< Vusb

PO <>---| __ [----O---<> D
68R |
_ |

Pl <>--|__|----|----<> Dt
68R |
_ I

P2 >---|__ |----" .-->0V
1K5 | _

PO : Data Line Negative (In-Out)

P1 : Data Line Positive (In-Out)

P2 : USB Enable (Out from Propeller)

Propeller 1/0 pins can be reassigned as required, they do not need to be PO, P1 and P2.

Can be used with Type-A (flat rectangle) or Type-B (square) sockets.

page 396 / 405

http://forums.parallax.com/showthread.php?p=675656

Propeller
(Hss)

The circuit also appears to work correctly with a 1K2 for P2/D-

page 397 / 405

Propeller
(Hss)

Each cog has a video generator module that facilitates transmitting video image data at a constant rate.
There are two registers (VCFG and VSCL) and one instruction (WAITVID) which provide control and
access to the video generator. The timing signal for the Video Generator is provided by Counter A
running in a PLL mode (PLLA). The PLLB of the cog is used to generate the broadcast frequency;
whether this is generated depends on if PLLB is running and the values of VMode and VPins.

The Video Generator should be initialized by first starting Counter A, setting the Video Scale Register,
setting the Video Configuration Register, then finally providing data via the WAITVID instruction.
Failure to properly initialize the Video Generator by first starting PLLLA will cause the cog to indefinitely
hang when the WAITVID instruction is executed. DIRA must also be correctly set to permit output on the
configured pins. While all public registers in a cog are reset when a cog is initialised this doesn't apply to
the frame counter. Meaning its initial value depends on chip and cog used, in other words it's unknown.
Which also means that the initial WAITVID spends a maximum of 4K PLLA cycles before it reloads
VSCL (the first known value, VSCL is loaded when the frame counter reaches zero).

While the Video Generator was created to display video signals, its potential applications are much more
diverse. The Composite Video mode can be used to generate phase-shift keying communications of a
granularity of 16 or less and the VGA mode can be used to generate any bit pattern with a fully settable
and predictable rate.

VCFG - Video Configuration Register

The Video Configuration Register contains the configuration settings of the video generator and consists
of several sub-fields:

VCFG[30..29] VMode (video mode) field selects the mode (VGA or composite) and pins used for
composite mode

00 Video Generator Disabled, no output

01 VGA mode, 8 bit parallel output on VPins 7:0
10 broadcast on VPins 7:4; baseband on VPins 3:0
11 baseband on VPins 7:4; broadcast on VPins 3:0

VCFG[28] CMode (color mode) selects 0 = two-color mode (pixel data is 32 bits by 1 bit and only colors
0 or 1 are used) or 1 = four-color mode (pixel data is 16 bits by 2 bits, and colors O through 3 are used)
VCFG|[27] Chromal (broadcast color mode) 1 = enables or 0 = disables chroma (color) on the broadcast
signal.

VCFG[26] Chroma0 (baseband color mode) 1 = chroma (color) on VPin 0:2 / 4:6 or O = chroma (color)
on VPin3/7

VCFG[25..23] AuralSub selects COGID of FM audio output for broadcast output on VPins 3 /7
VCFG[11..9] VGroup selects group of 8 1/0 pins used for output (i.e. 3 = P24..P31)

VCFG(7..0] VPins output mask for signals

VSCL - Video Scale Register

page 398 / 405

Propeller
(Hss)

The Video Scale Register sets the rate at which video data is generated and has two sub-fields:

VSCL[19.12] PixelClocks the number of PLLA clocks before the next pixel is shifted out by the video
generator module. A value of O for this field is interpreted as 256.

VSCLJ0..11] FrameClocks the number of PLLA clocks that will elapse before the Video Generator Pixel
and Color registers and Frame and Pixel counters are reloaded. A value of O for this field is interpreted as
4096. It is recommended FrameClocks be an integer multiple of PixelClocks. Since the pixel data is either
16 bits by 2 bits, or 32 bits by 1 bit (meaning 16 pixels wide with 4 colors, or 32 pixels wide with 2
colors, respectively), the FrameClocks is typically 16 or 32 times that of the PixelClocks value.

WAITVID Command/Instruction

The WAITVID instruction is the delivery mechanism for data to the cog’s Video Generator hardware.
Since the Video Generator works independently from the cog itself, the two must synchronize each time
data is needed for the display device. The frequency at which this occurs is dictated by the frequency of
PLLA and the FrameClocks field in the Video Scale Register. The cog must have new data available
before the moment the Video Generator needs it. The cog uses WAITVID to wait for the right time and
then “hand off” this data to the Video Generator. The WAITVID instruction blocks until the Frame
counter expires. If the Frame counter expires before the WAITVID instruction blocks then the Video
Generator Pixel and Color registers will be loaded with the current contents of the Source and Destination
buses, leading to unpredictable output.

The WAITVID instruction passes two longs of data to the Video Generator which are loaded into the
Pixel and Color registers. The Colors parameter is a 32-bit value containing four 8-bit color values
(although only Color[15..8] and Color[7..0] are used in 2 color mode).

The Pixels parameter describes the pixel pattern to display. The Pixel data is shifted out least significant
bits (LSB) first. If CMode = 0 (two color mode), Pixels is a 32x1 bit pattern where each bit specifies
which of the two color patterns in the lower 16 bits of Colors should be output to the pins. If the
FrameClocks value is greater than 32 times PixelClocks value then the most significant bit is repeated
until FrameClocks PLLA cycles have occurred. If CMode = 1 (four color mode), Pixels is a 16x2 bit
pattern where each 2-bit pixel is an index into Colors on which data pattern should be presented to the
pins. If the FrameClocks value is greater than 16 times the PixelClocks value then the two most
significant bits are repeated until FrameClocks PLLA cycles have occurred.

VGA output

For VGA mode, each 8-bit color value is written to the pins specified by the VGroup and VPins field. On
the Propeller Demo Board VPin 0 is Horizontal Sync, VPin 1 is Vertical Sync, VPin 2:3 is Blue, VPin 4:5
is Green and VPin 6:7 for 64 color VGA output.

Composite output

For composite video each 8-bit color value is composed of 3 fields. Bits 0-2 are the luminance value of
the generated signal. Bit 3 is the modulation bit which dictates whether the chroma information will be
generated and bits 4-7 indicate the phase angle of the chroma value. When the modulation bit is set to 0,
the chroma information is ignored and only the luminance value is output to pins. When the modulation
bit is set to 1 and Chroma0/Chromal is 1 then the luminance value is modulated * 1 with a phase angle

page 399 / 405

Propeller
(Hss)

set by bits 4-7. In order to achieve the full resolution of the chroma value, PLLA should be set to 16 times
the modulation frequency (in composite video this is called the color-burst frequency).

Broadcast output
Normally, for baseband, the three video resistors form a 3-bit DAC that is 1V-peak under a 75-ohm load.
Outputs levels range from #0 to #7 (0 to 1V in ~125mv steps).

For broadcast, those baseband 0-to-7 levels are modulated at the broadcast frequency (CTRB's PLL) in
the following pattern:

0 -> 0,7 (bottom of sync = max AC amplitude)

1->1,7

2->1,6

3->2,6

4->25

5->35

6->34

7 -> 4.4 (top of white level = min AC amplitude)

So, this is away to get 8 AC levels from what would otherwise be an 8-level DC DAC.

For aural subcarrier, an extra resistor can be added after relative pins 0-2, on relative pin 3. In the VCFG
register, you can select which other COG's CTRA PLL output will be modulated along with the video to
provide the aural subcarrier. The Video Generator

XOR's the other COG's CTRA PLL with its own CTRB PLL and outputs that to the fourth pin.

For NTSC, this other-cog's PLL output must be a 100KHz-bandwidth 4.5MHz-center FM signal.

The key to getting good broadcast video is to select a FRQB value that has one's in a span of only 2-3
bits. This keeps the NCO jitter pattern high-frequency enough that the CTRB PLL can filter it out. For
example, if you're running the Propeller at 80MHz, you can use $0C00_000 (3/4 of 80 MHz) to generate
a very clean 60MHz, which is just below channel 3 in the US. Most TV receiver's PLLs will lock onto
this when you go to channel 3.

page 400 / 405

Propeller
(Hss)

What good is a bad pointer?
what defines bad ?

In the bad old days [of C], a bad pointer was one which did not point to
a valid addressable object. This could come from any of 3 things:

1. a dereference on a null pointer - often location 0 in memory had 'code’ in it and just as often that
code was a valid instruction which when 'de-referenced' yielded either a /good/ (but unexpected)
valid memory address or an invalid one. Either way - a bad idea.

2. anon existent memory address - completely outside the physical memory of the machine

3. an unsupported memory address - unsupported may mean valid (present) but likely to be
clobbered by the model because its use is reserved to another purpose such as below the stack or
amid (freed) heap or code. All but the latter would be subject to change in mysterious ways (stack
for instance would vary during an interrupt or call to another function) and the latter (code) had
better be the start of a real function. A final 'unsupported' memory address is one which
incorrectly points 'inside' an object inadvertently.

Is it possible to turn these 3 cases around to make them either 'safer’, useful or meaningful?

I don't plan to make all memory valid - that's what virtualization does... and virtualization /is not/ what we
need.

(it really does little to handle case 3).

For case 1 (NULL)

Lets start simple. Can a null pointer be made a little 'safer' in case it IS actually dereferenced. Many C
compiler vendors selected one of 3 ways to handle this (sometimes with help of the operating system).

e make low memory non-existent to simply map case #2 back to case #1.
e put the string "Null\0" into the lowest memory location (somehow)
e put a zero at that location so that Null points to Null ad-infinitum (my favorite)

Is this sufficient?
Lets try to see if all of the other cases can be made to work...

For case 3 (unsupported)

Life gets interesting here. When there is plenty of memory and Mhz to go around, one can use
'electric-fence' and similar tools to detect pointers that are given values unexpectedly. On a micro
controller like the prop, you don't have this luxury. Never the less, one can at least limit values to be in
the ranges of "on the stack"(vs below the stack) "in data" and "in (allocated) heap" and finally "at
beginning of function" by doing different kinds of costly runtime checking. We may come back to this
one...

page 401 /405

Propeller
(Hss)

For case 2 (non-existent)
On many architectures, a non-existent memory address reference causes a trap or an exception.
This is not true on many newer chips like the Prop.

At a minimum, when one 'walks off the end' of memory some known value is returned (such as all bits on
or off). This value can be checked-for though at some performance cost. Perhaps a useful cost if
debugging is enabled. Of course if the value IS all off, one can fairly quickly check the condition codes
and if the value IS all on, one can compare that to the known highest writable memory address.

[ROM addresses are probably not a concern as very few access to ROM occur in uncontrolled ways.]

The point is, this case often does get caught and mapped into a specific value. It would depend a lot on
the application being

able to judge if that value could be confused with with real potential data values (0 or ~0). When
following

a linked list, this would be fine as its fair to quickly test for 0 or ~0 at each link juncture.

But what if a non-existent memory address were /intentionally/ used to signal something special?
Remember in the early Apple days when illegal instructions were used to tickle (get into) the operating
system?

What if we gave meaning to certain special pointer values?

So long as the pointer wasn't confusable with valid memory locations, then one could use these
pointer-values (or ranges thereof) to reference memory on other devices or perhaps even in other systems
(given cooperation by the part of the system that 'looks-up' where a pointer goes).

Now hold on before trying to map every device on the planet into a 32 bit address space! I know its
tempting for an engineer to want to plan out where everything is. Resist! Such things are the realm of a
linker or dynamic library loader (which will be covered in another article) .

page 402 / 405

Propeller
(Hss)

Where in the World...

...are Propeller Users?

The Propeller Wiki stats give an indication of where visitors to this site are from are from.
There is a Propeller Head Map where lots of people from the Propeller Chip Forum have marked their
location. You can add your own pin if you like.

...is Parallax Inc?

599 Menlo Drive
Rocklin, California 95765
USA

page 403 / 405

http://propeller.wikispaces.com/space/stats/overview
http://www.frappr.com/?a=constellation_map&mapid=137440632850
http://forums.parallax.com/forums/default.aspx?f=25
http://maps.google.com/maps?f=q&hl=en&geocode=&time=&date=&ttype=&q=599+Menlo+Drive&sll=38.829612,-121.28379&sspn=0.092806,0.154495&ie=UTF8&ll=38.822591,-121.289062&spn=145.584249,316.40625&t=h&z=2&iwloc=addr&om=1

Propeller
(Hss)

WORD

A word is an unsigned integer. Unlike a long which is signed.

WORD is used as a keyword in 4 different ways:

e In a VAR block
o WORD Synbol
e In a DAT block
o WORD . ..
e In a method
o WORD [BaseAddr essl nByt es]
o WORD [BaseAddr essl nBytes] [O f set | nWWbr ds]
e In a method
o Synbol . WORD[O f set | nWor ds]

WORD Synbol

Declaration of a Spin word variable. Guaranteed to be word aligned. When compiling, Spin groups all the
word declarations together in a block after all the long declarations and before the byte declarations, so
you can't count on the order of differently sized variables in memory being as in the source. However, all
same sized variables will be in the order you declare them.

These variables only exist in Hub memory. They will exist at a place past the binary image combined by
PropTool.

They are always initialised to zero.

To access them from assembler, you'd have to pass the address of one to the assembly program through
the PAR mechanism and use RDWORD/VRWORD.

WORD . . .

Declare a word aligned label. Size [WORDILONG] indicates how much space to allocate for that labelled
location. Size defaults to WORD. Data will be put into the location modulus the Size field. Layout in
memory will reflect the order declared in the source, however differently aligned declarations may result
in padding.

The data exists in Hub RAM, and may be copied to Cog RAM when starting a Cog. Spin references will
use the original in Hub RAM, Assembler references will use the Cog RAM copy (unless done by
reference though PAR and RDWORD/MRWORD).

WORD [BaseAddr essl| nByt es]

page 404 / 405

http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//WORD#VAR
http://propeller.wikispaces.com//WORD#DAT
http://propeller.wikispaces.com//WORD#AddressOffset
http://propeller.wikispaces.com//WORD#SymbolOffset
http://propeller.wikispaces.com//PAR
http://propeller.wikispaces.com//Hub+RAM
http://propeller.wikispaces.com//Cog+RAM
http://propeller.wikispaces.com//Cog

Propeller
(Hss)

WORD [BaseAddr essl nBytes] [O fsetl| nWr ds]

In spin will read/write to a word in Hub RAM. It can only do word aligned read/write, in other words it
ignores the least significant bit of BaseAddressInBytes.

{{WORD [BaseAddr essl nBytes] := val ue}}
"I's equival ent to:

{{BYTE[BaseAddressl nBytes & $FFFE]
{{BYTE[] BaseAddresslnBytes | $0001]

val ue & $FF}}
(value >> 8) & $FF}}

{{WORD [BaseAddressl nBytes] [OfsetlnWrds] := value}}

"lIs equival ent to:

{{BYTE[(BaseAddr essl| nByt es&FFFE) +(O f set | nWords*2)] := value & $FF}}
{{BYTE[(BaseAddr essl nByt es| $0001) +(O f set | nWor ds* 2)] (value >> 8) &
$FF}}

Synbol . WORD] O f set | nWr ds]

In spin will read/write to a word in Hub RAM. Symbol must be a long or a word variable (although as a
word, it'd be more straightforward to use simple array indexing - Symnbol [Of f set]).

See also

LONG
BYTE

Symbol Address operator

page 405 / 405

http://propeller.wikispaces.com//LONG
http://propeller.wikispaces.com//BYTE
http://propeller.wikispaces.com//Symbol+Address+operator
http://www.tcpdf.org

	TOC
	(Hss)
	AiGeneric
	Assembler Subroutines
	Assembly Programming
	Atari Joystick
	Books References Tutorials
	Bootloaders
	BYTE
	Cog RAM
	Colors
	Common Assembler Bugs
	Converting Text Output Display Type
	Copyright and Licensing
	Cracking Open the Propeller - Original Page
	Cracking Open the Propeller Chip
	Data Storage
	Debuggers and Emulators
	Dev Board Differences
	Development Tools
	DK Graphics Driver
	DMX
	Download Protocol
	Editing the Wiki
	Example
	Fast-Track for PropJavelin
	FemtoBASIC
	FFT
	Fixed Point Math
	Full Duplex Serial
	Game Programming for the Propeller Powered Hydra
	Games
	Graphics
	graphics drivers
	Hardware
	home
	Homespun Spin Compiler
	Hub Memory Map
	Hub RAM
	HYBRID Development Kit
	HYDRA Game Console
	I2C Slave
	integer_navigation
	interface
	Interrupts
	IO Bus Systems
	JavaPropDesign
	Join us on IRC!
	Large Memory Model
	LED
	Links to other sites related to the Propeller
	Linux Development
	LMM AiChip Industries
	LMM Pacito
	LMM Phil Pilgrim (PhiPi)
	LONG
	LONG vs RES
	Mac and Linux native development
	Mac OS-X Experiences
	Managing Concurrency
	MATH
	Method Calls
	MonoLCD640
	Object Reference
	OMU
	Oscillator
	Packaging Propeller Software
	Palette Mode
	PASD
	pcbdesign
	PinDefs.spin
	pProp040
	pPropellerSim
	pPropQL
	pPropQL020
	Programming in C
	Programming in C - Catalina
	Programming in Forth
	Programming in Java
	Programming in Pascal
	Prop Tool
	Propeller 2 Instructions
	Propeller Demo Board
	Propeller Font
	Propeller II
	Propeller Lingo
	Propeller Manual
	Propeller Snippets
	Propeller Tool - Enhancement Requests
	Propeller_CPLD
	PropMag
	PropMag-2008-03
	PropMag-2008-04
	PropMag-2008-05
	PropMag-2008-06
	PropTCP_SocketsLayer
	PWM
	RCTIME Object
	Referencing Globals
	Released Projects
	RFID
	Single Cog Graphics Driver Pattern
	Software
	Sphinx
	Spin Byte Code
	SpinStudio
	Strings
	Supercomputing
	Symbol Address operator
	Thumb VM AiChip
	Two-Resistor Serial Interface
	USB Host
	USB Slave
	Video Generator
	what good is a bad pointer
	Where In The World?
	WORD

