USES AND ABUSES OF AMDAHL'S LAW'

S Krishnaprasad
Mathematical, Computing, and Information Sciences
Jacksonville Sate University
Jacksonville, AL 36265
Email: skp@jsucc.jsu.edu

ABSTRACT

Amdahl's law has been widdy used by designers and researchers to get a rough
eslimate of performance improvement when aternate desgns and implementations
are attempted. It gives a Smple relaionship between the nature of performance
improvement and the problemcharacteristics. The negativeway the origina law was
stated [Amd67] contributed to agood deal of pessmismabout the nature of parallel
processing. But, after observing remarkable speedups in some large-scale
applications, researchers in paralel processng started wrongfully suspecting the
vaidity and usefulness of Amdahl's law. In this paper we present the many uses of
Amdahl's law as well as some of its abuses,

1. INTRODUCTION

Amdahl'slaw, as origindly formulated [Amd67], isasmple and direct argument showing
that the inherently seria portion of a computation imposes alimit on the potentiad speedup of
parald processng. It isaremarkably smple and egant law about the nature of performance
improvement. It illuminates many topicsin computer science and engineering.

Amdahl was pessmigtic about the success of pardld processing. The fallowing isaquote
from Gene Amdahl [Amd67]:

"Copyright © 2001 by the Consortium for Computing in Small Colleges. Permission
to copy without feedl or part of this materid is granted provided that the copies are not made
or distributed for direct commercia advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permisson of the
Consortium for Computing in Smal Colleges. To copy otherwise, or to republish, requiresa
fee and/or specific permission.

288



CCSC: Southeastern Conference

"For over a decade prophetshavevoiced the contention that the organization
of asinglecomputer has reached its limitsand that truly significant advances
can be made only by interconnection of a multiplicity of computersin such a
manner as to permit co-operative solution...The nature of this overhead (in
parallelism) appears to be sequential so that it is unlikely to be amenable to
parallel processing technigues. Overhead alone would then place an upper
limit on throughput of fiveto seven timesthe sequential processing rate, even
If the housekeeping were done in a separate processor...At any point in time
it is difficult toforesee how the previous bottlenecksin a sequential computer
will be effectively overcome.”

But, researchers in massively pardlel computation have observed impressive linear speedups
for some large applications [Gus96]. This lead to wrongfully suspecting the usefulness of
Amdahl'slaw. Also, using incorrect performance measures, it isvery easy to break the law and
even achieve super-linear speedups.

In this paper we present the usefulness of Amdahl's law as applied to many topics in
computer science and engineering. Some of the topi csinclude cache memory design, ingtruction
set design, processor design, vector processng, and multiprocessng. Some of the
misconceptions and abuses of the law area so presented. I n Section 2 we discuss Amdahl'slawv
as applied to multiprocessing, highlighting some of the abuses and suspicions. Section 3 shows
the use of Amdahl's law in memory hierarchy design. In Section 4 we present the law's
applicability in ingtruction set design, processor design, and vector processing. Section 5
includes some concluding remarks.

2. AMDAHL'SLAW AND MULTIPROCESSING

The origind formulation of Amdahl's lav [Amd67] dates the impact of inherently
sequentia portion of atask on the speedup during multiprocessing. Suppose f represents the

fractionof the task that isinherently sequentia thenusingN processors the speedup isgivenby
1
T(f+(FH/N)

When =0, S= N, resulting in an ided linear speedup.
When f=0.2, S<5, independent of N.

When f=0.5, S<2, independent of N.

For large N, S =(1/f), independent of N.

This rddionship generates pessmism regarding the viability of messvely pardld
processing especidly if we overestimate the vaue of the fraction f. But, researchersin pardld
computation community started suspecting the usefulness and vdidity of Amdahl's law after
observing impressive linear speedups in some large applications. Gustafson (1988, Sandia
National Lab) reported near-linear speedups on 1024-processor hypercubefor three practical
gpplications. beam dress andysis, surface wave smulation, and ungtable fluid flow. This lead
to suspecting the nature of Amdahl's origina formulation. For example, Gustafson [Gus96]

289



JCSC 17, 2 (December 2001)

argues that Amdahl's law is inappropriate for current approaches to massvey paralld
processing and suggestsan dternate scal ed speedup measure. E. Bards (SandiaNationd Lab)
proposed a scal ed speedup formula, whichis oftenreferredtoas Gustafson'slaw. Thisis stated
asfollows if the fraction of time spent by the sequentia part onaparald systemisg, thenwith
N processors the scaled speedup is S= g+ (1-g)*N, asmple linear reaionship. A note by
Stephen J. Williard [Will99] daborates on this law.

Y uan Shi (1996), in an illumingting artidle [Shi96], shows that the Gustafson's law and
Amdahl's law are not two separate laws and in fact proved the equivaence of the two laws.
Gustafson had mistakenly used the vadue of g asthe vaue for fin Amdahl'slaw and incorrectly
suspected the Amdahl's law. The two fractions, f and g, are shown [Shi96] to be related as

1

~ 1+ (1-9)*N/g

For example, Gustafson used g=0.004 and cal culated the scaled speedup as 1020 with
N=1024, but usng Amdahl's law got a speedup of 201 usng the vaue of g for f. If he had
used the correct vaue for f corresponding to g=.004, which is 0.0000039, thenhe would have
gotten the same speedup of 1020 using Amdahl's law! Thus there is nothing pessmistic about
Amdahl'slaw. In practice, for severa gpplications, the fractionof the serid part happens to be
very, very smal thus leading to near linear speedups.

S

It is dso very easy to use wrong performance measures and arrive at super-linear
speedups during multiprocessing. This oftenleadsto suspectingthe Amdahl'slaw. For example,
cons der the sorting problem based on e ement comparisons. Suppose we use salectionsort on
alist of N dements. Worst case number of comparisonsis N for this sequentia agorithm.

Supposewe use K -fold pardle processng by dividingthe lig intoK sublists, each of Sze
N/K. The parald implementation of sorting by performing selection sort on each subligts (in
pardle) and merging the K sublists needs the following number of comparisons:

N + (N/K)? + N*(K-1)
This gives a speedup of
S= N2 = 1
T N+ (N/K)?+N*(K-1) 1N+ 1/K?+(K-)/N
For large N, S = K2 which seemsto "break" the law yielding super-linear speedup!

The fdlacy here isthat we are comparing two different types of dgorithms. The pardld
implementationversionis essentialy amergesort while the sequentia version is asdectionsort.
Thetotal number steps performed in the pardld version and the sequentid version are not the
same. Indeed, if they werethe same, we would get the correct sub-linear speedup. The same
divide-and-conquer method if run onasingle processor would take N + K * (N/K )% + N* (K -1)
steps. This gives a correct speedup of

290



CCSC: Southeastern Conference

_ N+K*(N/K)*+ N*(K-1) _
S= N + (N/K)Z + N*(K-l) =K For IargeN

3.USEIN MEMORY HIERARCHY DESIGN

One of the gods in computer design is to provide a large memory and afast memory.
Though this appears to be a difficult task, incorporating a hierarchy of memory systems has
solved this problem. The principle of locdity (bothtempora and spatial) has been successfully
exploited in the memory hierarchy of modern computer systems ([Hen96], [Pat97]). With the
growing Sze of software gpplications run oncurrent machines, thereisa corresponding demand
for larger main memory (hundreds of MBs) and cache memory (hundreds of KBs.) In fact, to
meet the fast clock speeds (gigahertz) of modern processors multilevel cache memory is used
to enhance the performance of the traditiona single-level cache. Leve | cache is part of the
processor chip module and Levd |1 cacheistypicaly on an off-chip module.

Amdahl's law can be applied to get arough estimate of the performance of the memory
sysemsinthe hierarchy. For example, the speedup of main memory access due to asingle-level
cache memory is given by theformula

SEHTEn

h: cachehit retio

T,

T Man memory accesstime
T, : cache memory accesstime

If h=0.5, then S < 2, independent of how fast the cache is. Thus the hit ratio limits the
performance of the access. This may sound pessimistic but, in practice, software applications
depict aremarkably high degree of spatial and temporal locditiesleading to very high cache hit
rates. Thisinturnresults in good speedup and performance. David O'Ned of Nationa Center
for Supercomputing Applications [One9d9] presents some interesting performance results for
multilevel cache memory systems.

4. USE IN INSTRUCTION SET AND PROCESSOR DESIGN

To predict the performance enhancement due to an improved feature it is convenient to
restate the essence of Amdahl's law as follows [Pat97]:

Speedup = Execution time before a festure isimproved
Execution time after the improved feature

291



JCSC 17, 2 (December 2001)

Here, the fractionof task that does not usethe feature limits the performance or speedup.
This should guide the designersinthe design process. For example, before an attempt is made
to improve the speed of multiplication operation, one should know roughly the fraction of time
atask performs multiply operations. Suppose atask takes 100 seconds to run onaprocessor.
Say 40% of thistime is consumed by multiply operations (which we will tryto improve). Since
60% of the task is unaffected by the improvement, the speedup is given by

S=100/ (60+(40/K)) where multiply operation is made K -times faster.

Thus, S< 1.67 independent of K. This providesuseful feedback to the designer. A guidingrule
isthat frequently used instructions should beimproved. But the designer should be aware of the
performance limits due to other dower indructions in the program. Whether to improve the
performance of integer arithmetic operations or floating point arithmetic operations involves
smilar investigetion.

Smilar in sirit, the dowest sage in the pipdine limits the overdl pipeline performance.
The lowest-performance component on the input/output pathlimitsthe I/0 systemthroughput.
Performance of suitable applications onvector processors is often dramatic even though there
may be some inherently scaar operations. Thisagain is due to the fact that for large problem
gzesthevdue of thefraction f in Amdahl's law is very, very smadl.

5. CONCLUSIONS

Inthis paper we have presented the usefulness of Amdahl'slaw as gpplied to many topics
in computer science and engineering. When it is used correctly and in proper context, it does
give performance improvement estimates that are often useful to the designer. The origind
formulation of the law was apparently pessmigtic with regard to paradld processing. But
impressive multiprocessing speed-up results lead to the formulation of an apparently new law
cdled Gudgtafson's law which was more optimigic. Many misundersandings exigted in the
paralle processng community regarding the nature of performance improvement and the
goplicability of these two laws. Yuan Shi demonstrated the equivaence of the two laws thus
clearing up many of the misunderstandings.

REFERENCES

[Amd67] Amdahl, G.M., "Vdidity of the single-processor approach to achieving large scae
computing capabilities,” Proceedings of AFIPS Conference, 1967, pp. 483-485.

[Gus96] Gudafson, JL., "Reevduding Amdahl's Law,” Ames lab web link
http:/Aww.scl.amed ab.gov/Publications/ Amdahl sLaw/Amdahlshtml, June 1996.

[Hen96] Hennessy, J.L. and Patterson, D.A, Computer Architecture: A Quantitative Approach,
2nd Ed., Morgan Kaufmann, 1996.

292



CCSC: Southeastern Conference

[One99] O'Nedl, David, "On Microprocessors, Memory Hierarchies and Amdahl's Law,"
Carnegie Mdlon Univergty, Pittsburgh Supercomputing Center, Pittsburgh, PA. See web link
http://archive.ncsa.uiuc.edw/EP/CSM/presentations, November 1999.

[Pat97] Petterson, D.A. and Hennessy, JL., Computer Organization & Desgn: The
Hardware/Software Interface, 2nd Ed., Morgan Kaufmann, 1998.

[Shi96] Shi, Y ., "Reevauating Amdahl'sLaw and Gustafson'sLaw," Computer and Information
Sciences department, Temple University, Web Ilink
http://joda.cis.templ e.edu/~shi/docs/amdahl/amdahl .html, October 1996.

[Will99] Williard, S.J., "The Gustafson-Baris law,” see the web link
http://home.wlu.eduw/~wha eyt/classes/pard| € /topicsGustafson.html.

293



